CN104724798B - 复合材料、电极及具有该电极的装置暨电化学除磷方法 - Google Patents

复合材料、电极及具有该电极的装置暨电化学除磷方法 Download PDF

Info

Publication number
CN104724798B
CN104724798B CN201410489591.3A CN201410489591A CN104724798B CN 104724798 B CN104724798 B CN 104724798B CN 201410489591 A CN201410489591 A CN 201410489591A CN 104724798 B CN104724798 B CN 104724798B
Authority
CN
China
Prior art keywords
electrochemistry
electrode
hydroxide
layered double
dephosphorization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410489591.3A
Other languages
English (en)
Other versions
CN104724798A (zh
Inventor
钟琍菁
梁德明
洪仁阳
邵信
刘柏逸
张敏超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN104724798A publication Critical patent/CN104724798A/zh
Application granted granted Critical
Publication of CN104724798B publication Critical patent/CN104724798B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Water Treatment By Sorption (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

一种复合材料、电极及具有该电极的装置暨电化学除磷方法,复合材料包括:碳材载体;及具有选择性除磷效果且担载于该碳材载体上的层状双氢氧化物。本发明还提供用于电化学除磷的电极及具有该电极的装置暨电化学除磷方法。

Description

复合材料、电极及具有该电极的装置暨电化学除磷方法
技术领域
本发明涉及一种水质的净化,尤其关于一种复合材料、含该复合材料的电极及具有该电极的装置暨电化学除磷方法。
背景技术
由于各国对承受水体磷浓度管制愈趋严格,且考量资源再生效益情形下,国际间已逐渐重视除磷与磷回收技术的发展。
为了在废水排放前将磷去除,同时考量资源再生效益情形下,近年来废水处理的观点已由除磷转变为磷回收。磷于废污水中几乎全以磷酸盐形态存在,其组成包含有机磷、聚磷酸盐及正磷酸盐,因浓度通常不高,常影响除磷效率,而且于废污水中同时存在多种盐类如硫酸盐、碳酸盐、硝酸盐等,磷回收经济效益主要由原水体目标物含量、磷选择性及回收技术成本而定,提高除磷技术的磷选择性有利于提升磷回收效益。
现有除磷技术不外乎浓缩沉淀法、生物处理法及吸附法,其中,化学沉淀法是利用多种阳离子使磷有效地从废水中沉淀下来的特点进行的,浓缩沉淀法则是在原水浓缩后配合添加化学药剂如氯化镁、氯化钙或碳酸氢铵沉淀剂去除水中的磷。但其不具磷选择性,仅能作为废渣堆放和填埋,若需回收再利用则需经过步骤繁杂的纯化程序。此外,化学沉淀法操作上受水质pH、加药点位置与加药量影响,需药剂购置、贮存空间及设备,且产生多量的污泥,往往造成实厂建造及操作维护成本的增加。
就传统生物处理法而言,生物摄取磷的程度有限,且系统因微生物易受进流废水水质影响,操作上并不稳定。
吸附法利用吸附剂的表面吸附/沉淀、离子交换机制去除回收磷,吸附剂常使用硅胶、活性碳、沸石、分子筛、粘土及离子交换树脂等,若要移除特定阳离子或阴离子吸附剂必须对不同官能团进行改性。然而,吸附剂的选择性通常较低,易有不纯物质吸附的影响,且再生次数频繁需消耗大量酸碱药剂。一般而言,再生剂与树脂用量比例约在1.5至5倍,具有环境友善性低的缺点。再者,一般吸附剂仍具有吸附剂比表面积小、吸附反应速率低(24至72小时始达吸附平衡)、以及悬浮粉末(powder)吸附剂分离困难的缺点。
