CN104737298B - 分裂栅功率半导体场效应晶体管 - Google Patents

分裂栅功率半导体场效应晶体管 Download PDF

Info

Publication number
CN104737298B
CN104737298B CN201480002400.4A CN201480002400A CN104737298B CN 104737298 B CN104737298 B CN 104737298B CN 201480002400 A CN201480002400 A CN 201480002400A CN 104737298 B CN104737298 B CN 104737298B
Authority
CN
China
Prior art keywords
conductivity type
splitting bar
semi
heavy doping
field plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480002400.4A
Other languages
English (en)
Other versions
CN104737298A (zh
Inventor
伍震威
梁嘉进
单建安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anjian Technology Shenzhen Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN104737298A publication Critical patent/CN104737298A/zh
Application granted granted Critical
Publication of CN104737298B publication Critical patent/CN104737298B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/405Resistive arrangements, e.g. resistive or semi-insulating field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

本发明大体上涉及功率场效应晶体管(FET)的结构和制造。本发明提供平面功率金属氧化物半导体场效应晶体管(MOSFET)以及包括分裂栅和半绝缘场板的绝缘栅双极晶体管(IGBT)结构。本发明还提供这些结构的制造方法。

Description

分裂栅功率半导体场效应晶体管
技术领域
本发明大体上涉及功率半导体装置的结构和制造,且具体而言涉及分裂栅平面功率半导体场效应晶体管(FET)。
背景技术
本发明将在n沟道功率FET中说明,但是在以下说明中将理解,本发明同样适用于p沟道功率FET。在本发明说明书中,重掺杂的n型区域标记为n+,并且重掺杂的P型区域标记为p+。这些重掺杂区域通常具有介于1×1018cm-3与1×1021cm-3之间的掺杂浓度。在本发明说明书中,轻掺杂的n型区域标记为n-,并且轻掺杂的P型区域标记为p-。这些轻掺杂区域通常具有介于1×1013cm-3与1×1017cm-3之间的掺杂浓度。
功率MOSFET已广泛用于开关应用中。需要高开关速度以便减少开关功率损耗并且减小系统中的无源部件的尺寸。因此,本发明的目标是提供具有高开关速度的分裂栅功率MOSFET。
此外,在IGBT结构中也需要高开关速度。因此,本发明的另一目标是提供具有高开关速度的分裂栅IGBT。
现有技术
图1中示出现有技术功率MOSFET结构的横截面。如图所示,在断开状态下,高压可以由反向偏压的p型体区(13)/n--外延(14)结阻挡在装置的漏极与源极之间。在通路状态下,电流可以通过n型沟道在n+源极(11)与n--外延(14)之间传导。在装置的开关期间,栅(21)下方的n--外延(14)通过栅电容充电或放电。因此,装置的开关速度大部分取决于栅(21)-n--外延(14)重叠区域。为了增强开关速度,重叠区域可以通过减小两个邻近p型体区(13)之间的距离而减小。然而,如果邻近p型体区(13)彼此太靠近,那么会在位于两个邻近p型体区(13)之间的n--外延(14)的上部部分中引起高电阻,并且会引发不合需要的装置的高导通电阻。
