CN104682721B - 用于控制逆变器的设备和方法 - Google Patents

用于控制逆变器的设备和方法 Download PDF

Info

Publication number
CN104682721B
CN104682721B CN201410720583.5A CN201410720583A CN104682721B CN 104682721 B CN104682721 B CN 104682721B CN 201410720583 A CN201410720583 A CN 201410720583A CN 104682721 B CN104682721 B CN 104682721B
Authority
CN
China
Prior art keywords
unit
stator
current
inverter
exception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410720583.5A
Other languages
English (en)
Other versions
CN104682721A (zh
Inventor
郑裕锡
李在纹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Electric Co Ltd
Original Assignee
LS Industrial Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LS Industrial Systems Co Ltd filed Critical LS Industrial Systems Co Ltd
Publication of CN104682721A publication Critical patent/CN104682721A/zh
Application granted granted Critical
Publication of CN104682721B publication Critical patent/CN104682721B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • H02P21/08Indirect field-oriented control; Rotor flux feed-forward control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/141Flux estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/01Asynchronous machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P31/00Arrangements for regulating or controlling electric motors not provided for in groups H02P1/00 - H02P5/00, H02P7/00 or H02P21/00 - H02P29/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明公开了用于控制逆变器的设备和方法。该设备通过从布置在逆变器的逆变器单元中下部开关元件的发射极端子处的支路分流电阻器接收2相电流来判定3相电流,并判定所述3相电流中是否产生了异常,以对所述电流中的所述异常进行校正。