发明内容
本发明的目的在于提供一种用于电化学除磷的方法,能快速达到选择性除磷效果。本发明还提供一种复合材料、电化学除磷的电极及具有该电极的装置暨电化学除磷方法。
一种复合材料,包括:碳材载体;及层状双氢氧化物,担载于该碳材载体上,该碳材载体用以分散层状双氢氧化物及提供电子传导路径。
一种电极,包括:集电器;以及设于该集电器上的复合材料,该复合材料包括碳材载体;及担载于该碳材载体上的层状双氢氧化物。
本发明还提供一种电化学除磷装置,包括:至少一电化学槽体,包括:设于该电化学槽体中的一对末端电极;以及设于该电化学槽体中且配置于该对末端电极之间的多个中间电极,且该末端电极及多个中间电极如本发明用于电化学除磷的电极所述。
本发明还提供一种电化学除磷的方法,包括使含磷的流体通过如本发明的电化学除磷装置,并施加一电压于该些电极,以电势驱动方式提升层状双氢氧化物的选择性除磷效果。
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。
附图说明
图1为本发明电化学除磷装置的剖视示意图;
图2为本发明另一实施例的电化学除磷装置的剖视示意图;
图3为制备例1的固定于碳材载体上的层状双氢氧化物的X射线衍射(XRD)图谱;
图4为活性碳及制备例1、制备例2与制备例3的固定于碳材载体上的层状双氢氧化物的热重分析(TGA)图谱;
图5为活性碳及制备例1的固定于碳材载体上的层状双氢氧化物的扫描式电子显微镜(SEM)图谱;以及
图6为制备例4的固定于碳材载体上的层状双氢氧化物的XRD图谱。
符号说明
1 电化学除磷装置
10 电化学槽体
110 末端电极
110b 复合材料
12 流体通道
112 中间电极
112a 集电器
112b 复合材料
112c,110c 穿孔
14 电源
114 绝缘件
具体实施方式
以下通过特定的具体实施例说明实施方式,该领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。
本发明提供一种用于电化学除磷的复合材料,包括:碳材载体;及层状双氢氧化物,担载于该碳材载体上,该碳材载体用以分散层状双氢氧化物。
于一具体实施例中,该碳材载体包括活性碳、竹碳、纳米碳管、石墨烯及乙炔黑所组成组的至少一种。
于一具体实施例中,本发明的层状双氢氧化物可为镁锰层状双氢氧化物、锌铝层状双氢氧化物或为镁铝锆层状双氢氧化物。其相关制备方式可参考R.Chitrakar,S.Tezuka,A.Sonoda,K.Sakane,K.Ooi,T.Hirotsu,Adsorption of phosphate fromseawater on calcined MgMn-layered double hydroxides,Journal of Colloid andInterface Science290(2005)45–5或R.Chitrakar,S.Tezuka,A.Sonoda,K.Sakane,K.Ooi,T.Hirotsu,Synthesis and phosphate uptake behavior of Zr4+incorporated MgAl-layered double hydroxides,Journal of Colloid andInterface Science,313(2007)53–63,不再赘述。
于一具体实施例中,该层状双氢氧化物占该复合材料总重量的25%至65%。
本发明提供的用于电化学除磷的电极包括:集电器;以及设于该集电器上的复合材料。该集电器作为披覆该复合材料的基材,但其外形并无特别限制,通常,该集电器具导电性其外形为箔、板体或片材。于一具体实施例中,该集电器的材质为镍、铜、钛、不锈钢或石墨。
于一具体实施例中,该复合材料通过粘结剂固定于该集电器上。该粘结剂与该复合材料混合,以粘固于该集电器上。该粘结剂可为聚合物型粘结剂,并可选用具有较佳耐热性、稳定性、及耐腐蚀性的聚合物,于一具体实施例中,该黏结剂为含氟聚合物,例如聚偏氟乙烯或聚四氟乙烯。