图2中示出另一现有技术功率MOSFET结构[1]。如图中所示,装置的分裂栅结构会产生小得多的栅(21)-n--外延(14)重叠区域以及因此与先前图1中示出的装置相比更高的开关速度。同时,邻近p型体区(13)之间的空间未减小以维持大致相同的导通电阻。然而,在断开状态下,分裂栅会在栅(21)-n--外延(14)重叠区域的边缘处产生高电场,并且高电场可以引起装置的提前击穿[2]。
图3中示出又另一现有技术功率MOSFET结构[2]。装置具有与先前图2中示出的装置相同的分裂栅结构。装置具有连接到源极电极(22)上的额外虚拟栅(22)。虚拟栅(22)具有场板的功能,这可以在断开状态下减小在栅电极(21)的边缘处的电场。因此,解决了提前击穿的问题。然而,需要先进的光刻步骤以在虚拟栅(22)与分裂栅(21)之间形成小的间隙。此外,虚拟栅(22)还在分裂栅(21)的侧壁处产生额外电容,与图2中示出的装置的开关速度相比,这会引起开关速度的退化。
发明内容
因此,本发明的目标是提供具有高开关速度,但不存在提前击穿问题的分裂栅平面功率FET。
为了实现此目标以及其他目标,本发明提供包括如图4中所示的分裂栅(21)以及半绝缘场板(34)的平面功率MOSFET结构。半绝缘场板(34)在侧壁处连接到源极电极(22)。由于半绝缘场板(34)的高电阻率,因此板(34)的RC延迟时间大于装置的典型开关时间一个数量级以上。例如,目前先进技术功率MOSFET的开关时间约为10-8s,而板(34)的RC延迟时间通常约为10-5s。由于这种差异,因此半绝缘场板(34)在开关期间难以传导任何瞬变电流,因此即使在半绝缘场板(34)与栅(21)之间存在大的重叠区域也不会引起开关延迟。另一方面,在装置的断开状态下,因为在半绝缘场板(34)中不存在静态电流,半绝缘场板(34)的电势保持为与源极电极(22)的电势相同。因此,类似于虚拟栅(22),半绝缘场板还可以抑制栅电极(21)附近的高电场并且因此防止提前击穿。
为了实现此目标以及其他目标,本发明还提供包括如图5中所示的分裂栅(21)以及半绝缘场板(34)的绝缘栅双极晶体管(IGBT)。类似于在功率MOSFET中,分裂栅(21)提供高开关速度,并且半绝缘场板(34)防止提前击穿。
一种分裂栅平面功率MOSFET结构,其包括
在底部处的漏极电极(23),
第一导电型的重掺杂衬底(15),
第一导电型的轻掺杂外延层(14),所述轻掺杂外延层在所述重掺杂衬底(15)的顶部上,
第二导电型的重掺杂扩散(12),所述重掺杂扩散(12)由源极电极(22)接触,
第二导电型的体区(13),所述的体区(13)通过所述重掺杂扩散(12)连接到所述源极电极(22),
第一导电型的重掺杂源极(11),所述重掺杂源极(11)由所述源极电极(22)接触,
栅电介质(31),所述的栅电介质(31)覆盖所述体区(13)的表面并且在所述重掺杂源极(11)与所述轻掺杂外延层(14)之间形成沟道,
分裂栅电极(21),所述分裂栅电极(21)在所述栅电介质(31)的顶部上,
薄电介质层(33),所述薄电介质层(33)覆盖所述分裂栅(21)的表面以及所述轻掺杂外延层(14)的表面,
半绝缘场板(34),所述半绝缘场板(34)在所述薄电介质层(33)的顶部上并且在侧壁处由所述源极电极(22)接触,
层间电介质(ILD)(32),所述层间电介质(32)在所述半绝缘场板(34)的顶部上,
以及源极电极(22),所述源极电极在接触孔(41)中并且在所述ILD(32)的顶部上。
进一步的,其中所述栅电介质(31)是氧化硅。
进一步的,其中所述分裂栅电极(21)是多晶硅、金属或金属硅化物中的至少一种。
进一步的,其中所述薄电介质层(33)是氧化硅。
进一步的,其中所述半绝缘场板(34)包含氮化钛、多晶硅以及非晶硅。
进一步的,其中所述ILD(32)是氧化硅。
进一步的,其中所述漏极电极(23)以及所述源极电极(22)两者是金属或金属硅化物。
一种分裂栅平面IGBT结构,其包括
在底部处的集电极(25),
第二导电型的重掺杂集电区(17),
第一导电型的缓冲区(16),所述的缓冲区(16)在所述集电区(17)的顶部上,
第一导电型的轻掺杂漂移区(14),所述的轻掺杂漂移区(14)在所述缓冲区(16)的顶部上,
第二导电型的重掺杂扩散(12),所述重掺杂扩散(12)由发射极(24)接触,
