CN104649886A - 使用用于提高水动力学的内部结构的氧化系统 - Google Patents
使用用于提高水动力学的内部结构的氧化系统 Download PDFInfo
- Publication number
- CN104649886A CN104649886A CN201410838165.6A CN201410838165A CN104649886A CN 104649886 A CN104649886 A CN 104649886A CN 201410838165 A CN201410838165 A CN 201410838165A CN 104649886 A CN104649886 A CN 104649886A
- Authority
- CN
- China
- Prior art keywords
- reaction medium
- reaction
- reactor
- reaction zone
- oxidation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J10/00—Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
- B01J10/002—Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor carried out in foam, aerosol or bubbles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J10/00—Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1818—Feeding of the fluidising gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/20—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
- B01J8/22—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/255—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
- C07C51/265—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C63/00—Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00002—Chemical plants
- B01J2219/00027—Process aspects
- B01J2219/0004—Processes in series
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Dispersion Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本发明涉及使用用于提高水动力学的内部结构的氧化系统,其公开了用于更有效和更经济地进行可氧化的化合物的液相氧化的优化方法和装置。该液相氧化在鼓泡塔反应器中进行,该反应器在相对低的温度下提供了高效的反应。当氧化的化合物为对-二甲苯且氧化反应的产物为粗制对苯二甲酸(CTA)时,该CTA产物可以通过相对于如果采用常规高温氧化方法来形成CTA时可以采用的技术更经济的技术来纯化和分离。
Description
本申请是申请号为200780007449.9,申请日为2007年2月16日,发明名称为“使用用于提高水动力学的内部结构的氧化系统”的中国专利申请的分案申请。
技术领域
本发明一般地涉及一种多羧酸组合物的生产方法。本发明的一方面涉及二烷基芳族化合物(例如对-二甲苯)的部分氧化来制备粗制芳族二羧酸(例如粗制对苯二甲酸),粗制芳族二羧酸随后可以进行纯化和分离。本发明的另一方面涉及提供更有效和更经济的氧化方法的改进型反应系统。
背景技术
各种现有商业方法中采用氧化反应。例如,液相氧化目前经常用于醛氧化为酸(例如丙醛氧化为丙酸),环己烷氧化为己二酸,和烷基芳烃氧化为醇、酸或二酸。在后一类(烷基芳烃的氧化)中特别重要的商业氧化工艺为对-二甲苯液相催化部分氧化为对苯二甲酸。对苯二甲酸是一种具有多种应用的重要化合物。对苯二甲酸的主要用途为生产聚对苯二甲酸乙二醇酯(PET)的进料。PET为一种在全球范围内大量用于生产诸如瓶子、纤维和包装的产品的公知塑料。
在典型的液相氧化方法中,包括对-二甲苯部分氧化为对苯二甲酸,将液相进料物流和气相氧化剂物流引入反应器并且在反应器中形成多相反应介质。引入反应器的液相进料物流含有至少一种可氧化的有机化合物(例如对-二甲苯),同时气相氧化剂物流含有分子氧。至少一部分引入反应器的分子氧作为气体溶解到反应介质的液相中,由此提供液相反应可获得的氧。如果多相反应介质的液相含有不足浓度的分子氧(例如,如果一部分反应介质为“缺氧的”)时,不期望的副反应可以产生杂质和/或预期的反应的速率方面可被延迟。如果反应介质的液相含有太少可氧化的化合物时,反应速率可能慢得不合需要。另外,如果反应介质的液相含有过高浓度的可氧化的化合物时,额外的不期望的副反应可以产生杂质。
传统的液相氧化反应器装配有用于混合其中所含的多相反应介质的搅拌设备。提供反应介质的搅拌是为了促进分子氧溶解到反应介质的液相中,在反应介质的液相中保持浓度相对均匀的溶解氧,和在反应介质的液相中保持浓度相对均匀的可氧化的有机化合物。
进行液相氧化的反应介质的搅拌经常通过容器中的机械搅拌设备来提供,例如连续搅拌槽反应器(CSTR)。虽然CSTR可提供反应介质的彻底搅拌,但是CSTR存在许多缺陷。例如,CSTR由于它们需要昂贵的电动机、流体密封型轴承和传动轴、和/或复杂的搅拌机理而具有相对高的投资成本。另外,传统CSTR的旋转和/或摆动机械元件需要定期维护。与该维护相关联的劳动力和停车时间增加了CSTR的操作成本。但是,即使进行定期维护,CSTR中采用的机械搅拌系统也容易出现机械故障,并且经过相对短的时间可能需要更换。
鼓泡塔反应器提供了CSTR和其它机械搅拌型氧化反应器的一种有吸引力的替换方式。鼓泡塔反应器提供了反应介质的搅拌,不需要昂贵和不可靠的机械设备。鼓泡塔反应器通常包括其中含有反应介质的伸长的立式反应区。反应区中反应介质的搅拌主要通过上升穿过反应介质液相的气泡本身的浮力来提供。相对于机械搅拌型反应器来说,这种在鼓泡塔反应器中提供的自身浮力搅拌降低了投资和维护成本。另外,与鼓泡塔反应器相关的,基本上不存在移动的机械部件提供了相对于机械搅拌型反应器更加不容易出现机械故障的氧化系统。
当在传统氧化反应器(CSTR或鼓泡塔)中进行对-二甲苯的液相部分氧化时,从反应器中排出的产物通常为含有粗制对苯二甲酸(CTA)和母液的浆料。CTA含有相对高浓度的杂质(例如4-羧基苯甲醛、对-甲苯甲酸、芴酮、和其它发色体),使得其不适宜作为生产PET的进料。由此,通常将传统氧化反应器中生成的CTA进行纯化工艺,将CTA转化为适用于生产PET的纯化对苯二甲酸(PTA)。
一种用于将CTA转化为PTA的典型纯化方法,包括下列步骤:(1)用水置换含有CTA的浆料的母液,(2)加热CTA/水浆料,以将CTA溶解于水中,(3)催化氢化CTA/水溶液,由此将杂质转化为更期望的和/或容易分离的化合物,(4)通过多级结晶步骤从氢化的溶液中沉淀获得的PTA,和(5)从剩余液体中分离结晶的PTA。虽然有效,但是这类传统纯化方法可能是非常昂贵的。导致传统CTA纯化方法的高成本的各种因素包括:例如,促进CTA溶解于水所需的热能,氢化所需的催化剂,氢化所需的氢气流,由于一些对苯二甲酸的氢化而导致的产率(yield)损失,和多级结晶所需的多个容器。由此,期望提供一种氧化系统,其能够生产可以无需热量促进的溶解于水、氢化和/或多级结晶就可以纯化的CTA产物。
发明内容
由此,本发明的目的是,提供一种更有效的和更经济的液相氧化系统。
本发明的另一目的是,提供一种用于对-二甲苯液相催化部分氧化为对苯二甲酸的、更有效的和更经济的反应器和方法。
本发明的仍另一目的是,提供一种鼓泡塔反应器,其促进杂质形成较少的改进的液相氧化反应。
本发明的仍另一目的是,提供一种用于制备纯对苯二甲酸(PTA)的、更有效的和更经济的系统,其通过液相氧化对-二甲苯制得粗制对苯二甲酸(CTA)并且随后将CTA纯化为PTA。
本发明的另一目的是,提供一种用于氧化对-二甲苯和生产CTA产品的鼓泡塔反应器,其能够无需加热促进CTA溶解于水、氢化溶解的CTA、和/或多步结晶氢化的PTA来进行纯化。
应当指出的是,如所附权利要求所限定的本发明的范围,并非局限于能够实现所有上述目的的方法或设备。而是,所要求的本发明的范围可以包含未实现全部或任意上述目的的多种系统。在阅读下列详细说明和附图的基础上,本发明的其它目的和优点对于本领域技术人员来说将是容易显而易见的。
概述
本发明的一种实施方案涉及一种用于制备多元羧酸组合物的方法,所述方法包括以下步骤:(a)使多相反应介质在初级氧化反应器中进行氧化,从而生产出第一浆料;和(b)使所述第一浆料的至少一部分在次级氧化反应器中进一步氧化,其中所述次级氧化反应器是鼓泡塔反应器。
本发明的另一实施方案涉及一种反应器系统。所述反应器系统包括初级氧化反应器和次级氧化反应器。所述初级氧化反应器限定了第一入口和第一出口。所述次级氧化反应器是鼓泡塔反应器,其限定了第二入口和第二出口。所述第一出口以流体连通的方式连接于所述第二入口。
附图说明
下面参照附图详细描述本发明的优选实施方案,其中:
图1为依据本发明一种实施方案构造的氧化反应器的侧视图,特别地描述了将进料、氧化剂、和回流物流引入反应器,反应器中存在多相反应介质,和分别从反应器顶部和底部提取气体和浆料;
图2为沿着图3中线2-2获得的鼓泡塔反应器底部的放大的剖面侧视图,特别地描述了用于将氧化剂物流引入反应器的氧化剂喷雾器的位置和构造;
图3为图2氧化剂喷雾器的俯视图,特别地描述了氧化剂喷雾器顶部中没有氧化剂排出开口;
图4为图2氧化剂喷雾器的仰视图,特别地描述了氧化剂喷雾器底部中的氧化剂排出开口的构造;
图5为沿着图3中的线5-5获得的氧化剂喷雾器的剖面侧视图,特别地描述了氧化剂喷雾器底部中的氧化剂排出开口的朝向;
图6为鼓泡塔反应器底部的放大的侧视图,特别地描述了用于在多个纵向间隔的位置将进料物流引入反应器的系统;
图7为沿着图6中线7-7获得的剖面俯视图,特别地描述了图6中所示的进料引入系统如何将进料物流分布于优选的放射状进料区(FZ)和一个以上的方位象限(Q1、Q2、Q3、Q4)中;
图8为类似于图7的剖面俯视图,但是描述了用于将进料物流进料到反应器中的替换方式,采用各自具有多个小进料口的卡口管;
图9为替换系统的等视轴图,该系统用于在多个纵向间隔的位置将进料物流引入反应区,无需多个容器贯穿(penetration),特别地描述了进料分布系统可以至少部分地支撑在氧化剂喷雾器上;
图10为图9中所示单贯穿进料分布系统和氧化剂喷雾器的侧视图;
图11为沿着图10中线11-11获得的剖面俯视图,且进一步描述了支撑在氧化剂喷雾器上的单贯穿进料分布系统;
图12是装备有内部和外部反应容器的鼓泡塔反应器的侧视图;
图13是沿线13-13获得的图12的鼓泡塔反应器的放大的剖视图,其特别地描述了内部和外部反应容器的相对朝向。
图14是装备有内部和外部反应容器的另一鼓泡塔反应器的侧视图,特别地描述了外部反应容器具有分段直径;
图15是装备有外部次级氧化反应器的鼓泡塔反应器的侧视图,所述外部次级氧化反应器在初级氧化反应器中从侧线接收浆料;
图16是装备有开口端的外部次级氧化反应器的鼓泡塔反应器的侧视图,所述开口端的外部次级氧化反应器从初级氧化反应器的侧面中的扩大的开口接收浆料;
图17a是装备有用于提高反应器的流体力学的内部结构的鼓泡塔反应器的示意侧视图;
图17b是沿图17a中的线17b-17b获得的图17a的反应器的剖视图;
图18a是装备有用于提高反应器的流体力学的第一备选内部结构的鼓泡塔反应器的示意侧视图;
图18b是沿图18a中的线18b-18b获得的图18a的反应器的剖视图;
图19a是装备有用于提高反应器的流体力学的第二备选内部结构的鼓泡塔反应器的示意侧视图;
图19b是沿图19a中的线19b-19b获得的图19a的反应器的剖视图;
图20a是装备有用于提高反应器的流体力学的第三备选内部结构的鼓泡塔反应器的示意侧视图;
图20b是沿图20a中的线20b-20b获得的图20a的反应器的剖视图;
图21a是装备有用于提高反应器的流体力学的第四备选内部结构的鼓泡塔反应器的示意侧视图;
图21b是沿图21a中的线21b-21b获得的图21a的反应器的剖视图;
图22a是装备有用于提高反应器的流体力学的第五备选内部结构的鼓泡塔反应器的示意侧视图;
图22b是沿图22a中的线22b-22b获得的图22a的反应器的剖视图;
图23a是装备有用于提高反应器的流体力学的第六备选内部结构的鼓泡塔反应器的示意侧视图;
图23b是沿图23a中的线23b-23b获得的图23a的反应器的剖视图;
图24a是装备有用于提高反应器的流体力学的第七备选内部结构的鼓泡塔反应器的示意侧视图;
图24b是沿图24a中的线24b-24b获得的图24a的反应器的剖视图;
图25a是装备有提高流体力学的内部结构的分段直径鼓泡塔反应器的示意图;
图25b是沿图25a中的线25b-25b获得的图25a的反应器的剖视图;
图26为含有多相反应介质的鼓泡塔反应器的侧视图,特别地描述了理论上将反应介质分割为30个等体积的水平分层,由此在反应介质中量化一定的梯度;
图27为含有多相反应介质的鼓泡塔反应器的侧视图,特别地描述了第一和第二离散的20%连续体积的反应介质,其具有基本上不同的氧浓度和/或耗氧速率;
图28A和28B为依据本发明一种实施方案生产的粗制对苯二甲酸(CTA)颗粒的放大图,特别地描述了每个CTA颗粒为由多个松散结合的CTA亚-颗粒组成的低密度、高表面积颗粒;
图29A和29B为传统生产的CTA的放大图,特别地描述了传统的CTA颗粒比图28A和28B的本发明CTA颗粒的颗粒尺寸更大、密度更高、和表面积更小;
图30为用于制备纯化的对苯二甲酸(PTA)的现有技术方法的简化工艺流程图;和
图31为依据本发明的一种实施方法来制备PTA的方法的简化工艺流程图
具体实施方式
本发明的一种实施方案涉及可氧化的化合物的液相部分氧化。该氧化优选地在一个或多个搅拌反应器中所含的多相反应介质的液相中进行。适宜的搅拌反应器包括,例如,气泡搅拌型反应器(例如鼓泡塔反应器)、机械搅拌型反应器(例如连续搅拌槽反应器)、和流动搅拌型反应器(例如射流反应器)。在本发明的一种实施方案中,该液相氧化是使用至少一个鼓泡塔反应器进行的。
如本文中所使用的那样,术语“鼓泡塔反应器”表示用于促进多相反应介质中化学反应的反应器,其中反应介质的搅拌主要通过气泡从反应介质中向上运动来提供。如本文中所使用的那样,术语“搅拌”表示消耗到反应介质中的导致流体流动和/或混合的作功。如本文中所使用的那样,术语“大部分(majority)”、“主要地(primarily)”和“主要为(predominately)”表示大于50%。如本文中所使用的那样,术语“机械搅拌”应表示通过刚性或柔性元件相对于反应介质或者在其中的物理运动而导致的反应介质的搅拌。例如,机械搅拌可以通过位于反应介质中的内部搅拌器、桨、振动器、或声学隔膜(acoustical diaphragm)的旋转、摆动和/或振动来提供。如本文中所使用的那样,术语“流动搅拌”表示反应介质中一种或多种流体的高速注射和/或再循环而导致的反应介质的搅拌。例如,流动搅拌可以通过喷嘴、射流器和/或喷射器来提供。
在本发明的优选实施方案中,氧化期间小于约40%的鼓泡塔反应器中的反应介质的搅拌通过机械和/或流动搅拌来提供,更优选地小于约20%的搅拌通过机械和/或流动搅拌来提供,最优选地小于5%的搅拌通过机械和/或流动搅拌来提供。优选地,氧化期间赋予多相反应介质的机械和/或流动搅拌的量小于约3千瓦/立方米反应介质,更优选地小于约2千瓦/立方米,和最优选地小于1千瓦/立方米。
现在参照图1,描述优选的鼓泡塔反应器20,其包括具有反应段24和脱离段26的容器壳体22。反应段24限定反应区28,同时脱离段26限定脱离区30。通过进料入口32a、b、c、d将主要为液相的进料物流引入反应区28。通过位于反应区28下部中的氧化剂喷雾器34将主要为气相的氧化剂物流引入反应区28。液相进料物流和气相氧化剂物流在反应区28中共同地形成多相反应介质36。多相反应介质36包含液相和气相。更优选地,多相反应介质36包含具有固相、液相和气相组分的三相介质。反应介质36的固相组分优选地由于在反应介质36的液相中进行的氧化反应的作用而沉淀在反应区28中。鼓泡塔反应器20包括位于反应区28底部附近的浆料出口38和处于脱离区30顶部附近的气体出口40。包含反应介质36的液相和固相组分的浆料流出物通过浆料出口38从反应区28中取出,同时主要为气态的流出物通过气体出口40从脱离区30中取出。
通过进料入口32a、b、c、d引入鼓泡塔反应器20的液相进料物流优选地包含可氧化的化合物、溶剂和催化剂系统。
存在于液相进料物流中的可氧化的化合物优选地包含至少一个烃基。更优选地,该可氧化的化合物为芳族化合物。仍更优选地,该可氧化的化合物为具有至少一个连接的烃基或者至少一个连接的取代的烃基或者至少一个连接的杂原子或者至少一个连接的羧酸官能团(-COOH)的芳族化合物。甚至更优选地,该可氧化的化合物为具有至少一个连接的烃基或者至少一个连接的取代的烃基的芳族化合物,其中每个连接的基团包含1-5个碳原子。仍更优选地,可氧化的化合物为具有正好两个连接的基团的芳族化合物,其中每个连接的基团包含正好一个碳原子且由甲基和/或取代的甲基和/或至多一个羧酸基团组成。甚至更优选地,可氧化的化合物为对-二甲苯、间-二甲苯、对-甲苯甲醛、间-甲苯甲醛、对-甲苯甲酸、间-甲苯甲酸、和/或乙醛。最优选地,可氧化的化合物为对-二甲苯。
本文中所定义的“烃基”为仅仅键合于氢原子或其它碳原子的至少一个碳原子。本文中所定义的“取代的烃基”为键合于至少一个杂原子和至少一个氢原子的至少一个碳原子。本文中所定义的“杂原子”为碳和氢原子之外的所有原子。本文中所定义的芳族化合物包括芳环,优选地具有至少6个碳原子,甚至更优选地仅具有作为环部分的碳原子。该芳环的适宜实例包括但并不限于苯、联苯、三联苯、萘和其它碳基稠合芳环。
如果液相进料物流中存在的可氧化的化合物为常规固体化合物(即,在标准温度和压力下为固体),优选该可氧化的化合物当引入到反应区28中时基本上溶解于溶剂中。优选该可氧化的化合物在大气压下的沸点至少为约50℃。更优选地,该可氧化的化合物的沸点为约80-约400℃,并且最优选地为125-155℃。液相进料中存在的可氧化的化合物的量优选为约2-约40wt%,更优选为约4-约20wt%,最优选为6-15wt%。
现在要注意的是,液相进料中存在的可氧化的化合物可以包含两种或者多种不同的可氧化的化学品的组合。这些两种或多种不同的化学材料可以在液相进料物流中混合进料或者可以在多个进料物流中分别进料。例如,可以通过单一的入口或多个独立的入口将包含对-二甲苯、间-二甲苯、对-甲苯甲醛、对-甲苯甲酸和乙醛的可氧化的化合物进料到反应器中。
液相进料物流中存在的溶剂优选地包含酸组分和水组分。优选地,液相进料物流中存在的溶剂的浓度范围为约60-约98wt%,更优选为约80-约96wt%,最优选为85-94wt%。该溶剂的酸组分优选主要地为具有1-6个碳原子、更优选2个碳原子的有机低分子量单羧酸。最优选地,该溶剂的酸组分主要地为乙酸。优选地,酸组分至少占该溶剂的约75wt%,更优选至少占该溶剂的约80wt%,最优选占该溶剂的85-98wt%,余量主要地为水。引入鼓泡塔反应器20中的溶剂可以包括少量杂质,例如对-甲苯甲醛(para-tolualdehyde)、对苯二甲醛、4-羧基苯甲醛(4-CBA)、苯甲酸、对-甲苯甲酸、对-甲苯甲醛(para-toluic aldehyde)、α-溴-对-甲苯甲酸、间苯二甲酸、邻苯二甲酸、偏苯三酸、多芳烃和/或悬浮颗粒。优选地,引入鼓泡塔反应器20中的溶剂中的杂质总量小于约3wt%。
液相进料物流中存在的催化剂系统优选为均质的、液相催化剂系统,其能够促进可氧化的化合物的氧化(包括部分氧化)。更优选地,该催化剂系统包括至少一种多价过渡金属。仍更优选地,该多价过渡金属包括钴。甚至更优选地,该催化剂系统包括钴和溴。最优选地,该催化剂系统包括钴、溴和锰。
当催化剂系统中存在钴时,优选液相进料物流中存在的钴的量使得反应介质36的液相中钴的浓度保持在约300-约6000份/百万(重量)(ppmw),更优选为约700-约4200ppmw,最优选为1200-3000ppmw。当催化剂系统中存在溴时,优选液相进料物流中存在的溴的量使得反应介质36的液相中溴的浓度保持在约300-约5000ppmw,更优选为约600-约4000ppmw,最优选为900-3000ppmw。当催化剂系统中存在锰时,优选液相进料物流中存在的锰的量使得反应介质36的液相中锰的浓度保持在约20-约1000ppmw,更优选为约40-约500ppmw,最优选为50-200ppmw。
上面提供的、反应介质36的液相中钴、溴和/或锰的浓度是基于时间平均和体积平均表示的。本文中所使用的术语“时间平均”应表示在至少100秒的连续时间内同等进行的至少10次测量的平均。本文中所使用的术语“体积平均”应表示在整个一定体积内在均匀的三维间距处进行的至少10次测量的平均。
引入反应区28中的催化剂系统中钴与溴的重量比(Co:Br)优选为约0.25:1-约4:1,更优选为约0.5:1-约3:1,最优选为0.75:1-2:1。引入反应区28中的催化剂系统中钴与锰的重量比(Co:Mn)优选为约0.3:1-约40:1,更优选为约5:1-约30:1,最优选为10:1-25:1。
引入鼓泡塔反应器20中的液相进料物流可以包括少量杂质,例如甲苯、乙苯、对-甲苯甲醛、对苯二甲醛、4-羧基苯甲醛(4-CBA)、苯甲酸、对-甲苯甲酸、对-甲苯甲醛、α-溴-对-甲苯甲酸、间苯二甲酸、邻苯二甲酸、偏苯三酸、多芳烃和/或悬浮颗粒。当鼓泡塔反应器20用于生产对苯二甲酸时,间-二甲苯和邻-二甲苯也被认为是杂质。优选地,引入鼓泡塔反应器20中的液相进料物流中的杂质总量小于约3wt%。
虽然图1描述了这样的实施方案:其中可氧化的化合物、溶剂和催化剂系统混合在一起并作为单一的进料物流引入鼓泡塔反应器20中,但是在本发明的备选实施方案中,可氧化的化合物、溶剂和催化剂可以分别被引入鼓泡塔反应器20中。例如,可以通过与溶剂和催化剂入口分开的入口将纯的对-二甲苯物流进料到鼓泡塔反应器20中。
通过氧化剂喷雾器34引入鼓泡塔反应器20的、主要为气相的氧化剂物流包含分子氧(O2)。优选地,该氧化剂物流包含约5-约40mol%的分子氧、更优选约15-约30mol%的分子氧、最优选18-24mol%的分子氧。优选该氧化剂物流的余量主要地由对氧化呈惰性的一种或多种气体(如氮气)组成。更优选地,该氧化剂物流基本上由分子氧和氮气组成。最优选地,该氧化剂物流为干燥空气,其包含约21mol%的分子氧和约78-约81mol%的氮气。在本发明的备选实施方案中,该氧化剂物流可以包含基本上纯净的氧。
再次参照图1,鼓泡塔反应器20优选地装配有位于反应介质36的上表面44之上的回流分布器42。回流分布器42可以经操作以通过本领域公知的任意微滴形成方式将主要为液相的回流物流微滴引入脱离区30。更优选地,回流分布器42形成朝下指向反应介质36的上表面44的微滴喷雾。优选地,这种微滴的向下喷雾作用(affect)(即接合(engage)和影响(influence))脱离区30的最大水平横截面积的至少约50%。更优选地,该微滴喷雾作用脱离区30的最大水平横截面积的至少约75%。最优选地,该微滴喷雾作用脱离区30的最大水平横截面积的至少约90%。这种向下的液体回流喷雾可以有助于防止在反应介质36的上表面44处或之上起泡,并且也可以有助于在流向气体出口40的向上运动的气体中夹带的任意液体或浆料微滴的脱离。另外,该液体回流可以用于降低存在于通过气体出口40从脱离区30中取出的气态流出物中的颗粒和可能沉淀的化合物(例如溶解的苯甲酸、对-甲苯甲酸、4-CBA、对苯二甲酸和催化剂金属盐)的量。另外,回流微滴引入脱离区30可以通过蒸馏作用用于调节通过气体出口40取出的气态流出物的组成。
通过回流分布器42引入鼓泡塔反应器20的液体回流物流优选地大约具有与通过进料入口32a、b、c、d引入鼓泡塔反应器20的液相进料物流的溶剂组分相同的组成。由此,优选地,液体回流物流包含酸组分和水。回流物流的酸组分优选为具有1-6个碳原子、更优选2个碳原子的低分子量有机单羧酸。最优选地,该回流物流的酸组分为乙酸。优选地,该酸组分占该回流物流的至少约75wt%,更优选占该回流物流的至少约80wt%,最优选占该回流物流的85-98wt%,余量为水。由于该回流物流通常具有与液相进料物流中的溶剂基本相同的组成,所以当本说明书提到引入反应器的“全部溶剂”时,该“全部溶剂”应包括该回流物流和该进料物流的溶剂部分二者。
在鼓泡塔反应器20中的液相氧化期间,优选将进料、氧化剂和回流物流基本上连续地引入反应区28,同时将气体和浆料流出物流基本上连续地从反应区28中取出。本文中所使用的术语“基本上连续地”应表示为被小于10分钟间隔的至少10小时的周期。氧化期间,优选地,以至少约8000kg/小时、更优选约15,000-约200,000kg/小时、仍更优选约22,000-约150,000kg/小时、最优选30,000-100,000kg/小时的速率将可氧化的化合物(例如对-二甲苯)基本上连续地引入反应区28。虽然,通常优选地,进入的进料、氧化剂和回流物流的流速基本上是稳定的,但是现在要注意的是,本发明的一种实施方案考虑了脉冲调制所述进入的进料、氧化剂和/或回流物流,由此改进混合和传质。当以脉冲输送方式引入进入的进料、氧化剂和/或回流物流时,优选地它们的流速在本文中所述的稳态流速的约0-约500%之内、更优选在本文中所述的稳态流速的约30-约200%之内、最优选在本文中所述的稳态流速的80-120%之内变化。
鼓泡塔氧化反应器20中的平均空时速率(STR)定义为每单位时间每反应介质36单位体积进料的可氧化的化合物的质量(例如每立方米每小时进料的对-二甲苯的千克数)。在常规用法中,通常在计算STR之前,从进料物流中可氧化的化合物的量中减去未转化为产物的可氧化的化合物的量。但是,对于本文中很多优选的可氧化的化合物(例如对-二甲苯)来说,转化率和产率通常较高,而适当地如上所述定义本文中的术语。特别地,出于投资成本和运行库存的考虑,通常优选以高STR进行反应。但是,在逐渐增高的STR下进行反应可能影响部分氧化的质量或产率。当可氧化的化合物(例如对-二甲苯)的STR为约25kg/立方米/小时-约400kg/立方米/小时、更优选约30kg/立方米/小时-约250kg/立方米/小时、仍更优选约35kg/立方米/小时-约150kg/立方米/小时、最优选40kg/立方米/小时-100kg/立方米/小时时,鼓泡塔反应器20是特别有用的。
鼓泡塔氧化反应器20中的氧-STR定义为每单位时间每反应介质36单位体积消耗的分子氧的重量(例如每立方米每小时消耗的分子氧的千克数)。特别地,出于投资成本和溶剂的氧化消耗的考虑,通常优选以高氧-STR进行反应。但是,在逐渐增高的氧-STR下进行反应最终降低部分氧化的质量或产率。不受理论限制,似乎这点可能与分子氧从气相到在界面区域的液体和由此进入到主体液体的传递速率相关。过高的氧-STR可能导致反应介质的主体液相中溶解的氧含量过低。
全程的平均氧-STR在本文中定义为每单位时间在反应介质36的全部体积中消耗的所有氧的重量(例如每立方米每小时消耗的分子氧的千克数)。当全程的平均氧-STR为约25kg/立方米/小时-约400kg/立方米/小时、更优选约30kg/立方米/小时-约250kg/立方米/小时、仍更优选约35kg/立方米/小时-约150kg/立方米/小时、最优选40kg/立方米/小时-100kg/立方米/小时时,鼓泡塔反应器20是特别有用的。
在鼓泡塔反应器20中的氧化期间,优选地将全部溶剂(来自进料和回流物流二者)的质量流速与进入反应区28的可氧化的化合物的质量流速的比值保持在约2:1-约50:1,更优选约5:1-约40:1,最优选7.5:1-25:1。优选地,作为进料物流一部分引入的溶剂的质量流速与作为回流物流一部分引入的溶剂的质量流速的比值保持在约0.5:1-无论什么时候都无回流物流流动,更优选约0.5:1-约4:1,仍更优选约1:1-约2:1,最优选1.25:1-1.5:1。