于一具体实施例中,该碳材载体包括活性碳、竹碳、纳米碳管、石墨烯及乙炔黑所组成组的至少一种。该电极可进一步包括导电组份,包括石墨、碳黑、纳米碳管、石墨烯及乙炔黑所组成组的至少一种。举例而言,当碳材载体为活性碳时,该电极除了包括粘结剂、碳材载体、及层状双氢氧化物,还包括如石墨、碳黑、纳米碳管、石墨烯及乙炔黑所组成组的至少一种的导电组分。
于一具体实施例中,该层状双氢氧化物占该复合材料总重量的25%至65%。
本发明还提供一种用于电化学除磷的装置。如图1所示,该用于电化学除磷的装置1包括:至少一电化学槽体10;设于该电化学槽体10中的一对末端电极110;以及设于该电化学槽体10中且配置于该对末端电极110之间的多个中间电极112,且该对末端电极110与该多个中间电极112之间具有至少一流体通道12,以供含磷流体通过,且该多个中间电极112如本发明用于电化学除磷的电极,即包括:集电器112a;以及设于该集电器112a上的复合材料112b,该复合材料112b可如图所示地双面覆盖在于该集电器112a两侧,且覆盖于该集电器112a的部分面积上。但,亦可整面地覆盖于该集电器112a上。
于一具体实施例中,该对末端电极110如本发明所述的用于电化学除磷的电极。以图1为例说明,该对末端电极110表面设有复合材料110b。
如图1所示的具体实施例中,该流体通道12由各该中间电极112的至少一穿孔112c所构成。
此外,该末端电极110亦可具有穿孔110c,以形成流体通道12,且该电化学除磷的装置可具有多个电化学槽体以形成模组设置,以通过该流体通道12输送流体。
在具体实施上,本发明用于电化学除磷的装置1还包括与该对末端电极110及中间电极112电性连接的电源14。
于图2所示的一具体实施例中,各中间电极之间配置有一绝缘件114,及/或各该末端电极110与该中间电极112之间配置有一绝缘件114。
本发明还提供一种电化学除磷的方法,包括:使含磷流体通过所述电化学除磷装置,并施加一电压于该些电极以进行电化学除磷。
本发明的方法中,通过该电化学槽体的含磷流体的离子浓度为1mg/L至1000mg/L,并施加0.5V至2.0V电压于该多个中间电极与对末端电极,以使本发明电极的复合材料在通过电势驱动的过程中加速吸附含磷流体中的磷。
实施例
制备例1:于碳材载体上固定层状双氢氧化物(MgMn-LDH)
以共沉淀法将层状双氢氧化物(LDHs)材料固定于活性碳(Activated Carbon,AC)上。
本实例中,层状双氢氧化物选用镁锰LDHs,合成步骤为先配制0.03M的MgCl2与0.01M的MnCl2混合水溶液,其Mg和Mn摩尔比例为3:1。然后配制0.2M的NaOH与0.1M的Na2CO3混合水溶液,并添加2.5g活性碳(AC)于此氢氧化物水溶液。缓慢将MgCl2与MnCl2水溶液滴加至氢氧化物水溶液中,控制添加量,使Mg和AC的重量比为0.14:1,并持续以磁石搅拌24小时完成晶核老化(aging)阶段。
合成产物以去离子水清洗至流洗液酸碱值维持在7左右,接续以50℃烘干后,再于300℃空气中锻烧4小时,可得到最终产物AC/LDH。
由XRD、TGA与SEM分析层状双氢氧化物碳复合材料(AC/LDH)的基本特性与微结构。如图3所示,以XRD分析未经300℃锻烧的AC/LDH的结晶特性,由数据可知AC/LDH在Mg:Mn摩尔比3:1合成条件下,可观察到[Mg0.76Mn0.25(OH)2][(CO3)0.14·0.72H2O]的主要特征峰包括[003]、[006]及[009]波峰,表示MgMn-LDH确实被固定于活性碳表面。
根据图4所示的TGA分析结果计算,可知复合材料中MgMn-LDH含量为50%。图5为SEM表面形态分析,其结果显示活性碳改质前表面较为光滑,经过MgMn-LDH改质后的表面有片状物形成,此分析结果与LDH片状结构相符,表示MgMn-LDH被固定于活性碳表面。
制备例2:于碳材载体上固定层状双氢氧化物(MgMn-LDH)
根据制备例1的方法于碳材载体上固定层状双氢氧化物(MgMn-LDH),但控制MgCl2与MnCl2水溶液添加量,使Mg和AC的重量比为0.07:1,根据图4所示的TGA分析结果计算,MgMn-LDH含量为25%。
制备例3:于碳材载体上固定层状双氢氧化物(MgMn-LDH)