第二导电型的体区(13),所述的体区(13)通过所述重掺杂扩散(12)连接到所述发射极(22),
第一导电型的重掺杂发射区(11),所述重掺杂发射区(11)由所述发射极(24)接触,
栅电介质(31),所述栅电介质(31)覆盖所述体区(13)的表面并且在所述重掺杂发射区(11)与所述轻掺杂漂移区(14)之间形成沟道,
分裂栅电极(21),所述分裂栅电极在所述栅电介质(31)的顶部上,
薄电介质层(33),所述薄电介质层覆盖所述分裂栅(21)的表面以及所述轻掺杂外延层(14)的表面,
半绝缘场板(34),所述半绝缘场板(34)在所述薄电介质层(33)的顶部上并且在侧壁处由所述发射极(24)接触,
层间电介质(ILD)(32),所述层间电介质在所述半绝缘场板(34)的顶部上,
以及发射极(24),所述发射极在接触孔(41)中并且在所述ILD(32)的顶部上。
进一步的,其中所述集电极(25)以及所述发射极(24)两者是金属或金属硅化物。
进一步的,其中所述栅电介质(31)是氧化硅。
进一步的,其中所述分裂栅电极(21)是多晶硅、金属或金属硅化物中的至少一种。
进一步的,其中所述薄电介质层(33)是氧化硅。
进一步的,其中所述半绝缘场板(34)包含氮化钛、多晶硅以及非晶硅。
进一步的,其中所述ILD(32)是氧化硅。
一种用于分裂栅平面功率MOSFET结构的制造方法,其包括
(1)通过外延生长在第一导电型的重掺杂衬底(15)的顶部上形成第一导电型的轻掺杂外延层(14),
(2)通过离子注入以及热扩散形成第二导电型的重掺杂扩散(12),
(3)形成栅电介质(31),通过淀积形成栅电极(21),图案化所述栅电介质(31)以及所述栅电极(21),
(4)通过自对准离子注入以及热扩散形成第二导电型的体区(13),
(5)通过图案化所述栅电极(21)以及所述栅电介质(31)形成分裂栅(21),
(6)通过离子注入以及退火形成第一导电型的重掺杂源极(11),淀积薄电介质层(33)、半绝缘场板(34)以及ILD(32),
(7)图案化所述ILD(32)、所述半绝缘场板(34)以及所述薄电介质层(33)以形成接触孔(41)以及
(8)在底部在表面以及漏极电极(23)处形成源极电极(22)。
进一步的,其中所述分裂栅(21)通过光刻以及蚀刻进行图案化。
进一步的,其中离子注入任选地在蚀刻所述分裂栅(21)之后执行,以增加n--外延(14)的上部部分的掺杂浓度。
进一步的,其中所述ILD(32)、所述半绝缘场板(34)以及所述薄电介质层(33)同时通过光刻以及蚀刻进行图案化。
一种用于分裂栅平面IGBT结构的制造方法,其包括
(1)以第一导电型的轻掺杂的衬底晶片(14)开始,
(2)通过离子注入以及热扩散形成第二导电型的重掺杂扩散(12),
(3)形成栅电介质(31),通过淀积形成栅电极(21),图案化所述栅电介质(31)以及所述栅电极(21),
(4)通过自对准离子注入以及热扩散形成第二导电型的体区(13),
(5)通过图案化所述栅电极(21)以及所述栅电介质(31)形成分裂栅(21),
(6)通过注入以及退火形成第一导电型的重掺杂发射区(11),淀积薄电介质层(33)、半绝缘场板(34)以及ILD(32),
(7)图案化所述ILD(32)、所述半绝缘场板(34)以及所述薄电介质层(33)以形成接触孔(41),并且在表面处形成发射极(24)以及
(8)使所述衬底晶片(14)变薄,通过离子注入以及退火形成第一导电型的缓冲层(16),通过离子注入以及退火形成重掺杂集电区(17),在底部处形成集电极(25)。
进一步的,其中所述分裂栅(21)通过光刻以及蚀刻进行图案化。
进一步的,其中离子注入任选地在蚀刻所述分裂栅(21)之后执行,以增加n--外延(14)的上部部分的掺杂浓度。
进一步的,其中所述ILD(32)、所述半绝缘场板(34)以及所述薄电介质层(33)同时通过光刻以及蚀刻进行图案化。
附图说明
图1是现有技术功率MOSFET结构的截面图。
图2是另一现有技术功率MOSFET结构的截面图。
图3是又另一现有技术功率MOSFET结构的截面图。
图4是实施于功率MOSFET中的本发明的截面图。
图5是实施于IGBT中的本发明的截面图。
图6A至图6H示出先前在图4中示出的功率MOSFET的关键制造过程步骤。
图7A至图7H示出先前在图5中示出的IGBT的关键制造过程步骤。
具体实施方式