在鼓泡塔反应器20中的液相氧化期间,优选地引入鼓泡塔反应器20的氧化剂物流的用量提供稍微超过所需化学计量氧的分子氧。对于特定可氧化的化合物的最佳结果来说所需的过量分子氧的量影响了该液相氧化的整体经济性。在鼓泡塔反应器20中的液相氧化期间,优选氧化剂物流的质量流速与进入反应器20的可氧化的有机化合物(例如对-二甲苯)的质量流速的比值保持在约0.5:1-约20:1,更优选约1:1-约10:1,最优选2:1-6:1。
再次参照图1,引入鼓泡塔反应器20的进料、氧化剂和回流物流一起形成至少一部分多相反应介质36。反应介质36优选为包含固相、液相和气相的三相介质。如上所述,可氧化的化合物(例如对-二甲苯)的氧化主要在反应介质36的液相中进行。由此,反应介质36的液相包含溶解的氧和可氧化的化合物。鼓泡塔反应器20中发生的氧化反应的放热特性导致一部分通过进料入口32a、b、c、d引入的溶剂(例如乙酸和水)沸腾/气化。由此,反应器20中反应介质36的气相主要地由气化的溶剂和未溶解的、未反应部分的氧化剂物流形成。
一些现有技术的氧化反应器采用了换热管/散热片来加热或冷却反应介质。但是,这种热交换结构在本发明反应器和本文中所述的方法中可能是不期望的。由此,优选地,鼓泡塔反应器20基本上不包括接触反应介质36的且显示时间平均热通量大于30000瓦/平方米的表面。另外,优选地,小于约50%的反应介质36的时均反应热通过热交换表面取出,更优选地小于约30%的反应热通过热交换表面取出,和最优选地小于10%的反应热通过热交换表面取出。
反应介质36的液相中溶解的氧的浓度为从气相传质的速率与液相内反应消耗速率之间的动态平衡(即,其并非仅由供给的气相中分子氧的分压来设定,但是这是溶解的氧的供给速率中的一种因素并且其的确影响了溶解氧的浓度上限)。溶解氧的量局部变化,靠近气泡界面处较高。通常,溶解氧的量取决于反应介质36的不同区域中供给与需求因素的平衡。瞬时地,溶解氧的量取决于相对于化学品消耗速率的气体和液体混合的均匀性。在设计以适当地在反应介质36的液相中使溶解氧的供给与需求匹配时,优选使反应介质36的液相中时间平均和体积平均的氧浓度保持高于约1ppm摩尔,更优选约4-约1000ppm摩尔,仍更优选约8-约500ppm摩尔,最优选12-120ppm摩尔。
鼓泡塔反应器20中进行的液相氧化反应优选地为形成固体的沉淀反应。更优选地,鼓泡塔反应器20中进行的液相氧化导致至少约10wt%的引入反应区28的可氧化的化合物(例如对-二甲苯)在反应介质36中形成固体化合物(例如粗制对苯二甲酸颗粒)。仍更优选地,该液相氧化导致至少约50wt%的可氧化的化合物在反应介质36中形成固体化合物。最优选地,该液相氧化导致至少90wt%的可氧化的化合物在反应介质36中形成固体化合物。优选地,反应介质36中固体的总量大于约3wt%,基于时间平均和体积平均。更优选地,保持反应介质36中固体的总量为约5-约40wt%,仍更优选约10-约35wt%,最优选为15-30wt%。优选地鼓泡塔反应器20中生成的氧化产物(例如对苯二甲酸)的绝大部分(substantial portion)以固体形式存在于反应介质36中,相对地剩余部分溶解于反应介质36的液相中。存在于反应介质36中的固相氧化产物的量优选地为反应介质36中全部氧化产物(固相和液相)的至少约25wt%,更优选为反应介质36中全部氧化产物的至少约75wt%,最优选为反应介质36中全部氧化产物的至少95wt%。上述对于反应介质36中固体量所提供的数值范围应用于在基本上连续的时间段内鼓泡塔20的基本上稳态的操作,并不应用于鼓泡塔反应器20的启动、停车或次最佳的操作。反应介质36中的固体量通过重量分析法来测量。在该重量分析法中,从反应介质中取出代表性部分的浆料并称重。在有效地保持存在于反应介质中的全部固-液分配的条件下,通过沉降或过滤将自由液体从固体部分中有效地除去,不损失沉淀的固体且使小于约10%的初始液体物质与固体部分一起剩余。将固体上剩余的液体有效地蒸发至干,不使固体升华。将剩余部分的固体称重。固体部分的重量与浆料的原始部分的重量之比为固体的分数,通常以百分比表示。
鼓泡塔反应器20中进行的沉淀反应可能导致一些接触反应介质36的刚性结构表面上的结垢(即固体聚集)。由此,在本发明的一种实施方案中,优选地,鼓泡塔反应器20基本上在反应区28内不包含内部热交换、搅拌或折流(baffling)结构,因为这些结构将容易结垢。如果反应区28中存在内部结构时,期望避免具有包括大量向上朝向的平面表面区域的外表面的内部结构,因为这些向上朝向的平面表面特别容易结垢。由此,如果反应区28内存在任何内部结构时,优选地小于约20%的该内部结构全部向上朝向的暴露的外表面区域由基本上平面的表面形成,该表面倾斜于水平面小于约15度。具有这种构造的内部结构在本文中称为具有“非结垢”构造。
再次参照图1,鼓泡塔反应器20的物理结构有助于提供可氧化的化合物(例如对-二甲苯)的优化氧化,生成最少的杂质。优选地,容器壳体22的细长的反应段24包括基本上圆柱形主体46和底盖48。反应区28的上端由跨越圆柱形主体46的顶部延伸的水平面50限定。反应区28的下端52由底盖48的最低内表面限定。通常,反应区28的下端52位于靠近用于浆料出口38的开口。由此,鼓泡塔反应器20内所限定的伸长的反应区28具有沿着圆柱形主体46伸长的轴向、从反应区28的顶端50到下端52测量的最大长度“L”。反应区28的长度“L”优选为约10-约100m,更优选约20-约75m,最优选25-50m。反应区28具有通常等于圆柱形主体46的最大内径的最大直径(宽度)“D”。反应区28的最大直径“D”优选为约1-约12m,更优选约2-约10m,仍更优选约3.1-约9m,最优选4-8m。在本发明的优选实施方案中,反应区28的长径比“L:D”比值为约6:1-约30:1。仍更优选地,反应区28的L:D比值为约8:1-约20:1。最优选地,反应区28的L:D比值为9:1-15:1。
如上所讨论的那样,鼓泡塔反应器20的反应区28接收多相反应介质36。反应介质36具有与反应区28的下端52重合的底端和位于上表面44处的顶端。沿着水平面限定反应介质36的上表面44,该水平面在其中反应区28的内含物从气相连续状态转变为液相连续态的垂直位置横截反应区28。上表面44优选地位于其中反应区28的内含物的薄水平片段的局部时间平均气体滞留量为0.9的垂直位置。
反应介质36具有在其上端与下端之间测量的最大高度“H”。反应介质36的最大宽度“W”通常等于圆柱形主体46的最大直径“D”。在鼓泡塔反应器20中的液相氧化期间,优选地使H保持在L的约60-约120%,更优选L的约80-约110%,最优选L的85-100%。在本发明的优选实施方案中,反应介质36的高宽比“H:W”比值大于约3:1。更优选地,反应介质36的H:W比值为约7:1-约25:1。仍更优选地,反应介质36的H:W比值为约8:1-约20:1。最优选地,反应介质36的H:W比值为9:1-15:1。在本发明的一种实施方案中,L=H和D=W,使得本文中对于L和D提供的各种尺寸或比值也适用于H和W,反之亦然。
根据本发明实施方案提供的相对高的L:D和H:W比值可以有助于本发明系统的几种重要优点。如下进一步详细讨论的那样,已发现,较高的L:D和H:W比值,以及一些下面所讨论的其它特征,可以促进反应介质36中分子氧和/或可氧化的化合物(例如对-二甲苯)的有益的垂直浓度梯度。与优选到处浓度相对均一的良好混合的反应介质的传统知识相反,已发现,氧和/或可氧化的化合物浓度的垂直分段促进了更有效的和更经济的氧化反应。使靠近反应介质36顶部的氧和可氧化的化合物浓度最小化,可以有助于避免通过上部气体出口40的未反应氧和未反应可氧化的化合物的损失。但是,如果整个反应介质36内可氧化的化合物和未反应氧的浓度较低时,那么氧化的速率和/或选择性就被降低。由此,优选地,靠近反应介质36底部的分子氧和/或可氧化的化合物的浓度大大高于靠近反应介质36顶部的浓度。
另外,高L:D和H:W比值导致反应介质36底部的压力大大高于反应介质36顶部的压力。这种垂直压力梯度源于反应介质36的高度和密度。这种垂直压力梯度的一种优点在于,相对于在其他情况下在浅薄反应器中在相当的温度和塔顶压力下可以实现的氧溶解度和传质,容器底部升高的压力推动了更大的氧溶解度和传质。由此,可以在低于更浅薄容器中所需的温度下进行该氧化反应。当鼓泡塔反应器20用于对-二甲苯部分氧化为粗制对苯二甲酸(CTA)时,在具有相同或更好的氧传质速率下在较低反应温度下操作的能力具有许多优点。例如,对-二甲苯低温氧化降低了反应期间燃烧的溶剂的量。如下进一步详细讨论的那样,低温氧化也有利于形成小的、高表面积的、松散结合的、容易溶解的CTA颗粒,相对于通过传统高温氧化方法制得的大的、低表面积的、致密CTA颗粒来说,可以对其进行更经济的纯化技术。
在反应器20中的氧化期间,优选地,保持反应介质36的时间平均和体积平均温度范围为约125-约200℃,更优选约140-约180℃,最优选150-170℃。反应介质36之上的塔顶压力优选保持为约1-约20bar表压(barg),更优选约2-约12barg,最优选4-8barg。优选地,反应介质36顶部和反应介质36底部之间的压差为约0.4-约5bar,更优选压差为约0.7-约3bar,最优选压差为1-2bar。虽然通常优选将反应介质36之上的塔顶压力保持在相对恒定的数值,但是本发明的一种实施方案包括脉冲调节塔顶压力,由此促进反应介质36中改进的混合和/或传质。当脉冲调节塔顶压力时,优选地脉冲压力为本文中所述的稳态塔顶压力的约60-约140%,更优选为本文中所述的稳态塔顶压力的约85-约115%,最优选为本文中所述的稳态塔顶压力的95-105%。
反应区28的高L:D比值的另一优点在于,其可以有助于反应介质36的平均表观速度的增加。本文中对于反应介质36所使用的术语“表观速度”和“表观气体速度”表示反应器中某一高处的反应介质36的气相的体积流速除以该高度处的反应器的水平横截面积。由高L:D比值的反应区28提供的升高的表观速度可以促进局部混合和增加反应介质36的气体滞留量。在反应介质36的四分之一高度、半高度和/或四分之三高度处,反应介质36的时间平均表观速度优选地大于约0.3米/秒,更优选地为约0.8-约5米/秒,仍更优选地为约0.9-约4米/秒,最优选地为1-3米/秒。
再次参照图1,鼓泡塔反应器20的脱离段26仅仅为直接位于反应段24之上的容器壳体22的加宽部分。当气相上升到反应介质36的上表面44之上且到达气体出口40时,脱离段26降低了鼓泡塔20中向上流动的气相的速度。气相向上速度的这种降低有助于促进在向上流动的气相中夹带的液体和/或固体的除去,并且由此降低了反应介质36的液相中存在的一些组分的不期望的损失。
脱离段26优选地包括常规截头圆锥体型过渡壁54、常规圆柱形宽侧壁56和顶盖58。过渡壁54的窄下端连接于反应段24的圆柱形主体46的顶部。过渡壁54的宽上端连接于宽侧壁56的底部。优选地,过渡壁54以相对于垂直方向约10-约70度的角度、更优选相对于垂直方向约15-约50度的角度、最优选相对于垂直方向15-45度的角度从其窄下端向上和向外延伸。宽侧壁56具有最大直径“X”,其通常大于反应段24的最大直径“D”,尽管当反应段24的上部直径小于反应段24的总最大直径时,那么X可以实际上小于D。在本发明的优选实施方案中,宽侧壁56的直径与反应段24的最大直径的比值“X:D”为约0.8:1-约4:1,最优选为1.1:1-2:1。顶盖58连接于宽侧壁56的顶部。顶盖58优选地为常规椭圆形头部元件,其限定容许气体通过气体出口40溢出脱离区30的中心开口。或者,顶盖58可以是各种形状,包括圆锥形。脱离区30具有从反应区28顶部50到脱离区30最上部测量的最大高度“Y”。反应区28的长度与脱离区30的高度的比值“L:Y”优选的为约2:1-约24:1,更优选约3:1-约20:1,最优选4:1-16:1。
现在参照图1-5,现在将更详细地讨论氧化剂喷雾器34的位置和结构。图2和3显示,氧化剂喷雾器34可以包括环形元件60和一对氧化剂进入导管64a、b。便利地,这些氧化剂进入导管64a、b可以在环形元件60之上的高度处进入容器并且随后转为向下,如图2中所示。或者,氧化剂进入导管可以在环形元件60之下或者在与环形元件60近似相同的水平面上进入容器。每个氧化剂进入导管64a、b包括连接于在容器壳体22中形成的各自氧化剂入口66a、b的第一端和流体连接于环形元件60的第二端。环形元件60优选地由导管、更优选多个直的导管段、最优选多个直的管道段形成,其刚性地彼此相连,由此形成管状多边形环。优选地,环形元件60由至少3个直的管道段、更优选6-10个管道段、最优选8个管道段形成。由此,当环形元件60由8个管道段形成时,其通常具有八边形结构。优选地,组成氧化剂进入导管64a、b和环形元件60的管道段具有大于约0.1m、更优选约0.2-约2m、最优选约0.25-1m的标称直径。可能最好如图3中所描述的那样,优选地,基本上在喷雾器环60的上部部分中没有形成开口。
可能最好如图4和5中所示的那样,氧化剂喷雾器环60的底部呈现多个氧化剂开口68。优选地构造氧化剂开口68,使得至少约1%由氧化剂开口68限定的总开口面积位于环形元件60的中线64(图5)之下,其中中线64位于环形元件60体积质心高度处。更优选地,至少约5%由全部氧化剂开口68限定的总开口面积位于中线64之下,其中至少约2%的总开口面积由以通常向下的方向在与垂直成约30度之内排出氧化剂物流的开口68限定。仍更优选地,至少约20%由全部氧化剂开口68限定的总开口面积位于中线64之下,其中至少约10%的总开口面积由以通常向下的方向在与垂直成约30度之内排出氧化剂物流的开口68限定。最优选地,至少约75%由全部氧化剂开口68限定的总开口面积位于中线64之下,其中至少约40%的总开口面积由以通常向下的方向在与垂直成约30度之内排出氧化剂物流的开口68限定。由位于中线64之上的全部氧化剂开口68限定的总开口面积的分数优选地小于约75%,更优选地小于约50%,仍更优选地小于约25%,最优选地小于5%。
如图4和5中所示,氧化剂开口68包括向下的开口68a和斜的开口68b。构造向下的开口68a,由此以与垂直成约30度之内、更优选地以与垂直成约15度之内、最优选地以与垂直成5度之内的角度通常向下地排出氧化剂物流。现在参考图5,构造斜的开口68b,由此以与垂直成约15-约75度的角度“A”、更优选地以与垂直成约30-约60度的角度A、最优选地以与垂直成40-50度的角度A通常向外且向下地排出氧化剂物流。
优选地,基本上全部氧化剂开口68具有近似相同的直径。氧化剂开口68的直径优选地为约2-约300mm,更优选为约4-约120mm,最优选为8-60mm。选择环形元件60中氧化剂开口68的总数以符合下面详述的低压降准则。优选地,环形元件60中形成的氧化剂开口68的总数至少为约10,更优选地氧化剂开口68的总数为约20-约200,最优选地氧化剂开口68的总数为40-100。
虽然图1-5描述了非常具体的氧化剂喷雾器34的结构,现在要注意的是,可以采用多种氧化剂喷雾器结构来实现本文中所述的优点。例如,氧化剂喷雾器不必需要具有图1-5中所示的八边形环形元件结构。而是,氧化剂喷雾器可以由采用多个用于排放氧化剂物流的一定距离间隔的开口的任意流动导管结构来形成。流动导管中氧化剂开口的尺寸、数目和排放方向优选地在上述范围之内。另外,优选地构造氧化剂喷雾器,以提供上述分子氧的方位和径向分布。
无论氧化剂喷雾器34的具体结构如何,优选地,氧化剂喷雾器以这样的方式来物理构造和操作:使得与从流动导管(一个或多个)中排出氧化剂物流,通过氧化剂开口并排放到反应区中相关联的压降最小化。该压降如下来计算,氧化剂喷雾器的氧化剂入口66a、b处流动导管内部氧化剂物流的时间平均静压减去反应区中在其中一半氧化剂物流在高于该垂直位置引入且一半氧化剂物流在低于该垂直位置引入的高度处的时间平均静压。在本发明的优选实施方案中,与从氧化剂喷雾器中排出氧化剂物流相关联的时间平均压降小于约0.3兆帕(MPa),更优选地小于约0.2MPa,仍更优选地小于约0.1MPa,最优选地小于0.05MPa。
任选地,可以用液体(例如乙酸、水和/或对-二甲苯)向氧化剂喷雾器34提供连续的或间歇的冲洗,由此防止氧化剂喷雾器被固体结垢。当采用这种液体冲洗时,优选地,使有效量的液体(即并不仅仅是可能自然存在于氧化剂物流中的液滴的最小量)每天至少一个一分钟以上的周期通过氧化剂喷雾器并且从氧化剂开口中流出。当从氧化剂喷雾器34中连续地或定期地排出液体时,优选地,通过氧化剂喷雾器的液体的质量流速与通过氧化剂喷雾器的分子氧的质量流速的时间平均比值为约0.05:1-约30:1,或者为约0.1:1-约2:1,或者甚至为0.2:1-1:1。
在许多含有多相反应介质的传统鼓泡塔反应器中,基本上所有位于氧化剂喷雾器(或者用于将氧化剂物流引入反应区的其它机构)下面的反应介质具有非常低的气体滞留量值。如本领域中公知的那样,“气体滞留量”只是气态下多相介质的体积分数。介质中低气体滞留量的区域也可以称为“未充气的”区域。在多种常规浆料鼓泡塔反应器中,反应介质全部体积的绝大部分位于氧化剂喷雾器(或者用于将氧化剂物流引入反应区的其它机构)之下。由此,存在于传统鼓泡塔反应器底部的绝大部分的反应介质是未充气的。
已发现,使在鼓泡塔反应器中进行氧化的反应介质中未充气区的数量最小化可以使某类不期望的杂质生成最小化。反应介质的未充气区含有相对较少的氧化剂气泡。这种低体积的氧化剂气泡降低了溶解到反应介质的液相中可获得的分子氧的量。由此,反应介质的未充气区中液相具有较低浓度的分子氧。这些反应介质的缺氧的、未充气区倾向于促进不期望的副反应,而不是期望的氧化反应。例如,当对-二甲苯部分氧化以形成对苯二甲酸时,反应介质液相中不足的氧的可得性可能导致形成不期望的高数量的苯甲酸和偶合(coupled)芳环,特别地包括非常不期望的称为芴酮和蒽醌的显色分子。
根据本发明的一种实施方案,在以使得具有低气体滞留量的反应介质的体积分数最小化的方式构造和操作的鼓泡塔反应器中进行液相氧化。这种未充气区的最小化可以通过理论上将反应介质的全部体积分为2000个均匀体积的离散水平片段来量化。除了最高和最低的水平片段之外,每个水平片段为在其侧面由反应器侧壁限制的且在其顶部和底部由虚构的水平面限制的离散体积。最高水平片段在其底部由虚构的水平面限制且在其顶部由反应介质的上表面限制。最低水平片段在其顶部由虚构的水平面限制且在其底部由容器的下端限制。一旦反应介质已理论上被分为相等体积的2000个离散水平片段,可以测量每个水平片段的时间平均和体积平均气体滞留量。当采用这种量化未充气区数量的方法时,优选地,时间平均和体积平均气体滞留量小于0.1的水平片段的数目小于30,更优选小于15,仍更优选小于6,甚至更优选小于4,最优选小于2。优选地,气体滞留量小于0.2的水平片段的数目小于80,更优选小于40,仍更优选小于20,甚至更优选小于12,最优选小于5。优选地,气体滞留量小于0.3的水平片段的数目小于120,更优选小于80,仍更优选小于40,甚至更优选小于20,最优选小于15。
再次参照图1和2,已发现,在反应区28中将氧化剂喷雾器34安置较低提供了几种优点,包括降低了反应介质36中未充气区的数量。假设反应介质36的高度“H”、反应区28的长度“L”和反应区28的最大直径“D”,优选地,将大部分(即>50wt%)的氧化剂物流在反应区28下端52的约0.025H、0.022L和/或0.25D之内引入反应区28。更优选地,将大部分氧化剂物流在反应区28下端52的约0.02H、0.018L和/或0.2D之内引入反应区28。最优选地,将大部分氧化剂物流在反应区28下端52的0.015H、0.013L和/或0.15D之内引入反应区28。
在图2中所示的实施方案中,反应区28下端52与氧化剂喷雾器34的上部氧化剂开口68的出口之间的垂直距离“Y1”小于约0.25H、0.022L和/或0.25D,使得基本上全部氧化剂物流在反应区28下端52的约0.25H、0.022L和/或0.25D之内进入反应区28。更优选地,Y1小于约0.02H、0.018L和/或0.2D。最优选地,Y1小于0.015H、0.013L和/或0.15D,但是大于0.005H、0.004L和/或0.06D。图2描述了位于其中容器壳体22的圆柱形主体46的底边与容器壳体22的椭圆形底盖48的顶边结合的位置的切线72。或者,底盖48可以是任意形状,包括圆锥形,且切线仍然定义为圆柱形主体46的底边。切线72与氧化剂喷雾器34的顶部之间的垂直距离“Y2”优选地至少为约0.0012H、0.001L和/或0.01D;更优选至少为约0.005H、0.004L和/或0.05D;最优选为至少0.01H、0.008L和/或0.1D。反应区28下端52与氧化剂喷雾器34的下部氧化剂开口70的出口之间的垂直距离“Y3”优选地小于约0.015H、0.013L和/或0.15D;更优选小于约0.012H、0.01L和/或0.1D;最优选小于0.01H、0.008L、和/或0.075D,但是大于0.003H、0.002L、和/或0.025D。
除了通过使反应介质36中未充气区(即具有低气体滞留量的区域)最小化提供的优点之外,已发现,可以通过使整个反应介质36的气体滞留量最大化来强化氧化。反应介质36优选的时间平均和体积平均气体滞留量为至少约0.4,更优选为约0.6-约0.9,最优选为0.65-0.85。几种鼓泡塔反应器20的物理和操作特征有助于上面所讨论的高气体滞留量。例如,对于给定的反应器尺寸和氧化剂物流流动来说,反应区28的高L:D比值产生较低的直径,其增加了反应介质36中的表观速度,其反过来增加了气体滞留量。另外,即使对于给定的恒定表观速度来说,鼓泡塔的实际直径和L:D比值公知会影响平均气体滞留量。另外,最小化特别是反应区28底部中的未充气区,有助于增加气体滞留量值。另外,鼓泡塔反应器的塔顶压力和机械结构可以影响在高表观速度下的操作稳定性和本文中所公开的气体滞留量值。
再次参照图1,已发现,可氧化的化合物(例如对-二甲苯)在反应介质36中的改进分布可以通过在多个垂直间隔的位置将液相进料物流引入反应区28来提供。优选地,通过至少3个进料口、更优选至少4个进料口将液相进料物流引入反应区28。本文中所使用的术语“进料口”表示其中将液相进料物流排放到反应区28中以与反应介质36混合的开口。优选地,至少2个进料口彼此垂直间隔至少约0.5D,更优选地至少约1.5D,最优选地至少3D。但是,优选地,最高的进料口与最低的氧化剂开口之间垂直间距不大于约0.75H、0.65L和/或8D;更优选不大于约0.5H、0.4L和/或5D;最优选地不大于0.4H、0.35L和/或4D。
虽然期望在多个垂直位置引入液相进料物流。但是也已经发现,如果大部分液相进料物流引入反应介质36和/或反应区28的下半部,则提供了可氧化的化合物在反应介质36中的改进分布。优选地,至少约75wt%的液相进料物流引入反应介质36和/或反应区28的下半部。最优选地,至少约90wt%的液相进料物流引入反应介质36和/或反应区28的下半部。另外,优选地,将至少约30wt%的液相进料物流在其中将氧化剂物流引入反应区28的最低垂直位置的约1.5D之内引入反应区28。将氧化剂物流引入反应区28的该最低垂直位置通常在氧化剂喷雾器底部;但是,本发明的优选实施方案考虑了多种用于将氧化剂物流引入反应区28的备选结构。优选地,将至少约50wt%的液相进料在其中将氧化剂物流引入反应区28的最低垂直位置的约2.5D之内引入。优选地,将至少约75wt%的液相进料物流在其中将氧化剂物流引入反应区28的最低垂直位置的约5D之内引入。
每个进料口限定通过其排出进料的开口面积。优选地,至少约30%的全部进料入口的累积开口面积位于其中将氧化剂物流引入反应区28的最低垂直位置的约1.5D之内。优选地,至少约50%的全部进料入口的累积开口面积位于其中将氧化剂物流引入反应区28的最低垂直位置的约2.5D之内。优选地,至少约75%的全部进料入口的累积开口面积位于其中将氧化剂物流引入反应区28的最低垂直位置的约5D之内。
再次参照图1,在本发明的一种实施方案中,进料入口32a、b、c、d仅为沿容器壳体22一侧的一连串垂直对准的开口。这些进料口优选地具有基本上相似的小于约7cm的直径,更优选为约0.25-约5cm,最优选为0.4-2cm。鼓泡塔反应器20优选地装配有用于控制液相进料物流从每个进料口中流出的流速的系统。这种流动控制系统优选地包括用于每个各自进料入口32a、b、c、d的各流动控制阀74a、b、c、d。另外,优选地,鼓泡塔反应器20装配有能使至少一部分液相进料物流以至少约2m/s、更优选至少约5m/s、仍更优选至少约6m/s、最优选8-20m/s的提高的入口表观速度被引入反应区28的流动控制系统。本文中所使用的术语“入口表观速度”表示进料口流出的进料物流的时间平均体积流速除以进料口的面积。优选地,将至少约50wt%的进料物流以提高的入口表观速度引入反应区28。最优选地,将基本上全部进料物流以提高的入口表观速度引入反应区28。
现在参照图6和7,描述用于将液相进料物流引入反应区28的备选系统。在该实施方案中,在四个不同的高度将进料物流引入反应区28。每个高度装配有各自的进料分布系统76a、b、c、d。每个进料分布系统76包括主进料导管78和歧管80。每个歧管80装配有至少两个连接于各自嵌入导管86、88的出口82、84,所述嵌入导管86、88延伸到容器壳体22的反应区28中。每个嵌入导管86、88呈现用于将进料物流排放到反应区28中的各自进料口87、89。进料口87、89优选地具有基本上相似的小于约7cm的直径,更优选为约0.25-约5cm,最优选为0.4-2cm。优选地,每个进料分布系统76a、b、c、d的进料口87、89在直径方向上相对设置,使得在相反方向上将进料物流引入反应区28。另外,优选地,相邻进料分布系统76的在直径方向上相对设置的进料口86、88彼此相对地旋转90度定位。操作时,液相进料物流被装入主进料导管78中并且随后进入歧管80。对于通过进料口87、89在反应器20的相反侧上的同时引入来说,歧管80使进料物流均匀地分布。
图8描述了备选结构,其中每个进料分布系统76装配有卡口管(bayonettube)90、92,而非嵌入导管86、88(如图7中所示)。卡口管90、92突出到反应区28中并且包括多个用于将液相进料排放到反应区28中的小进料口94、96。优选地,卡口管90、92的小进料口94、96具有基本上相同的小于约50mm的直径,更优选为约2-约25mm,最优选为4-15mm。
图9-11描述了备选的进料分布系统100。进料分布系统100在多个垂直间隔的和侧向间隔的位置引入液相进料物流,不需要多处穿透鼓泡塔反应器20侧壁。进料引入系统100通常包括单入口导管102、集管(header)104、多个直立式分布管106、横向支撑机构108和垂直支撑机构110。入口导管102穿透容器壳体22主体46的侧壁。入口导管102流体地连接于集管104。集管104将从入口导管102中接收的进料物流在直立式分布管106之中分布均匀。每个分布管106具有多个用于将进料物流排放到反应区28的垂直间隔的进料口112a、b、c、d。横向支撑机构108连接于每个分布管106,且抑制分布管106的相对横向运动。垂直支撑机构110优选地连接于横向支撑机构108和氧化剂喷雾器34的顶部。垂直支撑机构110基本上抑制反应区28中分布管106的垂直运动。优选地,进料口112具有基本上相同的小于约50mm的直径,更优选为约2-约25mm,最优选为4-15mm。图9-11中所示进料分布系统100的进料口112的垂直间距可以基本上等同于上述关于图1进料分布系统所述的。任选地,进料开口可以是延长的喷嘴而不是简单的孔。任选地,一个或多个折流装置可以布置在流动导管外和在从其中离开进入反应介质的流体路径中。任选地,接近流动导管的底部的开口可以被确定大小以便连续地或者间歇地从液相进料分配系统的内部排出固体。任选地,可以使用机械工具如舌门组件、止回阀、过多的流动阀门、动力操纵阀等,以便防止在操作翻转期间固体的进入或者从液相进料分配系统内部排出积累的固体。
已发现,许多鼓泡塔反应器中反应介质的流型可以容许反应介质中可氧化的化合物的不均匀的方位(azimuthal)分布,尤其是当可氧化的化合物主要沿着反应介质的一侧引入时。本文中所使用的术语“方位”表示围绕反应区细长的直立轴的角度或间距。本文中所使用的术语“直立”应表示在垂直的45°之内。在本发明的一种实施方案中,含有可氧化的化合物(例如对-二甲苯)的进料物流通过多个方位间隔的进料口引入反应区。这些方位间隔的进料口可以有助于预防反应介质中极高和极低可氧化的化合物浓度的区域。图6-11中所示的各种进料引入系统为提供了进料口的适当方位间距的系统的实例。