根据制备例1的方法于碳材载体上固定层状双氢氧化物(MgMn-LDH),但控制MgCl2与MnCl2水溶液添加量,使Mg和AC的重量比为0.21:1,根据图4所示的TGA分析结果计算,MgMn-LDH含量为65%。
制备例4:于碳材载体上固定层状双氢氧化物(MgAlZr-LDH)
根据制备例1的方法于碳材载体上固定层状双氢氧化物(MgAlZr-LDH),但混合水溶液的组成为0.42M MgCl2、0.07M AlCl3与0.07M ZrOCl2。其Mg:(Al+Zr)摩尔比例为3:1。然后配制0.75M NaOH与0.25M Na2CO3混合水溶液,并添加6g活性碳于此混合水溶液。缓慢将MgCl2、AlCl3与ZrOCl2混合水溶液滴加至该氢氧化物水溶液,并持续以磁石于室温下搅拌24小时完成晶核老化阶段。合成产物以去离子水清洗至流洗液酸碱值维持在7左右,接续以50℃干燥72小时,可得到最终产物AC/MgAlZr-LDH。
如图6所示的XRD结果,可观察到[Mg0.74Al0.14Zr0.13(OH)2][(CO3)0.26·1.16H2O]的主要特征峰包括[003]、[006]、[009]及[110]等波峰。表示MgAlZr-LDH确实被固定于活性碳表面,而由热重量分析法分析可知MgAlZr-LDH改质含量为52%。
制备例5:复合材料电极的制备
依80:10:10重量比例称取制备例的经承载的LDH、聚偏氟乙烯(PVDF,分子量534,000)、石墨粉粒(粒径2.7μm),在混合后,将该混合材料粉末与N-甲基吡咯酮(NMP)溶剂,均匀搅拌成糊状浆料。
测试例1:复合材料的吸附测试
以活性碳(AC)与制备例1的AC/LDH粉末进行磷吸附测试,以验证对于磷离子的选择性。
于300mL原水中添加0.1g AC/LDH粉末,空白试验的测试添加AC。原水为10mg/L磷酸盐(Na2HPO4)与10mg/L硫酸盐(Na2SO4)混合溶液,原水pH值皆控制在7至8,温度为25℃。测试时将内含300ml原水样品瓶置于震荡器装置上,设定震荡器转速200rpm,进行72小时吸附测试。在测试完成后,水样以0.45μm滤纸过滤,用离子层析仪分析滤液中磷酸盐含量,并计算磷酸盐去除效率。
由表1所示的磷吸附试验结果可知,在10mg/L的磷酸盐与硫酸盐混合溶液中,AC与AC/LDH的磷吸附量分别为1.74mg/g与17.4mg/g,以MgMn-LDH改质活性碳大幅提升磷吸附量达10倍。AC与AC/LDH对于HPO4 2-与SO4 2-的分配系数比值分别为2与82,AC/LDH选择性大于AC达41倍,表示AC/LDH复合材料明显对于磷离子具有高选择性。
表1
Kd=吸附离子量(mg/g)/离子浓度(mg/L)
测试例2:电化学除磷的吸附测试
将用于制备复合材料电极的糊状浆料以300μm刮刀均匀涂布在正极钛箔上,送入140℃烘箱中烘干2小时,负极为白金。电极制作完成后分析磷离子电吸附的效率,原水为10mg/L磷酸盐(Na2HPO4)与硫酸盐(Na2SO4)混合溶液,以电压1V与电吸附时间30分钟作为试验操作条件。
如表2所示,单纯以AC浆料涂布的电极(对照组)会同时吸附HPO4 2-与SO4 2-,但不具电吸附选择性。但本发明电极的SO4 2-吸附量相对于HPO4 2-吸附量非常低。由此可知,本发明电极明显对于磷离子具有高选择性。
另由表2所示磷吸附速率结果,可看出相较于悬浮式粉末吸附剂,电化学除磷方法的磷吸附速率较悬浮式粉末吸附速率可高达16.5倍,显示电势驱动方式可提升磷吸附能力,有效缩短磷选择性吸附时间,极具优越性。
表2
*注:复合材料指碳材载体及层状双氢氧化物。
此外,比较使用原料为制备例1浆料制成的本发明电极在不同操作电压下的磷吸附量,原水使用10mg/L磷酸盐(Na2HPO4)与硫酸盐(Na2SO4)混合溶液,分别以电压0.5、1.0及1.2V进行电吸附30分钟。结果发现本发明电极在0.5、1.0及1.2V电吸附电压下的HPO4 2-吸附量分别为2.96mg/g、2.96mg/g及3.90mg/g。相较于0.5V与1.0V,以1.2V电压操作可提升磷吸附量达32%,表示磷吸附能力会受电势驱动能力影响。故,施加于该对末端电极的电压优选为1.2V至2.0V。
当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (11)