图1是现有技术功率MOSFET结构的截面图。栅电极(21)在栅电介质(31)的顶部上,并且栅电介质(31)覆盖n--外延(14)的整个表面。
图2是另一现有技术功率MOSFET结构的截面图。装置具有分裂栅(21)以及栅(21)下方的栅电介质(31)。仅n--外延(14)的小部分表面由栅电介质(31)覆盖,而剩余的表面由层间电介质(ILD)(32)覆盖。
图3是又另一现有技术功率MOSFET结构的截面图。装置具有分裂栅(21)以及位于分裂栅(21)之间的虚拟栅(22)。虚拟栅(22)连接到源极电极(22),并且虚拟栅(22)通过ILD(32)与分裂栅(21)隔离。
图4是实施于功率MOSFET中的本发明的截面图。平面功率MOSFET结构包括在底部处的漏极电极(23);n+衬底(15);在n+衬底(15)的顶部上的n--外延(14);p+扩散(12),所述p+扩散由源极电极(22)接触;p型体区(13),所述p型体区通过p+扩散(12)连接到源极电极(22);n+源极(11),所述n+源极由源极电极(22)接触;栅电介质(31),所述栅电介质覆盖p型体区(13)的表面并且在n+源极(11)与n--外延(14)之间形成沟道;在栅电介质(31)的顶部上的分裂栅电极(21);薄电介质层(33),所述薄电介质层覆盖分裂栅(21)以及n--外延(14)的两者表面;半绝缘场板(34),所述半绝缘场板在薄电介质层(33)的顶部上并且在侧壁处由源极电极(22)接触;在半绝缘场板(34)的顶部上的层间电介质(ILD)(32);以及源极电极(22),所述源极电极在接触孔(41)中并且在ILD(32)的顶部上。源极电极(22)和漏极电极(23)通常是金属或金属硅化物。栅电介质(31)通常是氧化硅,但是其他高介电常数材料(例如,氧化铝、氮氧化物以及二氧化铪)还可以用作栅电介质(31)。装置的栅电极(21)通常是多晶硅,因为其适合于自对准高温过程。然而,出于最小化栅电阻的目的,金属或金属硅化物还可以用作栅电极(21)。薄电介质层(33)通常是氧化硅,但是其他介电材料也可以用于隔离目的。ILD(32)也用于隔离,并且通常ILD(32)是氧化硅。半绝缘场板(34)可以是任何高电阻率材料,其包含(但不限于)氮化钛、多晶硅以及非晶硅。
图5是实施于IGBT中的本发明的截面图。IGBT的结构类似于先前在图4中所示的功率MOSFET的结构。在IGBT中,发射极(24)而不是源极电极(22)位于表面处,并且集电极(25)而不是漏极电极(23)位于底部处。在IGBT中不存在n+衬底(15),但是n缓冲区(16)以及p+集电区(17)位于n-漂移区(14)的下方。
图6A至图6H示出先前在图4中示出的功率MOSFET的关键制造过程步骤。制造过程包括(1)通过外延生长在n+衬底(15)的顶部上形成n--外延(14);(2)通过注入以及主扩散形成p+扩散(12);(3)形成栅电介质(31),通过淀积形成栅电极(21),图案化栅电介质(31)以及栅电极(21)两者;(4)通过自对准注入以及主扩散形成p型体区(13);(5)通过图案化栅电极(21)以及栅电介质(31)形成分裂栅(21);(6)通过注入以及退火形成n+源极(11),淀积薄电介质层(33)、半绝缘场板(34)以及ILD(32);(7)图案化ILD(32)、半绝缘场板(34)以及薄电介质层(33)以形成接触孔(41);以及(8)在表面处形成源极电极(22)并且在底部处形成漏极电极(23)。在制造过程中,分裂栅(21)通过光刻以及随后蚀刻而形成。通常此种光刻需要额外的掩模。此外,在形成分裂栅(21)之后,离子注入步骤可以任选地在形成n+源极(11)之前添加,以增加n--外延(14)的上部部分的掺杂浓度,并且因此产生减小的导通电阻。ILD(32)、半绝缘场板(34)以及薄电介质层(33)可以通过使用用于接触孔(41)的掩模光刻并且随后蚀刻而一起进行图案化。
图7A至图7H示出先前在图5中示出的IGBT的关键制造过程步骤。所述制造步骤类似于从图6A至图6H示出的制造步骤。在IGBT的制造中,所述过程以轻掺杂的n-衬底晶片(14)而不是n--外延(14)开始。所述过程与功率MOSFET的过程相同,直到在表面处形成发射极(24)电极,如图7G所示。在此步骤之后,n-衬底晶片(14)变细,并且n缓冲区(16)通过在后侧处的离子注入以及退火形成。随后p+集电区(17)通过在后侧处的离子注入以及退火形成。最终,集电极(25)在晶片的后侧处形成,如图7H中所示。