Description

用于控制逆变器的设备和方法
技术领域
本公开涉及用于控制逆变器的设备和方法。尤其是,本公开涉及用于控制使用支路分流电阻器来测量各相电流的逆变器的设备和方法。
背景技术
通常,逆变器是将直流(DC)电力地转换成交流(AC)的装置。逆变器通过接收来自商业供电的电力、并且通过在逆变器中改变供给至电动机的电压和频率来控制电动机的速度。
图1是常规逆变器系统的框图。
如图所示,逆变器1凭借以下手段驱动电动机2:整流单元10将输入的3相电力转换成DC电力,并且直流环节电容器20蓄积DC电力,随后逆变器单元30将蓄积的DC电力再次转换成AC电力并改变电压和频率。因此,逆变器也被称作可变电压可变频率(VVVF)系统。
近来,为获得成本竞争性,在小型逆变器中普遍使用了利用分流电阻器的电流检测方法。根据分流电阻器的位置,利用分流电阻器的电流检测方法可分类为:直流环节分流电阻器电流检测方法、输出相位分流电阻器电流检测方法、以及支路分流电阻器电流检测方法。
图2是示出支路分流电阻器电流检测方法的框图。
如图所示,支路分流电阻器电流检测方法是分流电阻器被布置在逆变器单元30中下部绝缘栅双极型晶体管(IGBT)的发射极端子处以检测电流的方法,其具有以低成本实现电路且还能检测瞬时电流的优点。
然而,使用支路分流电阻器的方法也具有电流检测区域受限于IGBT的脉宽调制(PWM)开关状态的问题。
图3是示出支路分流型逆变器的电流检测受限区域的示范图。图4是示出支路分流型逆变器中的相电流检测区间的示范图。
空间矢量PWM(SVPWM)由六个非零矢量和两个零矢量构成。PWM控制单元将逆变器的3相输出电流变换成d轴与q轴之间的二维平面上的低电压基准矢量V*。V*由两个临近的非零矢量和一个零矢量的组合构成。
如图4所示,在扇区1中(参照图3),在第一PWM半周期期间,开关矢量为按照零矢量V0(0,0,0)、非零矢量1V1(1,0,0)、非零矢量2V2(1,1,0)、以及零矢量V7(1,1,1)的顺序,随后,在最后的PWM半周期期间,以相反的次序实施开关矢量(这被称作“对称SVPWM”)。
在如图2所示的结构中,当为流至分流电阻器23的电流而使各相位的下部IGBT导通时,可由支路分流型逆变器实施对各相位的电流检测。此外,如图4所示,在逆变器的3相并联的条件下下部IGBT中的至少两个导通的区间中,可实施逆变器3相的电流检测。
当两个IGBT导通以使得可实施2相的电流检测时,其余一相电流可通过对ius+ivs+iws=0的关系式进行计算而被间接检测到。如下面的表1所示,可依照图3中分类的扇区而具有不同的结果。
表1
扇区 Iu Iv Iw
1 Iu=(Ivs+Iws) Iv=-Ivs Iw=-Iws
2 Iu=-Ius Iv=(Ius+Iws) Iw=-Iws
3 Iu=-Ius Iv=(Ius+Iws) Iw=-Iws
4 Iu=-Ius Iv=-Ivs Iw=(Ius+Ivs)
5 Iu=-Ius Iv=-Ivs Iw=(Ius+Ivs)
6 Iu=(Ivs+Iws) Iv=-Ivs Iw=-Iws
为了在这种支路分流型逆变器中控制矢量以避开电流检测受限区域,存在当电压基准矢量进入电流检测受限区域时通过改变电压基准矢量的幅度和角度来控制电压基准矢量以避开电流检测受限区域的方法。方法根据下面的等式1。
等式1
Tsamp_min=tdt+trs+2tsn
其中tdt是逆变器死区时间;trs是电流检测电路延迟时间;tsn是AD转换器采样时间;以及tsamp_min是支路分流电阻器电流检测的最小检测时间。
然而,以上所述的常规技术未考虑应对在所预期的电流检测不可得区域之外无法精确执行电流检测的情况。
同时,在受矢量控制而不具有传感器的逆变器中,如图5所示,估测了转子磁通,并且基于转子磁通而不是诸如编码器的单独的速度检测器来估测转子的旋转速度。图5是示出转子磁通估测单元的示范图。
如图5所示,当通过检测转子磁通来估测转子的旋转速度时,当所测得的电流与真实的物理电流即使在瞬间有相当大不同时,也存在包括转子磁通估测单元在内的许多无传感器矢量控制模块运行不稳定的可能性。
等式2
Tr=Lr/Rr
用于间接矢量控制不具有传感器的感应电动机的方法在于:如等式2中所述计算同步角度θe以在基准电压矢量的计算中使用。为此,要求精确估测转子速度值wr和wsl。
通过估测出的转子磁通来估测转子速度wr,并且如等式1所述,转差速度(slipvelocity)wsl与q轴电流对d轴电流的比例成正比。
在支路分流型逆变器中,在实验上确定了:即使在等式1中定义的电流检测不可得区域之外,也存在在图3所示的输出电压矢量图表上扇区相交处的矢量边界值(011)、(101)、(110)周围不完全地读取电流信息的很高的可能性。
图6是示出在未补全支路分流电阻器电流检测电路的极限性能(limitperformance)时对逆变器无传感器控制的不稳定现象进行观测的实验波形。图7是示出由支路分流型逆变器检测到的经低通滤波的电流的实验波形。
参照图6,由于以预定负荷运行,因此在处不应出现脉动。此外,参照图7,左侧波形是将3相电流的坐标转换成2相电流的结果,其中黄色波形是d轴定子电流;红色波形是q轴定子电流;并且绿色波形是为进行比较而由示波器测得的U相电流。右侧波形是对左侧的定子电流矢量进行相位绘制的结果。
即,在实验上确定了:不仅在矢量顶点周围的三角形姿态的内侧,而且在看上去能够足够确保零矢量时间的相关矢量的边界线周围的区域中,也存在不完全地读取电流信息的可能性。
可以确定这样的问题不会相当大地影响所估测的磁通的幅度,这并不是因为连续检测到了与支路分流检测到的真实电流具有相当大不同的电流,而是因为当以大约1个样本的数量来检测电流时,在磁通估测单元中在短时期内对乘以采样时间的值进行了积分。
然而,实验上观测到这样的现象:当对由逆变器控制的电动机施加多于某个负荷(大约额定负荷的100%负荷)并且在静止基准坐标系上的定子电流矢量的d-q轴坐标平面上进行相位绘制时,如图6所示,电流矢量()的幅度和角度在观测到异常电流值的时刻瞬间跳跃。并且在接下来的阶段中,观测到回退到现有矢量的值的现象。
此外,在这种情况下,vs-Rs·is作为定子磁通估测单元中的积分对象而运算的定子电压与跨越定子阻抗的定子电压降之差,其具有瞬时高的峰值。这里,为了执行该计算,当在仅处理积分运算的中低价格微控制器单元(MCU)和数字信号处理器(DSP)中在相对宽的区域内设定变量以增加计算解(calculative resolution)时,可能发生变量溢流,因此变量被初始化,引起所估测的磁通的阶跃变化。之后,不能适当地执行磁通估测。这会引起诸如逆变器失步(step out)现象等问题。
此外,参照图6,可以观测到,尽管有恒定的基准,定子电流在同步基准坐标系上的d轴分量还是反复表现出阶跃变化。在计算如等式2的第一个等式中所述的转差速度时该现象会产生错误,并会招致诸如估测速度错误对间接矢量控制型感应电动机的无传感器控制性能的不利影响,估测速度错误会严重地影响到同步角度计算的效率。
发明内容
本公开旨在达成的技术上的挑战在于,提供一种用于通过对感应电动机的定子和转子磁通进行校正,并通过判定由支路分流电阻器方法检测到的电流是否处在电流检测不可得区域中,来控制逆变器的设备和方法。
在本公开的一个总体方案中,可以提供用于控制逆变器的设备,该设备包括:第一判定单元,其配置为通过从布置在逆变器的逆变器单元中下部开关元件的发射极端子处的支路分流电阻器接收2相电流来判定3相电流;检测单元其配置为判定3相电流中是否存在异常;以及校正单元,其配置为当检测单元判定产生了异常时对3相电流中的异常进行校正。
在本公开的一些示范实施例中,设备可进一步包括:转换单元,其配置为将来自第一判定单元的相电流转换成在静止基准坐标系处的定子电流。
在本公开的一些示范实施例中,检测单元可包括:基准值产生单元,其配置为基于定子电压与跨越定子阻抗的电压降之间的第一差值来设定基准值以检测是否产生了异常;边界值设定单元,其配置为产生用于对异常进行判定的边界值;以及第二判定单元,其配置为当基准值与第一差值之间的第二差值的绝对值大于边界值时判定电流中存在异常。
在本公开的一些示范实施例中,基准值可以是定子电压与跨越定子阻抗的电压降之间的经低通滤波的第一差值。
在本公开的一些示范实施例中,边界值可以是第一差值的最大值与其最小值之间的第三差值乘以预定常数得到的值。
在本公开的一些示范实施例中,校正单元可以使用以下等式对定子电流中的异常进行校正:
其中是在静止基准坐标系处的定子电压;Rs是定子阻抗;以及is_AD s是在静止基准坐标系具有异常的定子电流。
在本公开的一些示范实施例中,设备可进一步包括:估测单元,其配置为通过接收来自校正单元的经校正的电流来重新估测电动机的转子磁通。
在本公开的一些示范实施例中,设备可进一步包括:控制单元,其配置为基于重新估测的转子磁通,通过对同步基准坐标系的定子d轴和q轴电流控制指令进行更新,来控制逆变器单元。
在本公开的另一个总体方案中,可提供用于控制逆变器的方法,该方法包括:使用从支路分流电阻器检测到的2相电流,来判定从逆变器输出的3相电流;基于定子电压与跨越定子阻抗的电压降之间的第一差值来设定基准值以检测是否产生了异常;设定用于对异常进行判定的边界值;当基准值与第一差值之间的第二差值的绝对值大于边界值时判定电流中存在异常;以及当判定产生了异常时对电流中的异常进行校正。
在本公开的一些示范实施例中,该方法可进一步包括:通过接收经校正的电流来重新估测电动机的转子磁通。
在本公开的一些示范实施例中,该方法可进一步包括:基于重新估测的转子磁通,通过对同步基准坐标系的定子d轴和q轴电流控制指令进行更新,来控制逆变器的逆变器单元。
根据本公开的示范实施例,通过判定相电流的异常,并对相关阶段的电流进行校正以及将其反映到磁通估测上,可取得对逆变器矢量控制的性能稳定性。
此外,根据本公开的示范实施例,通过避免在重负荷下将相电流异常施加给控制指令来防止MCU/DSP的变量溢流,可以降低逆变器失步的可能性。
附图说明
图1是常规逆变器系统的框图。
图2是示出支路分流电阻器电流检测方法的框图。
图3是示出支路分流型逆变器的电流检测受限区域的示范图。
图4是示出支路分流型逆变器中的相电流检测区间的示范图。
图5是示出转子磁通估测单元的示范图。
图6是示出在未补全支路分流电阻器电流检测电路的极限性能时对逆变器无传感器控制的不稳定现象进行观测的实验波形。
图7是示出由支路分流型逆变器检测到的经低通滤波的电流的实验波形。
图8是示出根据本公开的示范实施例的逆变器控制设备的框图。
图9是示出图8中所示的异常判定单元的详细框图。
图10是示出根据本公开的示范实施例的逆变器控制方法的流程图。
图11是示出根据本公开的示范实施例的异常电流检测的示范图。
具体实施方式
在下文中,将参照附图更充分地描述多个示范实施例,附图中示出了一些示范实施例。然而,本发明的概念可以用许多不同形式来体现并且不应解释为被在此阐述的示范实施例所限制。而是,所描述的方案旨在包含落入本公开的范围和新构思内的所有这种改变、修改、变化和等同。
在下文中,参照附图,将详细描述本公开的示范实施例。
图8是示出根据本公开的示范实施例的逆变器控制设备的框图。该设备可应用到如图1所示的系统上。该设备通过接收在如图2所示的支路分流电阻器23中检测到的电流,对逆变器单元30的切换进行矢量控制。
如图8所示,根据本公开的示范实施例的逆变器控制设备包括:3相电流判定单元50、坐标转换单元60、异常判定单元70、以及校正单元80。来自校正单元80的输出被输入到转子磁通估测单元40中,且电流控制单元90基于在转子磁通估测单元40中估测的磁通来控制逆变器1。
为了仅在各相的下部IGBT导通时检测电流,3相电流判定单元50可通过接收在支路分流电阻器23中检测到的2相电流来判定3相电流。这里,关系如上文表1中所述。在这样的阶段中检测到的3相电流可被存储在存储单元中,存储单元未在图中示出。
坐标转换单元60可将检测到的相电流坐标转换成定子静止基准坐标系d轴电流和q轴电流。这可以用以下公式表示。
等式3
图9是示出图8中所示的异常判定单元的详细框图。
如图所示,根据本公开的示范实施例的异常检测单元70可包括基准值产生单元71、边界值设定单元72、和判定单元73。
基准值产生单元71可使用定子电压与跨越定子阻抗的电压降之间的差值(vs-Rs·is)来设定基准值。首先,基准值产生单元71使用定子电压与跨越定子阻抗的电压降之间的差值,该差值作为图5中所示的定子磁通估测单元中的积分器A的输入,定义如下所述的公式,以判定在检测到的电流中是否存在异常。在下文中,下标‘d’、‘q’代表坐标轴,下标‘s’意指定子,而上标‘e’代表同步基准坐标系。
等式4
基准值产生单元71可对以上定义的进行低通滤波,以产生作为用于异常检测的基准值。这被定义为
边界值设定单元72可分别就d、q轴设定用于异常检测的边界值界限如下。
等式5
其中,k是常数,并可以是例如0.2。这里,当判定最大(max)值和最小(min)值时,应排除异常值(极端数)。可对正弦波形中的最近3个周期的范围执行更新。
之间的差值的绝对值大于εd或εq时判定单元73判定为异常。
当接收来自异常判定单元70的异常时,校正单元80可使用以下公式对异常定子电流进行校正。
等式6
转子磁通估测单元40的构成如图5所示,通过接收这种经校正的异常定子电流,可重新估测转子磁通如下。
等式7
之后,电流控制单元90可基于重新估测的转子磁通,通过对同步基准坐标系的定子d轴电流和q轴电流控制指令进行更新,来控制逆变器1。
图10是示出根据本公开的示范实施例的逆变器控制方法的流程图。
如图所示,通过根据本公开的示范实施例的逆变器控制方法,3相电流判定单元50可通过接收在支路分流电阻器中检测到的2相电流,经由如表1中的关系来判定3相电流(S10)。之后,坐标转换单元60可将检测到的相电流坐标转换成如等式3中所述的定子静止基准坐标系d轴电流和q轴电流。
使用这种经转换的电流,异常判定单元70中的基准值产生单元71可对定子电压与跨越定子阻抗的电压降(等式4)之间的差值进行低通滤波以产生基准值()(S20)。边界值设定单元72可使用等式5来设定用于异常检测的边界值界限(S25)。
当基准值与定子电压和跨越定子阻抗的电压降的差之间的差值的绝对值大于边界值时,判定单元73判定相关阶段中的电流为异常(S30,S35,S40)。
校正单元80,当相关阶段中的电流被判定为异常时,可使用等式6对异常定子电流进行校正(S45)。随后,转子磁通估测单元40可通过接收经校正的异常定子电流,使用等式7重新估测转子磁通(S50)。
电流控制单元90可基于重新估测的转子磁通,对同步基准坐标系的定子d轴电流和q轴电流控制指令进行更新,且随后可将更新后的定子d轴电流和q轴电流控制指令发送到逆变器1中的逆变器单元30(S55)。随后逆变器单元30可通过相关电流控制指令执行切换。
图11是示出根据本公开的示范实施例的异常电流检测的示范图。
参照图11,粉色波形转子磁通估测单元40中的积分器A的输入波形,它是定子电压与跨越定子阻抗的电压降之间的差值(vs-Rs·is)。直到输入了异常电流的时刻它会变得具有明确的区别性。根据本公开的示范实施例,异常电流基于这些特殊点而被检测出来。
根据本公开的示范实施例,通过判定相电流的异常,并对相关阶段的电流进行校正以及将其反映到磁通估测上,可取得对逆变器矢量控制的性能稳定性。
此外,根据本公开的示范实施例,通过避免在重负荷下将相电流异常施加给控制指令来防止MCU/DSP的变量溢流,可以降低逆变器失步的可能性。
上述示范实施例旨在示例性的,并不限制权利要求书的范围。许多改变、修改、变化和等同对本领域技术人员而言将是显而易见的。在此描述的示范实施例的特征、结构、方法和其他特性可以多种方式结合以获得额外的和/或可替换的示范实施例。因此,本公开的权利的技术范围应当由权利要求书来决定。

Claims (10)

1.一种用于控制逆变器的设备,该设备包括:
第一判定单元,其配置为通过从布置在逆变器的逆变器单元中下部开关元件的发射极端子处的支路分流电阻器接收3相电流中的仅2相电流来判定3相电流的每一相电流;
检测单元,其配置为判定所述3相电流中是否存在异常;以及
校正单元,其配置为当检测单元判定产生了所述异常时,对所述3相电流中的所述异常进行校正,其中所述检测单元包括:
基准值产生单元,其配置为基于定子电压与跨越定子阻抗的电压降之间的第一差值来设定基准值以检测是否产生了所述异常;
边界值设定单元,其配置为产生用于对所述异常进行判定的边界值;以及
第二判定单元,其配置为当所述基准值与所述第一差值之间的第二差值的绝对值大于所述边界值时判定电流中存在所述异常。
2.如权利要求1所述的设备,进一步包括:
转换单元,其配置为将来自第一判定单元的相电流转换成在静止基准坐标系处的定子电流。
3.如权利要求1所述的设备,其中所述基准值包括所述定子电压与跨越所述定子阻抗的所述电压降之间的经低通滤波的第一差值。
4.如权利要求1所述的设备,其中所述边界值是所述第一差值的最大值与其最小值之间的第三差值乘以预定常数得到的值。
5.如权利要求2所述的设备,其中所述校正单元使用以下等式对所述定子电流中的异常进行校正:
i → s _ r e c o m s = v → s s - L P F ( v → s s - R s i → s _ A D s ) R s
其中是在静止基准坐标系处的定子电压;Rs是定子阻抗;以及is_AD s是在静止基准坐标系具有异常的定子电流。
6.如权利要求1所述的设备,进一步包括:
估测单元,其配置为通过接收来自校正单元的经校正的电流来重新估测电动机的转子磁通。
7.如权利要求6所述的设备,进一步包括:
控制单元,其配置为基于重新估测的转子磁通,通过对同步基准坐标系的定子d轴和q轴电流控制指令进行更新,来控制所述逆变器单元。
8.一种用于控制逆变器的方法,该方法包括:
使用从支路分流电阻器检测到的3相电流中的仅2相电流,来判定从逆变器输出的3相电流的每一相电流;
基于定子电压与跨越定子阻抗的电压降之间的第一差值来设定基准值以检测是否产生了异常;
设定用于对所述异常进行判定的边界值;
当所述基准值与所述第一差值之间的第二差值的绝对值大于所述边界值时判定电流中存在异常;以及
当判定产生了异常时对电流中的所述异常进行校正。
9.如权利要求8所述的方法,进一步包括:
通过接收经校正的电流来重新估测电动机的转子磁通。
10.如权利要求9所述的方法,进一步包括:
基于重新估测的转子磁通,通过对同步基准坐标系的定子d轴和q轴电流控制指令进行更新,来控制所述逆变器的逆变器单元。
CN201410720583.5A 2013-11-29 2014-12-01 用于控制逆变器的设备和方法 Expired - Fee Related CN104682721B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0147051 2013-11-29
KR1020130147051A KR101566590B1 (ko) 2013-11-29 2013-11-29 인버터 제어장치

Publications (2)

Publication Number Publication Date
CN104682721A CN104682721A (zh) 2015-06-03
CN104682721B true CN104682721B (zh) 2017-04-12

Family

ID=51945795

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410720583.5A Expired - Fee Related CN104682721B (zh) 2013-11-29 2014-12-01 用于控制逆变器的设备和方法

Country Status (6)

Country Link
US (1) US9450483B2 (zh)
EP (1) EP2879289B1 (zh)
JP (1) JP6001623B2 (zh)
KR (1) KR101566590B1 (zh)
CN (1) CN104682721B (zh)
ES (1) ES2696279T3 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10587176B2 (en) * 2015-11-02 2020-03-10 Mssb Motor Technology, Llc Calibrated slip synchronous machine
US10727770B2 (en) * 2018-09-27 2020-07-28 Tmeic Corporation Control device for power conversion device, and motor drive system
KR102189057B1 (ko) * 2019-10-11 2020-12-10 현대위아(주) 션트저항을 포함하는 모터용 인버터의 전류 복원 시스템 및 방법
KR102645356B1 (ko) * 2021-11-24 2024-03-11 한남대학교 산학협력단 인버터 전류센서 폴트 인식장치 및 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001076A (zh) * 2006-01-13 2007-07-18 欧姆龙株式会社 逆变器装置
CN102545588A (zh) * 2010-12-24 2012-07-04 Abb研究有限公司 用于控制转换器的方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2190754A (en) * 1986-04-11 1987-11-25 Hitachi Ltd Load current detecting device for pulse width modulation inverter
JP3295571B2 (ja) 1994-12-23 2002-06-24 愛知電子株式会社 多値レベル信号通信方式における受信装置
US5739664A (en) 1996-02-05 1998-04-14 Ford Global Technologies, Inc. Induction motor drive controller
JP4115696B2 (ja) * 2001-11-19 2008-07-09 松下電器産業株式会社 モータ制御装置
JP4140454B2 (ja) 2003-06-13 2008-08-27 株式会社ジェイテクト 電動パワーステアリング装置
US6984960B2 (en) 2003-08-05 2006-01-10 General Motors Corporation Methods and apparatus for current control of a three-phase voltage source inverter in the overmodulation region
KR100608656B1 (ko) 2003-09-20 2006-08-04 엘지전자 주식회사 모터의 속도제어장치
JP4378151B2 (ja) * 2003-11-04 2009-12-02 株式会社デンソー モータ駆動装置
JP4815806B2 (ja) 2005-01-17 2011-11-16 三菱電機株式会社 交流回転機の制御装置
JP2006230766A (ja) * 2005-02-25 2006-09-07 Toshiba Corp 洗濯機
GB2437696B (en) 2005-03-29 2010-02-17 Yaskawa Denki Seisakusho Kk Current controller and current offset correction method of the same
JP4627012B2 (ja) 2005-06-29 2011-02-09 株式会社ショーワ 電動パワーステアリング装置
KR100789441B1 (ko) * 2005-12-30 2007-12-28 엘에스산전 주식회사 인버터의 전류 검출 장치 및 방법
EP2009782B1 (en) * 2006-04-20 2021-06-23 Mitsubishi Electric Corporation Electric motor control apparatus
JP4867483B2 (ja) 2006-06-09 2012-02-01 日本精工株式会社 モータ制御方法及び制御装置
JP5057908B2 (ja) * 2007-09-13 2012-10-24 オムロンオートモーティブエレクトロニクス株式会社 多相交流モータ駆動装置
KR20100033862A (ko) 2008-09-22 2010-03-31 현대중공업 주식회사 션트저항을 사용하는 인버터의 전류 측정 방법
JP2012236531A (ja) 2011-05-12 2012-12-06 Jtekt Corp 電動パワーステアリング装置
JP2013111467A (ja) 2011-11-30 2013-06-10 Zinc Software Ltd 心拍数データからrsa成分を測定するための方法及び装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001076A (zh) * 2006-01-13 2007-07-18 欧姆龙株式会社 逆变器装置
CN102545588A (zh) * 2010-12-24 2012-07-04 Abb研究有限公司 用于控制转换器的方法

Also Published As

Publication number Publication date
EP2879289B1 (en) 2018-10-03
KR20150062422A (ko) 2015-06-08
KR101566590B1 (ko) 2015-11-13
US9450483B2 (en) 2016-09-20
CN104682721A (zh) 2015-06-03
EP2879289A2 (en) 2015-06-03
ES2696279T3 (es) 2019-01-14
US20150155773A1 (en) 2015-06-04
JP6001623B2 (ja) 2016-10-05
JP2015107052A (ja) 2015-06-08
EP2879289A3 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
Trabelsi et al. Multiple criteria for high performance real-time diagnostic of single and multiple open-switch faults in ac-motor drives: Application to IGBT-based voltage source inverter
CN102594253B (zh) 三相异步电机的参数离线辨识方法及装置
CN105075104B (zh) 用于确定感应电机的励磁曲线和转子电阻的系统以及制造其的方法
CN104360171A (zh) 永磁同步电机电感参数测量方法
CN104682721B (zh) 用于控制逆变器的设备和方法
CN104521133B (zh) 缺相检测方法和电力转换装置
US10241152B2 (en) Automated motor adaptation
CN102594249A (zh) 三相交流电机单母线电流检无速度传感器矢量控制方法
KR20150080063A (ko) 확장형 칼만 필터를 이용한 동기 발전기의 고장 진단 방법 및 장치
CN105449639A (zh) 基于永磁同步电机驱动器的电压保护控制方法及装置
Khov et al. Detection of turn short-circuit faults in stator of PMSM by on-line parameter estimation
KR100838990B1 (ko) 유도 전동기의 고정자 저항 측정방법
US9680402B2 (en) Driver circuit and method for single-phase and three-phase induction motors
Ye et al. Simulation of electrical faults of three phase induction motor drive system
Mölsä et al. Standstill self-commissioning of an induction motor drive
EP2757683A1 (en) Determining inductances in synchronous machines
CN107615641B (zh) 感应电机的功率转换装置、二次时间常数测量方法和速度控制方法
CN105510825B (zh) 一种消除非线性因素的异步电机漏感测量方法
CN101170282A (zh) 逆变器电流检测装置
JPH0769401B2 (ja) 誘導電動機の定数測定方法
JP5148789B2 (ja) 永久磁石型同期電動機の磁束鎖交数及び電気的時定数の同定方法
Senicar et al. Inverter based method for measurement of PMSM machine parameters based on the elimination of power stage characteristics
Upadhyay et al. A Stator Flux Linkage DC Offset Based Stator Fault Detection For PMSM Drive Systems
JP2021002949A (ja) 永久磁石同期電動機の駆動装置、駆動方法および電気車
CN111245322A (zh) 一种内嵌式永磁同步电机交直轴电感的测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170412

Termination date: 20191201