1.一种用于电化学除磷的电极,其特征在于,包括:
集电器;以及
复合材料,设于该集电器上,该复合材料包括:
碳材载体;及
层状双氢氧化物,担载于该碳材载体上,该层状双氢氧化物占该复合材料总重量的25%至65%。
2.如权利要求1所述的电极,其特征在于,该碳材载体包括活性碳、竹碳、纳米碳管、石墨烯及乙炔黑所组成组的至少一种。
3.如权利要求1所述的电极,其特征在于,该电极进一步包括导电组分。
4.如权利要求3所述的电极,其特征在于,该导电组分包括石墨、碳黑、纳米碳管、石墨烯及乙炔黑所组成组的至少一种。
5.如权利要求1所述的电极,其特征在于,该层状双氢氧化物为镁锰层状双氢氧化物、锌铝层状双氢氧化物或镁铝锆层状双氢氧化物。
6.如权利要求1所述的电极,其特征在于,该集电器为镍、铜、钛、不锈钢或石墨。
7.一种电化学除磷装置,其特征在于,包括:
至少一电化学槽体,包括:
一对末端电极,设于该电化学槽体中;以及
多个中间电极,设于该电化学槽体中且配置于该对末端电极之间,且该末端电极及多个中间电极为如权利要求1至6任意一项所述的电极。
8.如权利要求7所述的电化学除磷装置,其特征在于,各中间电极具有至少一穿孔。
9.如权利要求7所述的电化学除磷装置,其特征在于,各中间电极之间配置有一绝缘件,及/或各末端电极与中间电极之间配置有一绝缘件。
10.一种电化学除磷方法,其特征在于,包括:
使含磷的流体通过权利要求7至9任意一项所述的电化学除磷装置,并施加一电压于该些电极以进行电化学除磷。
11.如权利要求10所述的电化学除磷方法,其特征在于,通过该电化学槽 体的含磷流体的离子浓度为1mg/L至1000mg/L。
CN201410489591.3A 2013-12-19 2014-09-23 复合材料、电极及具有该电极的装置暨电化学除磷方法 Active CN104724798B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW102147137 2013-12-19
TW102147137A TWI547444B (zh) 2013-12-19 2013-12-19 電極、具有該電極之裝置及電化學除磷之方法