Claims (22)

1.一种分裂栅平面功率MOSFET结构,其包括
在底部处的漏极电极(23),
第一导电型的重掺杂衬底(15),
第一导电型的轻掺杂外延层(14),所述轻掺杂外延层在所述重掺杂衬底(15)的顶部上,
第二导电型的重掺杂扩散(12),所述重掺杂扩散(12)由源极电极(22)接触,
第二导电型的体区(13),所述的体区(13)通过所述重掺杂扩散(12)连接到所述源极电极(22),
第一导电型的重掺杂源极(11),所述重掺杂源极(11)由所述源极电极(22)接触,
栅电介质(31),所述的栅电介质(31)覆盖所述体区(13)的表面并且在所述重掺杂源极(11)与所述轻掺杂外延层(14)之间形成沟道,
分裂栅电极(21),所述分裂栅电极(21)在所述栅电介质(31)的顶部上,
薄电介质层(33),所述薄电介质层(33)覆盖在所述分裂栅(21)的表面和所述轻掺杂外延层(14)的表面,
半绝缘场板(34),所述半绝缘场板(34)在所述薄电介质层(33)的顶部上并且在侧壁处由所述源极电极(22)接触,
层间电介质(32),所述层间电介质(32)在所述半绝缘场板(34)的顶部上,
以及源极电极(22),所述源极电极在接触孔(41)中并且在所述层间电介质(32)的顶部上。
2.根据权利要求1所述的分裂栅平面功率MOSFET结构,其中所述栅电介质(31)是氧化硅。
3.根据权利要求1所述的分裂栅平面功率MOSFET结构,其中所述分裂栅电极(21)是多晶硅、金属或金属硅化物中的至少一种。
4.根据权利要求1所述的分裂栅平面功率MOSFET结构,其中所述薄电介质层(33)是氧化硅。
5.根据权利要求1所述的分裂栅平面功率MOSFET结构,其中所述半绝缘场板(34)包含氮化钛、多晶硅以及非晶硅。
6.根据权利要求1所述的分裂栅平面功率MOSFET结构,其中所述层间电介质(32)是氧化硅。
7.根据权利要求1所述的分裂栅平面功率MOSFET结构,其中所述漏极电极(23)以及所述源极电极(22)两者是金属或金属硅化物。
8.一种分裂栅平面IGBT结构,其包括
在底部处的集电极(25),
第二导电型的重掺杂集电区(17),
第一导电型的缓冲区(16),所述的缓冲区(16)在所述集电区(17)的顶部上,
第一导电型的轻掺杂漂移区(14),所述的轻掺杂漂移区(14)在所述缓冲区(16)的顶部上,
第二导电型的重掺杂扩散(12),所述重掺杂扩散(12)由发射极(24)接触,
第二导电型的体区(13),所述的体区(13)通过所述重掺杂扩散(12)连接到所述发射极(22),
第一导电型的重掺杂发射区(11),所述重掺杂发射区(11)由所述发射极(24)接触,
栅电介质(31),所述栅电介质(31)覆盖所述体区(13)的表面并且在所述重掺杂发射区(11)与所述轻掺杂漂移区(14)之间形成沟道,
分裂栅电极(21),所述分裂栅电极在所述栅电介质(31)的顶部上,
薄电介质层(33),所述薄电介质层(33)覆盖在所述分裂栅(21)的表面和所述轻掺杂外延层(14)的表面,
半绝缘场板(34),所述半绝缘场板(34)在所述薄电介质层(33)的顶部上并且在侧壁处由所述发射极(24)接触,
层间电介质(32),所述层间电介质在所述半绝缘场板(34)的顶部上,
以及发射极(24),所述发射极在接触孔(41)中并且在所述层间电介质(32)的顶部上。
9.根据权利要求8所述的分裂栅平面IGBT结构,其中所述集电极(25)以及所述发射极(24)两者是金属或金属硅化物。
10.根据权利要求8所述的分裂栅平面IGBT结构,其中所述栅电介质(31)是氧化硅。
11.根据权利要求8所述的分裂栅平面IGBT结构,其中所述分裂栅电极(21)是多晶硅、金属或金属硅化物中的至少一种。
12.根据权利要求8所述的分裂栅平面IGBT结构,其中所述薄电介质层(33)是氧化硅。
13.根据权利要求8所述的分裂栅平面IGBT结构,其中所述半绝缘场板(34)包含氮化钛、多晶硅以及非晶硅。
14.根据权利要求8所述的分裂栅平面IGBT结构,其中所述层间电介质(32)是氧化硅。
15.一种用于分裂栅平面功率MOSFET结构的制造方法,其包括
(1)通过外延生长在第一导电型的重掺杂衬底(15)的顶部上形成第一导电型的轻掺杂外延层(14),
(2)通过离子注入以及热扩散形成第二导电型的重掺杂扩散(12),
(3)形成栅电介质(31),通过淀积形成栅电极(21),图案化所述栅电介质(31)以及所述栅电极(21),
(4)通过自对准离子注入以及热扩散形成第二导电型的体区(13),
(5)通过图案化所述栅电极(21)以及所述栅电介质(31)形成分裂栅(21),
(6)通过离子注入以及退火形成第一导电型的重掺杂源极(11),淀积薄电介质层(33)、半绝缘场板(34)以及层间电介质(32),
(7)图案化所述层间电介质(32)、所述半绝缘场板(34)以及所述薄电介质层(33)以形成接触孔(41)以及
(8)在表面处形成源极电极(22),在底部处形成漏极电极(23)。
16.根据权利要求15所述的制造方法,其中所述分裂栅(21)通过光刻以及蚀刻进行图案化。
17.根据权利要求15所述的制造方法,其中离子注入任选地在蚀刻所述分裂栅(21)之后执行,以增加n--外延(14)的上部部分的掺杂浓度。
18.根据权利要求15所述的制造方法,其中所述层间电介质(32)、所述半绝缘场板(34)以及所述薄电介质层(33)同时通过光刻以及蚀刻进行图案化。
19.一种用于分裂栅平面IGBT结构的制造方法,其包括
(1)以第一导电型的轻掺杂的衬底晶片(14)开始,
(2)通过离子注入以及热扩散形成第二导电型的重掺杂扩散(12),
(3)形成栅电介质(31),通过淀积形成栅电极(21),图案化所述栅电介质(31)以及所述栅电极(21),
(4)通过自对准离子注入以及热扩散形成第二导电型的体区(13),
(5)通过图案化所述栅电极(21)以及所述栅电介质(31)形成分裂栅(21),
(6)通过注入以及退火形成第一导电型的重掺杂发射区(11),淀积薄电介质层(33)、半绝缘场板(34)以及层间电介质(32),
(7)图案化所述层间电介质(32)、所述半绝缘场板(34)以及所述薄电介质层(33)以形成接触孔(41),并且在表面处形成发射极(24)以及,
(8)使所述衬底晶片(14)变薄,通过离子注入以及退火形成第一导电型的缓冲层(16),通过离子注入以及退火形成重掺杂集电区(17),在底部处形成集电极(25)。
20.根据权利要求19所述的制造方法,其中所述分裂栅(21)通过光刻以及蚀刻进行图案化。
21.根据权利要求19所述的制造方法,其中离子注入任选地在蚀刻所述分裂栅(21)之后执行,以增加n--外延(14)的上部部分的掺杂浓度。
22.根据权利要求19所述的制造方法,其中所述层间电介质(32)、所述半绝缘场板(34)以及所述薄电介质层(33)同时通过光刻以及蚀刻进行图案化。
CN201480002400.4A 2013-12-23 2014-12-04 分裂栅功率半导体场效应晶体管 Active CN104737298B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
HK13114188 2013-12-23
HK131141888 2013-12-23
PCT/CN2014/093007 WO2015096605A1 (zh) 2013-12-23 2014-12-04 分裂栅功率半导体场效应晶体管

Publications (2)

Publication Number Publication Date
CN104737298A CN104737298A (zh) 2015-06-24
CN104737298B true CN104737298B (zh) 2017-06-23

Family

ID=53477519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480002400.4A Active CN104737298B (zh) 2013-12-23 2014-12-04 分裂栅功率半导体场效应晶体管

Country Status (4)

Country Link
US (2) US9397178B2 (zh)
EP (1) EP3089216B1 (zh)
CN (1) CN104737298B (zh)
WO (1) WO2015096605A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428316B (zh) * 2015-11-05 2018-05-15 深圳深爱半导体股份有限公司 金属氧化物半导体场效应管及其制造方法
JP6526579B2 (ja) * 2016-01-15 2019-06-05 株式会社東芝 半導体装置
CN106098761B (zh) * 2016-06-29 2019-06-07 黄嘉杰 一种绝缘栅双极型晶体管结构及其制造方法
CN108666361B (zh) * 2017-03-31 2022-04-12 深圳尚阳通科技有限公司 一种通孔免对位的功率器件及其制造方法
CN107946360B (zh) * 2017-05-02 2023-10-20 中国电子科技集团公司第二十四研究所 一种带载流子寿命调节区的功率mosfet器件及其制造方法
CN108878275A (zh) * 2017-05-10 2018-11-23 中芯国际集成电路制造(上海)有限公司 半导体器件的制备方法
CN112885900B (zh) * 2019-11-29 2022-04-15 苏州东微半导体股份有限公司 一种igbt器件
JP2022046240A (ja) * 2020-09-10 2022-03-23 株式会社東芝 半導体装置
CN112382659A (zh) * 2020-11-12 2021-02-19 中国科学院半导体研究所 一种元胞内带绝缘结构的功率半导体器件及制备方法
CN112802906B (zh) * 2021-04-15 2021-07-27 成都蓉矽半导体有限公司 带浮栅的分离栅平面型mosfet器件
CN114744042A (zh) * 2022-03-24 2022-07-12 苏州迈志微半导体有限公司 功率晶体管

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025229A (en) * 1997-12-24 2000-02-15 United Semiconductor Corp. Method of fabricating split-gate source side injection flash memory array
CN103456790A (zh) * 2012-06-01 2013-12-18 台湾积体电路制造股份有限公司 垂直功率mosfet及其形成方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3125567B2 (ja) * 1994-03-28 2001-01-22 富士電機株式会社 絶縁ゲート型サイリスタ
DE19905421B4 (de) * 1999-02-10 2005-07-28 Semikron Elektronik Gmbh Leistungshalbleiterbauelement mit reduzierter Millerkapazität
KR20010040186A (ko) * 1999-10-27 2001-05-15 인터실 코포레이션 디모스, 절연게이트 바이폴라 트랜지스터, 및 금속 산화막반도체 전계 효과 트랜지스터 등의 전력 모스 소자의게이트 전하 및 게이트/드레인 정전용량 최소화기술
JP3906105B2 (ja) * 2002-03-29 2007-04-18 株式会社東芝 半導体装置
JP2004079988A (ja) * 2002-06-19 2004-03-11 Toshiba Corp 半導体装置
GB0422476D0 (en) * 2004-10-09 2004-11-10 Koninkl Philips Electronics Nv Power semiconductor devices
US7659570B2 (en) * 2005-05-09 2010-02-09 Alpha & Omega Semiconductor Ltd. Power MOSFET device structure for high frequency applications
JP5191633B2 (ja) * 2006-04-04 2013-05-08 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US7504676B2 (en) * 2006-05-31 2009-03-17 Alpha & Omega Semiconductor, Ltd. Planar split-gate high-performance MOSFET structure and manufacturing method
US9425306B2 (en) * 2009-08-27 2016-08-23 Vishay-Siliconix Super junction trench power MOSFET devices
US20120220092A1 (en) * 2009-10-21 2012-08-30 Vishay-Siliconix Method of forming a hybrid split gate simiconductor
KR20130088743A (ko) * 2010-04-13 2013-08-08 갠 시스템즈 인크. 아일랜드 토폴로지를 이용한 고밀도 질화 갈륨 디바이스
US8779510B2 (en) * 2010-06-01 2014-07-15 Alpha And Omega Semiconductor Incorporated Semiconductor power devices manufactured with self-aligned processes and more reliable electrical contacts
US9960267B2 (en) * 2013-03-31 2018-05-01 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025229A (en) * 1997-12-24 2000-02-15 United Semiconductor Corp. Method of fabricating split-gate source side injection flash memory array
CN103456790A (zh) * 2012-06-01 2013-12-18 台湾积体电路制造股份有限公司 垂直功率mosfet及其形成方法

Also Published As

Publication number Publication date
US20170040428A1 (en) 2017-02-09
EP3089216B1 (en) 2020-09-23
US20150372103A1 (en) 2015-12-24
US9397178B2 (en) 2016-07-19
CN104737298A (zh) 2015-06-24
EP3089216A1 (en) 2016-11-02
WO2015096605A1 (zh) 2015-07-02
EP3089216A4 (en) 2017-10-11
US9825149B2 (en) 2017-11-21

Similar Documents

Publication Publication Date Title
CN104737298B (zh) 分裂栅功率半导体场效应晶体管
US10727334B2 (en) Lateral DMOS device with dummy gate
US7553733B2 (en) Isolated LDMOS IC technology
US11004971B2 (en) LDMOS transistor with gate structure having alternating regions of wider and narrower spacing to a body region
US10804389B2 (en) LDMOS transistor
US8310006B2 (en) Devices, structures, and methods using self-aligned resistive source extensions
JP2013125827A (ja) 半導体装置およびその製造方法
EP3509101B1 (en) Device integrating a junction field effect transistor and manufacturing method therefor
KR101699585B1 (ko) 고전압 반도체 소자 및 그 제조 방법
US8482066B2 (en) Semiconductor device
JP2009105374A (ja) 半導体装置
KR102088181B1 (ko) 반도체 트랜지스터 및 그 제조 방법
CN110350032A (zh) 一种半导体器件
US10867995B2 (en) Device integrated with depletion-mode junction fielf-effect transistor and method for manufacturing the same
US20090020834A1 (en) Semiconductor device and manufacturing method thereof
US20160181409A1 (en) Bidirectional Power Switching with Bipolar Conduction and with Two Control Terminals Gated by Two Merged Transistors
CN108258046A (zh) 半导体元件
US10312368B2 (en) High voltage semiconductor devices and methods for their fabrication
US20140117367A1 (en) Devices, structures, and methods using self-aligned resistive source extensions
TWI700832B (zh) 多重閘極功率mosfet元件
TW201709505A (zh) 橫向雙擴散金屬氧化物半導體元件及其製造方法
CN104518027A (zh) Ldmos器件及其制造方法
CN110212033B (zh) 一种栅控双极-场效应复合碳化硅ldmos
KR102572194B1 (ko) 반도체 소자 및 그의 제조 방법
TW201501295A (zh) 分離式閘極橫向雙重擴散金屬氧化物半導體結構

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20171206

Address after: Exhibition Road Zhongshan Guangdong Torch Development Zone No. 16 digital building room 1606

Patentee after: HONSON TECHNOLOGIES LTD.

Address before: Room 3602, 3 floor, vice building, business center building, Hong Kong University Science & Technology, Clear Water Bay, Hongkong, China

Patentee before: Liang Jiajin

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221221

Address after: 518000 1108, Wanjun economic and trade building, No. 21, Baoxing Road, zone n26, Haibin community, Xin'an street, Bao'an District, Shenzhen, Guangdong Province

Patentee after: Anjian Technology (Shenzhen) Co.,Ltd.

Address before: 528437 room 1606, digital building, No. 16, exhibition East Road, Torch Development Zone, Zhongshan City, Guangdong Province

Patentee before: HONSON TECHNOLOGIES LTD.