再次参照图7,为了量化液相进料物流以方位间距形式引入反应介质,理论上可以将反应介质分为四个近似相等体积的直立方位象限“Q1、Q2、Q3、Q4”。这些方位象限“Q1、Q2、Q3、Q4”由一对虚构的相交的正交垂直面“P1、P2”限定,该相交的正交垂直面在反应介质的最大垂直尺度和最大径向尺度以外延伸。当反应介质含在圆柱形容器中时,虚构的相交的垂直面P1、P2的相交线将近似地与圆柱体的垂直中线相一致,并且每个方位象限Q1、Q2、Q3、Q4将为高度等于反应介质高度的通常楔形的垂直体积。优选地,将绝大部分可氧化的化合物通过位于至少两个不同方位象限中的进料口排放到反应介质中。
在本发明的优选实施方案中,将不超过约80wt%的可氧化的化合物通过可以位于单一方位象限中的进料口排放到反应介质中。更优选地,不超过约60wt%的可氧化的化合物通过可以位于单一方位象限中的进料口排放到反应介质中。最优选地,将不超过40wt%的可氧化的化合物通过可以位于单一方位象限中的进料口排放到反应介质中。当方位象限成方位角定位使得最大可能量的可氧化的化合物被排放到方位象限之一中时,测量可氧化的化合物的这些方位分布参数。例如,如果通过两个彼此在方位上间距89度的进料口将全部进料物流排放到反应介质中,为了确定四个方位象限中的方位分布,将100wt%的进料物流在单一方位象限中排放到反应介质中,因为方位象限可以以使得两个进料口位于单一方位象限中的方式在方位上定位。
除了与进料口的适当方位间距相关的优点之外,也已经发现,鼓泡塔反应器中进料口的适当径向间距也可能是重要的。优选地,将绝大部分引入反应介质的可氧化的化合物通过与容器侧壁向内地径向间隔的进料口排放。这样,在本发明的一种实施方案中,绝大部分的可氧化的化合物通过位于“优选的径向进料区”的进料口进入反应区,所述优选的径向进料区从限定反应区的直立侧壁向内地间隔。
再次参照图7,优选的径向进料区“FZ”可以呈现理论直立的圆柱体形状,居于反应区28中心且具有0.9D的外径“Do”,其中“D”为反应区28的直径。由此,在优选的径向进料区FZ与限定反应区28的侧壁内侧之间限定了厚度为0.05D的外圆环“OA”。优选地,很少的或者无可氧化的化合物通过位于该外圆环OA的进料口而引入反应区28。
在另一种实施方案中,优选地,很少的或者无可氧化的化合物引入到反应区28中心。由此,如图8中所示。优选的径向进料区FZ可以呈现居于反应区28中心的理论直立的圆环形状,具有0.9D的外径Do,和具有0.2D的内径D1。由此,在该实施方案中,从优选的径向进料区FZ的中心“切除”直径0.2D的内圆柱IC。优选地,很少的或者无可氧化的化合物通过位于该内圆柱IC的进料口而引入反应区28。
在本发明的优选实施方案中,绝大部分可氧化的化合物通过位于优选的径向进料区的进料口而引入反应介质36中,无论该优选的径向进料区是否具有上述圆柱形或圆环形。更优选地,将至少约25wt%的可氧化的化合物通过位于优选的径向进料区的进料口排放到反应介质36中。仍更优选地,将至少约50wt%的可氧化的化合物通过位于优选的径向进料区的进料口排放到反应介质36中。最优选地,将至少75wt%的可氧化的化合物通过位于优选的径向进料区的进料口排放到反应介质36中。
虽然参照液相进料物流的分布描述了图7和8中所示的理论方位象限和理论优选的径向进料区,但是已发现,气相氧化剂物流的适当方位和径向分布也可以提供一些优点。由此,在本发明的一种实施方案中,上面提供的液相进料物流的方位和径向分布的描述也适用于其中将气相氧化剂物流引入反应介质36的方式。
现在参考图12和13,举例说明了另一鼓泡塔反应器200,其具有反应器套反应器构造。鼓泡塔反应器200包括外部反应器202和内部反应器204,其中内部反应器204至少部分设置在外部反应器202内。在优选实施方案中,外部和内部反应器202和204是鼓泡塔反应器。优选地,外部反应器202包括外部反应容器206和外部氧化剂喷雾器208,而内部反应器204包括内部反应容器210和内部氧化剂喷雾器212。
虽然图12和13举例说明内部反应容器210,如完全置于外部反应容器206中,对于内部反应容器210来说,有可能仅仅部分置于外部反应容器206中。然而,优选地,至少约50、90、95或100%高度的内部反应容器210位于外部反应容器206。此外,优选地,每个反应容器的一部分被提高高于其它反应容器的一部分达外部反应容器的最大直径的至少约0.01、0.2、1或2倍。
在本发明的优选实施方案中,外部和内部反应容器206和210各自包括具有一般圆柱形构造的直立侧壁。优选地,外部和内部反应容器206和210的直立侧壁基本上是同心的并且限定了其间的环。内部反应容器210纵向从外部反应容器206受到支撑,优选地主要在各自容器的下部之间通过直立载体进行支撑。另外,内部反应容器210可以经由多个在外部和内部反应容器206和210的直立侧壁之间延伸的横向载体元件214由外部反应容器206来支撑。优选地,这种横向载体元件214具有非结垢构造,该非结垢构造具有最小的向上朝向的平面的表面,如前所限定的。
虽然优选地,内部反应容器210的直立侧壁基本上是圆柱形的,对于内部反应容器210的直立侧壁的某些部分来说,可以相对于第二反应区218的相邻部分是凹的。优选地,相对于第二反应区218的相邻部分是凹的内部反应容器210的直立侧壁的任何部分占内部反应容器210的直立侧壁的总表面面积为小于约25、10、5或0.1%。优选地,内部反应容器210的直立侧壁的最大高度/外部反应容器206的直立侧壁的最大高度之比为约0.1:1-约0.9:1,更优选地约0.2:1-约0.8:1,和最优选地0.3:1-0.7:1。
外部反应容器206其中限定了第一反应区216,而内部反应容器210其中限定了第二反应区218。优选地,外部和内部反应容器206和210纵向排列,使得第二反应区218的体积重心相对于第一反应区216的体积重心水平位移小于第一反应区216最大水平直径的约0.4、0.2、0.1或0.01倍。优选地,第一反应区216与第二反应区218的最大水平截面面积之比是约0.01:1-约0.75:1,更优选地约0.03:1-约0.5:1,和最优选地0.05:1-0.3:1。优选地,第二反应区218的水平截面面积与外部和内部反应容器206和210之间限定的环的水平截面面积之比为至少约0.02:1,更优选地约0.05:1-约2:1,和最优选地约0.1:1-约1:1,其中截面面积测量于第二反应区218的1/4-高度,1/2-高度,和/或3/4-高度。优选地,至少约50,70,90或100%的第二反应区218的体积位于外部反应容器206中。优选地,第一反应区216的体积与第二反应区218的体积之比是约1:1-约100:1,更优选地约4:1-约50:1,和最优选地8:1-30:1。优选地,第一反应区216的最大垂直高度与最大水平直径之比为约3:1-约30:1,更优选地约6:1-约20:1,和最优选地9:1-15:1。优选地,第二反应区218的最大垂直高度与最大水平直径之比为约0.3:1-约100:1,更优选地约1:1-约50:1,和最优选地3:1-30:1。优选地,第二反应区218的最大水平直径是约0.1-约5米,更优选地约0.3-约4米,和最优选地1-3米。优选地,第二反应区218的最大垂直高度是约1-约100米,更优选地约3-约50米,和最优选地10-30米。优选地,第二反应区218的最大水平直径与第一反应区216的最大水平直径之比是约0.05:1-约0.8:1,更优选地约0.1:1-约0.6:1,和最优选地0.2:1-0.5:1。优选地,第二反应区218的最大垂直高度与第一反应区216的最大垂直高度之比是约0.03:1-约1:1,更优选地约0.1:1-约0.9:1,和最优选地0.3:1-0.8:1。本文中为外部反应容器206和附件所规定的任何参数(例如高度,宽度,面积,体积,相对水平位置和相对垂直位置)还被认为适用于由外部反应容器206所限定的第一反应区216,反之亦然。进一步,本文中为内部反应容器210和附件所规定的任何参数还被认为适用于由内部反应容器210所限定的第二反应区218,反之亦然。
在鼓泡塔反应器200的操作期间,多相反应介质220首先在第一反应区216中进行氧化,然后在第二反应区218中进行氧化。由此,在正常操作期间,第一部分的反应介质220a位于第一反应区216中,而第二部分的反应介质220b位于第二反应区218中。在第二反应区218中加工处理后,反应介质220b的浆料相(即,液固相)从第二反应区218取出并且经由浆料出口222从鼓泡塔反应器200排出,以备随后的下游处理。
内部反应器204优选包括至少一个内部气体开口,其允许另外的分子氧被排出到第二反应区218中。优选地,多个内部气体开口由内部氧化剂喷雾器212限定。图1-5的氧化剂喷雾器34的公开内容也适用于内部氧化剂喷雾器212的管道尺寸和构造、开口尺寸和构造、操作压降和液体冲洗。在值得注意的区别方面,优选地将氧化剂喷雾器212设置得相对较高,以便使用较低部分的内部反应容器210作为脱气区。例如,本文中对于对二甲苯氧化而形成TPA所公开的实施方案在接近第二反应区218的底部处提供了大大减低的时空反应速率,这减轻了脱气对杂质形成的作用。内部反应容器210具有最大高度“Hi”。对于全部内部气体开口所限定的总开口面积的至少约50、75、95或100%来说,优选地,距内部反应容器210的顶部间隔至少0.05Hi、0.1Hi或0.25Hi。对于全部内部气体开口所限定的总开口面积的至少约50、75、95或100%来说,还优选地,高于内部反应容器210的底部间隔小于约0.5Hi、0.25Hi或0.1Hi。优选地,由全部内部气体开口所限定的总开口面积的至少约50、75、95或100%距内部反应容器210的顶部间隔至少约1、5或10米并且距内部反应容器210的底部间隔至少约0.5、1或2米。对于全部内部气体开口所限定的总开口面积的至少约50、75、95或100%来说,优选地,直接与第二反应区218相通,并且不直接与第一反应区216相通。如本文中使用的,术语“开口面积”表示将使开口封闭的最小表面面积(平面的或非平面的)。
通常,进料、氧化剂和回流物流被引入外部反应器202的方式和外部反应器202操作的方式基本上与前述内容相同,参照图1-11的鼓泡塔反应器20。然而,外部反应器202(图12和13)和鼓泡塔反应器20(图1-11)之间的一个区别在于外部反应器202不包括允许反应介质220a的浆料相直接从外部反应容器206排出以备下游处理的出口。相反地,鼓泡塔反应器200需要反应介质220a的浆料相一次通过内部反应器204,然后从鼓泡塔反应器200排出。如上所述,在内部反应器204的第二反应区218中,反应介质220b进行进一步的氧化,以便提纯反应介质220b的液相和/或固相。
在其中将对二甲苯进料到反应区216的方法中,离开第一反应区216并且进入第二反应区218的反应介质220a的液相一般地包含至少一些对甲苯甲酸。对于进入第二反应区218的绝大部分的对甲苯甲酸来说,优选地,在第二反应区218中进行氧化。由此,对于离开第二反应区218的反应介质220b的液相中的对甲苯甲酸的时均浓度来说,优选地,小于进入第二反应区218的反应介质220a/b的液相中的对甲苯甲酸的时均浓度。优选地,离开第二反应区218的反应介质220b的液相中的对甲苯甲酸的时均浓度小于进入第二反应区218的反应介质220a/b的液相中的对甲苯甲酸的时均浓度的约50、10或5%。优选地,进入第二反应区218的反应介质220a/b的液相中的对甲苯甲酸的时均浓度为至少约250ppmw,更优选地约500-约6,000ppmw,和最优选地1,000-4,000ppmw。优选地,离开第二反应区218的反应介质220b的液相中的对甲苯甲酸的时均浓度小于约1,000,250,或50ppmw。
内部反应容器210装备有至少一个直接开口(directopening),其允许反应介质220a/b在反应区216和第二反应区218之间直接通过。对于基本上全部的内部反应容器210中的直接开口来说,优选地位于接近于内部反应容器210的顶部。优选地,至少约50、75、90或100%的全部直接开口所限定的总开口面积距内部反应容器210的顶部间隔小于约0.5Hi、0.25Hi或0.1Hi。优选地,小于约50、25、10或1%的内部反应容器210中的直接开口所限定的总开口面积距内部反应容器210的顶部间隔大于约0.5Hi、0.25Hi或0.1Hi。最优选地,内部反应容器210所限定的直接开口是位于内部反应容器210的最上端处的单一上部开口224。上部开口224的开口面积与第二反应区218的最大水平截面面积之比优选为至少约0.1:1、0.2:1或0.5:1。
在鼓泡塔反应器200的正常操作期间,反应介质220从第一反应区216通过内部反应容器210中的(一个或多个)直接开口(例如上部开口224)并且进入第二反应区218。在第二反应区218中,反应介质220b的浆料相在一般向下的方向运动通过第二反应区218,而反应介质220b的气相在一般地向上的方向运动。优选地,内部反应容器210限定了至少一个排出开口,其允许浆料相离开第二反应区218。离开内部反应容器210的排出开口的浆料相然后经由浆料出口222离开鼓泡塔反应器200。优选地,排出开口位于或接近于内部反应容器210的底部。优选地,至少约50、75、90或100%的内部反应容器210中的全部排出开口所限定的总开口面积在内部反应容器210的底部的约0.5Hi、0.25Hi或0.1Hi之内。
当反应介质220b在内部反应器204的第二反应区218中加工处理时,优选地,当反应介质220b的浆料相向下流过第二反应区218,反应介质220b的气体滞留量降低。优选地,进入第二反应区218的反应介质220a/b与离开第二反应区218的反应介质220b的时均气体滞留量之比为至少约2:1、10:1或25:1。优选地,进入第二反应区218的反应介质220a/b的时均气体滞留量为约0.4-约0.9,更优选地约0.5-约0.8,和最优选地0.55-0.7。优选地,离开第二反应区218的反应介质220b的时均气体滞留量小于约0.1,0.05,或0.02。优选地,第一反应区216中的反应介质220a与第二反应区218中的反应介质220b的时均气体滞留量之比大于约1:1,更优选地为约1.25:1-约5:1,和最优选地为1.5:1-4:1,其中气体滞留量值测量于第一和第二反应区216和218的任何高度,第一和第二反应区216和218的任何相应高度,第一和/或第二反应区216和218的1/4-高度,第一和/或第二反应区216和218的1/2-高度,第一和/或第二反应区216和218的3/4-高度,和/或是第一和/或第二反应区216和218的总高度上的均值。优选地,第一反应区216中的一部分的反应介质220a的时均气体滞留量为约0.4-约0.9,更优选地约0.5-约0.8,和最优选地0.55-0.70,其中气体滞留量测量于第一反应区216的任何高度,第一反应区216的1/4-高度,第一反应区216的1/2-高度,第一反应区216的3/4-高度,和/或是第一反应区216的总高度的均值。优选地,第二反应区218中的一部分的反应介质220b的时均气体滞留量是约0.01-约0.6,更优选地约0.03-约0.3,和最优选地0.08-0.2,其中气体滞留量测量于第二反应区218的任何高度,第二反应区218的1/4-高度,第二反应区218的1/2-高度,第二反应区218的3/4-高度,和/或是第二反应区218的总高度的均值。
反应介质220的温度优选地与第一和第二反应区216和218中的温度大致相同。优选地,所述温度为约125-约200℃,更优选地约140-约180℃,和最优选地150-170℃。然而,优选地在第一反应区216内形成温度差,其与参考图28在本文中公开的相同。优选地,相同量度的温度差还存在于第二反应区218内以及第一反应区216和第二反应区218之间。这种另外的温度梯度涉及了第二反应区218中发生的化学反应,将另外的氧化剂引入第二反应区218,以及在第二反应区218中存在的静压,相比于第一反应区216中的那些而言。如上文所公开的,在第一反应区216中的气泡滞留量优选地大于在第二反应区218中的气泡滞留量。由此,在低于上部开口224的高度处,反应区216中的静压大于第二反应区218中的。这种压差的量度取决于液体或浆料密度的量度和在两反应区之间的气泡滞留量之差。这种压差的量度在远低于上部开口224高度处增加。
在本发明的一个实施方案中,被进料到鼓泡塔反应器200的一部分的可氧化的化合物(例如对二甲苯)被直接引入内部反应器204的第二反应区218。然而,优选地,被进料到鼓泡塔反应器200的至少约90,95,99或100mol%的全部可氧化的化合物被引入第一反应区216(而不是第二反应区218)。优选地,被引入第一反应区216的可氧化的化合物的量与被引入第二反应区218的可氧化的化合物的量的摩尔比是至少约2:1,4:1或8:1。
虽然图12和13描述了这样的构造,其中被进料到鼓泡塔反应器200的全部分子氧的一部分经由内部氧化剂喷雾器212被引入内部反应器204的第二反应区218,但优选地,被进料到鼓泡塔反应器200的全部分子氧的大部分被引入第一反应区216,剩余部分被引入第二反应区218。优选地,被进料到鼓泡塔反应器200的全部分子氧的至少约70,90,95或98mol%被引入第一反应区216。优选地,被引入第一反应区216的分子氧的量与被引入第二反应区218的分子氧的量的摩尔比为至少约2:1,更优选地约4:1-约200:1,最优选地10:1-100:1。虽然有可能一些溶剂和/或可氧化的化合物(例如,对二甲苯)被直接进料到第二反应区218,优选地,被进料到鼓泡塔反应器200的溶剂和/或可氧化的化合物的总量的小于约10,5或1wt%被直接进料到第二反应区218。
外部反应容器206的第一反应区216中的介质220a的体积、停留时间和时空速率优选地基本上大于内部反应容器210的第二反应区218中的反应介质220b的体积、停留时间和时空速率。因此,被进料到鼓泡塔反应器200的可氧化的化合物(例如,对二甲苯)的大部分优选地在第一反应区216中进行氧化。优选地,在鼓泡塔反应器200中被氧化的全部可氧化的化合物的至少约80、90或95wt%在第一反应区216中进行氧化。优选地,第一反应区216中的反应介质220a的时均表观气速为至少约0.2、0.4、0.8或1米/秒,其中表观气速测量于第一反应区216的任何高度,第一反应区216的1/4-高度,第一反应区216的1/2-高度,第一反应区216的3/4-高度,和/或是第一反应区216的总高度上的均值。
虽然第二反应区218中的反应介质220b可以具有与第一反应区216中的反应介质220a相同的表观气速,但是优选地,第二反应区218中的反应介质220b的时均表观气速小于第二反应区218中的反应介质220b的时均和体均表观气速。在第二反应区218中的这种降低的表观气速可以通过例如如下方式来变得可能,相比于第一反应区216,降低第二反应区218中的分子氧的需要。优选地,第一反应区216中的反应介质220a与第二反应区218中的反应介质220b的时均表观气速之比为至少约1.25:1,2:1或5:1,其中表观气速测量于第一和第二反应区216和218的任何高度,第一和第二反应区216和218的任何相应高度,第一和/或第二反应区216和218的1/4-高度,第一和/或第二反应区216和218的1/2-高度,第一和/或第二反应区216和218的3/4-高度,和/或是第一和/或第二反应区216和218总高度上的均值。优选地,第二反应区218中的反应介质220b的时均和体均表观气速小于约0.2,0.1或0.06米/秒,其中表观气速测量于第二反应区218的任何高度,第二反应区218的1/4-高度,第二反应区218的1/2-高度,第二反应区218的3/4-高度,和/或是第二反应区218上的总高度的均值。借助这些较低的表观气速,可以实现第二反应区218中的反应介质220b的浆料相的向下流动,从而朝向活塞式流动的方向移动。例如,在对二甲苯氧化而形成TPA的期间,相比于在第一反应区216中,在第二反应区218中对甲苯甲酸的液相浓度的相对垂直梯度可以高很多。尽管如此,第二反应区218是具有液体和浆料组合物的轴向混合的鼓泡塔。第二反应区218中的反应介质220b的浆料相(固态+液体)和液相的时均表观速度优选小于约0.2,0.1或0.06米/秒,其中表观速度测量于第二反应区218的任何高度,第二反应区218的1/4-高度,第二反应区218的1/2-高度,第二反应区218的3/4-高度,和/或是第二反应区218上的总高度的均值。
在本发明的一个实施方案中,鼓泡塔反应器200的操作方式是这样的,其允许固体沉淀在内部反应器204中。如果固体沉淀是期望的,优选地,第二反应区218中的反应介质220b的时均和体均表观气速小于约0.05,0.03或0.01米/秒。进一步,如果固体沉淀是期望的,优选地,第二反应区218中的反应介质220b的浆料相和液相的时均和体均表观流速小于约0.01,0.005或0.001米/秒。
虽然一些离开内部反应器204的浆料相有可能直接再循环回到第一反应区216而没有进一步的下游加工处理,但是优选地将从第二反应区218的较低高度到第一反应区216的反应介质220b的直接再循环最小化。优选地,离开较低的25%体积的第二反应区218并且直接再循环回到第一反应区216而没有进一步的下游加工处理的反应介质220b的质量(固相、液相和气相)小于离开第二反应区218的反应介质220b并且随后进行下游加工处理的质量(固相、液相和气相)达10倍、1倍或0.1倍。优选地,离开较低的50%体积的第二反应区218并且直接再循环回到第一反应区216而没有进一步的下游加工处理的反应介质220b的质量小于离开第二反应区218的反应介质220b并且随后进行下游加工处理的质量达20倍、2倍或0.2倍。优选地,小于约50、75或90wt%的经由在较低的90、60、50或5%的体积的第二反应区218中的开口离开第二反应区218的反应介质220b的液相在离开第二反应区218后,在60、20、5或1分钟内被引入第一反应区216。优选地,位于第二反应区218中的反应介质220b的液相在第二反应区218中的重均停留时间为至少约1分钟,更优选地约2-约60分钟,和最优选地5-30分钟。优选地,小于约50、75或90wt%的被引入第二反应区218的反应介质220a/b的液相在较低的90、60或30%的体积的第二反应区218中进入第二反应区218。优选地,以液相进料物流的形式引入的反应介质220a/b的小于约50、75或90wt%的全部液相在经由浆料出口222从第二反应区218取出后,在60、20、5或1分钟内进入第一反应区216。优选地,从第二反应区218取出的反应介质220b的至少约75、90、95或99wt%的液相,经由较低的90、60、30或5%的体积的第二反应区218中的开口离开第二反应区218。
反应器套反应器鼓泡塔反应器200的设计可以在多方面变化而不背离本发明的范围。例如,如果内部反应容器210延伸低于外部反应容器206的下端,内部反应容器210的高度可以高于外部反应容器206的高度。外部和内部反应容器206和210可以是圆柱形的,如举例说明的,或者可以具有另一形状。外部和内部反应容器206和210不必是轴对称的、轴向垂直的或者同心的。离开内部反应器204的气相可以途径鼓泡塔反应器200的外部,而未与第一反应区216中的反应介质220a混合。然而,由于可燃性安全的因素,令人期望的是将所捕集的气囊的体积限制为小于约10、2或1立方米。另外,离开内部反应器204的浆料相不必经由内部反应容器210的底部中的单一浆料开口而离开。浆料相可以通过(though)外部反应器202的含压侧壁中的侧面出口离开鼓泡塔反应器200。
现在参考图14,举例说明了具有反应器套反应器和分级直径构造的鼓泡塔反应器300。鼓泡塔反应器300包括外部反应器302和内部反应器304。外部反应器302包括外部反应容器306,其具有宽的下面部分306a和窄的上部部分306b。优选地,窄的上部部分306b的直径小于宽的下面部分306a的直径。除外部反应容器的分级-直径构造之外,图14的鼓泡塔反应器300优选地基本上以与上述图12和13的鼓泡塔反应器200相同的方式来配置和操作。
现在参考图15,举例说明了一种反应器系统400,其包括初级氧化反应器402和次级氧化反应器404。初级氧化反应器402优选地基本上以与图12和13的外部反应器202相同的方式来配置和操作。次级氧化反应器404优选地基本上以与图12和13的内部反应器204相同的方式来配置和操作。然而,图15的反应器系统400和图12和13的鼓泡塔反应器200之间的主要区别在于反应器系统400的次级氧化反应器404位于初级氧化反应器402的外部。在图15的反应体系400中,使用入口管道405来将一部分的反应介质420从初级氧化反应器402输送到次级氧化反应器404。进一步,使用出口管道407来将塔顶气体从次级氧化反应器404的顶部输送到初级氧化反应器402。
在反应体系400的正常操作期间,反应介质420首先在初级氧化反应器402的初级反应区416中经历氧化。反应介质420a然后从初级反应区416中被取出并且经由管道405被输送到次级反应区418。在次级反应区418中,反应介质420b的液相和/或固相受到进一步的氧化。优选地,从初级反应区416取出的至少约50、75、95或99wt%的液相和/或固相在次级反应区416中进行加工处理。塔顶气体离开次级氧化反应器404的上部气体出口并且经由管道407被输送回到初级氧化反应器402。反应介质420b的浆料相离开次级氧化反应器404的下部浆料出口422并且其后受到进一步的下游加工处理。
入口管道405可在任何高度附着于初级氧化反应器402。虽然未在图15中示出,反应介质420可以被机械泵送到次级反应区418,如果期望的话。然而,更优选地,使用高程水头(elevationhead)(重力)来输送反应介质420,从初级反应区416通过入口管道405并进入次级反应区418。因此,优选地,入口管道405在一端连接到上部的50、30、20或10%的总高度和/或体积的初级反应区416。优选地,入口管道405的另一端连接到上部的30、20、10或5%的总高度和/或体积的次级反应区418。优选地,入口管道405是水平的和/或从初级氧化反应器402朝向次级氧化反应器404倾斜向下的。出口管道407可附着于次级氧化反应器404中的任何高度,但优选地,出口管道407在高于入口管道405的附着高度处连接到次级氧化反应器404。更优选地,出口管道407附着于次级氧化反应器404的顶部。出口管道407优选地在高于入口管道405的附着高度处附着于初级氧化反应器402。更优选地,出口管道407附着于上部的30、20、10或5%的总高度和/或体积的初级反应区416。优选地,出口管道407是水平的和/或从反应次级氧化反应器404朝向初级氧化反应器402倾斜向上的。虽然未示于图15中,出口管道407还可直接附着到气体出口管道,所述气体出口管道从初级氧化反应器402的顶部取出气态流出物。次级反应区416的上部范围可以高于或低于初级反应区418的上部范围。更优选地,初级反应区416的上部范围的范围是高于次级反应区418的上部范围10米至低于次级反应区418的上部范围50米,低于次级反应区418的上部范围2米至低于次级反应区418的上部范围40米,或低于次级反应区418的上部范围5米至低于次级反应区418的上部范围30米。下部的浆料出口422可以从次级氧化反应器404的任何高度离开,但是优选地,下部的浆料出口422在低于入口管道405的附着高度处连接到次级氧化反应器404。下部的浆料出口422的附着点更优选地广泛地在高度与入口管道405的附着点分开,其中两个附着(点)分开达至少约次级反应区418的高度的50、70、90或95%。最优选地,下部的浆料出口422附着于次级氧化反应器404的底部,如图15所示。次级反应区418的下部范围可以被提高至高于或低于初级反应区416的下部范围。更优选地,在约40、20、5或2米之内,初级反应区416的下部范围被提高至高于或低于次级反应区418的下部范围。
本文中为初级氧化反应器402和附件所规定的参数(例如高度,宽度,面积,体积,相对水平位置和相对垂直位置)还被认为适用于由初级氧化反应器402所限定的初级反应区416,反之亦然。本文中为次级氧化反应器404和附件所规定的任何参数还被认为适用于由次级氧化反应器404所限定的次级反应区418,反之亦然。
如上所述,优选地,次级氧化反应器404位于初级氧化反应器402的外部。优选地,次级氧化反应器404与初级氧化反应器402并排(alongside)(即,至少一部分的初级和次级氧化反应器402和404分享某一共同高度)。初级氧化反应器402的初级反应区416具有最大直径“Dp”。次级反应区418的体积重心优选地水平间隔于初级反应区416的体积重心达至少约0.5Dp、0.75Dp或1.0Dp并且达小于约30Dp、10Dp或3Dp。
现在参考图16,举例说明了一种反应器系统500,其包括初级氧化反应器502和次级氧化反应器504。初级氧化反应器其中限定了初级氧化区516,而次级氧化反应器504其中限定了次级氧化区518。各自反应区516和518接收一部分的反应介质520。
反应器系统500(图16)的构造与操作优选地基本上与反应器系统400(图15)的构造和(操作)相同。然而,在反应器系统500中,初级氧化反应器502的直立侧壁限定至少一个扩大的开口505,其允许将反应介质520从初级反应区516输送到次级反应区518,而同时允许将脱离的气相从次级反应区518输送到初级反应区516。优选地,扩大的开口505的开口面积除以次级反应区218的直立部分的最大水平截面面积为约0.01-2、0.02-0.5或0.04-0.2。初级氧化反应器502的初级反应区516具有最大高度“Hp”。优选地,扩大的开口505的面积中心(arealcenter)距初级反应区516的顶部和/或底部纵向间隔至少约0.1Hp、0.2Hp或0.3Hp。
现在参考图17-25,举例说明许多装备有具有各种构造的内部结构的鼓泡塔反应器。已经发现使用一种或多种由反应介质包围的内部结构令人惊讶地改变了反应介质的端部-端部的混合。内部结构限定了具有湍流降低的静止区,相比于围绕静止区的反应介质的湍流来说。
如图17-25中所举例说明的,内部结构可以采取各种形式。特别地,图17举例说明了鼓泡塔反应器600,其使用通常圆柱形内部结构602来限定静止区。内部结构602基本上位于鼓泡塔反应器600的主反应区的中心并且与主反应区的顶端和底端纵向间隔。图18举例说明鼓泡塔反应器610,其使用了类似于图17的内部结构602的通常圆柱形的内部结构612。然而,图18的内部结构612不位于鼓泡塔反应器610的主反应区的中心。相反地,由内部结构612所限定的静止区的体积重心水平偏离于主反应区的体积重心。进一步,内部结构612的底部位于接近于鼓泡塔反应器610的下部的切线。图19举例说明了鼓泡塔反应器620,其使用了通常圆柱形的内部结构622,它高于图17和18的内部结构602和612。进一步,由内部结构622所限定的静止区的体积重心偏离于鼓泡塔反应器620的主反应区的体积重心。图20举例说明了鼓泡塔反应器630,其使用了包括通常圆柱形的上部部分632和通常圆柱形的下部部分634的内部结构。相比于上部部分632,内部结构的下部部分634具有较细的直径。图21举例说明了鼓泡塔反应器640,其使用包括通常圆柱形的下部部分642和通常圆柱形的上部部分644的内部结构。相比于下部部分642,内部结构的上部部分644具有较细的直径。图22举例说明了鼓泡塔反应器650,其使用了第一、第二和第三分开的内部结构652、654和656。内部结构652、654和656互相纵向间隔。由第一和第三内部结构652和656所限定的静止区的体积重心与鼓泡塔反应器650的主反应区的体积重心水平对齐。然而,由第二内部结构654所限定的静止区的体积重心水平偏离于鼓泡塔反应器650的主反应区的体积重心。图23举例说明鼓泡塔反应器660,其使用了一对并列型的第一和第二内部结构662和664。由第一和第二内部结构662和664所限定的静止区的体积重心彼此水平间隔并且水平间隔于鼓泡塔反应器660的主反应区的体积重心。进一步,第一和第二内部结构662和664具有并列型构造,使得至少一部分的第一和第二内部结构662和664分享某一共同高度。图24举例说明了使用通常棱柱形的内部结构672的鼓泡塔反应器760。特别地,内部结构672具有通常三角形的水平截面。图25举例说明了鼓泡塔反应器680,其使用了类似于图17的内部结构602的通常圆柱形的内部结构682。然而,鼓泡塔反应器680的外部反应容器具有由窄的下面部分682和宽的上部部分684产生的分段直径。
如图17-25中所举例说明的,根据本发明的一种实施方案使用的内部结构可以具有各种形状并且可以被置于鼓泡塔反应器的主反应区之中的各个位置。进一步,内部结构和其中限定的静止区可以由各种不同的材料形成。在本发明的一个实施方案中,内部结构是完全封闭的,使得没有周围的反应介质进入内部结构。这种封闭的内部结构可以是空心的或实心的。在本发明的另一实施方案中,内部结构包括一个或多个开口,其容许反应介质进入由内部结构所限定的静止区。然而,因为静止区的一个目的在于产生湍流降低的区域(相对于围绕其的反应介质的湍流而言),因此优选地,内部结构不容许大量的反应介质快速地流过内部结构。
装备有一种或多种内部结构的鼓泡塔反应器的特定的构造和操作参数现将更详细地进行描述。优选地,内部结构全部置于鼓泡塔反应器的外部反应容器的内部;然而有可能至少一部分的内部结构伸出到鼓泡塔反应器的外部反应容器的外部。如上所述,在鼓泡塔反应器的操作期间,内部结构限定了鼓泡塔反应器之内的至少一个静止区。鼓泡塔反应器的主反应区和静止区是不同的体积(即,彼此没有重叠)。鼓泡塔反应器的主反应区限定在鼓泡塔反应器的外部反应容器之内,但在内部结构之外。
如上所述,由内部结构所限定的静止区是湍流降低的体积,相对于主反应区中的相邻反应介质的湍流而言。优选地,至少约90、95、98或99.9%的体积的静止区填装了反应介质以外的材料和/或填装了一部分的湍流显著降低的反应介质,相比于相邻于内部结构的反应介质而言。如果静止区包括任何部分的反应介质,优选地,静止区中所含的所述部分的反应介质在静止区中的重均停留时间为至少约2、8、30或120分钟。如果静止区包括任何部分的反应介质,优选地,静止区中的反应介质的时均气体滞留量小于约0.2、0.1、0.5或0.01,其中气体滞留量测量于静止区的任何高度,静止区的1/4-高度,静止区的1/2-高度,静止区的3/4-高度,和/或是静止区上的总高度的均值。优选地,反应区中的反应介质的时均气体滞留量为约0.2-约0.9,更优选地,约0.5-约0.8,和最优选地,0.55-0.7,其中气体滞留量测量于反应区的任何高度,反应区的1/4-高度,反应区的1/2-高度,反应区的3/4-高度,和/或是反应区上的总高度的均值。如果静止区包括任何部分的反应介质,优选地,静止区中的反应介质的时均表观气速小于约0.4、0.2、0.1或0.05米/秒,其中表观气速测量于静止区的任何高度,静止区的1/4-高度,静止区的1/2-高度,静止区的3/4-高度,和/或是静止区上的总高度的均值。优选地,反应区中的反应介质的时均表观气速为至少约0.2、0.4、0.8或1米/秒,其中表观气速测量于反应区的任何高度,反应区的1/4-高度,反应区的1/2-高度,反应区的3/4-高度,和/或是反应区上的总高度的均值。如果静止区包括任何部分的反应介质,优选地,静止区中的反应介质的液相的时均表观速度小于约0.04、0.01或0.004米/秒,其中液相的表观流速测量于静止区的任何高度,静止区的1/4-高度,静止区的1/2-高度,静止区的3/4-高度,和/或是静止区上的总高度的均值。优选地,反应区中的反应介质的液相的时均表观速度小于约0.1、0.04或0.01米/秒,其中液相的表观流速测量于反应区的任何高度,反应区的1/4-高度,反应区的1/2-高度,反应区的3/4-高度,和/或是反应区上的总高度的均值。本文中为内部结构所规定的任何参数(例如高度,宽度,面积,体积,相对水平位置和相对垂直位置)还被认为适用于由内部结构所限定的静止区,反之亦然。
优选地,由内部结构所限定的静止区的尺寸是这样的,使得静止区包括其中至少一个位置,所述位置距反应区间隔达反应区的最大水平直径的至少约0.05倍或者约0.2米,择其大者。优选地,静止区包括其中至少一个位置,所述场所距反应区间隔达至少约0.4、0.7或1.0米。优选地,静止区包括其中至少一个位置,其距反应区间隔达反应区最大水平直径的至少约0.1、0.2或0.3倍。静止区优选地包括其中至少两个位置,其彼此间隔达反应区的最大水平直径的至少约0.5、1、2或4倍的垂直距离。优选地,静止区中的这两个纵向间隔的位置还各自与反应区分开达反应区最大水平直径的至少约0.05、0.1、0.2或0.3倍。优选地,静止区中的这两个纵向间隔的位置彼此纵向间隔达至少约1、3、10或20米并且还各自与反应区分开达至少约0.1、0.4、0.7或1米。优选地,静止区的体积是主反应区体积的约1-约50%,更优选地为主反应区体积的约2-约25%,和最优选地为主反应区体积的4-15%。
鼓泡塔反应器的外部反应容器优选包括通常圆柱形直立外部侧壁。优选地,内部结构包括通常圆柱形直立内部侧壁,其在内部与外部侧壁间隔。优选地,内部结构不是热交换器的一部分。由此,优选地,通过内部结构的直立内部侧壁的时均热通量小于约100、15、3或0.3千瓦/平方米。填充反应介质的环优选地被限定在内部和外部侧壁之间。内部结构纵向从外部容器受到支撑,优选地通过较低部分的内部结构和较低部分的外部反应容器之间的直立载体进行支撑。另外,内部结构优选地经由多个非结垢的横向载体元件(其在内部从外部侧壁延伸到内部侧壁)通过外部反应容器进行支撑。优选地,在静止区的1/4-高度、1/2-高度和/或3/4-高度处的静止区的水平截面面积是在各自高度处所述环的水平截面面积的至少约2%、5-75%或10-30%。优选地,内部直立侧壁的最大高度是约10-约90%的外部直立侧壁的最大高度,更优选地约20-约80%的外部直立侧壁的最大高度,和最优选地30-70%的外部直立侧壁的最大高度。虽然优选地,内部侧壁具有通常圆柱形的构造,有可能的是,一部分的内部侧壁可以是凹的,相对于静止区的相邻部分来说。当内部侧壁包括凹的部分时,优选地,这种凹的部分形成小于约25、10、5或0.1%的总向外朝向的由内部侧壁所代表的表面面积。优选地,与反应介质直接接触的内部结构的总表面面积与反应区的总体积之比小于约1、0.5、0.3或0.15平方米/立方米。优选地,静止区的体积重心相对于主反应区的体积重心水平位移为小于主反应区最大水平直径的约0.4、0.2、0.1或0.01倍。
当鼓泡塔反应器包括多于一个限定多于一个静止区的内部结构时,优选地,静止区纵向排列,使得在一起所考虑的全部静止区的体积重心相对于反应区的体积重心水平位移为小于主反应区最大水平直径的约0.4、0.2、0.1或0.01倍。进一步,当多个静止区形成在主反应区之中时,优选地,体积大于主反应区体积的0.2%的单独的静止区的数目小于约100、10、5或2。
鼓泡塔反应器的外部反应容器优选地具有如下的最大垂直高度与最大水平直径之比:约3:1-约30:1,更优选地约6:1-约20:1,和最优选地9:1-15:1。内部结构优选地具有如下的最大垂直高度与最大水平直径之比:约0.3:1-约100:1,更优选地约1:1-约50:1,和最优选地3:1-30:1。优选地,内部结构的最大水平直径为约0.1-约5米,更优选地约0.3-约4米,和最优选地1-3米。优选地,内部结构的最大垂直高度为约1-约100米,更优选地约3-约50米,和最优选地10-50米。优选地,内部结构的最大水平直径为外部反应容器的最大水平直径的约5%-约80%,更优选地约10%-约60%,和最优选地20%-50%。优选地,内部结构602的最大垂直高度为约3-约100%的外部反应容器的最大垂直高度,更优选地约10-约90%的外部反应容器的最大垂直高度,和最优选地30-80%的外部反应容器的最大垂直高度。本文中为外部反应容器和附件所规定的任何参数(例如高度,宽度,面积,体积,相对水平位置和相对垂直位置)还被认为适用于由外部反应容器所限定的反应区,反之亦然。
在本发明的一个实施方案中,内部结构相对于反应区完全隔离了静止区。在另一实施方案中,内部结构限定了一个或多个直接开口,其允许在静止区和反应区之间的直接流体相通。当内部结构限定了这种直接开口时,优选地,直接开口中的最小者的最大直径小于主反应区的最大水平直径的约0.3、0.2、0.1或0.05倍。当内部结构限定了这种直接开口时,优选地,直接开口中的最大者的最大直径小于主反应区的最大水平直径的约0.4、0.3、0.2或0.1倍。当内部结构限定了这种直接开口时,优选地,全部直接开口所限定的累积的开口面积小于主反应区的最大水平截面面积的约0.4、0.3或0.2倍。内部结构具有最大高度(Hi)。当内部结构限定了一个或多个直接开口时,优选地,小于约50、25或10%的全部直接开口所限定的累积的开口面积距内部结构的顶部间隔大于约0.5Hi、0.25Hi或0.1Hi。当鼓泡塔反应器使用多个内部结构形成多个不同的静止区时,对于静止区中的两个或更多个来说,有可能包括互连的开口和/或管道,其允许在静止区之间的流体相通。优选地,每个这些互连开口和/或管道中的最小者的最大直径小于主反应区最大水平直径的约0.3、0.2、0.1或0.05倍。
如上所述,以上关于图1-25所述的鼓泡塔反应器的一些物理和操作特征提供了反应介质的压力、温度和反应物(即氧和可氧化的化合物)浓度的垂直梯度。如上所述,这些垂直梯度可能提供了相对于传统氧化方法更有效的和更经济的氧化方法,传统氧化方法偏好各处相对均匀的压力、温度和反应物浓度的良好混合型反应介质。现在将更详细地讨论通过使用根据本发明实施方案的氧化系统而可能实现的氧、可氧化的化合物(例如对-二甲苯)和温度的垂直梯度。
现在参照图26,为了量化鼓泡塔反应器中氧化期间反应介质中存在的反应物浓度梯度,可以将反应介质的全部体积理论上分为等体积的30个离散水平片段。图26描述了将反应介质分为等体积的30个离散水平片段的概念。除了最高和最低的水平片段之外,每个水平片段为在其顶部和底部由虚构的水平面限制的且在其侧部由反应器壁限制的离散体积。最高水平片段在其底部由虚构的水平面限制且在其顶部由反应介质的上表面限制。最低水平片段在其顶部由虚构的水平面限制且在其底部由容器壳体的底部限制。一旦反应介质已理论上被分为相等体积的30个离散水平片段,随后可以测量每个水平片段的时间平均和体积平均浓度。具有全部30个水平片段的最大浓度的个体水平片段可被称为“C-max水平片段”。位于C-max水平片段之上的且具有位于C-max水平片段之上的全部水平片段的最小浓度的个体水平片段可被称为“C-min水平片段”。随后,垂直浓度梯度可以计算为C-max水平片段中的浓度与C-min水平片段中的浓度的比值。
关于量化氧浓度梯度,当将反应介质在理论上分为等体积的30个离散水平片段时,O2-max水平片段被称为具有全部30个水平片段的最大氧浓度,O2-min水平片段被称为具有位于O2-max水平片段之上的水平片段的最小氧浓度。水平片段的氧浓度在反应介质的气相中测量,基于时间平均和体积平均摩尔湿基。优选地,O2-max水平片段的氧浓度与O2-min水平片段的氧浓度之比为约2:1-约25:1,更优选为约3:1-约15:1,最优选为4:1-10:1。
通常,O2-max水平片段将位于反应介质底部附近,而O2-min水平片段将位于反应介质顶部附近。优选地,O2-min水平片段为30个离散水平片段中的5个最上部水平片段之一。最优选地,O2-min水平片段为30个离散水平片段中的最上部片段,如图26中所示。优选地,O2-max水平片段为30个离散水平片段中的10个最下部水平片段之一。最优选地,O2-max水平片段为30个离散水平片段中的5个最下部水平片段之一。例如,图26描述了O2-max水平片段为从反应器底部的第三个水平片段。优选地,O2-min和O2-max水平片段之间的垂直间距为至少约2W,更优选地至少约4W,最优选地至少6W。优选地,O2-min和O2-max水平片段之间的垂直间距为至少约0.2H,更优选地至少约0.4H,最优选地至少0.6H。
基于湿基,O2-min水平片段的时间平均和体积平均氧浓度优选为约0.1-约3mol%,更优选为约0.3-约2mol%,最优选为0.5-1.5mol%。O2-max水平片段的时间平均和体积平均氧浓度优选为约4-约20mol%,更优选为约5-约15mol%,最优选为6-12mol%。基于干基,通过气体出口从反应器中排出的气态流出物中氧的时间平均浓度优选为约0.5-约9mol%,更优选为约1-约7mol%,最优选为1.5-5mol%。
由于氧浓度向着反应介质顶部衰减显著,因此期望的是,降低反应介质顶部中对氧的需求。这种降低反应介质顶部附近对氧的需求可以通过在可氧化的化合物(例如对-二甲苯)的浓度中形成垂直梯度来实现,其中可氧化的化合物的最小浓度位于反应介质顶部附近。
关于量化可氧化的化合物(例如对-二甲苯)浓度梯度,当将反应介质在理论上分为等体积的30个离散水平片段时,OC-max水平片段被称为具有全部30个水平片段的最大可氧化的化合物浓度,且OC-min水平片段被称为具有位于OC-max水平片段之上的水平片段的最小可氧化的化合物浓度。水平片段的可氧化的化合物浓度在液相中测量,基于时间平均和体积平均质量分数。优选地,OC-max水平片段的可氧化的化合物浓度与OC-min水平片段的可氧化的化合物浓度的比值大于约5:1,更优选大于约10:1,仍更优选大于约20:1,最优选为40:1-1000:1。
通常,OC-max水平片段将位于反应介质底部附近,而OC-min水平片段将位于反应介质顶部附近。优选地,OC-min水平片段为30个离散水平片段中的5个最上部水平片段之一。最优选地,OC-min水平片段为30个离散水平片段中的最上部水平片段,如图26中所示。优选地,OC-max水平片段为30个离散水平片段中的10个最下部水平片段之一。最优选地,OC-max水平片段为30个离散水平片段中的5个最下部水平片段之一。例如,图26描述了OC-max水平片段为从反应器底部的第五个水平片段。优选地,OC-min和OC-max水平片段之间的垂直间距为至少约2W,其中“W”为反应介质的最大宽度。更优选地,OC-min和OC-max水平片段之间的垂直间距为至少约4W,最优选地至少6W。假设反应介质的高度“H”,优选地,OC-min和OC-max水平片段之间的垂直间距为至少约0.2H,更优选至少约0.4H,最优选至少0.6H。
OC-min水平片段的液相中时间平均和体积平均的可氧化的化合物(例如对-二甲苯)的浓度优选地小于约5,000ppmw,更优选地小于约2,000ppmw,仍更优选地小于约400ppmw,最优选地为1ppmw-100ppmw。OC-max水平片段的液相中时间平均和体积平均的可氧化的化合物的浓度优选地为约100ppmw-约10,000ppmw,更优选地为约200ppmw-约5,000ppmw,最优选地为500ppmw-3,000ppmw。
虽然优选地鼓泡塔反应器提供了可氧化的化合物浓度中的垂直梯度,但是也优选地,使液相中可氧化的化合物浓度高于1000ppmw的反应介质的体积百分比最小化。优选地,液相中可氧化的化合物浓度高于1000ppmw的反应介质的时间平均体积百分比小于约9%,更优选地小于约6%,最优选地小于3%。优选地,液相中可氧化的化合物浓度高于2500ppmw的反应介质的时间平均体积百分比小于约1.5%,更优选地小于约1%,最优选地小于0.5%。优选地,液相中可氧化的化合物浓度高于10000ppmw的反应介质的时间平均体积百分比小于约0.3%,更优选地小于约0.1%,最优选地小于0.03%。优选地,液相中可氧化的化合物浓度高于25,000ppmw的反应介质的时间平均体积百分比小于约0.03%,更优选地小于约0.015%,最优选地小于0.007%。本发明者注意到,具有高浓度可氧化的化合物的反应介质的体积不必存在于单一相连的体积内。经常,鼓泡塔反应容器中无序流型同时产生了两个或多个具有高浓度可氧化的化合物的反应介质的连续但被隔离的部分。在每次用于时间平均时,将所有这些连续的但被隔离的体积(大于0.0001体积%的总反应介质)加到一起,由此确定液相中具有高水平的可氧化的化合物浓度的总体积。
如上所讨论的那样,除了氧和可氧化的化合物的浓度梯度,优选地,反应介质中存在温度梯度。再次参照图26,可以以类似于浓度梯度的方式,通过理论上将反应介质分为等体积的30个离散水平片段并且测量每个片段的时间平均和体积平均温度,由此量化该温度梯度。那么,在15个最低水平片段中具有最低温度的水平片段可以被称为T-min水平片段,并且位于T-min水平片段之上的且具有T-min水平片段之上全部片段的最大温度的水平片段则可以被称为“T-max水平片段”。优选地,T-max水平片段的温度比T-min水平片段的温度高至少约1℃。更优选地,T-max水平片段的温度比T-min水平片段的温度高约1.25℃-约12℃。最优选地,T-max水平片段的温度比T-min水平片段的温度高2-8℃。T-max水平片段的温度优选地为约125-约200℃,更优选地为约140-约180℃,最优选地为150-170℃。
通常,T-max水平片段将位于反应介质中心附近,而T-min水平片段将位于反应介质底部附近。优选地,T-min水平片段为15个最低水平片段中的10个最下部水平片段之一。最优选地,T-min水平片段为15个最低水平片段中的5个最下部水平片段之一。例如,图26描述了T-min水平片段为从反应器底部的第二个水平片段。优选地,T-max水平片段为30个离散水平片段中的20个中间水平片段之一。最优选地,T-min水平片段为30个离散水平片段中的14个中间水平片段之一。例如,图26描述了T-max水平片段为从反应器底部的第二十个水平片段(即中间10个水平片段之一)。优选地,T-min和T-max水平片段之间的垂直间距为至少约2W,更优选地至少约4W,最优选地至少6W。优选地,T-min和T-max水平片段之间的垂直间距为至少约0.2H,更优选地至少约0.4H,最优选地至少0.6H。
如上所讨论的那样,当反应介质中存在垂直温度梯度时,可以有益地在反应介质的温度最高的高位位置取出反应介质,尤其是当取出的产物在较高的温度下进行进一步的下游处理时。由此,如图15和16中所示,当通过一个或多个高位出口从反应区中取出反应介质36时,优选地,高位出口(一个或多个)位于T-max水平片段附近。优选地,高位出口位于T-max水平片段的10个水平片段之内,更优选地在T-max水平片段的5个水平片段之内,最优选地在T-max水平片段的2个水平片段之内。
现在要注意的是,本文中所述的许多本发明特征可以应用于多个氧化反应器系统-不仅仅只是采用了单一氧化反应器的系统。另外,本文中所述的一些本发明特征可以应用于机械搅拌型和/或流动搅拌型氧化反应器-不仅仅只是气泡搅拌型反应器(即鼓泡塔反应器)。例如,本发明者已发现了与使得整个反应介质中氧浓度和/或耗氧速率分级/改变相关联的一些优点。通过使反应介质中氧浓度/消耗分级所实现的优点可以被实现,无论反应介质的总体积是含在单个容器中或者多个容器中。另外,通过使反应介质中氧浓度/消耗分级所实现的优点可以被实现,无论反应容器(一个或多个)为机械搅拌型、流动搅拌型和/或气泡搅拌型。
量化反应介质中氧浓度/消耗速率分级程度的一种方法是,比较两个或多个独立的(distinct)20%连续体积的反应介质。这些20%连续体积不必由任意特定形状来限定,但是,每个20%连续体积必须由相连体积的反应介质(即每个体积是“连续的”)形成,且20%连续体积不准彼此重叠(即该体积是“独立的”)。这些独立的20%连续体积可以位于同一反应器(图29)中或多个反应器中。现在参照图27,反应器被描述为含有反应介质。反应介质包括第一独立的20%连续体积37和第二独立的20%连续体积39。
反应介质中氧可得性的分级可以通过参照气相中具有最丰富摩尔分数氧的20%连续体积的反应介质并且通过参照气相中具有最稀少摩尔分数氧的20%连续体积的反应介质来量化。在气相中含有最高浓度氧的独立的20%连续体积的反应介质的气相中,基于湿基,时间平均和体积平均氧浓度优选地为约3-约18mol%,更优选地为约3.5-约14mol%,最优选地为4-10mol%。在气相中含有最低浓度氧的独立的20%连续体积的反应介质的气相中,基于湿基,时间平均和体积平均氧浓度优选地为约0.3-约5mol%,更优选地为约0.6-约4mol%,最优选地为0.9-3mol%。另外,基于湿基,最丰富20%连续体积的反应介质与最稀少20%连续体积的反应介质的时间平均和体积平均氧浓度的比值优选地为约1.5:1-约20:1,更优选地为约2:1-约12:1,最优选地为3:1-9:1。
反应介质中耗氧速率的分级可以按照氧-STR来量化,如最初描述的那样。在上文中在总的意义上(即出于整个反应介质的平均氧-STR的观点)描述了氧-STR;但是,也可以在局部意义上(即一部分反应介质)考虑氧-STR,由此量化整个反应介质中耗氧速率的分级。
本发明者已发现,非常有用的是,使氧-STR在整个反应介质中与本文中所公开的、与反应介质中压力和反应介质气相中分子氧的摩尔分数相关的期望梯度综合协调来变化。由此,优选地,反应介质的第一独立的20%连续体积的氧-STR与反应介质的第二独立的20%连续体积的氧-STR的比值为约1.5:1-约20:1,更优选地为约2:1-约12:1,最优选地为3:1-9:1。在一种实施方案中,“第一独立的20%连续体积”相对于“第二独立的20%连续体积”位于更靠近于最初将分子氧引入反应介质的位置。氧-STR中的这些大梯度是期望的,无论部分氧化反应介质是包含在鼓泡塔氧化反应器中还是包含在其中在压力和/或反应介质气相中分子氧的摩尔分数中形成梯度的任意其它类型反应容器中(例如,在机械搅拌型容器中,其具有多个、垂直放置的搅拌区,通过使用多个具有强径向流动的叶轮来实现,可以通过通常水平的折流板(baffle)组件来加强,具有通常从靠近反应容器下部的进料向上上升的氧化剂流动,尽管在每个垂直放置的搅拌区中可能发生大量氧化剂流动的反混和在相邻垂直放置的搅拌区之间可能发生一些氧化剂流动的反混)。也就是说,当在压力和/或反应介质气相中分子氧的摩尔分数中存在梯度时,本发明者已发现,通过本文中所公开的方法在对于溶解的氧的化学需要中形成类似的梯度是理想的。
使局部氧-STR改变的优选方法是通过控制进料可氧化的化合物的位置和通过控制反应介质的液相混合,由此根据本发明的其它公开内容来控制可氧化的化合物的浓度梯度。使局部氧-STR改变的其它有用的方法包括,通过导致局部温度变化和通过改变催化剂和溶剂组分的局部混合物来导致反应活性的变化(例如,通过引入另一气体而在特定部分的反应介质中引起蒸发冷却和通过加入含有更大量水的溶剂物流以在特定部分的反应介质中降低活性)。
当氧化反应器具有反应器套反应器构造时,如上所述参考图12-14,优选地,参考图26和27,本文中所述的浓度梯度、温度梯度和氧气-STR梯度适用于一部分的位于外部反应器内部并且在内部反应器外部的反应介质(例如图12中的反应介质220a)。
再次参照图1-27,在显著不同于(根据本文中所公开的优选实施方案)传统氧化反应器的条件下,氧化优选地在鼓泡塔反应器中进行。当根据本文中所公开的优选实施方案鼓泡塔反应器用于进行将对-二甲苯液相部分氧化为粗制对苯二甲酸(CTA)时,局部反应强度、局部蒸发强度和局部温度的空间特性(profile),结合反应介质内液体流型和优选的、相对低的氧化温度有助于形成具有独特和有益性能的CTA颗粒。
图28A和28B描述了根据本发明一种实施方案制备的基本CTA颗粒。图28A显示了500倍放大倍数下的基本CTA颗粒,而图28B在一个基本CTA颗粒上放大并且显示了2000倍放大倍数下的颗粒。或许最好如图28B中所示的那样,每个基本CTA颗粒通常由大量小的、聚积的CTA亚颗粒形成,由此赋予基本CTA颗粒相对大的表面积、高孔隙率、低密度和良好溶解性。除非另外指出,本发明的CTA的各种性质,如下文所述,是使用CTA的典型样品测量的,其中所述典型样品重至少1g和/或由至少10,000个单独的CTA颗粒形成。基本CTA颗粒通常平均颗粒尺寸范围为约20-约150微米,更优选地为约30-约120微米,最优选地为40-90微米。CTA亚颗粒通常平均颗粒尺寸范围为约0.5-约30微米,更优选地为约1-约15微米,最优选地为2-5微米。图28A和28B中所示的基本CTA颗粒的相对高表面积可以使用Braunauer-Emmett-Teller(BET)表面积测量方法来量化。优选地,基本CTA颗粒的平均BET表面积为至少约0.6平方米/克(m2/g)。更优选地,基本CTA颗粒的平均BET表面积为约0.8-约4m2/g。最优选地,基本CTA颗粒的平均BET表面积为0.9-2m2/g。通过本发明优选实施方案的优化氧化方法形成的基础CTA颗粒的物理性能(例如颗粒尺寸、BET表面积、孔隙率和溶解性)容许通过更有效的和/或更经济的方法来纯化CTA颗粒,如下面关于图31进一步详细描述的那样。
上面提供的平均颗粒尺寸值采用偏振光显微法和图像分析来确定。颗粒尺寸分析中采用的设备包括NikonE800光学显微镜,其具有4×PlanFlourN.A.0.13物镜、SpotRTTM数字相机、和个人电脑运行的ImageProPLusTMV4.5.0.19图像分析软件。颗粒尺寸分析方法包括下列主要步骤:(1)将CTA粉末分散在矿物油中;(2)制备该分散体的显微镜载玻片和/或盖片;(3)使用偏振光显微镜检测该载玻片(交叉偏振条件-颗粒作为亮目标显示在黑色背景上);(4)对于每个试样制剂俘获不同相片(场尺寸=3×2.25mm;像素尺寸=1.84微米/像素);(5)采用ImageProPLusTM软件进行图像分析;(6)将颗粒测量值输到电子数据表;和(7)在电子数据表中进行统计表征。“采用ImageProPLusTM软件进行图像分析”的步骤(5)包括子步骤:(a)设定图像阈值以检测暗背景上的白色颗粒;(b)形成二元图像;(c)运行单通开放滤波器以滤掉像素噪声;(d)测量图像中的所有颗粒;和(e)给出对于每个颗粒测量的平均直径。ImageProPLusTM软件定义单个颗粒的平均直径为在2度间隔和通过颗粒质心测量的颗粒直径的数均长度。“在电子数据表中进行统计表征”的步骤7包括如下来计算体积加权平均颗粒尺寸。如果为球形时采用pi/6*di^3计算试样中n个颗粒的每一个的体积;使每个颗粒的体积乘以其直径以得到pi/6*di^4;对于试样中全部颗粒的pi/6*di^4值求和;将试样中全部颗粒的体积求和;和将体积加权的颗粒直径计算为试样中n个颗粒全部(pi/6*di^4)之和除以试样中n个颗粒全部(pi/6*di^3)之和。本文中所使用“平均颗粒尺寸”表示根据上述测试方法测量的体积加权的平均颗粒尺寸,并且也表示为D(4,3)。
另外,步骤7包括找出全部试样体积的各种分数比其小的颗粒尺寸。例如,D(v,0.1)为全部试样体积的10%比其小且90%比其大的颗粒尺寸;D(v,0.5)为一半试样体积比其大且一半比其小的颗粒尺寸;D(v,0.9)为全部试样体积的90%比其小的颗粒尺寸;等等。另外,步骤7包括计算D(v,0.9)减去D(v,0.1)的数值,其在本文中定义为“颗粒尺寸分布(spread)”;并且步骤7包括计算颗粒尺寸分布除以D(4,3)的数值,其在本文中定义为“颗粒尺寸相对分布”。
另外,优选地,上面测量的CTA颗粒的D(v,0.1)范围为约5-约65微米,更优选地为约15-约55微米,最优选地为25-45微米。优选地,上面测量的CTA颗粒的D(v,0.5)范围为约10-约90微米,更优选地为约20-约80微米,最优选地为30-70微米。优选地,上面测量的CTA颗粒的D(v,0.9)范围为约30-约150微米,更优选地为约40-约130微米,最优选地为50-110微米。优选地,颗粒尺寸相对分布范围为约0.5-约2.0,更优选地为约0.6-约1.5,最优选地为0.7-1.3。
在Micromeritics ASAP 2000(可从Norcross,GA的Micromeritics InstrumentCorporation获得)上测量上面提供的BET表面积值。在该测量方法的第一步中,称量2-4g颗粒试样并且将其在真空下在50℃干燥。随后将试样放置在分析气体歧管(manifold)上并且冷却到77°K。通过使试样暴露于已知体积的氮气并且测量压力下降,在最少5个平衡压力下测量氮吸附等温线。平衡压力近似地范围为P/P0=0.01-0.20,其中P为平衡压力且P0为77°K下液氮的蒸气压。随后根据下列BET等式绘制获得的等温线:
其中,Va为试样在P值下,试样吸附的气体体积,Vm为用单层气体覆盖试样全部表面所需的气体体积,且C为常数。从该图中,测定Vm和C。随后通过下列等式使用77°K下氮气的横截面积将Vm转换为表面积:
其中,σ为77°K下氮气的横截面积,T为77°K,且R为气体常数。
如上所提到的那样,根据本发明一种实施方案形成的CTA显示相对于通过其它方法制得的常规CTA更优异的溶解性能。这种增强的溶解速率能使本发明的CTA通过更高效的和/或更有效的纯化方法来纯化。下列描述专注于其中可以量化CTA溶解速率的方式。
在搅拌的混合物中,已知量固体溶解到已知量溶剂中的速率可以通过各种方案来测量。如本文中所使用的那样,称为“定时溶解测试”的测量方法定义如下。在整个定时溶解测试中使用约0.1兆帕的环境压力。整个定时溶解测试中使用的环境温度为约22℃。另外,固体、溶剂和全部溶解设备在开始测试之前在该温度下完全在热力学上平衡,并且在溶解时间段期间不存在可感知的烧杯或其内含物的加热或冷却。将测量为250g的新鲜的、HPLC分析级的四氢呋喃(纯度>99.9%)(下称为THF)溶剂部分置于清洁的KIMAX高状400毫升玻璃烧杯(零件号码14020,Kimble/Kontes,Vineland,NJ)中,其为非绝缘的、滑边的,且通常为圆柱形。将涂覆特氟龙的磁力搅拌棒(VWR零件号码58948-230,约1英寸长、直径3/8英寸,八边形横截面,VWMInternational,WestChester,PA19380)置于烧杯中,其中其自然地下沉到底部。使用多点15磁力搅拌器(H&PLabortechnikAG,Oberschleissheim,Germany)在800转/分钟的设定下搅拌该试样。该搅拌在添加固体之前不超过5分钟开始并且在添加固体之后继续稳定地进行至少30分钟。称量总计250毫克的粗制或纯化TPA颗粒的固体试样到无粘性的试样称重盘中。在起始时间指定为t=0时,将称重的固体一次全倒入搅拌的THF中,并且同时启动定时器。适当地进行,THF非常快速地润湿固体且在5秒钟之内形成稀释的、良好搅拌的浆料。随后,在下列时间(从t=0,按分钟测量)获得该混合物的试样:0.08、0.25、0.50、0.75、1.00、1.50、2.00、2.50、3.00、4.00、5.00、6.00、8.00、10.00、15.00和30.00。使用新的、一次性注射器(Becton,DickinsonandCo,5微升,REF30163,FranklinLakes,NJ07417)从该稀释的、良好搅拌的混合物中取出每个小试样。一旦从烧杯中取出之后,将大约2毫升清澈的液体试样通过新的、未使用的注射器过滤器(25mm直径,0.45微米,Gelman GHPAcrodiscPall Corporation,EastHills,NY 11548)快速地排到新的、标记的玻璃试样瓶中。每个注射器填充、过滤器放置、和排到试样瓶的持续时间恰当地小于约5秒,该间隔适当地在每个目标取样时间的任一侧约3秒之内开始和结束。在每个填充的约5分钟之内,将试样瓶盖帽并且保持在大约恒定的温度下,直到进行下列化学分析。在t=0之后30分钟的时间获得最后试样之后,采用在该公开内容之内其它地方概括描述的HPLC-DAD方法来分析全部十六个试样的溶解TPA的量。但是,在现在的测试中,校准标准和报告的结果均基于每克THF溶剂溶解的TPA毫克数(下文中称为“THF中ppm”)。例如,如果全部250毫克固体为非常纯的TPA且如果在获得特定试样之前该全部量完全溶解于250g的THF溶剂中,那么准确测量的浓度将为THF中约1000ppm。
当根据本发明的CTA进行上述定时溶解测试时,优选地,在t=0之后1分钟获得的试样溶解到THF中浓度至少约500ppm,且更优选地THF中至少600ppm。对于在t=0之后2分钟获得的试样,优选地,根据本发明的CTA将溶解到THF中浓度至少约700ppm,更优选地THF中至少750ppm。对于在t=0之后4分钟获得的试样,优选地,根据本发明CTA将溶解到THF中浓度至少约840ppm,更优选地THF中至少880ppm。
发明者已发现,相对简单的负指数式增长模型适用于描述来自全部定时溶解测试的全部数据组的时间依赖性,尽管颗粒试样和溶解过程是复杂的。等式的形式,下文称为“定时溶解模型”,如下:
S=A+B*(1-exp(-C*t)),其中
t=以分钟为单位的时间;
S=溶解度,单位为THF中ppm,在时间t时;
exp=基于2的自然对数的指数函数;
A,B=以THF中ppm为单位的回归常数,其中A主要涉及在极短时间时较小颗粒的快速溶解,且其中A+B之和主要涉及特定测试周期端点附近溶解的总量;和
C=以分钟倒数为单位的回归时间常数。
调节回归常数以使实际数据点与相应模型值之间的误差的平方之和最小化,该方法通常称为“最小二乘方”拟合。用于执行该数据回归的优选软件包为JMP Release 5.1.2(SAS InstituteInc.,JMP Software,SAS Campus Drive,Cary,NC27513)。
当根据本发明的CTA采用定时溶解测试进行测试并且拟合为上述定时溶解模型时,优选地,CTA的时间常数“C”大于约0.5min-1、更优选地大于约0.6min-1、且最优选地大于0.7min-1。
图29A和29B描述了在连续搅拌槽反应器(CSTR)中通过常规高温氧化方法制得的常规CTA颗粒。图29A显示了500倍放大下的常规CTA颗粒,而图29B放大并且显示了2000倍放大下的CTA颗粒。图28A和28B中所示的本发明CTA颗粒与图29A和29B中所示的常规CTA颗粒的视觉比较显示,常规CTA颗粒相对于本发明CTA颗粒具有更高的密度、更低的表面积、更低的孔隙率、和更大的颗粒尺寸。实际上,图29A和29B中所示的常规CTA的平均颗粒尺寸为约205微米和BET表面积为约0.57m2/g。
图30描述了用于制备纯化的对苯二甲酸(PTA)的常规方法。在该常规PTA方法中,在机械搅拌型高温氧化反应器700中部分氧化对-二甲苯。从反应器700中取出包含CTA的浆料并随后将其在纯化系统702中纯化。将纯化系统702的PTA产物引入分离系统706以分离和干燥PTA颗粒。纯化系统702代表大部分与通过传统方法制备PTA颗粒相关联的成本。纯化系统702通常包括加水/交换系统708、溶解系统710、氢化系统712、和三个独立的结晶容器704a,b,c。在加水/交换系统708中,用水置换绝大部分的母液。加水之后,将水/CTA浆料引入溶解系统710中,其中加热水/CTA混合物直到CTA颗粒完全溶解于水。CTA溶解之后,使CTA的水溶液在氢化系统712中氢化。随后将氢化系统712中的氢化流出物在结晶容器704a、b、c中进行三个结晶步骤,随后在分离系统706中分离PTA。
图31举例说明了一种用于生产PTA的改进方法,其使用了氧化反应器系统,包括初级氧化反应器800a和次级氧化反应器800b。在图31中所描述的构造中,从初级氧化反应器800a生产初始浆料,此后其在纯化系统802中进行纯化,次级氧化反应器800b是所述纯化系统802的一部分。从初级氧化反应器800a取出的初始浆料优选包括固体CTA颗粒和液体母液。通常,该初始浆料含有约10-约50wt%的固体CTA颗粒,余量为液体母液。从初级氧化反应器800a取出的初始浆料中存在的固体CTA颗粒典型地含有至少约400ppmw的4-羧基苯甲醛(4-CBA)、更典型地为至少约800ppmw的4-CBA、且最典型地为1000-15000ppmw的4-CBA。
纯化系统802接收从初级氧化反应器800a取出的初始浆料并且将存在于CTA中的4-CBA及其他杂质的浓度降低。从纯化系统802中制得更纯的/纯化的浆料并且使其在分离系统804中分离和干燥,由此制得包含小于约400ppmw4-CBA、更优选地小于约250ppmw的4-CBA、最优选地为10-200ppmw的4-CBA的更纯的固体对苯二甲酸颗粒。
纯化系统802包括次级氧化反应器800b、液体交换系统806、蒸煮器(digester)808和单个结晶器810。在次级氧化反应器800b中,初始浆料在与初级氧化反应器800a中的温度与压力近似相等的温度与压力下进行氧化。在液体交换系统806中,用新鲜的置换溶剂将从次级氧化反应器800b中取出的浆料中存在的至少约50wt%母液置换,由此提供包含CTA颗粒和置换溶剂的溶剂交换的浆料。将离开液体交换系统806的溶剂交换的浆料引入蒸煮器808中。在蒸煮器808中,在稍微高于在初级氧化反应器800a中所用的温度下进行进一步的氧化反应。如上所讨论的那样,初级氧化反应器800a中生成的CTA颗粒的高表面积、小颗粒尺寸、和低密度导致一些CTA颗粒中夹带的杂质变为对于蒸煮器808中的氧化反应来说是可获得的,而不需要在蒸煮器808中完全溶解CTA颗粒。由此,蒸煮器808中的温度可以低于多种类似的现有技术方法。蒸煮器808中进行的进一步的氧化优选地使得CTA中4-CBA浓度降低了至少200ppmw、更优选地至少约400ppmw、最优选地为600-6000ppmw。优选地,蒸煮器808中蒸煮温度高于反应器800a中初级氧化温度至少约10℃,更优选地高于反应器800a中初级氧化温度约20-约80℃,且最优选地高于反应器800a中初级氧化温度30-50℃。蒸煮温度优选地为约160-约240℃,更优选地为约180-约220℃,最优选地为190-210℃。在分离系统804中分离之前,来自蒸煮器808的纯化产物只需要在结晶器810中单个结晶步骤。适宜的次级氧化/蒸煮技术在美国专利申请公开文献No.2005/0065373中更详细地讨论,其全部公开内容在此引入作为参考。
由图31中所示系统制得的对苯二甲酸(例如PTA)优选地由平均颗粒尺寸至少约40微米、更优选地为约50-约2000微米、最优选地为60-200微米的PTA颗粒形成。该PTA颗粒的平均BET表面积优选地小于约0.25m2/g,更优选地为约0.005-约0.2m2/g,最优选地为0.01-0.18m2/g。由图31中所示系统制得的PTA适用于用作制备PET的原料。通常,PET通过对苯二甲酸与乙二醇的酯化、随后缩聚来制备。优选地,通过本发明实施方案制得的对苯二甲酸用作美国专利申请序号No.10/013,318(2001.12.7提交)所述管式反应器PET方法的进料,该文献的全部公开内容在此引入作为参考。
具有本发明中所述的优选形态的CTA颗粒特别适用于上述用于降低4-CBA含量的氧化蒸煮工艺。另外,这些优选的CTA颗粒在包括颗粒的溶解和/或化学反应的大量其它后续过程中提供了优点。这些额外的随后过程包括,但也并不限定于,与至少一种含羟基的化合物反应以形成酯化合物,特别是CTA与甲醇反应形成对苯二甲酸二甲酯和杂质酯;与至少一种二醇反应以形成酯单体和/或聚合物化合物,特别是CTA与乙二醇反应以形成聚对苯二甲酸乙二醇酯(PET);和全部或部分溶解于包括但也并非限定于水、乙酸、和N-甲基-2-吡咯烷酮的溶剂,其可以包括进一步的加工,包括但也并非限定于再沉淀更多纯的对苯二甲酸和/或选择性化学还原并非羧酸基团的羰基。特别地包括CTA充分溶解于包括水的溶剂,结合降低醛,特别是4-CBA、芴酮、苯酮和/或蒽醌的量的部分氢化。
根据本发明的一种实施方案,提供了用于将可氧化芳族化合物部分氧化为一类或多类芳族羧酸的方法,其中进料溶剂部分(即“溶剂进料”)的纯度和进料可氧化的化合物部分(即“可氧化的化合物进料”)的纯度控制在下面规定的一些范围之内。与本发明的其它实施方案一起,其能使反应介质的液相和,如果存在,固相和混合浆料(即,固体+液体)相的纯度控制在下列一些优选范围之内。
关于溶剂进料,公知的是氧化可氧化芳族化合物以生产芳族羧酸,其中引入反应介质的溶剂进料为分析纯乙酸和水的混合物,如通常在实验室规模和中试规模中采用的那样。同样,公知的是,进行可氧化芳族化合物的氧化以生成芳族羧酸,其中从制得的芳族羧酸中分离出离开反应介质的溶剂并且随后作为进料溶剂循环回反应介质中,主要出于制造成本的原因。该溶剂循环导致一些进料杂质和工艺副产物在循环的溶剂中经时间而积累。在再次引入反应介质之前本领域中已知各种方法来帮助纯化循环的溶剂。通常,循环溶剂的更高程度纯化导致相对于通过类似方法进行较低程度纯化的显著更高的制造成本。本发明的一种实施方案涉及理解和限定溶剂进料之中大量杂质的优选范围,其中的许多迄今被认为主要是有利的,由此发现了在整体制造成本和整体产物纯度之间的最佳平衡。
“循环溶剂进料”在本文中定义为如下的溶剂进料,其以前是在氧化区/反应器中进行氧化的反应介质的一部分,并且作为粗制液体和/或浆料产物的一部分离开氧化区/反应器。例如,用于氧化对二甲苯而形成TPA的部分氧化反应介质的循环溶剂进料是这样的溶剂,其最初成为部分氧化反应介质的一部分,从反应介质中作为TPA浆料的液相取出,与大部分固体TPA物质分离,然后返回到部分氧化反应介质。如上所述,这种循环溶剂进料易于积累各种各样的不希望的杂质,除非在可观的投资和操作成本下为溶剂纯化提供特定的辅助工艺步骤。出于经济原因,优选地,至少约20wt%本发明反应介质的溶剂进料为循环的溶剂,更优选地至少约40wt%,仍更优选地至少约80wt%,且最优选地至少90wt%。出于制造单元中溶剂库存和生产时间的原因,优选地,部分循环的溶剂每个操作日通过反应介质至少一次,更优选地对于至少七个连续操作日每天至少一次,且最优选地对于至少30个连续操作日每天至少一次。
本发明者已发现,出于反应活性的原因和出于氧化产物中留下的金属性杂质的考虑,循环的溶剂进料之中所选多价金属的浓度优选地为下面规定的范围。循环溶剂中铁的浓度优选地低于约150ppmw、更优选地低于约40ppmw、且最优选地为0-8ppmw。循环溶剂中镍的浓度优选地低于约150ppmw、更优选地低于约40ppmw、且最优选地为0-8ppmw。循环溶剂中铬的浓度优选地低于约150ppmw、更优选地低于约40ppmw、且最优选地为0-8ppmw。循环溶剂中钼的浓度优选地低于约75ppmw、更优选地低于约20ppmw、且最优选地为0-4ppmw。循环溶剂中钛的浓度优选地低于约75ppmw、更优选地低于约20ppmw、且最优选地为0-4ppmw。循环溶剂中铜的浓度优选地低于约20ppmw、更优选地低于约4ppmw、且最优选地为0-1ppmw。循环溶剂中也通常存在其它金属性杂质,通常在与一种或多种上述金属成比值的较低水平上变化。控制上述金属在优选的范围内将保持其它金属性杂质在适当的水平。
这些金属可以源于任意进入的工艺进料(例如进入的可氧化的化合物、溶剂、氧化剂和催化剂化合物中的)中的杂质。备选地,该金属可以源于接触反应介质和/或接触循环溶剂的任意工艺单元中的腐蚀产物。用于控制金属在所公开的浓度范围之内的方法包括适当规定和监控各种进料的纯度与适当使用构造材料,包括,但并非限定于,许多种商业级的钛和不锈钢,包括公知为双相不锈钢和高钼不锈钢的那些等级。
本发明者也已发现了循环溶剂中所选芳族化合物的优选范围。这些包括循环溶剂之中沉淀的和溶解的芳族化合物。
意料不到地,甚至来自部分氧化对-二甲苯的沉淀产物(例如TPA)也是循环溶剂中待控制的污染物。由于存在对于反应介质之中固体水平的令人吃惊的优选范围,所以溶剂进料中任意沉淀产物直接从可以共同进料的可氧化的化合物的量中减去。另外,已发现,在高水平进料循环溶剂中的沉淀TPA固体不利地影响沉淀氧化介质之中形成的颗粒的特性,导致下游操作(例如,产物过滤、溶剂洗涤、粗制产物的氧化蒸煮、溶解粗制产物用于进一步处理,等等)中不期望的特性。循环溶剂进料中沉淀固体的另一不期望的特性在于,相对于在从中获得大量循环溶剂的TPA浆料之内的固体本体中的杂质浓度,这些经常含有极高水平的沉淀杂质。可能地,在悬浮于循环溶剂中的固体中发现的高水平杂质可能与一些杂质从循环溶剂中沉淀的成核时间和/或循环溶剂的冷却相关,无论故意的或者由于环境损失。例如,相对于在160℃下从循环溶剂中分离的TPA固体中发现的浓度,在80℃下在循环溶剂中存在的固体中发现了高显色的和不期望的2,6-二羧基芴酮的浓度处于显著更高的水平。类似地,相对于来自反应介质的TPA固体中发现的水平,在循环溶剂中存在的固体中发现了显著更高水平的间苯二甲酸的浓度。确切地,当再次引入到反应介质时,循环溶剂之中夹带的特定沉淀杂质怎样表现看上去在变化。这点可能依赖于杂质在反应介质的液相之内的相对溶解性,可能依赖于沉淀杂质怎样在沉淀固体之内分层,和可能依赖于固体首先再次进入反应介质的位置处TPA沉淀的局部速率。由此,本发明者已发现控制循环溶剂中一些杂质的水平是有用的,如下所述,不论这些杂质是以溶解形式存在于循环溶剂中或者为其中夹带的颗粒。
循环溶剂中存在的沉淀固体的量通过如下重量法来确定。从反应介质的溶剂供给中取出代表性试样,此时溶剂在朝向反应介质的导管中流动。有用的试样大小为具有约250毫升内体积的玻璃容器中俘获的约100g。在释放到大气压之前,但此时连续地流向试样容器,将循环溶剂冷却到低于100℃;该冷却是为了限制在密封关闭在玻璃容器中之前短间隔期间的溶剂蒸发。在大气压下俘获试样之后,将玻璃容器立即密封关闭。随后使试样冷却到约20℃,同时在约20℃下由大气包围且没有强制对流。在达到约20℃之后,将该试样保持在该条件下至少约2小时。随后,将密封容器剧烈振荡直到获得视觉上均匀分布的固体。之后,立刻将磁力搅拌棒加到试样容器中并且在足以有效地保持均匀分布的固体的速率下旋转。通过吸液管取出具有悬浮固体的10毫升等分试样混合液体并称重。随后,通过真空过滤从该等分试样中分离液相本体,仍然在约20℃下并且有效地不损失固体。随后将从该等分试样中过滤出的潮湿固体干燥,有效地不使固体升华,并称重这些干燥的固体。干燥固体的重量与原始等分试样浆料的重量之比为固体分数,通常表示为百分数并且在本文中称为溶剂进料中的“在20℃沉淀固体”的量。
本发明者已发现,溶解于反应介质液相的且包含缺少非芳族烃基的芳族羧酸(例如间苯二甲酸、苯甲酸、邻苯二甲酸、2,5,4’-三羧基联苯)的芳族化合物为意料不到地有害的组分。虽然这些化合物相对于具有非芳族烃基的可氧化的化合物在目标反应介质中化学反应性降低很多,但是本发明者已发现,这些化合物仍然进行大量有害的反应。由此,有益的是控制反应介质的液相中这些化合物的含量在优选范围之内。这点导致循环溶剂进料中所选化合物的优选范围以及可氧化的芳族化合物进料中所选前体的优选范围。
例如,在对-二甲苯液相部分氧化为对苯二甲酸(TPA)中,本发明者已发现,当间-取代的芳族化合物在反应介质中含量极低时,反应介质和产物排放处中实质上不能检测到高显色的和不期望的杂质2,7-二羧基芴酮(2,7-DCF)。本发明者已发现,当溶剂进料中存在增高含量的间苯二甲酸杂质时,2,7-DCF的形成以几乎正比例上升。本发明者也已发现,当对-二甲苯进料存在间-二甲苯杂质时,2,7-DCF的形成再次以几乎正比例上升。另外,即使溶剂进料和可氧化的化合物进料缺乏间-取代的芳族化合物,本发明者已发现,在非常纯的对-二甲苯的典型部分氧化期间形成了一些间苯二甲酸,特别是当反应介质液相中存在苯甲酸时。这种自身形成的间苯二甲酸可能,归因于其相对于TPA在包含乙酸和水的溶剂中溶解性更大,在采用循环溶剂的商用单元中随时间的推移而聚集。由此,溶剂进料中间苯二甲酸的量、可氧化的芳族化合物进料中的间-二甲苯的量和反应介质中的间苯二甲酸自身生成的速率全部都要适当地考虑彼此间的平衡以及与消耗间苯二甲酸的任何反应平衡。已发现间苯二甲酸除了形成2,7-DCF之外也进行额外的消耗性反应,如下所述。另外,本发明者已发现,当在对-二甲苯部分氧化为TPA中设定适当范围的间-取代的芳族物质时存在其它问题要考虑。其它高显色的和不期望的杂质(如2,6-二羧酸芴酮(2,6-DCF))显示主要与溶解的、对-取代的芳族物质相关,该物质经常与液相氧化的对-二甲苯进料一起存在。由此,最好结合其它显色杂质的产生水平来考虑2,7-DCF的抑制。
例如,在对-二甲苯液相部分氧化为TPA中,本发明者已发现,偏苯三酸的形成随着反应介质之内的间苯二甲酸和邻苯二甲酸含量升高而上升。偏苯三酸为导致由TPA生产PET期间聚合物链支化的三官能羧酸。在许多种PET应用中,必须控制支化度到低水平,并且因此必须控制纯化的TPA中偏苯三酸到低水平。除了导致偏苯三酸之外,反应介质中的间-取代的和邻-取代的物质的存在也导致生成其它三羧酸(例如1,3,5-三羧基苯)。另外,反应介质中三羧酸的增加存在增加了四羧酸(例如1,2,4,5-四羧基苯)的形成量。控制具有两个以上羧酸基团的全部芳族羧酸的总产量是设定循环溶剂进料中、可氧化的化合物进料中、和根据本发明的反应介质中的间-取代的和邻-取代的物质的优选水平的一种因素。
例如,在对-二甲苯液相部分氧化为TPA中,本发明者已发现,反应介质液相中几种缺少非芳族烃基的溶解的芳族羧酸的含量增加直接导致一氧化碳和二氧化碳的产量增加。这种碳氧化物产量的增加表示氧化剂和可氧化的化合物二者的产率损失,后者因为许多种共同生成的芳族羧酸,其一方面可以看作杂质,另一方面也具有商业价值。由此,从循环溶剂中适当除去缺少非芳族烃基的相对可溶性羧酸在防止可氧化芳族化合物和氧化剂的产率损失方面具有经济价值,另外也抑制了非常不期望的杂质如各种芴酮和偏苯三酸的生成。
例如,在对-二甲苯液相部分氧化为TPA中,本发明者已发现,2,5,4’-三羧基联苯的形成似乎不可避免。2,5,4’-三羧基联苯为由两个芳环偶联形成的芳族三羧酸,可能由溶解的对-取代的芳族物质与芳基偶联,该芳基可能是由对-取代芳族物质的脱羧基作用或脱羰基作用而形成的芳基,。幸运地,2,5,4’-三羧基联苯通常在相对于偏苯三酸更低的水平下生成并且在生产PET期间通常不会导致与聚合物分子支化相关的困难显著增加。但是,本发明者已发现,根据本发明的优选实施方案,在包括烷基芳烃氧化的反应介质中2,5,4’-三羧基联苯的含量升高导致高显色的和不期望的2,6-DCF的含量升高。增加的2,6-DCF可能由2,5,4’-三羧基联苯通过闭环并失去水分子而形成,但是确切的反应机理并不确定。如果使2,5,4’-三羧基联苯(其相对于TPA更可溶于包含乙酸和水的溶剂)在循环溶剂之内聚积过高,2,6-DCF的转化速率可能变为不可接受地大。
例如,在对-二甲苯液相部分氧化为TPA中,本发明者已发现,当以足够浓度存在于液相中时,缺乏非芳族烃基的芳族羧酸(例如间苯二甲酸)通常导致反应介质化学反应性的轻微抑制。
例如,在对-二甲苯液相部分氧化为TPA中,本发明者已发现,对于固相和液相中不同化学物质的相对浓度来说沉淀经常是非理想的(即非平衡的)。可能,这是因为在本文中优选的空时反应速率下沉淀速率极快,导致不理想的杂质共同沉淀,或者甚至阻塞。由此,当期望限制粗制TPA之中的一些杂质(例如偏苯三酸和2,6-DCF)的浓度时,由于下游单元操作的结构,优选地控制溶剂进料中它们的浓度以及反应介质中它们的生成速率。
例如,本发明者已发现,在对-二甲苯部分氧化期间生成的二苯甲酮化合物(例如4,4’-二羧基二苯甲酮和2,5,4’-三羧基二苯甲酮)在PET反应介质中具有不期望的影响,即使二苯甲酮化合物在TPA中本质上不如芴酮和蒽醌那么高显色。因此,期望地在循环溶剂和可氧化的化合物进料中限制二苯甲酮的存在和选择前体。另外,本发明者已发现,高水平苯甲酸的存在,无论容纳于循环溶剂中或者形成于反应介质中,均导致4,4’-二羧基二苯甲酮的生成速率升高。
回顾一下,本发明者已发现和充分地量化了关于在对-二甲苯液相部分氧化为TPA中存在的缺少非芳族烃基的芳族化合物的意料不到的大批反应。只是扼要重述苯甲酸的单一情形,本发明者已发现,本发明一些实施方案的反应介质中苯甲酸水平升高导致高显色和不期望的9-芴酮-2-羧酸的生成大大增加,导致4,4’-二羧基联苯的水平大大增加,导致4,4’-二羧基二苯甲酮的水平增加,导致对-二甲苯期望的氧化的化学反应性稍微被抑制,和导致碳氧化物的水平升高以及附带的产率损失。本发明者已发现,反应介质中苯甲酸水平升高也导致间苯二甲酸和邻苯二甲酸的产量增加,根据本发明的类似方面其水平期望地控制在低范围内。涉及苯甲酸的反应的数量和重要性可能甚至更意料不到,因为一些最近的发明者预期使用苯甲酸来代替乙酸作为溶剂的主要组分(例如参见US6,562,997)。另外,本发明者已发现,在对-二甲苯氧化期间苯甲酸以相对于其由杂质(例如通常在包含商业纯度的对-二甲苯的可氧化的化合物进料中发现的甲苯和乙苯)的形成显著重要的速率自我生成。
另一方面,本发明者已发现了就可氧化芳族化合物的存在而言和就芳族反应中间体而言(二者均保留非芳族烃基并且也相对可溶于循环溶剂),对循环溶剂组成的额外控制具有很小的价值。通常来说,这些化合物以基本上大于它们存在于在循环溶剂中的速率进料到或者形成于反应介质之中;并且反应介质之中这些化合物的消耗速率足够大,保留一个或多个非芳族烃基,以适当地限制它们在循环溶剂之中的聚积。例如,在多相反应介质中的对-二甲苯的部分氧化期间,对-二甲苯与大量溶剂一起蒸发到有限的程度。当这种蒸发的溶剂作为一部分废气离开反应器并且冷凝回收作为循环溶剂时,绝大部分蒸发的对-二甲苯也在其中冷凝。不必要限制循环溶剂中这种对-二甲苯的浓度。例如,如果在浆料离开对-二甲苯氧化反应介质时从固体中分离溶剂,这种回收的溶剂将含有与从反应介质中除去的点的所表示的浓度相似的溶解的对-甲苯甲酸。虽然可能重要的是限制反应介质液相之中对-甲苯甲酸的静止浓度,参见下面,但是相对于反应介质之中对-甲苯甲酸的形成,由于其相对良好的溶解性和低的质量流速,不必要单独调节这部分循环溶剂中的对-甲苯甲酸。类似地,本发明者已发现几乎没有理由来限制具有甲基取代基的芳族化合物(例如甲苯甲酸)、芳族醛(例如对苯二甲醛)、具有羟基-甲基取代基的芳族化合物(例如4-羟甲基苯甲酸)、和含有至少一个非芳族烃基的溴代芳族化合物(例如α-溴-对-甲苯甲酸)在循环溶剂中的浓度低于从反应介质(根据本发明优选实施方案在二甲苯部分氧化中发生的)中离开的液相中固有存在的浓度。意料不到地,本发明者也已发现,也不必要调节循环溶剂中在二甲苯部分氧化期间固有生成的所选酚的浓度,因为这些化合物以大大高于它们在循环溶剂中的存在的速率在反应介质之中形成和破坏。例如,本发明者已发现,当以每1kg对-二甲苯超过2g4-羟基苯甲酸的速率共同进料时,在本发明的优选实施方案中,4-羟基苯甲酸相对少地影响化学反应性,所述进料速度大大高于循环溶剂中的自然存在,尽管其他人已报道为类似反应介质中的主要有害物(例如参见W.Partenheimer,CatalysisToday23(1995)第81页)。
由此,在设定现在所公开的溶剂进料中各种芳族杂质的优选范围中存在多种反应和多种考虑。这些发现根据在设定时间段期间、优选1天、更优选1小时、且最优选1分钟进料到反应介质的全部溶剂物流的总体重均组成来陈述。例如,如果一种具有40ppmw间苯二甲酸的组成的溶剂进料以7kg/min的流速基本上连续地流动,具有2000ppmw间苯二甲酸的组成的第二溶剂进料以10kg/min的流速基本上连续地流动,并且不存在进入反应介质的其它溶剂进料流,那么溶剂进料的总体重均组成计算为(40*7+2000*10)/(7+10)=1193ppmw间苯二甲酸。值得注意的是,在进入反应介质之前可能与溶剂进料混合的各种可氧化的化合物进料或者各种氧化剂进料的重量在计算溶剂进料的总体重均组成时不作考虑。
下面表1列出了引入反应介质的溶剂进料中一些组分的优选值。表1中所列的溶剂进料组分如下:4-羧基苯甲醛(4-CBA),4,4’-二羧基茋(4,4’-DCS),2,6-二羧基蒽醌(2,6-DCA),2,6-二羧基芴酮(2,6-DCF),2,7-二羧基芴酮(2,7-DCF),3,5-二羧基芴酮(3,5-DCF),9-芴酮-2-羧酸(9F-2CA),9-芴酮-4-羧酸(9F-4CA),包括未单独列出的其它芴酮的全部芴酮(全部芴酮),4,4’-二羧酸联苯(4,4’-DCB),2,5,4’-三羧基联苯(2,5,4’-TCB),邻苯二甲酸(PA),间苯二甲酸(IPA),苯甲酸(BA)、偏苯三酸(TMA),2,6-二羧基苯并香豆素(2,6-DCBC),4,4’-二羧基苯偶酰(4,4’-DCBZ),4,4’-二羧基二苯甲酮(4,4’-DCBP),2,5,4’-三羧基二苯甲酮(2,5,4’-TCBP),对苯二甲酸(TPA),在20℃下沉淀的固体,和缺少非芳族烃基的全部芳族羧酸。下面表1提供了根据本发明实施方案生成的CTA中这些杂质的优选量。
表1引入反应介质的溶剂进料的组分
循环溶剂中通常也存在多种其它芳族杂质,通常在甚至更低的水平和/或与一种或多种所公开的芳族化合物成比例地变化。用于控制所公开的芳族化合物在优选范围内的方法也通常保持其它芳族杂质在适当的水平。
当反应介质中使用溴时,已知大量的离子形式溴和有机形式溴处于动态平衡。这些多种形式的溴一旦离开反应介质并且通过各种和循环溶剂有关的单元操作后具有不同的稳定特性。例如,α-溴-对-甲苯甲酸可以在一些条件下同样地继续存在或者可以在其它条件下快速水解以形成4-羟基甲基苯甲酸和溴化氢。在本发明中,优选地在反应介质的总体溶剂进料中存在的溴的总质量中,至少约40wt%、更优选地至少约60wt%、且最优选地至少约80wt%为一种或多种下列化学形式:离子溴、α-溴-对-甲苯甲酸、和溴代乙酸。
虽然控制溶剂进料的总体重均纯度在本发明所公开的、期望的范围之内的重要性和价值迄今并未被发现和/或公开,但是用于控制溶剂进料纯度的适宜方法可以从本领域已知的多种方法中组配而成。首先,从反应介质中蒸发的任意溶剂通常具有适宜的纯度,前提是反应介质中的液体或固体没有被蒸发的溶剂夹带。将回流溶剂液滴进料到反应介质上方的废气脱离空间,如本文中所公开的那样,适当地限制了这种夹带;并且相对于芳族化合物来说适宜纯度的循环溶剂可以从这种废气中冷凝形成。其次,困难更大且成本更高的循环溶剂进料的纯化通常与从反应介质中以液体形式取出的溶剂和随后接触从反应容器中取出的反应介质的液相和/或固相(例如,从浓缩和/或洗涤固体的过滤器中获得的循环溶剂,从浓缩和/或洗涤固体的离心机中获得的循环溶剂,和从结晶操作中获得的循环溶剂,等等)的溶剂相关。但是,本领域中也公知用于采用一种或多种现有公开内容进行这些循环溶剂物流的必要纯化的方法。就控制循环溶剂中的沉淀固体在规定的范围之内而言,适宜的控制方法包括但并非限定于,重力沉降、在旋转带式过滤器和旋转桶式过滤器上使用滤布的机械过滤、采用位于压力容器内的静态过滤介质的机械过滤、水力旋流器、和离心机。就控制循环溶剂中溶解的芳族物质在规定的范围之内而言,控制方法包括、但并不限定于US专利4,939,297和US专利申请公报2005-0038288(在此引入作为参考)中所公开的那些。但是,这些现有发明中都没有发现和公开如本文中所公开的总体溶剂进料中纯度的优选水平。相反地,这些现有发明仅仅提供了纯化所选的部分循环溶剂物流的方法,并未推断出反应介质的总体重均溶剂进料组成的本发明的最佳值。
现在转向可氧化的化合物进料的纯度,公知的是,在用于聚合物生产的纯化TPA中存在一定水平的间苯二甲酸、邻苯二甲酸、和苯甲酸且在低水平下是可忍受的。另外,已知这些物质相对更溶于多种溶剂且可以有益地通过结晶工艺从纯化的TPA中除去。但是,从本文中所公开的本发明实施方案来看,现在已知在反应介质的液相中控制几种相对可溶的芳族物质(特别是包括间苯二甲酸、邻苯二甲酸、和苯甲酸)的水平,对于控制反应介质中形成的多环和显色芳族化合物的水平、对于控制每个分子具有多于2个羧酸官能团的化合物、对于控制部分氧化反应介质之内的反应活性、和对于控制氧化剂和芳族化合物的产率损失来说是令人吃惊地重要。
本领域中公知的是,在反应介质中形成了间苯二甲酸、邻苯二甲酸、和苯甲酸,如下所述。间-二甲苯进料杂质以良好转化率和产率被氧化成IPA。邻-二甲苯进料杂质以良好转化率和产率被氧化成邻苯二甲酸。乙苯和甲苯进料杂质以良好转化率和产率被氧化成苯甲酸。但是,本发明者已发现,大量的间苯二甲酸、邻苯二甲酸、和苯甲酸也通过间-二甲苯、邻-二甲苯、乙苯、和甲苯氧化之外的方式形成于包含对-二甲苯的反应介质之内。这些其它本质的化学路线可能包括脱羰基化、脱羧基化、过渡态的结构重组、和甲基与羰基加成到芳环上。
在确定可氧化的化合物进料中杂质的优选范围时,多种因素是相关的。如果氧化产物的纯度要求是相当严格的(例如,在用于部分氧化对-二甲苯的反应介质中,通常发现于工业纯对-二甲苯中的甲苯、和乙苯导致形成苯甲酸,并且这种苯甲酸大量地从大多数商业化的TPA中除去),那么进料中的任意杂质可能是直接的产率损失和产品纯化成本。当进料杂质的部分氧化产物参予另外的反应时,那么在考虑承受多少进料纯化成本时,简单的成本损失和去除之外的因素变为适宜的(例如,在用于部分氧化对-二甲苯的反应介质中,乙苯导致苯甲酸,并且苯甲酸随后导致高显色的9-芴酮-2-羧酸、导致间苯二甲酸、导致邻苯二甲酸、和导致增加的碳氧化物,及其他)。当反应介质通过与进料杂质不直接相关的化学机理自身形成额外量的杂质时,该分析变得仍更复杂(例如,在用于部分氧化对-二甲苯的反应介质中,苯甲酸也自身形成于对-二甲苯本身)。另外,粗制氧化产物的下游处理可以影响对于优选进料纯度的考虑。例如,去除直接杂质(苯甲酸)和随后杂质(间苯二甲酸、邻苯二甲酸、9-芴酮-2-羧酸等)到合适水平的成本可以是一种并且相同,可以是彼此不同,并且可以不同于将大大不相关的杂质(例如对-二甲苯氧化为TPA中的不完全氧化产物4-CBA)除去的要求。
下面公开的用于对-二甲苯的进料纯度范围为优选的,其中对-二甲苯与溶剂和氧化剂一起进料到反应介质中用于部分氧化以生产TPA。这些范围在具有用于从反应介质中除去氧化剂和溶剂之外的杂质(例如催化剂金属)的氧化后续步骤的TPA生产方法中是更优选的。这些范围在从CTA中除去额外的4-CBA的TPA生产方法中是仍更优选的(例如,通过CTA转化为对苯二甲酸二甲酯和杂质酯并且随后通过蒸馏分离4-CBA的甲酯,通过氧化蒸煮法将4-CBA转化为TPA,通过氢化方法将4-CBA转化为对-甲苯甲酸,其随后通过部分结晶方法来分离)。这些范围在通过氧化蒸煮法将4-CBA转化为TPA而从CTA中除去额外的4-CBA的TPA生产方法中是最优选的。
通过在循环芳族化合物的优选范围以及直接由进料杂质氧化形成的芳族化合物(和其它固有的化学路线相比)的相对量方面的新知识,已发现了对于进料到TPA生产的部分氧化工艺中的不纯对-二甲苯而言改进的杂质范围。下面表2提供了对-二甲苯进料中间-二甲苯、邻-二甲苯、和乙苯+甲苯量的优选值,表示为对-二甲苯的ppmw。
表2-不纯对-二甲苯进料的组分
本领域技术人员现在意识到,不纯对-二甲苯中的以上杂质可以在它们的部分氧化产物在循环溶剂中聚集之后对反应介质具有最大的影响。例如,当在反应介质中具有约33wt%固体下操作时,进料最优选范围上限量的间-二甲苯,400ppmw,将在反应介质的液相中立即生成约200ppmw间苯二甲酸。将这与间苯二甲酸在循环溶剂中最优选范围的上限量输入(400ppmw)进行比较,在经历通常的溶剂蒸发以使反应介质冷却之后,所述400ppmw导致在反应介质的液相内达到约1200ppmw的间苯二甲酸。由此,随着时间的推移部分氧化产物在循环溶剂之内的聚集表现了不纯对-二甲苯进料中间-二甲苯、邻-二甲苯、乙苯、和甲苯杂质的最大可能的影响。由此,不纯对-二甲苯进料中杂质的上述范围对于在特定制备单元中任意部分氧化反应介质的每天操作而言优选保持至少半天,更优选地对于至少7天连续操作而言保持至少四分之三每天,最优选地对于至少30天连续操作而言不纯对-二甲苯进料组合物的质量加权平均值(mass-weightedaverage)落在优选范围之内。
用于获得优选纯度的不纯对-二甲苯的方法是现有技术中已知的并且包括但并不限定于蒸馏,在亚室温下部分结晶法,和使用选择性孔径吸附的分子筛法。但是,本文中所规定的纯度优选范围,在它们的高端,比对-二甲苯的商业供应商的特征实践更要求更高和更昂贵;然而在它们的低端,优选范围避免了为了进料到部分氧化反应介质中而对对-二甲苯的高成本纯化,这是由于发现和公开了对-二甲苯自身中的杂质自身形成和反应介质内的杂质消耗反应的组合效果变得比不纯对-二甲苯之内杂质进料速率更重要。
当含二甲苯的进料物流含有所选的杂质(如乙苯和/或甲苯)时,这些杂质的氧化可以生成苯甲酸。本文中所使用的术语“杂质生成的苯甲酸”表示在二甲苯氧化期间衍生自二甲苯之外的任意原料的苯甲酸。
如本文中所公开的那样,一部分二甲苯氧化期间生成的苯甲酸衍生自二甲苯本身。除了可能是杂质生成的苯甲酸的任意部分苯甲酸生成之外,这种由二甲苯生成苯甲酸是独立的。不受理论限制,认为是当各种二甲苯的中间氧化产物自发地脱羰基化(失去一氧化碳)或脱羧基化(失去二氧化碳)以由此生成芳基时,苯甲酸衍生自反应介质之内的二甲苯。这些芳基可以随后从反应介质中多种可获得的原料之一中提取氢原子并且形成自身生成的苯甲酸。不论化学机理如何,本文中所使用的术语“自身生成的苯甲酸”将表示在二甲苯氧化期间衍生自二甲苯的苯甲酸。
另外如本文中所公开的那样,当对-二甲苯氧化生成对苯二甲酸(TPA)时,自身生成的苯甲酸的形成导致对-二甲苯产率损失和氧化剂产率损失。另外,反应介质液相中自身生成的苯甲酸的存在与多种不期望的副反应的增加相关,特别包括称为单-羧基-芴酮的高显色化合物的生成。自身生成的苯甲酸也有助于循环溶剂中苯甲酸不期望的聚集,其进一步提高了反应介质液相中苯甲酸的浓度。由此,自身形成的苯甲酸的形成期望最小化,但是也同时与杂质生成的苯甲酸、影响苯甲酸消耗的因素、和反应选择性的其它问题有关的因素、和整体经济性一起进行适当地考虑。
本发明者已发现,苯甲酸的自生成可以通过适当选择例如氧化期间反应介质之内的温度、二甲苯分布、和氧获得性来控制到低水平。不希望受理论限制,较低温度和改进的氧获得性显示抑制脱羰基化和/或脱羧基化速率,由此避免了关于自身生成苯甲酸的产率损失。充足的氧获得性似乎将芳基推向形成其它更有利的产物,特别是羟基苯甲酸。反应介质中二甲苯的分布也可以影响芳基转化为苯甲酸或羟基苯甲酸之间的平衡。无论化学机理如何,本发明者已发现反应条件虽然温和得足以降低苯甲酸产量,但是仍剧烈到足以将大部分羟基苯甲酸产量氧化为一氧化碳和/或二氧化碳(其容易从氧化产物中除去)。
在本发明的优选实施方案中,氧化反应器以这样的方式来构造和操作,即使得自身生成的苯甲酸的形成最小化并且羟基苯甲酸氧化为一氧化碳和/或二氧化碳最大化。当氧化反应器被用于将对-二甲苯氧化为对苯二甲酸时,优选地,对-二甲苯占引入反应器的进料流中全部二甲苯的至少约50wt%。更优选地,对-二甲苯占进料物流中全部二甲苯的至少约75wt%。仍更优选地,对-二甲苯占进料物流中全部二甲苯的至少95wt%。最优选地,对-二甲苯基本上构成全部进料物流中的所有二甲苯。
当反应器被用于将对-二甲苯氧化为对苯二甲酸时,优选地使对苯二甲酸的生产速率最大化,同时使自身生成的苯甲酸的生产速率最小化。优选地,对苯二甲酸的生产速率(重量)与自身生成的苯甲酸的生成速率(重量)之比为至少约500:1,更优选地至少约1000:1,且最优选地至少1500:1。如下将看到的那样,优选在反应介质液相中苯甲酸的浓度低于2000ppmw、更优选地低于1000ppmw、且最优选地低于500ppmw时,测量自身生成的苯甲酸的生产速率,因为这些低浓度将苯甲酸转化为其它化合物的反应抑制到适宜的低速率。
结合自身生成的苯甲酸和杂质生成的苯甲酸,对苯二甲酸的生产速率(重量)与全部苯甲酸(自身生成的和杂质生成的)的生产速率(重量)之比优选地为至少约400:1,更优选地至少约700:1,且最优选地至少1100:1。如下将看到的那样,优选在反应介质液相中苯甲酸的浓度低于500ppmw时,测量自身生成的苯甲酸加上杂质生成的苯甲酸的总生产速率,因为这些低浓度将苯甲酸转化为其它化合物的反应抑制到适宜的低速率。
如本文中所公开的那样,反应介质的液相中升高浓度的苯甲酸导致多种其它芳族化合物的形成增加,其中几种为TPA中的有害杂质;并且,如本文中所公开的那样,反应介质的液相中升高浓度的苯甲酸导致碳氧化物气体的形成增加,其形成代表了氧化剂和芳族化合物和/或溶剂的产率损失。另外,现在公开的是,本发明者已发现,相当大部分这种增加的其它芳族化合物和碳氧化物的形成是衍自一些苯甲酸分子本身转化的反应,这和苯甲酸催化其它反应(苯甲酸自身不消耗)不同。因此,“苯甲酸的净生成”在本文中定义为相同时间段期间全部离开反应介质的苯甲酸的时间平均重量减去全部进入反应介质的苯甲酸的时间平均重量。这种苯甲酸的净生成经常是正的,其受制于杂质生成的苯甲酸和自身生成的苯甲酸的形成速率。但是,本发明者已发现,苯甲酸转化为碳氧化物、和转化为几种其它化合物的转化速率随着反应介质的液相中苯甲酸浓度增加而近似线性增加,其中在包括温度、氧获得性、STR、和反应活性的其它反应条件保持近似恒定时测量。由此,当反应介质的液相中苯甲酸浓度足够大时(可能由于循环溶剂中苯甲酸浓度升高),那么苯甲酸分子转化为其它化合物(包括碳氧化物)可以变为等于或大于新苯甲酸分子的化学生成。此时,苯甲酸的净生成可以变为平衡地接近于零或者甚至负值。本发明者已发现,苯甲酸的净生成为正时,那么反应介质中对苯二甲酸的生产速率(重量)相对于反应介质中苯甲酸的净生成速率之比优选地高于约700:1,更优选地高于约1100:1,且最优选地高于4000:1。本发明者已发现,当苯甲酸的净生成为负时,反应介质中对苯二甲酸的生产速率(重量)相对于反应介质中苯甲酸的净生成速率之比优选地高于约200:(-1),更优选地高于约1000:(-1),且最优选地高于5000:(-1)。
本发明者也已发现了对于从反应介质中取出的浆料(液体+固体)的组成和对于该浆料的固体CTA部分的优选范围。该优选的浆料和优选的CTA组成是令人吃惊地优异且有用的。例如,通过氧化蒸煮从该优选的CTA中制得的纯化TPA具有充分低水平的总杂质和显色杂质,使得该纯化TPA对于PET纤维中的多种应用和PET包装应用是适宜的,无需氢化额外的4-CBA和/或显色杂质。例如,优选的浆料组成提供了重要杂质浓度相对低的反应介质的液相,这样重要地降低了其它甚至更加不期望的杂质(如本文中所描述的那些)的形成。另外,根据本发明的其它实施方案,优选的浆料组成重要地有助于随后处理来自浆料的液体,以变为适宜纯度的循环溶剂实施方案。
依据本发明一种实施方案生产的CTA含有少于通过传统方法和设备生产的CTA的所选类型杂质,特别是采用了循环溶剂的那些。可以存在于CTA中的杂质包括下列:4-羧基苯甲醛(4-CBA),4,4’-二羧基茋(4,4’-DCS),2,6-二羧基蒽醌(2,6-DCA),2,6-二羧基芴酮(2,6-DCF),2,7-二羧基芴酮(2,7-DCF),3,5-二羧基芴酮(3,5-DCF),9-芴酮-2-羧酸(9F-2CA),9-芴酮-4-羧酸(9F-4CA),全部芴酮,其包括其它未单独列出的芴酮(全部芴酮)、4,4’-二羧基联苯(4,4’-DCB)、2,5,4’-三羧基联苯(2,5,4’-TCB)、邻苯二甲酸(PA)、间苯二甲酸(IPA)、苯甲酸(BA)、偏苯三酸(TMA)、对-甲苯甲酸(PTAC)、2,6-二羧基苯并香豆素(2,6-DCBC)、4,4’-二羧基苯偶酰(4,4’-DCBZ)、4,4’-二羧基二苯甲酮(4,4’-DCBP)、2,5,4’-三羧基二苯甲酮(2,5,4’-TCBP)。下面表3提供了依据本发明实施方案生产的CTA中这些杂质的优选量。
表3-CTA杂质
另外,优选地,依据本发明实施方案生产的CTA具有相对于通过传统方法和设备生产的CTA更低的颜色含量,特别是采用循环溶剂的那些。由此,优选地,依据本发明一种实施方案生产的CTA在340nm处的百分比透射率为至少约25%,更优选地至少约50%,且最优选地至少60%。另外优选地,依据本发明一种实施方案生产的CTA在400nm处的百分比透射率为至少约88%,更优选地至少约90%,且最优选地至少92%。
用于百分比透射率的测试提供了对存在于TPA或CTA中的显色的、吸光杂质的测量。如本文中所使用的那样,该测试表示在通过将2.00g干燥固体TPA或CTA溶解于20.0毫升分析纯或更好的二甲基亚砜(DMSO)制得的一部分溶液上进行测量。随后将一部分该溶液置于Hellma半-显微流槽(semi-micro flow cell),PN 176.700中,其由石英制成并且光程为1.0cm和体积为0.39毫升。(Hellma USA,80Skyline Drive,Plainview,NY 11803)。使用Agilent 8453二极管阵列分光光度计来测量通过该填充的流槽的不同波长光的透射率。(Agilent Technologies,395Page Mill Road,Palo Alto,CA94303)。在对背景吸收进行适当修正之后(所述背景包括但并不限定于所用的流槽和溶剂),通过机器直接报道百分比透射率结果,用于表征透过溶液的入射光的份数。在340nm和400nm光波长下的百分比透射率值特别适用于从多种通常在其中发现的杂质中鉴别纯TPA。
下面表4中提供了反应介质的浆料(固体+液体)相中多种芳族杂质的优选范围。
表4-浆料杂质
这些浆料的优选组成体现了反应介质液相的优选组成,同时有用地避免了和下述情况有关的实验上的困难:所述情况即为在从反应介质中取样、分离液体和固体、以及转变到分析条件的过程中另外的液相组分从反应介质中沉淀成固相组分。
反应介质的浆料相中和反应介质的CTA中也通常存在多种其它芳族杂质,通常在甚至更低水平下和/或与一种或多种所公开的芳族化合物成比例地变化。控制所公开的芳族化合物在优选范围之内将保持其它芳族杂质在适当水平。对于反应介质中浆料相和对于从该浆料中直接获得的固体CTA而言,这些有利组成通过用本文中所公开的用于将对-二甲苯部分氧化为TPA的本发明实施方案的操作来获得。
采用液相色谱法测量溶剂、循环溶剂、CTA、来自反应介质的浆料和PTA中低水平组分的浓度。现在描述两种可互换的实施方案。
本文中称为HPLC-DAD的方法包括与二极管阵列传感器(DAD)耦合的高压液相色谱(HPLC),由此提供给定试样中各种分子物质的分离和量化。用于该测量的设备为型号1100HPLC,其装配有DAD,由AglientTechnologies(PaloAlto,CA)提供,但是其它适宜设备也可以从其它供应商那里商购获得。如本领域中公知的那样,使用以已知量存在的已知化合物来校正洗脱时间和检测器响应,所述化合物和用量对在实际未知试样中存在的那些而言是合适的。
本文中称为HPLC-MS的方法包括与质谱(MS)耦合的高压液相色谱(HPLC),由此提供给定试样中各种分子物质的分离、鉴别和量化。用于该测量的设备为由Waters Corp.(Milford,MA)提供的Alliance HPLC和ZQ MS,但是其它适宜设备也可以从其它供应商那里商购获得。如本领域中公知的那样,使用以已知量存在的已知化合物来校正洗脱时间和质谱响应,其中所述化合物和用量对在实际未知试样中存在的那些而言是合适的。
本发明另一实施方案涉及部分氧化芳族可氧化的化合物,同时在一方面对有害芳族杂质的抑制和另一方面二氧化碳与一氧化碳(统称为碳氧化物(COx))的形成之间进行适当地平衡。这些碳氧化物通常在废气中离开反应容器,并且它们对应于溶剂和可氧化的化合物的破坏性损失,所述可氧化的化合物包括极优选的氧化衍生物(例如乙酸、对-二甲苯、和TPA)。本发明者已发现了碳氧化物形成的下限,低于该下限时其似乎大量生成有害芳族杂质,如下所述,并且低的总体转化水平必然太差以至于无经济实用性。本发明者也已发现了碳氧化物的上限,高于该上限时碳氧化物的生成继续增加,同时几乎没有了由有害芳族杂质减少生成所带来的进一步价值。
本发明者已发现,降低反应介质中芳族可氧化的化合物进料和芳族中间体物质的液相浓度导致在部分氧化芳族可氧化的化合物期间有害杂质的生成速率更低。这些有害杂质包括偶联芳环和/或含有高于期望数量的羧酸基团的芳族分子(例如,在对-二甲苯的氧化中,有害杂质包括2,6-二羧基蒽醌、2,6-二羧基芴酮、偏苯三酸、2,5,4’-三羧基联苯、和2,5,4’-二苯甲酮)。芳族中间体物质包括起源于可氧化芳族化合物进料且仍含有非芳族烃基的芳族化合物(例如,在对-二甲苯的氧化中,芳族中间体物质包括对-甲苯甲醛、对苯二甲醛、对-甲苯甲酸、4-CBA、4-羟基甲基苯甲酸、和α-溴-对-甲苯甲酸)。保留非芳族烃基的芳族可氧化的化合物进料和芳族中间体,当存在于反应介质的液相中时,显示以类似于本文中对于缺少非芳族烃基的溶解芳族物质已描述的方式导致形成有害杂质(例如,间苯二甲酸)。
比照这种对于较高反应活性的需求以抑制部分氧化可氧化芳族化合物期间有害芳族杂质的形成,本发明者已发现,不期望的附带结果是碳氧化物的生产增加。重要理解的是,这些碳氧化物代表了可氧化的化合物和氧化剂的产率损失,并非仅仅只是溶剂的损失。明确地,大部分和有时主要部分的碳氧化物来自可氧化的化合物、和其衍生物,并非来自溶剂;并且经常按每个碳单元计算可氧化的化合物比溶剂成本更多。另外,重要理解的是,当存在于反应介质的液相中时,期望的产物羧酸(例如TPA)也发生过氧化以成为碳氧化物。
同样重要的是意识到本发明涉及反应介质液相中的反应和其中的反应物浓度。这点与一些现有发明不同,这些现有发明直接涉及形成保留非芳族烃基的芳族化合物的沉淀固体形式。具体地,对于对-二甲苯部分氧化为TPA而言,一些现有发明涉及在CTA固相中沉淀的4-CBA的量。但是,本发明人已发现了采用相同规格的温度、压力、催化、溶剂组成和对-二甲苯的时空反应速率,固相中4-CBA与液相中4-CBA之比大于2:1的变化,取决于是否该部分氧化在良好混合的高压釜中或者依据本发明在具有氧和对-二甲苯分级的反应介质中进行。另外,本发明者已发现,在相似规格的温度、压力、催化和溶剂组成下,固相中4-CBA与液相中4-CBA的比值也可以在良好混合的或分级的反应介质中变化高于2:1,取决于对-二甲苯的时空反应速率。另外,固相CTA中4-CBA并不显示有助于有害杂质的形成,并且固相中的4-CBA可以回收并且简单地以高产率氧化成TPA(例如,如本文中所述,通过氧化蒸煮CTA浆料);但是除去有害杂质比除去固相4-CBA更加困难和成本更高得多,并且碳氧化物的生成代表了永久性的产率损失。由此,重要区别的是,本发明的该方面涉及反应介质中的液相组成。
无论源于溶剂或者可氧化的化合物,本发明者已发现,在具有商业实用性的转化下,碳氧化物的生产主要与整体反应活性的水平相关,尽管在用于获得整体反应活性水平的温度、金属、卤素、温度、通过pH测量的反应介质的酸度、水浓度的具体组合有宽的变化。本发明者已发现了使用在反应介质中部高度、反应介质底部、和反应介质顶部的甲苯甲酸的液相浓度来评价整体反应活性水平,对二甲苯的部分氧化而言是有用的。
由此,如下的同时平衡是很重要的:通过增加反应活性使有害物质的形成最小化以及通过降低反应活性使碳氧化物的形成最小化。即,如果碳氧化物的整体生产被抑制过低,那么形成过量的有害物质,反之亦然。
另外,本发明者已发现,期望的羧酸(例如TPA)的溶解性和相对反应性与其它缺少非芳族烃基的溶解的芳族物质的存在在这种碳氧化物对有害杂质的平衡中引入了非常重要的支点。期望的产物羧酸通常溶解于反应介质的液相中,甚至当以固体形式存在时。例如,在优选范围的温度下,TPA以范围为约1000ppmw-高于1wt%的水平溶解于包含乙酸和水的反应介质中,溶解度随温度增加而增加。尽管在由可氧化芳族化合物进料(例如对-二甲苯)、由芳族反应中间体(例如对-甲苯甲酸)、由期望的产物芳族羧酸(例如TPA)、和由缺少非芳族烃基的芳族物质(例如间苯二甲酸)形成各种有害杂质的反应速率中存在差别,但是后两类的存在和反应性建立了对于进一步抑制前两类(芳族可氧化的化合物进料和芳族反应中间体)而言的回落区(a region of diminishing returns)。例如,在对-二甲苯部分氧化为TPA中,如果在给定条件下反应介质液相中溶解的TPA总计7000ppmw,溶解的苯甲酸总计8000ppmw,溶解的间苯二甲酸总计6000ppmw,和溶解的邻苯二甲酸总计2000ppmw,那么当反应活性增加到将对-甲苯甲酸和4-CBA液相浓度抑制低于类似水平时,所述为了进一步降低全部有害化合物而言的值开始减小。即,缺少非芳族烃基的芳族物质在反应介质的液相中的存在和浓度通过增加反应活性发生非常小地改变,并且它们的存在用来向上扩大用于降低反应中间体浓度的回落区,由此抑制有害杂质的形成。
由此,本发明的一种实施方案提供了碳氧化物(一氧化碳和二氧化碳)的优选范围,下限由低反应活性和有害杂质的过量形成界定且上限由过量碳损失界定,但是所述水平低于先前发现的且商用公开的那些。因此,优选地如下控制碳氧化物的形成。生成的全部碳氧化物的摩尔量与可氧化芳族化合物进料的摩尔量之比优选地约0.02:1-约0.25:1,更优选地约0.04:1-约0.22:1,仍更优选地约0.05:1-约0.19:1,且最优选地0.06:1-0.15:1。生成的二氧化碳的摩尔量与可氧化芳族化合物进料的摩尔量之比优选地约0.01:1-约0.21:1,更优选地约0.03:1-约0.19:1,仍更优选地约0.04:1-0.16:1,且最优选地0.05:1-0.11:1。生成的一氧化碳的摩尔量与可氧化芳族化合物进料的摩尔量之比优选地约0.005:1-约0.09:1,更优选地约0.010:1-约0.07:1,仍更优选地约0.015:1-约0.05:1,且最优选地0.020:1-0.04:1。
氧化反应器的干燥废气中二氧化碳的含量优选地约0.10mol%-约1.5mol%,更优选地约0.20mol%-约1.2mol%,仍更优选地约0.25mol%-约0.9mol%,且最优选地0.30mol%-0.8mol%。氧化反应器的干燥废气中一氧化碳的含量优选地约0.05mol%-约0.60mol%,更优选地约0.10mol%-约0.50mol%,仍更优选地约0.15mol%-约0.35mol%,且最优选地0.18mol%-0.28mol%。
本发明者已发现,用于将碳氧化物的产量降低到这些优选范围的重要因素是改进循环溶剂和可氧化的化合物进料的纯度,以依据本发明的公开内容降低缺少非芳族烃基的芳族化合物的浓度——这样同时降低了碳氧化物和有害物质的形成。另一因素是根据本发明地公开内容改进反应容器之内对-二甲苯和氧化剂的分布。能实现碳氧化物的上述优选水平的其它因素是,在如本文中所公开那样在反应介质中存在的温度梯度、压力梯度、液相中可氧化的化合物的浓度梯度、和气相中氧化剂梯度下进行操作。能实现碳氧化物的上述优选水平的其它因素是,在本文中在时空反应速率、压力、温度、溶剂组成、催化剂组成、和反应容器机械几何形状的优选值下进行操作。
在碳氧化物形成的优选范围之内操作的一个可能的益处在于可以降低分子氧的使用,但是并非降低到化学计量值。尽管依据本发明使氧化剂和可氧化的化合物良好分级,但是必须使过量的氧保持高于化学计量值,如同对于单独可氧化的化合物进料所计算的那样,由此容许一些损失成碳氧化物和提供过量的分子氧来控制有害杂质的形成。具体在二甲苯为可氧化的化合物进料时,分子氧重量与二甲苯重量的进料之比优选地约0.9:1-约1.5:1,更优选地约0.95:1-约1.3:1,且最优选地1:1-1.15:1。具体地对于二甲苯进料来说,氧化反应器的干燥废气中分子氧的时间平均含量优选地约0.1mol%-约6mol%,更优选地约1mol%-约2mol%,且最优选地1.5mol%-3mol%。
在碳氧化物形成的优选范围之内操作的另一可能的益处在于较少的芳族化合物被转化为碳氧化物和其它低价值形式。采用在连续段时间、优选1小时、更优选1天、且最优选30连续天之内全部离开反应介质的芳族化合物的摩尔量总和除以全部进入反应介质的芳族化合物的摩尔量总和来评价该益处。该比值下文中称为芳族化合物通过反应介质的“摩尔生存比”且表示为数值百分数。如果全部进入的芳族化合物以芳族化合物形式离开反应介质(虽然大部分为进入的芳族化合物的氧化形式),那么摩尔生存比的最大值为100%。如果正好每100个进入的芳族分子的1个在通过反应介质时被转化为碳氧化物和/或其它非芳族分子(例如乙酸),那么摩尔生存比为99%。具体在二甲苯为可氧化芳族化合物的主要进料时,通过反应介质的芳族化合物的摩尔生存比优选地约98%-约99.9%,更优选地约98.5%-约99.8%,且最优选地99.0%-99.7%。
本发明的另一方面涉及在包含乙酸和一种或多种可氧化芳族化合物的反应介质中生产乙酸甲酯。该乙酸甲酯相对于水和乙酸挥发性更高且由此倾向于跟随废气,除非在将废气释放回环境中之前采用额外的冷却或其它单元操作将其回收和/或将其破坏。乙酸甲酯的形成由此代表了操作成本以及投资成本。可能地,乙酸甲酯如下来形成:首先将甲基(可能来自乙酸的分解)与氧结合以生成甲基氢过氧化物,随后分解形成甲醇,并且最后使生成的甲醇与剩余乙酸反应以生成乙酸甲酯。无论化学路径如何,本发明者已发现,无论何时乙酸甲酯生产速率过低,那么碳氧化物的生产也过低且有害芳族杂质的生产过高。如果乙酸甲酯生产速率过高,那么碳氧化物的生产也不必要地高,导致溶剂、可氧化的化合物和氧化剂的产率损失。当采用本文中所述优选实施方案时,生成的乙酸甲酯的摩尔量与可氧化芳族化合物进料的摩尔量的生成比优选地约0.005:1-约0.09:1,更优选地约0.01:1-约0.07:1,且最优选地0.02:1-0.04:1。
当二氧化碳、一氧化碳、其总和和/或乙酸甲酯的产生在本文中所公开的优选范围以下时,或者当芳族化合物的摩尔生存比在本文中所公开的优选范围以上时,反应活性应当被提高或者STR应当被降低。在本文中所公开的优选范围内,一种活性加速剂是升高的温度。另一活性加速剂是提高的催化活性,如由催化性的化学试剂和溶剂的混合物提供的。通常,提高钴和/或溴浓度将促进反应活性,如果这些物质在本文中的优选范围内使用的话。在其它催化剂组分和水的反应介质内调节浓度还可以用于促进反应活性。通过降低可氧化的化合物的进料速率和/或通过提高反应介质的体积,降低了STR。
当二氧化碳、一氧化碳、其总和和/或乙酸甲酯的产生在本文中所公开的优选范围以上时,和/或当芳族化合物的摩尔生存比本文中所公开的优选范围以下时,优选的控制作用包括上述作用的反作用,其同样在本文中所公开的优选范围内。本发明人注意到特别有益的是将STR尽可能地提高到本文中的范围内,同时保持氧化的优良品质,如通过CTA和反应介质中的有害杂质所测量的。本发明人还注意到难以在这样高的STR下保持氧化的这种品质并且对于以下方面需要非常小心注意:当进入反应介质时的进料分散,遍及反应介质的充气品质,从反应介质离开时的脱气,遍及反应介质的氧气-STR和溶解氧,离开反应介质的过度氧化剂,令人期望的氧气-STR的空间梯度,令人期望的可氧化的化合物浓度的空间梯度,令人期望的氧化剂浓度的空间梯度,塔顶压力,令人期望的压力的空间梯度,和在反应介质的中等高度处的优选温度,并且如全部本文中所公开的。此外进一步并且为获得更低的二氧化碳、一氧化碳和/或其总和和/或为提高芳族化合物的摩尔生存比,本发明已经发现有益的是在反应介质中抑制缺乏非芳族烃基基团的可溶性芳族化合物(例如间苯二甲酸、邻苯二甲酸和苯甲酸)的浓度;这种抑制可以通过,特别地在对于如本文中所公开的每一个的优选范围内,使用更纯的可氧化的化合物的进料和/或更纯的溶剂来实现。
在本文中公开的优选的STR下,在连续将对二甲苯氧化成对苯二甲酸的反应介质中,优选地,反应介质的液相中的对甲苯甲酸的量被保持在约200-约10,000ppmw,更优选地约800-约8,000ppmw和最优选地1,600-6,000ppmw。此外,在反应介质中对二甲苯至对苯二甲酸的转化率优选地被保持在高于约50mol%,更优选地高于约90mol%,更优选地高于约95mol%,和最优选地高于97mol%。
在本发明的一个实施方案中,优选地,本文中所公开的操作参数(包括数值量化的操作参数)中的一个或多个被保持达工业上显著的时间周期。优选地,根据上述操作参数中的一个或多个的操作被保持达至少约1小时,更优选地,至少约12小时,更加优选地至少约36小时,和最优选地至少96小时。因此,除非本文中另有陈述,本文中所述的操作参数意图适用于稳态、优化/工业操作——非启动、停车或子优化操作。
本发明人注意到,对于本文中所提供的全部数值范围,所述范围的上下端点可以是彼此独立的。例如,数值范围10-100是指大于10和/或小于100。因此,10-100的范围为大于10(无上限)的权利要求限定、小于100(无下限)的权利要求限定以及整个10-100范围(具有上下限)提供了支持。此外,当使用术语“约”来修饰数值时,应当理解的是在一个实施方案中,所述数值是精确的数值。
本发明已特别地参照其优选实施方案进行了描述,但是将理解的是,在本发明的精神和范围之内可以实现各种变化和改变。
Claims (10)
1.一种用于制造多元羧酸组合物的方法,所述方法包括:
(a)使多相反应介质在初级氧化反应器中进行氧化,从而生产出第一浆料;和
(b)使所述第一浆料的至少一部分在次级氧化反应器中进一步氧化,其中所述次级氧化反应器是鼓泡塔反应器。
2.权利要求1所述的方法,还包括将芳族化合物引入到所述初级氧化反应器中,其中被引入所述初级氧化反应器的芳族化合物的至少约80重量在所述初级氧化反应器中氧化。
3.权利要求2所述的方法,其中所述芳族化合物是对二甲苯。
4.权利要求1所述的方法,其中步骤(b)包括氧化存在于所述第一浆料之中的对甲苯甲酸。
5.权利要求4所述的方法,还包括从所述次级氧化反应器排出第二浆料,其中在第二浆料液相中对甲苯甲酸的时均浓度小于第一浆料液相中对甲苯甲酸的时均浓度的约50%。
6.权利要求5所述的方法,其中在第一浆料液相中对甲苯甲酸的时均浓度至少为约500ppmw,其中第二浆料液相中对甲苯甲酸的时均浓度小于约250ppmw。
7.权利要求1所述的方法,其中所述初级氧化反应器是鼓泡塔反应器。
8.权利要求1所述的方法,其中所述次级氧化反应器位于所述初级氧化反应器之外。
9.权利要求8所述的方法,其中所述次级氧化反应器的至少一部分位于所述初级氧化反应器旁边。
10.一种反应器系统,包括:
初级氧化反应器,其限定了第一入口和第一出口;和
次级氧化反应器,其限定了第二入口和第二出口,其中所述第一出口以流体连通的方式连接于所述第二入口,其中所述次级氧化反应器是鼓泡塔反应器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/366005 | 2006-03-01 | ||
US11/366,005 US20070208194A1 (en) | 2006-03-01 | 2006-03-01 | Oxidation system with sidedraw secondary reactor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007800074499A Division CN101394923A (zh) | 2006-03-01 | 2007-02-16 | 使用用于提高水动力学的内部结构的氧化系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104649886A true CN104649886A (zh) | 2015-05-27 |
Family
ID=38294018
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007800074499A Pending CN101394923A (zh) | 2006-03-01 | 2007-02-16 | 使用用于提高水动力学的内部结构的氧化系统 |
CN201410838165.6A Pending CN104649886A (zh) | 2006-03-01 | 2007-02-16 | 使用用于提高水动力学的内部结构的氧化系统 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007800074499A Pending CN101394923A (zh) | 2006-03-01 | 2007-02-16 | 使用用于提高水动力学的内部结构的氧化系统 |
Country Status (12)
Country | Link |
---|---|
US (3) | US20070208194A1 (zh) |
EP (1) | EP1988989A1 (zh) |
JP (1) | JP2009528350A (zh) |
KR (1) | KR101409133B1 (zh) |
CN (2) | CN101394923A (zh) |
BR (1) | BRPI0708435A2 (zh) |
CA (1) | CA2643523A1 (zh) |
MX (1) | MX2008010936A (zh) |
MY (1) | MY162520A (zh) |
RU (1) | RU2457197C2 (zh) |
TW (1) | TW200740745A (zh) |
WO (1) | WO2007106289A1 (zh) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8189042B2 (en) * | 2006-12-15 | 2012-05-29 | Pollack Laboratories, Inc. | Vision analysis system for a process vessel |
US8254657B2 (en) * | 2007-01-08 | 2012-08-28 | Pollack Laboratories, Inc. | Image recognition and analysis system and software |
CN101143811B (zh) * | 2007-09-29 | 2010-06-23 | 中国石化仪征化纤股份有限公司 | 利用鼓泡塔氧化反应器生产芳香酸的方法 |
US8936767B2 (en) * | 2010-01-29 | 2015-01-20 | Grupo Petrotemex. S.A. de C.V. | Oxidation system with sidedraw secondary reactor |
US8968686B2 (en) * | 2010-01-29 | 2015-03-03 | Grupo Petrotemex, S.A. De C.V. | Oxidation system with sidedraw secondary reactor |
US8790601B2 (en) * | 2010-01-29 | 2014-07-29 | Grupo Petrotemex, S.A. De C.V. | Oxidation system with sidedraw secondary reactor |
US9849434B2 (en) * | 2010-09-22 | 2017-12-26 | Grupo Petrotemex, S.A. De C.V. | Methods and apparatus for enhanced gas distribution |
US8697905B2 (en) | 2011-12-29 | 2014-04-15 | Uop Llc | Process for producing terephthalic acid |
US9156765B2 (en) | 2011-12-29 | 2015-10-13 | Uop Llc | Process for oxidizing alkyl-aromatic compounds |
US9150484B2 (en) | 2011-12-29 | 2015-10-06 | Uop Llc | Process for producing terephthalic acid |
US9045408B2 (en) | 2011-12-29 | 2015-06-02 | Uop Llc | Process for oxidizing alkyl-aromatic compounds |
US8927764B2 (en) | 2011-12-29 | 2015-01-06 | Uop Llc | Process for producing terephthalic acid |
US9085522B2 (en) | 2011-12-29 | 2015-07-21 | Uop Llc | Process for producing terephthalic acid |
US8759571B2 (en) | 2011-12-29 | 2014-06-24 | Uop Llc | Process for oxidizing alkyl-aromatic compounds |
US9024059B2 (en) | 2011-12-29 | 2015-05-05 | Uop Llc | Process for producing terephthalic acid |
US9359251B2 (en) | 2012-02-29 | 2016-06-07 | Corning Incorporated | Ion exchanged glasses via non-error function compressive stress profiles |
US11079309B2 (en) | 2013-07-26 | 2021-08-03 | Corning Incorporated | Strengthened glass articles having improved survivability |
RU2547104C2 (ru) * | 2013-08-26 | 2015-04-10 | Открытое Акционерное Общество "Акмэ-Инжиниринг" | Массообменный аппарат |
US10118858B2 (en) | 2014-02-24 | 2018-11-06 | Corning Incorporated | Strengthened glass with deep depth of compression |
CN103936581A (zh) * | 2014-04-24 | 2014-07-23 | 天华化工机械及自动化研究设计院有限公司 | 一种提高cta溶剂交换效率的方法 |
TWI705889B (zh) | 2014-06-19 | 2020-10-01 | 美商康寧公司 | 無易碎應力分布曲線的玻璃 |
CN112250301A (zh) | 2014-10-08 | 2021-01-22 | 康宁股份有限公司 | 包含金属氧化物浓度梯度的玻璃和玻璃陶瓷 |
US10150698B2 (en) | 2014-10-31 | 2018-12-11 | Corning Incorporated | Strengthened glass with ultra deep depth of compression |
EP4011843A3 (en) | 2014-11-04 | 2022-06-29 | Corning Incorporated | Deep non-frangible stress profiles and methods of making |
US11613103B2 (en) | 2015-07-21 | 2023-03-28 | Corning Incorporated | Glass articles exhibiting improved fracture performance |
US10579106B2 (en) | 2015-07-21 | 2020-03-03 | Corning Incorporated | Glass articles exhibiting improved fracture performance |
EP3386930B1 (en) | 2015-12-11 | 2021-06-16 | Corning Incorporated | Fusion-formable glass-based articles including a metal oxide concentration gradient |
CN111423110A (zh) | 2016-04-08 | 2020-07-17 | 康宁股份有限公司 | 包含金属氧化物浓度梯度的玻璃基制品 |
KR20200091500A (ko) | 2016-04-08 | 2020-07-30 | 코닝 인코포레이티드 | 두 영역을 포함하는 응력 프로파일을 포함하는 유리-계 물품, 및 제조 방법 |
CN106237966B (zh) * | 2016-08-23 | 2018-11-09 | 南京大学 | 用于甲苯类物质氧化生产芳香醛的反应器 |
US10000435B1 (en) | 2017-02-28 | 2018-06-19 | Grupo Petrotemex, S.A. De C.V. | Energy and environmentally integrated method for production of aromatic dicarboxylic acids by oxidation |
DK3461876T3 (da) * | 2017-09-29 | 2020-11-02 | Indian Oil Corp Ltd | Reaktorsystem og proces til opgradering af tungt carbonhydridholdingt materiale |
CN109865493A (zh) * | 2019-01-31 | 2019-06-11 | 浙江大学 | 一种用于对二甲苯氧化的双鼓泡塔反应装置及反应工艺 |
Family Cites Families (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2694622A (en) * | 1948-07-02 | 1954-11-16 | Union Oil Co | Hydrocarbon refining apparatus |
US3064044A (en) * | 1957-08-15 | 1962-11-13 | Standard Oil Co | Multistage oxidation system for preparing dicarboxylic acid |
NL276649A (zh) * | 1960-10-12 | |||
GB983677A (en) | 1962-04-27 | 1965-02-17 | Mitsui Petrochemical Ind | A process for the preparation of terephthalic acid having extremely high purity |
NL6606774A (zh) * | 1965-05-17 | 1966-11-18 | ||
GB1152575A (en) | 1965-05-17 | 1969-05-21 | Standard Oil Co | Purification of Aromatic Polycarboxylic Acids. |
US3584039A (en) * | 1967-08-30 | 1971-06-08 | Standard Oil Co | Fiber-grade terephthalic acid by catalytic hydrogen treatment of dissolved impure terephthalic acid |
FR2006269A1 (zh) | 1968-04-16 | 1969-12-26 | Celanese Corp | |
US3626001A (en) * | 1968-05-09 | 1971-12-07 | Atlantic Richfield Co | Method for the production of high-purity isophthalic or terephthalic acid |
US3629321A (en) * | 1969-05-26 | 1971-12-21 | Standard Oil Co | Integration of para-xylene oxidation to terephthalic acid and its esterification to dimethyl terephthalate |
DE1927937A1 (de) | 1969-05-31 | 1970-12-17 | Dynamit Nobel Ag | Verfahren zur Herstellung von Benzoldicarbonsaeuren bzw. Benzoldicarbonsaeureestern |
GB1373230A (en) | 1971-12-23 | 1974-11-06 | Mitsui Petrochemical Ind | Process for producing terephthalic acid |
BE794622A (fr) * | 1972-01-28 | 1973-07-26 | Bayer Ag | Procede de purification du caprolactame |
GB1358520A (en) | 1972-06-05 | 1974-07-03 | Crampton K J A | Oxidation of aromatic organic compounds |
JPS5328421B2 (zh) * | 1973-05-15 | 1978-08-15 | ||
US3931305A (en) * | 1973-08-20 | 1976-01-06 | Standard Oil Company | Terephthalic acid recovery by continuous flash crystallization |
US3850983A (en) * | 1973-10-15 | 1974-11-26 | Standard Oil Co | Separation of terephthalic from paratoluic acid from solutions thereof in water and/or acetic acid |
JPS5614101B2 (zh) | 1974-07-31 | 1981-04-02 | ||
JPS5936230B2 (ja) | 1975-06-03 | 1984-09-03 | 株式会社光電製作所 | 過電圧表示回路 |
PL102150B1 (pl) | 1976-07-29 | 1979-03-31 | Inst Ciezkiej Syntezy Orga | A method oxidizing p-xylene and methyl p-toluylate |
JPS5949212B2 (ja) | 1976-09-16 | 1984-12-01 | 三菱化学株式会社 | テレフタル酸の製造法 |
US4158738A (en) * | 1977-05-26 | 1979-06-19 | E. I. Du Pont De Nemours And Company | Process for the production of fiber-grade terephthalic acid |
JPS5425292A (en) | 1977-07-28 | 1979-02-26 | Mitsubishi Chem Ind Ltd | Method of recovering liquid phase oxidation catalyst of terephthalic acid |
JPS5555138A (en) | 1978-10-19 | 1980-04-22 | Mitsubishi Chem Ind Ltd | Preparation of highly pure terephthalic acid |
IT1129759B (it) * | 1980-01-23 | 1986-06-11 | Montedison Spa | Metodo per ricuperare in forma attiva i componenti del sistema catalitico della sintesi dell'acido tereftalico |
JPS57188543A (en) | 1981-05-13 | 1982-11-19 | Mitsubishi Chem Ind Ltd | Preparation of terephthalic acid |
JPS59104345A (ja) | 1982-12-03 | 1984-06-16 | Kuraray Yuka Kk | 直接重合用に適したテレフタル酸の製造方法 |
JPS59106435A (ja) * | 1982-12-10 | 1984-06-20 | Mitsubishi Chem Ind Ltd | 高純度テレフタル酸の製法 |
EP0121438A1 (en) | 1983-03-31 | 1984-10-10 | Vickers Plc | Flexible manufacturing system and method |
US4500732A (en) * | 1983-09-15 | 1985-02-19 | Standard Oil Company (Indiana) | Process for removal and recycle of p-toluic acid from terephthalic acid crystallizer solvent |
US4898717A (en) * | 1984-01-04 | 1990-02-06 | Mobil Oil Corp. | Multistage process for converting oxygenates to distillate hydrocarbons with interstage ethene recovery |
US4892970A (en) * | 1985-12-30 | 1990-01-09 | Amoco Corporation | Staged aromatics oxidation in aqueous systems |
US4719247A (en) * | 1987-02-10 | 1988-01-12 | Ici Americas Inc. | Deformable polyurethane having improved cure time |
JP2504461B2 (ja) | 1987-04-24 | 1996-06-05 | 三菱化学株式会社 | 高品質テレフタル酸の製法 |
US4939297A (en) * | 1989-06-05 | 1990-07-03 | Eastman Kodak Company | Extraction process for removal of impurities from terephthalic acid filtrate |
US5171548A (en) * | 1990-06-06 | 1992-12-15 | Advanced Separation Technologies Incorporated | Process for the removal of vanadium from wet process phosphoric acid |
US5095145A (en) * | 1990-11-05 | 1992-03-10 | Amoco Corporation | Preparation of purified terephthalic acid from waste polyethylene terephthalate |
US5095146A (en) * | 1991-03-25 | 1992-03-10 | Amoco Corporation | Water addition to crystallization train to purify terephthalic acid product |
US5175355A (en) * | 1991-04-12 | 1992-12-29 | Amoco Corporation | Improved process for recovery of purified terephthalic acid |
JP2557578B2 (ja) | 1991-07-12 | 1996-11-27 | 三菱化学株式会社 | パラキシレンの液相酸化触媒の回収方法 |
GB9310070D0 (en) * | 1992-05-29 | 1993-06-30 | Ici Plc | Process for the production of purified terephthalic acid |
US5260239A (en) * | 1992-12-18 | 1993-11-09 | Exxon Research & Engineering Company | External catalyst rejuvenation system for the hydrocarbon synthesis process |
US5540847A (en) * | 1993-04-29 | 1996-07-30 | Stultz; Jeffrey H. | Sludge digestion |
KR970000136B1 (ko) * | 1993-09-28 | 1997-01-04 | 브이.피. 유리예프 | 고순도 벤젠디카르복실산 이성질체의 제조방법 |
US5567842A (en) * | 1994-11-16 | 1996-10-22 | Mitsubishi Chemical Corporation | Process for producing terephthalic acid |
US5510521A (en) * | 1995-03-27 | 1996-04-23 | Eastman Chemical Company | Process for the production of aromatic carboxylic acids |
JPH09157214A (ja) | 1995-10-05 | 1997-06-17 | Mitsubishi Chem Corp | 芳香族カルボン酸の製造方法 |
US5756833A (en) * | 1996-02-01 | 1998-05-26 | Amoco Corporation | Catalytic purification and recovery of dicarboxylic aromatic acids |
ID15851A (id) * | 1996-02-13 | 1997-08-14 | Mitsubishi Chem Corp | Proses untuk menghasilkan suatu asam aromatik karboksilik |
DE19630186B4 (de) * | 1996-07-26 | 2007-11-15 | BüHLER GMBH | Rührwerksmühle |
JP3421057B2 (ja) | 1996-08-29 | 2003-06-30 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 触媒の回収 |
ID19133A (id) * | 1996-12-12 | 1998-06-18 | Praxair Technology Inc | Pengisian oksigen langsung kedalam reaktor-reaktor ruang gelembung |
US5821270A (en) * | 1997-05-02 | 1998-10-13 | Exxon Research And Engineering Company | Slurry hydrocarbon synthesis process with multistage catalyst rejuvenation |
US5958986A (en) * | 1997-05-02 | 1999-09-28 | Exxon Research And Engineering Co. | Slurry hydrocarbon synthesis process with catalyst rejuvenation in external lift pipe (law544) |
US5770629A (en) * | 1997-05-16 | 1998-06-23 | Exxon Research & Engineering Company | Slurry hydrocarbon synthesis with external product filtration |
JP2002508343A (ja) | 1997-12-15 | 2002-03-19 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | 芳香族カルボン酸の製造方法 |
US6137001A (en) * | 1998-02-11 | 2000-10-24 | Bp Amoco Corporation | Process for preparing aromatic carboxylic acids with efficient treatments of gaseous effluent |
JPH11343264A (ja) | 1998-05-28 | 1999-12-14 | Mitsubishi Chemical Corp | 芳香族カルボン酸の製造方法 |
US6080372A (en) * | 1998-09-11 | 2000-06-27 | Air Products And Chemicals, Inc. | Two stage reactor for continuous three phase slurry hydrogenation and method of operation |
US6392091B2 (en) * | 1998-11-24 | 2002-05-21 | Tsong-Dar Vincent Lin | Process of purifying and producing high purity aromatic polycarboxylic acids |
US6297348B1 (en) * | 1999-08-30 | 2001-10-02 | Shell Oil Company | Closely linking a NDA process with a pen process |
US6201030B1 (en) * | 1999-09-22 | 2001-03-13 | Syntroleum Corporation | Process and apparatus for regenerating a particulate catalyst |
WO2001038279A1 (en) * | 1999-11-26 | 2001-05-31 | Chemintel (India) Private Limited | Process for preparation of benzene dicarboxylic acids |
US7060853B2 (en) * | 2000-01-12 | 2006-06-13 | Invista North America S.A R.L. | Method for increasing oxidation reactor production capacity |
US6949673B2 (en) * | 2000-01-12 | 2005-09-27 | E.I. Du Pont De Nemours And Company | Process for producing carboxylic acids |
JP2003520263A (ja) * | 2000-01-21 | 2003-07-02 | ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド | 安息香酸・水溶剤中での酸化による高純度芳香族カルボン酸の製造 |
JP2001288139A (ja) | 2000-02-04 | 2001-10-16 | Mitsubishi Chemicals Corp | 高純度テレフタル酸の製造方法 |
JP2001247511A (ja) | 2000-03-07 | 2001-09-11 | Mitsubishi Chemicals Corp | 芳香族カルボン酸の製造方法 |
US6679951B2 (en) * | 2000-05-15 | 2004-01-20 | Asm Intenational N.V. | Metal anneal with oxidation prevention |
US6765113B2 (en) * | 2000-07-19 | 2004-07-20 | E.I. Du Pont De Nemours And Company | Production of aromatic carboxylic acids |
US6436720B1 (en) * | 2000-09-15 | 2002-08-20 | Cellular Process Chemistry, Inc. | Residence time providing module/apparatus |
US6986874B2 (en) * | 2000-12-14 | 2006-01-17 | The Boc Group, Inc. | Method and apparatus for the production of nitrogen trifluoride |
WO2002092549A1 (en) * | 2001-05-15 | 2002-11-21 | Inca International S.P.A. | Agitation system for alkylbenzene oxidation reactors |
US6504051B1 (en) * | 2001-06-04 | 2003-01-07 | Eastman Chemical Company | Process for production of aromatic carboxylic acids with improved water removal technique |
US7485747B2 (en) * | 2001-06-04 | 2009-02-03 | Eastman Chemical Company | Two stage oxidation process for the production of aromatic dicarboxylic acids |
US6689903B2 (en) * | 2001-06-04 | 2004-02-10 | Eastman Chemical Company | Crystallization method for production of purified aromatic dicarboxylic acids |
US7196215B2 (en) * | 2001-06-04 | 2007-03-27 | Eastman Chemical Company | Process for the production of purified terephthalic acid |
CN1223555C (zh) * | 2001-07-13 | 2005-10-19 | 埃克森美孚研究工程公司 | 直接生产高纯度的费-托蜡 |
AU2003280809A1 (en) * | 2002-11-14 | 2004-06-03 | Mitsubishi Chemical Corporation | Process for producing terephthalic acid |
JP2004168716A (ja) | 2002-11-20 | 2004-06-17 | Mitsubishi Chemicals Corp | テレフタル酸の製造方法 |
US7074954B2 (en) * | 2002-12-09 | 2006-07-11 | Eastman Chemical Company | Process for the oxidative purification of terephthalic acid |
US7132566B2 (en) * | 2003-09-22 | 2006-11-07 | Eastman Chemical Company | Process for the purification of a crude carboxylic acid slurry |
CA2505976A1 (en) | 2002-12-09 | 2004-06-24 | Eastman Chemical Company | Process for the purification of a crude carboxylic acid slurry |
US7161027B2 (en) * | 2002-12-09 | 2007-01-09 | Eastman Chemical Company | Process for the oxidative purification of terephthalic acid |
US20040215036A1 (en) * | 2003-04-25 | 2004-10-28 | Robert Lin | Method for heating a crude carboxylic acid slurry in a post oxidation zone by the addition of steam |
US7153480B2 (en) * | 2003-05-22 | 2006-12-26 | David Robert Bickham | Apparatus for and method of producing aromatic carboxylic acids |
US6800664B1 (en) * | 2003-05-23 | 2004-10-05 | Conocophillips Company | Conjoined reactor system |
US7282151B2 (en) * | 2003-06-05 | 2007-10-16 | Eastman Chemical Company | Process for removal of impurities from mother liquor in the synthesis of carboxylic acid using pressure filtration |
US7410632B2 (en) * | 2003-06-05 | 2008-08-12 | Eastman Chemical Company | Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid |
US7494641B2 (en) * | 2003-06-05 | 2009-02-24 | Eastman Chemical Company | Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid |
US7452522B2 (en) * | 2003-06-05 | 2008-11-18 | Eastman Chemical Company | Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid |
US7547803B2 (en) * | 2003-06-20 | 2009-06-16 | Mitsubishi Gas Chemical Company, Inc. | Process for producing a high purity aromatic polycarboxylic acid |
US7485746B2 (en) * | 2003-11-14 | 2009-02-03 | Bp Corporation North America Inc. | Staged countercurrent oxidation |
KR100575192B1 (ko) | 2003-11-19 | 2006-04-28 | 메탈화학(주) | 테레프탈산(tpa) 폐촉매로부터 코발트 망간 회수 방법 |
US7546747B2 (en) * | 2004-01-15 | 2009-06-16 | Eastman Chemical Company | Process for production of a dried carboxylic acid cake suitable for use in polyester production |
CN1914145B (zh) | 2004-02-05 | 2010-12-08 | 三菱化学株式会社 | 芳香族羧酸的制造方法 |
US7348452B2 (en) * | 2004-04-22 | 2008-03-25 | Eastman Chemical Company | Liquid phase oxidation of P-xylene to terephthalic acid in the presence of a catalyst system containing nickel, manganese, and bromine atoms |
US20050283022A1 (en) * | 2004-06-18 | 2005-12-22 | Sheppard Ronald B | Filtrate preparation process for terephthalic acid filtrate treatment |
US7371894B2 (en) * | 2004-09-02 | 2008-05-13 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US7741515B2 (en) * | 2004-09-02 | 2010-06-22 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US7910769B2 (en) * | 2004-09-02 | 2011-03-22 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US7568361B2 (en) * | 2004-09-02 | 2009-08-04 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US7589231B2 (en) * | 2004-09-02 | 2009-09-15 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US7572932B2 (en) * | 2004-09-02 | 2009-08-11 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US7572936B2 (en) * | 2004-09-02 | 2009-08-11 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US7608732B2 (en) * | 2005-03-08 | 2009-10-27 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US7381836B2 (en) * | 2004-09-02 | 2008-06-03 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US7504535B2 (en) * | 2004-09-02 | 2009-03-17 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US7615663B2 (en) * | 2004-09-02 | 2009-11-10 | Eastman Chemical Company | Optimized production of aromatic dicarboxylic acids |
US7692037B2 (en) * | 2004-09-02 | 2010-04-06 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US20060205977A1 (en) * | 2005-03-08 | 2006-09-14 | Sumner Charles E Jr | Processes for producing terephthalic acid |
US7355068B2 (en) * | 2006-01-04 | 2008-04-08 | Eastman Chemical Company | Oxidation system with internal secondary reactor |
-
2006
- 2006-03-01 US US11/366,005 patent/US20070208194A1/en not_active Abandoned
-
2007
- 2007-02-16 EP EP07750871A patent/EP1988989A1/en active Pending
- 2007-02-16 CN CNA2007800074499A patent/CN101394923A/zh active Pending
- 2007-02-16 CA CA002643523A patent/CA2643523A1/en not_active Abandoned
- 2007-02-16 MX MX2008010936A patent/MX2008010936A/es active IP Right Grant
- 2007-02-16 KR KR1020087021156A patent/KR101409133B1/ko active IP Right Grant
- 2007-02-16 MY MYPI20083359A patent/MY162520A/en unknown
- 2007-02-16 JP JP2008557283A patent/JP2009528350A/ja not_active Withdrawn
- 2007-02-16 WO PCT/US2007/004067 patent/WO2007106289A1/en active Application Filing
- 2007-02-16 BR BRPI0708435-8A patent/BRPI0708435A2/pt active IP Right Grant
- 2007-02-16 CN CN201410838165.6A patent/CN104649886A/zh active Pending
- 2007-02-16 RU RU2008138888/04A patent/RU2457197C2/ru active
- 2007-02-27 TW TW096106614A patent/TW200740745A/zh unknown
- 2007-08-29 US US11/846,846 patent/US7829037B2/en active Active
-
2010
- 2010-02-22 US US12/709,547 patent/US8153840B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2007106289A1 (en) | 2007-09-20 |
TW200740745A (en) | 2007-11-01 |
RU2457197C2 (ru) | 2012-07-27 |
BRPI0708435A2 (pt) | 2011-05-31 |
MY162520A (en) | 2017-06-15 |
CN101394923A (zh) | 2009-03-25 |
KR101409133B1 (ko) | 2014-06-17 |
RU2008138888A (ru) | 2010-04-10 |
US20100200804A1 (en) | 2010-08-12 |
US20070208194A1 (en) | 2007-09-06 |
US8153840B2 (en) | 2012-04-10 |
KR20080103978A (ko) | 2008-11-28 |
MX2008010936A (es) | 2008-09-03 |
JP2009528350A (ja) | 2009-08-06 |
US7829037B2 (en) | 2010-11-09 |
CA2643523A1 (en) | 2007-09-20 |
EP1988989A1 (en) | 2008-11-12 |
US20070292319A1 (en) | 2007-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104649886A (zh) | 使用用于提高水动力学的内部结构的氧化系统 | |
CN102941041B (zh) | 具有内部次级反应器的氧化系统 | |
CN101360553B (zh) | 使用用于提高水动力学的内部结构的氧化系统 | |
CN101010282B (zh) | 粗制对苯二甲酸组合物及其制备方法 | |
CN105130782A (zh) | 使用来自氧化蒸煮的冷却的母液作为杂质吹洗系统的进料的多元羧酸生产系统 | |
CN101010280B (zh) | 优化的液相氧化 | |
CN101010132B (zh) | 优化的液相氧化 | |
CN101684072B (zh) | 优化的液相氧化 | |
CN101056702B (zh) | 鼓泡塔反应器中的优化的液相氧化 | |
CN101198578B (zh) | 优化的液相氧化 | |
CN101395120A (zh) | 用于氧化蒸煮的具有提高的停留时间分布的多元羧酸生产系统 | |
CN104892391A (zh) | 使用氧化蒸煮下游的热液体取出的多元羧酸生产系统 | |
CN101023046B (zh) | 优化的液相氧化 | |
CN101052611B (zh) | 优化的液相氧化 | |
CN101010267B (zh) | 优化的液相氧化 | |
CN102698699B (zh) | 优化的液相氧化 | |
CN102701961B (zh) | 优化的液相氧化 | |
CN101056838B (zh) | 优化的液相氧化 | |
CN101022886B (zh) | 优化的液相氧化 | |
CN101010268A (zh) | 优化的液相氧化 | |
CN101068766B (zh) | 对-二甲苯的优化的液相氧化 | |
CN101010278B (zh) | 优化的液相氧化 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150527 |
|
RJ01 | Rejection of invention patent application after publication |