Publications (2)

Publication Number Publication Date
CN104724798A CN104724798A (zh) 2015-06-24
CN104724798B true CN104724798B (zh) 2017-03-22

Family

ID=53399277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410489591.3A Active CN104724798B (zh) 2013-12-19 2014-09-23 复合材料、电极及具有该电极的装置暨电化学除磷方法

Country Status (3)

Country Link
US (1) US9957171B2 (zh)
CN (1) CN104724798B (zh)
TW (1) TWI547444B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10301199B2 (en) 2013-12-19 2019-05-28 Industrial Technology Research Institute Method for selective electrochemical removal of ions in water/wastewater
WO2018046286A1 (en) * 2016-09-06 2018-03-15 Unilever N.V. Adsorbent comprising layered double hydroxide and activated carbon
CN106379970B (zh) * 2016-10-26 2019-12-06 大连理工大学 一种层状金属氧化物用于苦咸水淡化的电容去离子技术
CN108525638B (zh) * 2018-04-11 2021-05-14 华东交通大学 一种生物质炭纤维/层状双金属氢氧化物吸附除磷材料
CN108837803A (zh) * 2018-06-28 2018-11-20 东北农业大学 一种层状双氢氧化物负载生物炭复合材料的制备方法
CN108892214A (zh) * 2018-07-12 2018-11-27 福州大学 一种可用于电容脱磷的炭基电极的制备方法
CN109231380A (zh) * 2018-09-28 2019-01-18 福州大学 一种多重吸附处理低浓度含磷溶液的电化学处理方法
CN110368900B (zh) * 2019-08-20 2022-06-07 厦门理工学院 一种竹炭改性材料及其制备方法和用途
CN110697849A (zh) * 2019-10-24 2020-01-17 广州联汇技术服务有限公司 一种废水处理活性炭吸附塔
CN111892131A (zh) * 2020-07-14 2020-11-06 上海大学 利用电解联合生物炭-ldh复合材料处理废水的装置及方法
TWI739524B (zh) * 2020-07-22 2021-09-11 財團法人工業技術研究院 水處理裝置及水處理方法
TWI749959B (zh) * 2020-12-22 2021-12-11 國立清華大學 經煅燒的階層狀多孔複合材料及其製造方法
JP2022138511A (ja) * 2021-03-10 2022-09-26 株式会社フジタ 吸着材とその製造方法
CN113896297B (zh) * 2021-11-19 2023-10-03 吉林大学 一种正偏压辅助光Fenton方法
CA3239491A1 (en) * 2021-12-16 2023-06-22 Ionic Water Technologies, LLC Treatment of carbon for contaminant removal
CN115650378A (zh) * 2022-11-01 2023-01-31 河南师范大学 一种MgFe-LDH/AC复合电极材料、电容电极制备方法及应用
CN115872499B (zh) * 2023-02-28 2023-05-16 农业农村部环境保护科研监测所 一种La-Ca/Fe-LDH耦合电化学脱除有机磷的方法
CN116885198B (zh) * 2023-09-08 2023-12-08 浙江帕瓦新能源股份有限公司 前驱体及制备方法、正极材料、钠离子电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101718738A (zh) * 2009-11-06 2010-06-02 北京化工大学 NiAl-层状双金属氢氧化物/碳纳米管复合物电极及其制备方法和应用

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309532B1 (en) 1994-05-20 2001-10-30 Regents Of The University Of California Method and apparatus for capacitive deionization and electrochemical purification and regeneration of electrodes
AU5930198A (en) * 1997-02-21 1998-09-09 Engelhard Corporation Composite material based on zeolite and active carbon, preparation and use thereof in water treatment
JP2000176455A (ja) 1998-12-16 2000-06-27 Sanyo Electric Co Ltd リン酸イオン含有水の処理装置および処理方法
US6214204B1 (en) * 1999-08-27 2001-04-10 Corning Incorporated Ion-removal from water using activated carbon electrodes
US6645366B2 (en) 2000-11-01 2003-11-11 Sanyo Electric Co., Ltd. Waste water treatment device
CN1516679A (zh) 2002-04-18 2004-07-28 ������������ʽ���� 排水处理方法以及排水处理装置
US7625492B2 (en) * 2003-01-28 2009-12-01 The University Of Wyoming Research Corporation Charge-based water filtration systems
CN1257844C (zh) 2003-09-09 2006-05-31 大连理工大学 一种多相多元催化电解氧化污水处理方法与装置
KR100469077B1 (ko) 2003-09-16 2005-02-02 에이치투오 테크놀로지스 엘엘씨 철 또는 알루미늄 결합 리그노셀룰로즈 미디아 제조방법
EP1712522A1 (en) 2005-04-14 2006-10-18 Robert Prof. Dr. Schlögl Nanosized carbon material-activated carbon composite
JP4963032B2 (ja) * 2005-06-29 2012-06-27 独立行政法人産業技術総合研究所 リン吸着剤
CN100444953C (zh) * 2007-04-20 2008-12-24 北京化工大学 一种水滑石/碳纳米管异质结构材料及其制备方法
CN101269870A (zh) 2008-01-08 2008-09-24 上海大学 一种去除废水中无机磷的方法
JP5463525B2 (ja) 2008-01-31 2014-04-09 独立行政法人産業技術総合研究所 選択吸着剤およびその製造方法
CN101236870A (zh) 2008-02-04 2008-08-06 南京华显高科有限公司 增加槽型等离子显示板基板电极强度的方法及其增强型电极
TWI376355B (en) 2008-04-10 2012-11-11 Gainia Intellectual Asset Services Inc Capacitive deionization system for water treatment
AU2009262086A1 (en) 2008-06-26 2009-12-30 David Rigby Electrochemical system and method for the treatment of water and wastewater
KR100909477B1 (ko) 2009-04-17 2009-07-28 한국농어촌공사 철 이온화 모듈을 포함하는 농업용수 재활용 시스템 및 이를 이용한 농업용수 재활용 방법
US8187861B1 (en) 2010-01-26 2012-05-29 Allen John Schuh Phosphate removal-recovery and biofuel feedstock system
JP4882038B1 (ja) 2010-08-05 2012-02-22 石井商事株式会社 脱色および水質浄化方法
CN102441365B (zh) 2011-05-19 2013-08-07 北京师范大学 磷吸附复合材料的制备方法及磷吸附复合材料
CN102350279A (zh) * 2011-06-22 2012-02-15 浙江大学 一种制备碳纳米管/层状双金属氢氧化物复合物的方法
TWI487661B (zh) 2012-12-22 2015-06-11 Ind Tech Res Inst 電極用碳材的改質方法及其製成的電極用碳材

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101718738A (zh) * 2009-11-06 2010-06-02 北京化工大学 NiAl-层状双金属氢氧化物/碳纳米管复合物电极及其制备方法和应用

Also Published As

Publication number Publication date
TWI547444B (zh) 2016-09-01
CN104724798A (zh) 2015-06-24
US20150175450A1 (en) 2015-06-25
TW201524913A (zh) 2015-07-01
US9957171B2 (en) 2018-05-01

Similar Documents

Publication Publication Date Title
CN104724798B (zh) 复合材料、电极及具有该电极的装置暨电化学除磷方法
Wu et al. Amidoxime-functionalized macroporous carbon self-refreshed electrode materials for rapid and high-capacity removal of heavy metal from water
Ahmed et al. Capacitive deionization: Processes, materials and state of the technology
Chen et al. Capacitive deionization and electrosorption for heavy metal removal
Peng et al. Cadmium removal from aqueous solution by a deionization supercapacitor with a birnessite electrode
Zuo et al. Novel composite electrodes for selective removal of sulfate by the capacitive deionization process
Zhang et al. X-Fe (X= Mn, Co, Cu) Prussian blue analogue-modified carbon cloth electrodes for capacitive deionization
Park et al. Selective fluoride removal in capacitive deionization by reduced graphene oxide/hydroxyapatite composite electrode
US10807888B2 (en) Carbon electrodes based capacitive deionization for the desalination of water
Kim et al. Palladium recovery through membrane capacitive deionization from metal plating wastewater
Wei et al. A novel capacitive electrode based on TiO2-NTs array with carbon embedded for water deionization: Fabrication, characterization and application study
US20120132519A1 (en) Capacitive electrode for deionization, and electrolytic cell using same
KR101029090B1 (ko) 이온교환관능기를 가진 엔지니어링 플라스틱을 이용한 축전식 탈염 전극 및 그의 제조 방법
Li et al. Development of a nanostructured α-MnO2/carbon paper composite for removal of Ni2+/Mn2+ ions by electrosorption
WO2011043604A2 (ko) 이온선택성 축전식 탈염 복합전극 및 모듈의 제조 방법
Li et al. Ion-exchange polymers modified bacterial cellulose electrodes for the selective removal of nitrite ions from tail water of dyeing wastewater
Lee et al. High electrochemical seawater desalination performance enabled by an iodide redox electrolyte paired with a sodium superionic conductor
Jung et al. Enhanced electrochemical stability of a zwitterionic-polymer-functionalized electrode for capacitive deionization
CN102807266A (zh) 超级电容脱盐单元、装置和方法
Xu et al. Intrinsic pseudocapacitive affinity in manganese spinel ferrite nanospheres for high-performance selective capacitive removal of Ca2+ and Mg2+
Kazi et al. Material design strategies for recovery of critical resources from water
Wang et al. Electron transfer of activated carbon to anode excites and regulates desalination in flow electrode capacitive deionization
Gao et al. Effective and selective removal of phosphate from wastewater using guanidinium-functionalized polyelectrolyte-modified electrodes in capacitive deionization
Yang et al. Capacitive deionization of high concentrations of hexavalent chromium using nickel–ferric-layered double hydroxide/molybdenum disulfide asymmetric electrode
CN102718291B (zh) 离子交换树脂改性pvdf炭电极

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant