CN104641234B - 探察并测定凝集反应的方法 - Google Patents

探察并测定凝集反应的方法 Download PDF

Info

Publication number
CN104641234B
CN104641234B CN201380048275.6A CN201380048275A CN104641234B CN 104641234 B CN104641234 B CN 104641234B CN 201380048275 A CN201380048275 A CN 201380048275A CN 104641234 B CN104641234 B CN 104641234B
Authority
CN
China
Prior art keywords
particle
agglutinating
sample
antibody
red blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380048275.6A
Other languages
English (en)
Other versions
CN104641234A (zh
Inventor
P·帕特尔
S·阿内卡尔
I·吉本斯
E·霍姆斯
S·乔什
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Serranos intellectual property limited liability company
Original Assignee
Serranos Intellectual Property LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Serranos Intellectual Property LLC filed Critical Serranos Intellectual Property LLC
Priority to CN201910613564.5A priority Critical patent/CN110346568A/zh
Publication of CN104641234A publication Critical patent/CN104641234A/zh
Application granted granted Critical
Publication of CN104641234B publication Critical patent/CN104641234B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/86Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5021Test tubes specially adapted for centrifugation purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/554Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being a biological cell or cell fragment, e.g. bacteria, yeast cells
    • G01N33/555Red blood cell
    • G01N33/556Fixed or stabilised red blood cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pulmonology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Clinical Laboratory Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

用于执行和分析凝集检测的方法、组成、系统和设备在此被提供。一方面,用于凝集反应成像分析的方法被提供。另一方面,实施凝集反应的方法被提供。一方面,该方法可能被用来探察不同的分子,包括病毒或对抗一种病毒的抗体。另一方面,该方法可以用来确定一位研究对象免疫接种的有效性。

Description

探察并测定凝集反应的方法
交叉引用
本申请声明拥有2012年7月18日提交的美国临时申请序列号61/673,215的权益,此项申请以引用方式被完全纳入本文。
背景资料
分子或细胞的聚集或凝集反应形成了多种有用的生物学检测基础。血细胞凝集或凝血反应是涉及红细胞(RBCs)的一种特定形式的凝集反应。该现象被实验室用来确定血型、确定一份血液样本中病毒的表达和数量,以及对特定的抗感染反应抗体进行定量分析。血液凝集反应导致RBCs形成能够稳定对抗中等程度震动或搅动的宏观点阵结构,这些结构通过视觉观察可以很容易地与未发生凝集的RBCs进行区别,这是多种传统检测方法的基础。
血液凝集可以通过病毒、细菌、抗体以及其他一些因素(例如外源凝集素)触发。例如与A型抗原结合的抗体会诱发含有A型或AB型RBCs的样本出现凝集反应。同样,与细胞表面分子结合的病毒和病毒抗原可以诱发血液凝集。病毒可能含有“血凝素”蛋白,该蛋白与宿主细胞上的分子相结合。例如,血凝素蛋白可能与诸如RBCs的宿主细胞膜上的唾液酸相结合。在对含有病毒的一份样本进行不同程度的稀释后,通过对血液凝集反应的观察可以大概估计出该病毒的滴度。使用这种方法也可以发现细菌并对其进行定量分析。
尽管血液凝集检测非常有用,但是目前的方法检测速度相对缓慢、主观性强,而且用于某些检测目的时不够可靠。传统的预处理操作程序可以占用长达12-24小时,而且视觉检查对于定量分析并不是一个稳健可靠的方法。血液凝集检测经常在一些分秒必争的情况下被实施(例如为了防止病毒扩散或在紧急输血期间),因此在技术上急需用来探察并测定聚集/凝集反应的改良方法。
摘要
用于提高凝集检测的方法、组成、系统和设备在此被提供。一方面,用于凝集反应分析的改良后的成像技术被提供。另一方面,用于减少凝集反应时间并(或)提高凝集反应检测准确性的方法被提供。另一方面,用于凝集反应的改良试剂被提供。还有一方面,改进后的用于执行或分析凝集反应的设备被提供。额外的一些改进措施也被提供,而且本发明包括其他一些方面。此处显示的多种改进措施可能被结合在一起使用。
一方面,一种用于探测一份生物学样本内一种抗体表达的方法被提供,其中该抗体选择性地与一种病毒颗粒结合。该方法包括的步骤有:(a)在允许红细胞通过与病毒颗粒的相互作用而产生凝集反应的条件下,对红细胞、病毒颗粒和怀疑含有该抗体的生物学样本混合液进行孵育;(b)探察该混合液中是否发生了凝集反应,其中无凝集反应发生说明存在该抗体;所述步骤(a)-(b)在不到一个小时内完成。另一个与之有关但不同的方面中,其方法包括:(a)在允许红细胞通过与病毒颗粒的相互作用而产生凝集反应的条件下,对红细胞、病毒颗粒和怀疑含有该抗体的生物学样本混合液进行孵育;(b)在一种光学设备的辅助下对该混合液拍摄一幅图像,其中存在一种红细胞-病毒颗粒凝集簇则表明发生了凝集反应,不存在可探察到的抗体数量;而缺乏该凝集簇则表明无凝集反应发生,且存在一个可探察到的抗体数量。一些实例中,该混合液的一幅显微图像被获得。
另一方面,一种用于探测一份生物学样本中是否存在一种病毒颗粒的方法被提供,其中该方法包括:(a)在允许红细胞通过与病毒颗粒的相互作用而产生凝集反应的条件下,对红细胞或修饰后的红细胞和怀疑含有该病毒颗粒的一份生物学样本混合液进行孵育;(b)探察该混合液中是否发生了凝集反应,其中有凝集反应发生说明存在该病毒颗粒;所述步骤(a)-(b)在不到一个小时内完成。另一个与之有关但不同的方面中,确定一份生物学样本中是否存在一种病毒颗粒的方法包括:(a)在允许红细胞通过与病毒颗粒的相互作用而产生凝集反应的条件下,对红细胞和怀疑含有该病毒颗粒的一份生物学样本的混合液进行孵育;(b)在一种光学设备的辅助下对该混合液拍摄一幅图像,其中存在一种红细胞-病毒颗粒凝集簇则表明发生了凝集反应,且存在可探察到的病毒颗粒数量;而缺乏该凝集簇则表明无凝集反应发生,且不存在可探察到的病毒颗粒数量。一些实例中,该混合液的一幅显微图像被获得。
另一方面,一种用于探测受试者是否获得有效免疫的方法被提供,包括:(a)从一名受试者身上获得一份生物学样本,该受试者已经接受了针对一种病毒颗粒的第一种疫苗的第一个剂量的免疫接种;(b)在允许红细胞通过与病毒颗粒的相互作用而产生凝集反应的条件下,对红细胞、该病毒颗粒和该生物学样本混合液进行孵育;(c)根据该红细胞凝集形成的凝集簇确定该样本中对抗该病毒的抗体浓度,其中所述步骤(b)-(c)在不到一个小时内完成。另一个相关但不同的方面中,其方法包括:(a)从一名受试者身上获得一份生物学样本,该受试者已经接受了针对一种病毒颗粒的第一种疫苗的第一个剂量的免疫接种;(b)在允许红细胞通过与病毒颗粒的相互作用而产生凝集反应的条件下,对红细胞、该病毒颗粒和该生物学样本混合液进行孵育;(c)在一种光学设备的辅助下对该混合液拍摄一幅图像;(d)根据该红细胞凝集形成的凝集簇确定所述样本中对抗该病毒的抗体浓度;其中该图像中存在一种红细胞-病毒颗粒凝集簇表明发生了凝集反应,且不存在可探察的抗体数量;而缺乏该凝集簇则表明无凝集反应发生,且存在一个可探察到的抗体数量。一些实例中,该混合液的一幅显微图像被获得。
实例中,红细胞可以通过诸如戊二醛的处理而被预先固定。根据需要,该红细胞可能包括火鸡红细胞或来自其他非人类RBCs的红细胞。
通过本发明的任何方法探测到的病毒颗粒可以包括任何类型的凝集病毒。例如但不限于乙型肝炎病毒(HBV)、丙型肝炎病毒(HCV)以及任何流感病毒都可能通过此处所示的方法检测到。在一些方面,通过此处所示的任何方法检测到的抗体可以对抗诸如凝集病毒的任何类型的凝集颗粒。例如但不限于,HBV、HCV以及各种流感病毒抗体可能被探测到。
此处所示任何方法所使用的生物学样本可以是任何适合的,处理过的或未经处理的体液,包括但不限于新鲜的或抗凝的全血、血浆和血清。在一些情况下,源自一位受试者的血浆或血清已经含有了对抗该病毒颗粒的一种抗体。根据需要,该生物学样本可以通过神经氨酸酶进行预处理。例如将所述生物学样本与神经氨酸酶共同孵育一段适当的时间,诸如不到2个小时、1个小时、30分钟、20分钟、10分钟、5分钟甚至更少的时间。
一些实例中,此处所示方法中所采用的多个步骤可以在大约不到2个小时、60分钟、45分钟、30分钟、或在大概30-60分钟内完成。
一方面,此处所提供的是基于图像分析的凝集反应分析方法。在一个实例中,图像分析方法被用来分析RBCs的整体运动,或者一个锥形反应孔或试管内凝集反应检测中出现的可视性颗粒的整体运动。在另一个实例中,图像分析方法被用来分析RBCs,或者一种凝集反应检测悬液中可视性颗粒的显微图像,以便查看该RBCs或可视性颗粒悬液的精细结构。
一方面,此处所提供的方法用于RBCs和可视性颗粒整体运动的图像分析。一个实例中,一种方法被提供用来通过一个反应容器内的指定位置(例如反应试管或反应孔)对凝集反应进行图像分析。一个实例中,一种方法被提供用来通过一种凝集反应中压积细胞扫描对该凝集反应进行图像分析。一个实例中,一种方法被提供用来通过一种凝集反应中压积细胞面积和(或)周长的确定对凝集反应进行图像分析。一些方面中,压积细胞包括一个扣状和(或)泪滴样区域。
一些实例中,凝集反应的存在通过红细胞-病毒颗粒簇的形成来证实,而且所述反应簇在一个光学设备的成像区域内被拍摄。该光学设备可以包括但不限于一台照相机、一台显微镜、一台光学扫面仪、一个传感器、一个探测器、或其他任何适合的成像设备。如需要,可以根据每一幅所述图像中所拍摄的单个红细胞之间的中心到中心的距离,计算出所述反应簇的大小,然后对该凝集反应进行分析。
一些实例中,一种用于确定一位受试者已经获得有效免疫的方法,可以进一步包括这一步骤,即如果该生物学样本中的抗体浓度低于一个预定水平,则给予受试者一个对抗该病毒颗粒的第一种疫苗的第二剂量。
进一步提供的是一个试剂盒,包括:预先固定的红细胞、一种病毒颗粒以及用户指南。通过该试剂盒探测抗体或病毒。这个操作指南可能被无线传输到一个自动化系统中,并在此进行操作。
实例中,此处所提供的是一种对混合物中凝集反应颗粒进行检测的方法,含有:在特定的允许可视性颗粒通过与凝集颗粒之间的相互作用而发生凝集反应的条件下,生成一种含有该可视性颗粒和该凝集颗粒的混合液,;获得至少一幅该混合液的图像;对该图像进行分析以获得该混合液内颗粒凝集的测量值。
在实例中,本发明中所提供的方法涉及一种可视性颗粒,该可视性颗粒是一种RBC或一种微球。
在实例中,本发明中所提供的方法涉及一种凝集颗粒,该凝集颗粒是一种病毒、病毒颗粒或一种抗体。
在实例中,本发明中所提供的方法涉及获取一幅图像,该图像通过一台CCD或CMOS图像传感器获得。
在实例中,本发明中所提供的方法涉及获取一幅图像,该图像通过光学设备来获得。
在实例中,本发明中所提供的方法涉及一种凝集颗粒,该凝集颗粒在一份受试者生物学标本中被提供。
在实例中,本发明中所提供的方法涉及一份生物学样本,该生物学样本中含有血浆或血清。
在实例中,本发明中所提供的方法涉及一种凝集颗粒,该凝集颗粒是一种病毒。
在实例中,本发明中所提供的方法涉及一种凝集颗粒,该凝集颗粒是一种抗体。
在实例中,本发明中所提供的方法涉及一种对含有受试者生物学样本的混合液中的凝集颗粒进行检测的方法。该方法允许对该样本中的病毒或抗体进行定量确定。
在实例中,本发明中所提供的方法涉及一种对含有凝集颗粒和可视性颗粒混合液中的凝集颗粒进行检测的方法。该混合物进一步含有一种抗体可以与该凝集颗粒特异性地结合,并阻止该凝集颗粒与该可视性颗粒相互作用。在实例中,该抗体位于一份受试者生物学标本内,并在该混合物中被提供。在实例中,该生物学样本中含有血浆或血清。在实例中,该方法允许对样本内的该抗体进行定量确定。
在实例中,本发明中所提供的方法涉及一种含有凝集颗粒和可视性颗粒的混合液,以及获取该混合物的一幅图像,该图像在生成该混合物10秒钟、30秒钟、1分钟、2分钟、5分钟、10分钟、15分钟、20分钟、30分钟、45分钟、1个小时、2个小时、4个小时或8个小时内获得。
在实例中,本发明中所提供的方法涉及一种对含有凝集颗粒和可视性颗粒混合液的图像进行分析的方法,以对该混合物中颗粒凝集反应获得一个测量值。对该图像的分析中含有对图像中的一个感兴趣区域(ROI)进行确定。
在实例中,本发明中所提供的方法涉及一个ROI,该ROI含有可视性颗粒和凝集颗粒混合物的成像信息。
在实例中,本发明中所提供的方法涉及对含有凝集颗粒和可视性颗粒混合液中的颗粒凝集反应进行测定,该混合液中的颗粒凝集反应测定是对凝集反应或非凝集反应的一种定性测量。
在实例中,本发明中所提供的方法涉及对含有凝集颗粒和可视性颗粒混合液中的颗粒凝集反应进行测量,该混合液中的颗粒凝集反应测量是对凝集反应程度的一种定量测量。
在实例中,本发明中所提供的方法涉及对含有凝集颗粒和可视性颗粒一种混合液获取一幅图像,两幅或多幅该混合物的图像也会被获取。
在实例中,本发明中所提供的方法涉及一种对含有凝集颗粒和可视性颗粒混合液获取至少一幅图像,然后对该图像进行分析以获得该混合物中颗粒凝集反应的一个测量值,对该图像的分析中含有对该图像中的反应簇进行识别。
在实例中,本发明中所提供的方法涉及对一幅图像中的反应簇进行识别,该方法还进一步含有对该图像中反应簇的数量和大小进行确定。
在实例中,本发明中所提供的方法涉及对一幅图像中的反应簇进行识别,该图像中反应簇的识别含有对图像中可视性颗粒之间的距离进行确定。
在实例中,本发明中所提供的方法涉及对该图像中可视性颗粒之间的距离进行确定,对可视性颗粒之间距离的确定含有确定该图像中可视性颗粒之间中心-中心的距离。
在实例中,本发明中所提供的方法涉及对含有凝集颗粒和可视性颗粒混合液获取至少一幅图像,以获得该混合物中颗粒凝集反应的一个测量值。对该图像的分析中含有对该图像中第一个可视性颗粒和第二个可视性颗粒中心-中心之间距离的确定。在实例中,对该图像的分析可能进一步含有对该图像中第一个可视性颗粒和第二个可视性颗粒位置的确定。
在实例中,本发明中所提供的方法涉及对一幅图像中含有的可视性颗粒和凝集颗粒反应簇进行识别,对可视性颗粒和凝集颗粒反应簇的识别含有识别一个第一可视性颗粒和一个第二可视性颗粒,其中该第一可视性颗粒和第二可视性颗粒中心-中心之间的距离不会大于该第一可视性颗粒或第二可视性颗粒直径的1倍、1.1倍、1.2倍、1.3倍、1.4倍、1.5倍、2倍、2.5倍、3倍或5倍。
在实例中,本发明中所提供的方法涉及对一幅图像中含有的可视性颗粒和凝集颗粒反应簇进行识别,对所含可视性颗粒和凝集颗粒反应簇的识别含有识别一个第一可视性颗粒和一个第二可视性颗粒,其中该第一可视性颗粒和第二可视性颗粒中心-中心之间的距离不会大于1um、2um、3um、4um、5um、6um、7um、8um、9um、10um、11um、12um、13um、14um、15um、20um、25um、30um、35um、40um或50um。
在实例中,本发明中所提供的方法涉及对一幅图像中含有的可视性颗粒和凝集颗粒反应簇进行识别,对所含可视性颗粒和凝集颗粒反应簇的识别含有识别一个至少有三个可视性颗粒的反应簇,其中的每一个可视性颗粒都被定位,例如该颗粒的中心与该反应簇中其他两个可视性颗粒中心的距离不超过1um、2um、3um、4um、5um、6um、7um、8um、9um、10um、11um、12um、13um、14um、15um、20um、25um、30um、35um、40um或50um。
在实例中,本发明中所提供的方法涉及对一幅图像中含有的可视性颗粒和凝集颗粒的反应簇进行识别,对该图像中反应簇的识别含有选择一个临界值距离,这些颗粒相互之间存在一个距离,小于该临界值距离则被认为该颗粒之间是相互关联的。
在实例中,本发明中所提供的方法涉及选择一个临界值距离,对一个临界值距离的选择含有为该图像中两个或两个以上的颗粒计算出一个径向分布函数。
在实例中,本发明中所提供的方法涉及对含有凝集颗粒和可视性颗粒混合液获取至少一幅图像,以获得该混合物中颗粒凝集反应的一个测量值。对该图像的分析包括从该图像中的一个含有凝集颗粒和可视性颗粒混合液成像信息区域进行特征提取。
在实例中,本发明中所提供的方法涉及从一幅图像中进行特征提取,这种特征提取包括对含有凝集颗粒和可视性颗粒混合液的分析。
在实例中,本发明中所提供的方法涉及对含有凝集颗粒和可视性颗粒混合液成像信息的图像结构进行分析,分析该混合液的结构包括对带有一个局部二进制模式的操作仪成像信息进行分析。
在实例中,本发明中所提供的方法涉及从一幅图像中进行特征提取,这种特征提取包括对一种含有可视性颗粒和凝集颗粒的混合液的结构进行分析。这种特征提取进一步包括对该图像一个区域内的一个或多个彩色通道内的信号密度进行分析,该区域含有凝集颗粒和可视性颗粒的混合液成像信息。
在实例中,本发明中所提供的方法涉及从一幅图像中进行特征提取,这种特征提取包括对一种含有可视性颗粒和凝集颗粒的混合液的结构进行分析。这种特征提取进一步包括对该图像一个含有凝集颗粒和可视性颗粒混合液成像信息区域内一个或多个彩色通道内的信号密度进行分析。
在实例中,本发明中所提供的方法涉及对含有凝集颗粒和可视性颗粒的混合液获取至少一幅图像,以获得该混合物中颗粒凝集反应的一个测量值。对该图像的分析包括将从该混合液图像中提取的特征与从一个已知其凝集颗粒和可视性颗粒凝集状态的对照混合液图像中提取的信息相比较。
正如在此文其他地方所描述的,凝集检测和凝集抑制检测是不同的但又相关的两种检测因子。在实例中,此处所描述的用于“凝集检测”或类似检测的系统、反应试剂和方法既可能被应用于凝集检测,也可以应用于凝集抑制检测,除非上下文明确指明其他方式。同样地,在实例中,此处所描述的用于“凝集抑制检测”或类似检测的系统、反应试剂和方法既可能被应用于凝集检测,也可能应用于凝集抑制检测,除非上下文明确指明其他方式。例如,凝集检测和凝集抑制检测,二者都可能涉及对一项对可视性颗粒的凝集程度进行分析的检测;因此,此处所提供的用于分析可视性颗粒凝集程度的系统、反应试剂和方法既可能被应用于凝集检测,也可能应用于凝集抑制检测
所提供的这个摘要以简化形式介绍了一个概念的选择,这些概念将在以后的详细描述章节做进一步介绍。本摘要意图不是对所权利要求的标的的关键配置或必要配置进行确定,也不是用来对所权利要求的标的进行限制。
引置条款
本说明书中提及的所有出版物、专利和专利应用都是以同等程度的引用方式完全纳入本文中,就像每一个单独的出版物、专利或专利应用被特定地和单独地指示作为引用方式并入本文一样。
图形的简要描述
在该图形中,
图1描述红细胞的凝集反应
图2阐明传统的沉淀团块的检测,通过该方法可以区别凝集的和非凝集的样本。
图3阐明传统的沉淀团块的检测,通过该方法可以在锥形试管内对凝集的和非凝集的样本进行鉴别。
图4描述A)病毒介导的细胞凝集反应;B)抗体介导的细胞凝集反应。
图5描述抗体介导的对病毒介导细胞凝集反应的抑制。
图6通过对一个容器内不同指定位点的图像分析,对可视性颗粒整体运动分析的相关原理图进行描述。A框描述了可视性颗粒在未凝集的、部分凝集的和凝集的样本内跨越区域的运动。B框描述了与可视性颗粒区域相似的地带。
图7显示了一个信号密度对区域编号的样本图形,用于图6中所描述的样本。
图8描述了一个穿过容器底部压积细胞扣状和泪滴样区域的轴线,可能通过扫描图像分析对可视性颗粒的整体运动进行分析。
图9显示了一个信号密度对位置编号的样本图形,沿图8中所描述的轴线,用于未凝集的、已凝集的和部分凝集的样本。用三角形标记的直线是已凝集的样本;用正方形标记的直线是部分凝集的样本;用菱形标记的直线是未凝集的样本。
图10描述了一个原理图,显示了对压积的可视性颗粒扣状区域(区域A/1005)和泪滴样区域(区域B/1010)周长的识别,可能通过使用面积或周长的图像分析来对可视性颗粒的整体运动进行分析
图11显示了一个用于说明图10中的一个分析的样本图形,其中描述了区域A(1005)和区域B(1010)面积百分比%、凝集程度以及区域B与区域A的比值之间的关系。用菱形标记的直线是区域A;用正方形标记的直线是区域B;用三角形标记的直线是区域B/区域A三维比值。
图12显示用于一个非凝集样本A)和一个凝集后样本B)的具有代表性的显微图像。
图13显示了6个样本的反应簇大小的分布,样本1-5和对照(左侧图形),以及为6个样本中每一个样本计算出的相关因素(右侧图形)。插入右侧图形中的是使用斜盘法和视觉观察法对同一个样本压积红细胞的流动特性进行测量的宏观图像。左侧栏插入的是使用斜盘法之前反应孔的一幅图像,右侧栏插入的是使用斜盘法之后该反应孔的一幅图像。
图14显示的是以下项目之间的比较:A)相关因素的显微分析;B)沉淀检测的宏观视觉图像;C)阈值数字化以后沉淀检测的宏观扫描图像;D)沉淀检测宏观扫描图像的分析。B)和C)包含A)和D)中所分析样本的图像。B)和C)显示的是使用斜盘法和视觉观察法对压积红细胞的流动特性进行沉淀物检测的图像。在B框和C框中,反应孔从下至上编号为1-6,右侧和左侧每一排相邻反应孔都是同一种检测条件的复制。在D)中,用菱形标记的直线是位于C)右侧栏内的细胞面积;用三角形标记的直线是位于C)左侧栏内的细胞面积;用正方形标记的直线是位于C)右侧栏内的细胞周长;用十字形标记的直线是位于C)左侧栏内的细胞周长。
图15显示了使用传统受体破坏酶(RDE)法(虚线)进行预处理和使用此处提供的神经氨酸酶方法(实线)进行预处理的比较。
图16显示了使用RDE对照法,如所标记的,对血浆进行预处理和使用此处提供的神经氨酸酶方法的比较。
图17显示的是从本发明中的HAI(血液凝集检测抑制)方法中获得的抗体滴度结果与传统HAI方法所得出结果之间的关系曲线。
图18显示的是从本发明中的HAI方法中获得的抗体滴度结果与传统HAI方法所得出结果之间的关系曲线,三种不同的病毒抗原是H1N1、H3N2和B型流感病毒。
图19显示的是一种凝集检测中颗粒的示例性径向分布方程图,其中X轴是距离r(像素中的距离),Y轴是g(r)。
图20显示的是根据此处所提供的方法实例而提供的一个用于检测样本凝集反应的典型的步骤流程图。
图21显示的是包含凝集反应检测的经典提示图像;图21A、21B和21C显示的是来自不同受试者的样本检测。
详细描述
此处所提供的一些组合、系统、设备和方法与通过探测红细胞或其他颗粒的凝集反应对病毒颗粒、凝集颗粒、抗原或针对一份样本内抗原的抗体进行检测有关;这些颗粒可能发生有选择的凝集/聚集,诸如微球。
I.总论
A.定义
冠词“一个(a)”、“一个(an)”和“这个(the)”是非限制性的。例如,“方法”包括对该词汇意思的最广泛定义,可以是一种以上的方法。
一个“受试者”可能是一个人或动物。该受试者可能是活着的或死亡的。该受试者可能是一位患者、临床研究对象或基础研究对象。一个受试者可能要经过疾病的诊断、处理、和(或)预防的过程。该受试者可能,或不必正在接受一项专业医疗服务。
一种“血液样本”是一份血样,或者任何一种血液成分、血液衍生物以及类似物质。血浆是一种血液成分的示例。该血液样本可以是任何适合的容量、通过任意合适的方法获得、在任何时间点从受试者的任何部位采集、从任意适合的血管内采集等等。血液是动物(包括人类)体内一种特定的体液,用来将机体必需的物质,诸如营养和氧气输送给细胞,并将代谢废物从这些相同的细胞中传送出。血液样本可能有任意适合的物质添加其中,选择性地是一种或多种抗凝剂。“血液样本”还包括被稀释的血液样本。
“血浆”是血液中的液体成分,全血中的血细胞正常情况下悬浮在血浆中。它是细胞外液(细胞外的所有体液)中血管内液体部分。主要是水分(大约占到容量的93%),而且可能含有溶解后的蛋白质、葡萄糖、凝血因子、电解质离子、激素以及二氧化碳(血浆是用来传输代谢产物的主要介质)。血浆可能通过将一管含有一种抗凝剂的血液在一个离心机内旋转(离心)直到血细胞沉淀到该试管的底部为止的方法来进行准备。然后该血浆被抽出或汲出。
“血清”是不含纤维蛋白、纤维蛋白原或其他凝血因子的血浆(就像从全血中去掉细胞和凝血因子)。
血液样本可能通过一种“非静脉途径”获得,意思是该血液不是用针头从机体的静脉或动脉中抽取的。非静脉途径并不限制该血液样本为静脉血(去氧血)或是动脉血(氧合血)。静脉血和动脉血二者都适合。从机体的毛细血管中获得血液是一种非静脉途径的示例。
“指尖采血”,“指尖穿刺”或类似的方法是通过非静脉途径获得血液样本的一种方法示例。这里,一个锋利的尖端或锐缘可能被用于穿刺指尖的皮肤(或身体的任何其他部位),造成血液从身体内流出。指尖穿刺也可能在脚跟处进行,例如选择性地从身体的脚跟处采集。该血液可能使用一种毛细血管、移液管、拭子、滴管、或任何已知的其他机制来采集。
“凝集”、“凝聚”或语法上的等意词,这里的意思是通过这些过程,诸如分子或细胞的颗粒经过一段时间后在空间上出现聚集。所造成的这种凝集物与单个的未凝聚的颗粒至少存在一些不同的特性,对这些凝集物的探察或测定可以提供有用的信息。
专业术语“病毒颗粒”包括任何含有病毒或病毒成分的分子或物质。该术语包括整个病毒,也包括病毒的一些部分。病毒颗粒包括病毒抗原。病毒抗原包括但不限于病毒多肽、核酸和碳水化合物。
术语“红细胞”包括来自任何器官的,任何形式的红细胞。因此,该术语包括新鲜的、未改变的红细胞,也包括经过一种化学或其他方式处理过的红细胞。该术语包括来自哺乳动物、鸟类、爬行动物、两栖动物、鱼类、无脊椎动物或任何其他类型有机体的红细胞。
“图像”是任何人工制品,例如对一些物体有着一种相似显像的一张二维照片、一套照片、或录像。图像可能涉及通过一台相机进行的光线捕获。
图像可能是被“像素化”的,即它们含有像素成分。
如在此处所使用的,“定点服务地点”可能包括一个受试者可能接受一项服务的地点(例如检查、监护、治疗、诊断、指导、样本采集、ID确认、医疗服务、非医疗服务等等);以及可能包括但不限于,一个受试者的家里、一个受试者的工作地点、一个医疗服务提供人员(例如医生)的地点、医院、急诊室、手术室、诊所、医疗服务专业人员的办公室、实验室、零售店【例如药店(例如零售药店、临床药店、医院药店)、药房、超市、食品店等等】、交通车辆(例如轿车、船、卡车、公共汽车、飞机、摩托车、救护车、活动专门设备车、消防车、急救车、执法车辆、警车、或用于将一个实验对象从一个地点运送到另一个地点的其他车辆等等)、旅游医疗服务单元、移动单元、学校、育儿中心、安检地点、比赛场所、医疗辅助生活住宅、政府办公室、写字楼、帐篷、体液样本获取站点(例如采血中心)、位于或临近一个实验对象可能希望进入的一个地点的入口处、位于或临近一位受试者可能希望使用的一个设备的地点(例如一台计算机所处的地点,如果该受试者希望使用这台计算机)、一个样本处理设备接收一个样本的地点、或者此文其他地方描述的任何其他定点服务地点。一些实例中,一项定点服务是一种定点医疗。如此处所使用的,一种“定点医疗”实质任何受试者所在地或其附近的位置(例如一位受试者的家里或工作地点、食品店、药店、医疗诊所、医院、学校等等),受试者在该地点可能接受医学相关的治疗(例如,处理、检查、监测、诊断、咨询、样本采集等等)。
“视频”图像是在一段时间内采集的一系列图像。视频图像可能以任何速率被采集,包括例如至少1帧/分钟、至少1帧/10秒钟、至少1帧/秒钟、至少10帧/秒钟、至少20帧/秒钟、至少30帧/秒钟、至少40帧/秒钟、至少50帧/秒钟、至少100帧/秒钟或者至少200帧/秒钟。
B.总则
血液凝集检测若干年来一直是使用复杂而冗长的操作规程。该凝集反应的特点是那些较大结构的分子通过较弱的外力(蛋白与蛋白相互之间的非共价键作用)相互结合在一起。这种结合过程对类似搅拌和混合细胞悬浮液等机械性外力起反应。该凝集反应特点不仅依赖于反应物,而且依赖于该反应发生所在的容器形状、温度、溶剂成分,诸如蛋白质、碳水化合物(例如右旋糖苷)的多聚物表达以及其他(例如聚乙二醇)多聚物的表达都可能对该反应有影响。一种凝集反应的普通示意图显示在图1中。
为了解读凝集反应,有几种可选择的方法目前正被使用。
第一种方法中,图2所示,其反应容器是一个直边圆形试管。凝集后的红细胞较非凝集状态的细胞沉降快得多。充分经过一段时间后,细胞凝集后的反应产物表现为一种透明的上清液和一个凝集后的细胞沉淀团块;而细胞未发生凝集反应时溶液仍保持浑浊状态,未凝集的细胞仍保留其悬浮状态。
第二种方法在图3中进行了说明。已经发现,使用锥形试管可以导致一些凝集后的红细胞在该试管底部形成一种分布式的网格或团簇状态,而另一些凝集后的红细胞则仍然悬浮在溶液中。相反,大多数的未凝集细胞滚落到该试管狭窄的底部尖端,在侧壁沉积呈“纽扣状”,只是该纽扣状沉淀是松散的堆积。在一个凝集反应检测之后,为了鉴别锥形试管底部是凝集后的细胞还是未凝集细胞,在检测时,让细胞充分反应一段时间沉降之后,将锥形试管倾斜。这种试管倾斜角度如图3所示,纽扣状未凝集细胞流动形成一个泪滴样的细胞团,而凝集后的细胞展示出的流动性明显降低。
在此提供的用于凝集检测的方法、组成、系统和设备较现行的技术有着多方面的优势。
一方面,一种方法被提供通过使用一种结合检测来确定一种病毒颗粒的存在。正如此处所提供的更多细节描述,一方面,在这个检测中,该病毒颗粒如果存在,它会与红细胞结合形成红细胞-病毒颗粒簇,并因此产生凝集反应。这可能被参照作为一种血液凝集反应检测(HA)。见图4,A框。
在更进一步的一个方面,一种方法被提供通过使用一种结合检测来确定一种抗体的存在。正如此处所提供的更多细节描述,一方面,在这个检测中,该抗体如果存在,它会与红细胞结合形成红细胞-抗体颗粒簇,并因此产生凝集反应。这也可能被参照作为一种血液凝集反应检测(HA)。见图4,B框。
一方面,一种方法被提供通过使用一种竞争检测法来确定一种抗体的存在。正如此处所提供的更多细节描述,一方面,在这个检测中,该抗体如果存在,它会与一种病毒颗粒的表面结合,这样来阻止该病毒颗粒与红细胞结合而形成的红细胞-病毒颗粒簇。因此,该抗体对抗该病毒颗粒导致凝集反应的缺乏或抑制。这可能被参照作为一种血液凝集反应检测抑制(HAI)。见图5。
一方面,此处所提供的方法可能将用于凝集检测的样本预处理时间减少至30分钟或更短的时间。一方面,在样本预处理过程中,可能通过使用神经氨酸酶来达到此目的。
另一方面,此处提供的方法可能简化血液凝集反应的设置。例如,一些实例中,此处所提供的方法采用一种单一、稳定类型的制备红细胞(或其等价物,诸如微球)用于所有的血液凝集反应的检测。一种稳定类型的制备红细胞范例是由戊二醛固定后的火鸡红细胞。这种固定后的细胞本质上是无限期稳定的(与新鲜红细胞相反,后者必须当天准备而且每天都会有变化)。固定并不会使与病毒或其他凝集颗粒相结合的细胞表面受体失活。新鲜红细胞以及来自不同动物种属的细胞也可以用在此处显示的方法中。
一些方面,当前显示的方法包括几个检测步骤的结合。传统的HAI方法使用至少两个不同的孵育步骤(一个是含有抗体的处理后样本与病毒抗原反应,加上一个与红细胞的反应,总共60分钟),而此处所提供的方法只使用一次单一的孵育步骤。这种孵育可能较传统方法明显缩短,诸如花费大约45分钟或更短、大约30分钟或更短、大约25分钟或更短、大约20分钟或更短、大约15分钟或更短、大约10分钟或更短、大约5分钟或更短、大约4分钟或更短、大约3钟或更短、大约2分钟或更短、或者大约1分钟或更短的时间。在特定实例中,也可以使用两个步骤。
一些实例中,当前显示的方法会加速凝集反应。凝集反应对检测方法中的介质成分非常敏感。电荷-电荷间的相互作用,与诸如多聚体(蛋白质、诸如右旋糖苷的碳水化合物多聚体)之间的微弱的相互作用,以及类似的作用都可能对凝集反应的速率和终结点有着严重影响。一些实例中,使用戊二醛固定的火鸡红细胞时,白蛋白可以使该凝集反应加速大约四倍。
此处描述的方法进一步提供了对该凝集反应终结点的客观分析。图像分析可以被用来客观地、定量地解读血液凝集反应的检测结果而无需进行样本滴定。用于图像分析的特定方法在2011年1月21日提交的美国临时申请编号61/435250中被提供,并以引用的方式完全纳入本文中。
在一个实例中,一个锥形试管反应容器内凝集反应检测的一幅数字化图像被采集。这幅图像可以通过测量“泪滴状”沉淀形成的程度(红细胞柱的长度)来加以解释。另一个实例中,可视性颗粒的“反应簇分析”可能按以下描述的方法来进行。这种方法能够很快对一个凝集反应结果进行解读。
进一步讲,此处提供的方法可能缩短整个凝集反应检测的时间。表1提供了一个对比结果,将传统的方法与此处提供的典型凝集抑制检测实例的方法进行比较。如下面的表1所示,此处提供的方法可能导致检测时间缩短20倍以上,而且使凝集反应检测规程的复杂性明显降低。
表1
此处所提供的方法可以通过使用一种客观的动态读取器进一步消除对试剂进行系列稀释的需要。
该方法的一个或多个步骤可能在定点服务或定点医疗站点进行。在一个定点医疗站点实施此处所示的方法能够使医护人员根据指定患者的相关检测数据对该患者迅速做出处理决策。
II.检测
A.血液凝集检测(HA检测)
一方面,此处所提供的是与血液凝集检测(HA)相关的方法、组成、设备和系统。血液凝集检测可能被用来作为一种通过血液凝集反应对病毒、细菌、抗体或其他血液凝集颗粒进行探测或定量的方法。
红细胞凝集反应可以被参照作为血液凝集反应。
如此处所使用的,术语“可视性颗粒”指可能发生凝集并可能被宏观或微观探测到的任何细胞或颗粒。“可视性颗粒”包括但不限于红细胞、其他细胞以及微球。
如此处所使用的,术语“凝集颗粒”指可能结合并导致细胞或可视性颗粒发生聚集的任何分子或微生物。“凝集颗粒”包括但不限于病毒、病毒颗粒和抗体。
一些方面,此处所描述的作为“血液凝集检测”或“血液凝集抑制检测”的任何一种检测方法还可能使用非红细胞可视性颗粒(例如微球、细菌),在一个HA或HAI检测中的起到RBCs的作用,与相对应的凝集颗粒产生适当的反应。更进一步,一个HAI检测可能被用来对任何可以与凝集颗粒相结合的抗体进行检测,通过该凝集颗粒来抑制可视性颗粒的凝集反应。
一方面,此处所提供的是一种探察和测定血液凝集反应的改良方法,而且也是一种探察和测定血液凝集抑制的改良方法。用于探察或测定血液凝集反应的检测可以被参照作为HA检测。用于探察或测定血液凝集抑制的检测可以被参照作为HAI检测。图4说明了由A)病毒和B)抗体诱导的血液凝集过程。病毒诱导的血液凝集可以被用来探测一种病毒或病毒颗粒的表达或对其进行定量,也就是大家所知的病毒滴定。抗体诱导的凝集反应可以被用来确定一份样本的红细胞血型。
一个实例中,此处所提供的是一种确定一份生物学样本中是否存在一种病毒颗粒的方法,包括:(a)在允许红细胞通过与该病毒颗粒的相互作用而产生凝集反应条件下,对红细胞和怀疑含有该病毒颗粒的一份生物学样本混合液进行孵育;(b)探测该混合液中是否发生了凝集反应,其中有凝集反应发生说明存在该病毒颗粒,所述步骤(a)-(b)在不到一个小时内完成。凝集反应的探测与分析按此处所提供的方法进行。
另一方面,此处所提供的是一种确定一份生物学样本中是否存在一种凝集颗粒的方法,包括:(a)在允许凝集颗粒通过与病毒颗粒的相互作用而产生凝集反应的条件下,对一种可视性颗粒和怀疑含有该病毒颗粒的一份生物学样本混合液进行孵育;(b)探测该混合液中是否发生了凝集反应,其中有凝集反应发生说明存在该病毒颗粒,所述步骤(a)-(b)在不到一个小时内完成。凝集反应的探测与分析按此处所提供的方法进行。
探测凝集反应通常涉及使用一个成像设备对该凝集反应拍摄图像,诸如一台扫描仪、照相机、探测仪或传感器,这些成像设备可能与一台显微镜耦合在一起。
通常情况下,使用一种能够盛接该反应的设备进行检测,例如一个96孔微量滴定板或其相似产品。一份含有需要进行检测的病毒颗粒或凝集颗粒的预处理后的生物学标本可能在反应板内通过一种稀释缓冲液(例如含有BSA的PBS)进行系列稀释。然后,预先固定的红细胞或可视性颗粒悬液可能被添加进来,并对其进行轻微混合。该反应过程被孵育一段适合的时间,例如总共大约15分钟。但是,比15分钟更短或更长的孵育时间也可能被使用,例如大约10分钟或5分钟,或更短的时间;又或者是20、25、30、35、40、50、60分钟或更长的时间。孵育过程可能在室温下进行(例如25℃),或者在一个低于室温或高于室温的温度下进行,例如大约4、8、12、14、16、20、30、35、40、45、50、55、60、65或70℃。该孵育温度和时间可以被优化以同时获得最好的检测速度和准确性。该反应板结果可能在一台扫描仪上被读取,其最后的反应终结点图像可能被拍摄,首选该反应板倾斜角度在20-75°之间,例如大约20、25、30、35、40、45、50、55、60、65、70或70℃。
在一些实例中,该凝集检测的一幅图像被一种光学设备获取,其中包括一台显微镜。在这些实例中,其检测过程通常如上所述,唯一的不同是将预先固定的RBCs或可视性颗粒加入该反应物中后,将反应孔(或其他盛接该反应的结构)中一个微量样本(例如1-2μL)直接转移至一个比色杯或吸头内,并在含有一种包含显微镜在内的光学设备下进行成像。图像可能被收集并进行分析,以计算出相关因子,这在此处有更详尽的描述。
进行凝集检测所持续的时间通常被优化以便同时获得最好的检测速度和准确性。一些实例中,执行该检测并探察凝集的发生花费不到一个小时,例如大约10分钟或更短的时间、15分钟或更短的时间、20分钟或更短的时间、30分钟或更短的时间、40分钟或更短的时间、50分钟或更短的时间,或者60分钟或更短的时间。一些实例中,执行该检测并探察凝集的发生花费超过一个小时,但是少于2个小时、3个小时、4个小时、5个小时、6个小时、7个小时,或者8个小时。
一些实例中,一种HA检测是使用一份已知不含有一种凝集病毒的样本来进行的,以确保所观察到的凝集反应是凝集病毒或凝集颗粒的一个反应结果(例如一个阴性对照)。一些实例中,一种HA检测是使用一份已知含有一种凝集病毒的样本来进行的,以确保该检测中所使用的红细胞或可视性颗粒能够进行凝集反应(例如一个阳性性对照)。
B.血液凝集抑制检测(HAI检测)
一方面,此处所提供的是与血液凝集抑制检测(HAI)相关的方法、组成、设备和系统。血液凝结抑制检测测定的是一份样本抑制血液凝集反应的能力。HAI检测在用于诸如探察或测定抗体的表达是非常有用的,这种抗体能够与一种凝集病毒或一种凝集颗粒结合,并抑制其凝集能力。这种结合能力的存在可以是一个有用的指标,表明存在对抗该病毒或凝集颗粒的抗体。
参考图5,描绘的是一个血液凝集抑制的示意图。一些实例中,一种含有病毒的反应剂与一份样本一起孵育,该样本可能含有选择性结合该病毒的抗体。与一种病毒颗粒相结合的抗体可以干扰该病毒颗粒诱导凝集反应的能力。凝集反应的抑制因此被用来指示抗体的存在。用这个方法,HAI检测可能被用于探察或测定一份生物学样本中的抗体。
传统方法中,HAI检测至少有三个步骤:(1)对怀疑含有一种抗体的样本进行预处理;(2)将预处理后的怀疑含有一种抗体的样本与一种病毒(针对该病毒的抗体与该病毒颗粒上的血凝素相结合,指示该血凝素失活)孵育24小时;(3)经过步骤(2)处理后的物质处于失活状态,然后向其中添加一种制备红细胞(新鲜制备),并将该混合物孵育总共2个小时。
一些实例中,本发明中的方法由于不需要这三个分开的步骤,对传统的方法进行了改良。一些实例中,反应剂红细胞和病毒颗粒被结合为一种单一反应剂。一些实例中,凝集颗粒和可视性颗粒被结合为一种单一反应剂。
B1.抗体探测
一方面,一种用于探测一份生物学样本内一种抗体表达的方法被提供,其中该抗体选择性地与一种病毒颗粒结合。该方法包括:(a)在允许红细胞通过与该病毒颗粒的相互作用而产生凝集反应的条件下,对红细胞、病毒颗粒和怀疑含有所述抗体的生物学样本混合液进行孵育;(b)探测该混合液中是否发生了凝集反应,其中无凝集反应发生说明存在所述抗体,所述步骤(a)-(b)在不到一个小时内完成。凝集反应的探测与分析按此处所提供的方法进行。
一方面,一种用于探测一份生物学样本内一种抗体表达的方法被提供,其中该抗体选择性地与一种凝集颗粒结合。该方法包括:(a)在允许可视性颗粒通过与凝集颗粒的相互作用而产生凝集反应的条件下,对一种可视性颗粒、凝集颗粒和怀疑含有该抗体的生物学样本混合液进行孵育;(b)探测该混合液中是否发生了凝集反应,其中无凝集反应发生说明存在该抗体,所述步骤(a)-(b)在不到一个小时内完成。凝集反应的探测与分析按此处所提供的方法进行。
一些实例中,在添加红细胞之前将该病毒颗粒与该生物学样本一起孵育。一些实例中,在添加可视性颗粒之前将该凝集颗粒与该生物学样本一起孵育。
B2.病毒颗粒或凝集颗粒的探测
另一个方面,一种HAI检测被用于探察或测定一种中特定的病毒颗粒或凝集颗粒。一份含有一种特定病毒颗粒或凝集颗粒的样本,在存在或缺乏已知固定数量(反应剂)抗体的条件下,被进行凝集检测;已知该抗体可以选择性地与该特定病毒颗粒或凝集颗粒相结合。如果在该抗体存在的条件下,该样本仍然诱导出凝集反应,那么该样本不含有(或仅含有一个很低的剂量)这个感兴趣的特定病毒颗粒或凝集颗粒(但是很可能含有一种不同的病毒或凝集颗粒)。另一方面,如果观察到的凝集反应被存在的该特定抗体所抑制,那么该样本中的病毒颗粒或凝集颗粒与感兴趣的特定病毒或病毒颗粒相一致。
一些实例中,实施一种HAI检测时不用对该未知数量的病毒或抗体进行滴定。如果RBCs出现聚集,此处的客观分析方法对哪怕很小的状态变化都具有较高的敏感性。这种高清晰度分析降低了确定凝集/非凝集状态之间真正临界点时所产生的歧义。这可以取消滴定的需要,很大程度上简化了该检测的操作程序。
一些实例中,一种HAI检测是使用一份已知不含有一种凝集病毒或凝集颗粒的样本来进行的,以确保所观察到的凝集反应是凝集病毒或凝集颗粒的一个反应结果(例如一个阴性对照)。一些实例中,一种HAI检测是使用一份已知含有一种凝集病毒或凝集颗粒,但缺乏抗体的样本来进行的,以确保该检测中所使用的红细胞或可视性颗粒能够进行凝集反应(例如一个阳性性对照)。这种对照还帮助我们对凝集反应设定一个基线测量值,抗体诱导的抑制可以从该基线测量值中得到确定。
C.生物学样本
一方面,此处所提供的是一种确定一份生物学样本中是否存在一种抗体、病毒颗粒、抗原或凝集颗粒的方法。
此处的“生物学样本”意味着一份来自一种生物源的样本。生物学样本示范包括但不限于血液、血清、唾液、尿液、胃液和消化液、泪液、粪便、精液、阴道分泌物、采自肿瘤组织的间质液、眼内液、身体组织或脊髓液。受试者的组织样本示范可能包括但不限于结缔组织、肌肉组织、神经组织、上皮组织、软骨或骨头。该样本的提供可能源自一个人或动物。该样本的采集可能源自一个活体或尸体。该样本可能从一个受试者处新鲜采集得来,或者可能已经经过了一些形式的预处理、储存或转运。
一些实例中,该生物学样本中含有来自全血的血浆或血清。
一些实例中,该全血、血浆或血清源自一位已经注射了对抗一种病毒的疫苗的研究对象(例如一个人)。该抗原可能是诸如一种病毒颗粒或凝集颗粒。
一个受试者可能提供一份样本;或者说该样本可能从一个受试者处被采集。一个受试者可能是一个人或动物。该受试者可能是活着的或是死亡的。该受试者可能是一位患者、临床研究对象或基础研究对象。一个受试者可能要经过疾病的诊断、处理、监测和(或)预防。该受试者可能,或不必,正在接受一项专业医疗服务。该受试者可能是任何年龄的人,一个婴儿、一个幼儿、一位成年人或一位老年人。
从该受试者处可以提供任何样本容量。容量的示范可能包括但不限于大约10mL或以下、5mL或以下、3mL或以下、1mL或以下、500μL或以下、400μL或以下、300μL或以下、250μL或以下、200μL或以下、170μL或以下、150μL或以下、125μL或以下、100μL或以下、75μL或以下、50μL或以下、25μL或以下、20μL或以下、15μL或以下、10μL或以下、9μL或以下、8μL或以下、7μL或以下、6μL或以下、5μL或以下、4μL或以下、3μL或以下、2μL或以下、1μL或以下、750nL或以下、500nL或以下、250nL或以下、100nL或以下、50nL或以下、20nL或以下、10nL或以下、5nL或以下、1nL或以下、500pL或以下、100pL或以下、50pL或以下或者1pL或以下。该样本量可能是大约一滴样本。该样本量可能通过一个非静脉途径采集的样本量。该样本量可能是从一个指尖穿刺或指尖采血采集的样本量。任何容量,包括此处所描述的那些容量,都可能被用在此处显示的方法中。
C1.生物学样本的预处理
一些实例中,对生物学样本进行预处理可以减少非特异性背景反应。
预处理通常包括一些处理来减少与一份生物学样本相关的背景反应或假阳性测量结果。血清和血浆中常常包含一些因子(一些特殊的糖蛋白,不是一种病毒的抗体)与病毒血凝素结合造成凝集反应抑制。这种糖蛋白的主要类别中含有与蛋白质共价链接的多聚唾液酸链。这种蛋白质的存在可能使一种HAI检测中所测得的抗体滴度假性升高,并且使一种HA检测中所测得的病毒颗粒滴度假性降低。为消除这个问题,该样本可以在进行HA或HAI检测前通过预处理来去掉这些干扰因子。
两种酶通常被用来进行样本预处理以减少凝集反应中的背景干扰。(1)受体破坏酶(RDE),切开与糖蛋白或糖脂相连的唾液酸(例如霍乱滤液冻干粉剂;Sigma-Aldrich,产品编号C8772);(2)神经氨酸酶,外切或内切多聚唾液酸(例如来自霍乱弧菌的第III类型,1-5单位/毫克蛋白质;Sigma-Aldrich,产品编号N7885)。传统的预处理方法使用RDE大约需要20小时。
一些实例中,该生物学样本使用神经氨酸酶进行预处理。神经氨酸酶是糖苷水解酶一类的酶,切开神经氨酸的糖苷链接。神经氨酸酶是一个大家族酶,在很多微生物中都能够找到,例如病毒。神经氨酸酶又称为唾液酸酶,催化唾液酸末端残基从诸如受体的蛋白质上水解。神经氨酸酶主要分类包括病毒神经氨酸酶、细菌神经氨酸酶、哺乳动物神经氨酸酶、溶菌酶唾液酸、胞质唾液酸以及胞膜唾液酸。
一些实例中,使用一种神经氨酸酶对生物学样本进行预处理可以在反应速度上提供一个优势。一些实例中,通过将一份样本与神经氨酸酶孵育不到30分钟对样本进行预处理。
神经氨酸酶的处理示范提供如下。一般情况下,将一个正确剂量的神经氨酸酶添加至血清或血浆中,在一个适合的反应温度下(例如大约4、8、10、15、20、25、30、35、37、40、45、50、55、60、65或70℃)孵育一段合适的时间。添加到该反应中的神经氨酸酶剂量有赖于该酶的活性和该血清的特性。一些反应中,预处理步骤中神经氨酸酶使用的剂量大约为0.01、0.05、0.1、0.2、0.4、0.6、0.8、1、1.2、1.4、1.6、1.8、2、2.2、2.4、2.6、2.8、3、4、5、6、7、8、9或10单位(U)/升。神经氨酸酶可能在一种适当的缓冲液中进行准备(例如100mM醋酸钠,pH 5.5;0.15M NaCl;4mM CaCl2)。一些实例中,通过将该样本与神经氨酸酶孵育大约或少于10、15、20、25、30、40、50、60、90或120分钟而对样本进行预处理。一个神经氨酸酶反应可能通过添加一种“终止液”而被终止,该溶液可能被用来失活该神经氨酸酶,但是对该样本则没有,或仅有很小的损害。一个示范中,一种终止液是1.5%枸橼酸钠的磷酸钠溶液,pH8.2。使用一种终止液终止一个反应的示范是将5倍容量的pH 8.2的1.5%枸橼酸钠磷酸钠溶液添加至一个神经氨酸酶反应中,然后对该混合液在56℃下孵育5分钟。
一些实例中,通过将该生物学样本与神经氨酸酶孵育进行预处理,该混合液中神经氨酸酶的最终浓度大约为0.2、0.4、0.6、0.8、1、1.2、1.4、1.6、1.8或2U/升,或者更高。
失活之后,该反应温度可能被降至到室温。一些实例中,在用于此处所提供的检测之前,该处理后的样本会被稀释(例如1∶2、1∶3、1∶4、1∶5或1∶10稀释)。
可能对系列稀释的一份生物学样本、一种抗原、红细胞、病毒颗粒、凝集颗粒、可视性颗粒、抗体或任何组合进行检测。但是,一些实例中,通过使用此处所示的方法减少或消除了系列稀释的需要,加快了凝集检测分析过程。
D.目标分析物
此处所提供的方法被用来探测生物学样本一种目标分析物。该目标分析物可能是,但不限于一种抗体、一种抗原、一种病毒颗粒、一种细菌颗粒、或者一种凝集颗粒。
D1.抗体目标分析物
一方面,一些方法被提供用于探测和测量一份生物学样本中的抗体。一些实例中,可探测性抗体选择性地与一种病毒颗粒相结合。一些实例中,可探测性抗体选择性地与一种凝集颗粒相结合。
一些实例中,一份样本是任何一种抗血清,其中含有的抗体与一种能够与红细胞发生凝集,或怀疑能够与红细胞发生凝集的病毒颗粒上一种或多种表位向结合。又或者,该抗血清可能是任何一种抗血清,其中含有与一种凝集素蛋白上一种或多种表位相结合的抗体;或者怀疑含有与一种凝集素蛋白上一种或多种表位相结合的抗体。又或者,该抗血清可能是任何一种抗血清,其中含有与一种凝集颗粒上所表达的一种或多种表位相结合的抗体。该抗血清可以从任何活体来源中获得,例如一个人、鸟、马、兔子、小鼠、羊、猪、豚鼠或大鼠。该抗血清的活体来源可能已经被一种特殊抗原免疫,尽管该活体源不需要特定地暴露于该抗原。该抗血清还可能是一种体外研制的血清,其中含有与一种病毒、一种凝集素蛋白、或一种凝集颗粒相结合的抗体。该抗体可能是单克隆抗体或多克隆抗体。更进一步,该抗体可能是全长抗体,或者一个抗原结合片段,例如Fab、F(ab)2,或Fv片段和单链抗体。该抗体还可能是自然形成抗体、人化抗体或嵌合抗体。任何与一种凝集病毒、一种凝集素蛋白、或一种凝集颗粒相结合的抗体,无论其来源,都可能被用于该检测中。与凝集素或凝集颗粒特异性结合的其他类型反应剂,以及阻断剂或抑制剂也可能被使用。这种结合体的示例包括但不限于,寡核苷酸适配子和外源凝集素。
在一些情况下,一种血浆、血清或抗血清样本来自一个已经接种了一种抗凝集病毒或凝集颗粒疫苗的研究对象。因此,此处所提供的还是一种用来确定研究对象免疫接种是否有效的方法,可以使用本发明中的一种HAI检测,通过探察并(或)测定来自该研究对象的一份样本中对抗一种凝集病毒或凝集颗粒抗体的表达对其进行评估。
经验丰富的技术人员将会理解到,一种特殊检测中所使用的抗血清或抗体的浓度有赖于多种不同的因素,例如抗血清的来源、抗血清内的抗体类型、抗血清内的抗体亲和力、抗血清中非抗体成分的浓度、样本量大小,以及用在一种检测中的其他成分的来源和浓度。更进一步,一种检测中所使用的抗血清浓度在一些情况下可以根据该抗血清中的抗体在一种传统HAI检测中可以抑制凝集反应的发生的最低稀释浓度值来确定。根据该稀释浓度,此处所提供的一种检测中可能使用稍高或稍低的抗血清浓度作为起始点。例如,如果一个1∶128的稀释度是可以阻断传统HAI检测中凝集反应的最低稀释浓度,在实例中,1∶64、1∶128、1∶512、1∶1024、1∶2048、1∶4096和1∶8192的稀释度也可能被用于此处所提供的方法中。经验丰富的技术人员将会理解到任何稀释度的抗血清,或者根据稀释数量2或一些其他数量所进行的任何系列稀释都可能被使用。一方面,一种检测中该最终混合液中的抗体浓度可能是大约,诸如0.1、0.5、1、2、3、4、5、6、7、8、9或10、20、30、40或50nM。另一方面,一种检测中该最终混合液中的抗体浓度可能是大约,诸如2ng/mL、5ng/mL、10ng/mL、20ng/mL、50ng/mL、100ng/mL、200ng/mL、500ng/mL、2g/mL、4g/mL、6g/mL、8g/mL、10g/mL或20g/mL。在这方面,该抗血清中针对一种病毒表位的抗体解离常数可能是大约0.01、0.05、0.1、0.5、1、5、10、20、30、40或50nM。一方面,该最终检测混合液中一种病毒的浓度可能是大约5、10、15或20凝集单位U/mL。凝集单位(HA单位)是传统HA检测中发生凝集时该病毒的最低稀释度。
本发明中的方法为一份样本中抗体的探察和(或)测定提供了改良措施,一些实例中,该方法实施的整个时间大约或短于500、400、300、200、180、160、140、120、100、90、75、60、45、40、30、25、50、15、10或5分钟。一些实例中,该方法实施的整个时间在大约30到60分钟之间。
实例中,在确定一份样本中感兴趣抗体数量的HAI检测中,一种已知数量的病毒或其他凝集颗粒以及(或者)一种已知数量的可视性颗粒与含有一种未知数量的感兴趣抗体的一份样本一起使用。该感兴趣抗体可能与已知数量的该病毒或其他凝集颗粒特异性结合。实例中,该已知数量的病毒或其他凝集颗粒使可视性颗粒发生凝集的能力会受到一份含有一种感兴趣抗体样本的影响,对该影响的测定可能允许我们对该样本中感兴趣抗体的数量进行确定。该感兴趣抗体与病毒或其他凝集颗粒的结合可能抑制该颗粒所致的可视性颗粒凝集反应。在这些检测中,一份样本中对抗一种病毒或其他凝集颗粒抗体的存在可能减弱或消除该颗粒的凝集活性。
D2.病毒颗粒分析物
另一方面,此处所提供的是确定一份生物学样本中是否存在一种病毒颗粒的方法。
许多病毒粘附于表达在RBCs表面的分子上。其结果是,在一定浓度下病毒悬浮液通过与表面受体或修饰受体,包括N-乙酰神经氨酸相结合可能使RBCs发生凝集。多个RBCs多重粘附在一个单一病毒颗粒或细菌上造成RBCs的凝集(血液凝集)。以这种方式促进凝集反应发生的病毒被称为凝集病毒。一些实例中,本发明中的方法被用来探测或测量凝集病毒。另一些实例中,本发明中的方法被用来探察或测定凝集病毒抗体。
凝集病毒包括多种不同类型的病毒,包括但不限于细小核糖核酸病毒、冠状病毒、披盖病毒、黄热病毒、棒状病毒、副粘病毒、正粘病毒、本雅病毒、沙粒病毒,呼肠孤病毒,逆转录病毒,乳头瘤病毒、细小病毒,疱疹病毒,痘病毒、嗜肝DNA病毒和海绵状病毒。其他凝集病毒可能包括流感病毒、I型和II型单纯疱疹病毒、麻疹病毒、登革热病毒、水痘病毒、脊髓灰质炎病毒、HIV、H1N1流感病毒、H3N2流感病毒、H5N1流感病毒、乙肝病毒(HBV)、丙肝病毒(HCV)以及任何流感病毒。
进一步的凝集病毒包括非人灵长类病毒,非限制性示例是I型夜猴疱疹病毒、III型夜猴疱疹病毒、I型猕猴疱疹病毒(B病毒,类人猿HV)、II型猕猴疱疹病毒(SA)、III型猕猴疱疹病毒(SA6)、IV型猕猴疱疹病毒(SA15)、V型猕猴疱疹病毒(非洲绿猴巨细胞病毒)、VI型猕猴疱疹病毒(利物浦绿猴病毒)、VII型猕猴疱疹病毒(赤猴HV;MMV或PHV delta HV)、VIII型猕猴疱疹病毒(猕猴巨细胞病毒)、IX型猕猴疱疹病毒(医疗湖猕猴LV;类人猿水痘HV)、X型猕猴疱疹病毒(恒河白细胞相关LVIT株)、XII型猕猴疱疹病毒(LV小狒狒。狒狒HV)、XIII型猕猴疱疹病毒(cyclopis单纯疱疹病毒)、XIV型猕猴疱疹病毒(非洲绿猴EBV样病毒)、XV型猕猴疱疹病毒(恒河猴EBV样病毒)、I型侏猴疱疹病毒(蛛猴HV)、II型侏猴疱疹病毒(HV蛛猴)、金丝猴疱疹病毒(HV柽柳猴)、金丝猴疱疹病毒(SSG狨猴疱疹病毒)、I型悬猴疱疹病毒(僧帽猴HV)、II型悬猴疱疹病毒(僧帽猴HV)、I型黑猩猩疱疹病毒(黑猩猩HV;黑猩猩属HV)、II型黑猩猩疱疹病毒(猩猩HV)、III型黑猩猩疱疹病毒(大猩猩HV)、I型猿猴疱疹病毒(狨猴HV;疱疹T,HV)、绢毛猴,HV美洲猿(II型猿猴疱疹病毒)、松鼠猴HV和HV松鼠猴。
凝集病毒还可能被称为哺乳动物病毒,包括但不限于:牛疱疹病毒1-5、羊疱疹病毒1-2、狷羚疱疹病毒1、细小病毒(包括小鼠小病毒、阿留申貂病、牛细小病毒、犬细小病毒、鸡细小病毒、猫全白细胞减少症、猫细小病毒、鹅细小病毒、HB细小病毒、H-1细小病毒、基勒姆鼠细小病毒、兔细小病毒、水貂病毒性肠炎)、红视症病毒(包括腺联病毒1-5型、牛腺联病毒、犬腺联病毒、马腺联病毒、羊腺联病毒)。
凝集病毒更进一步的非限制性示范可能包括:花椰菜花叶病毒、杆菌状病毒、双联病毒、植物逆转录病毒、隐蔽病毒、弹状病毒科,番茄斑花叶病毒、纤细病毒、马铃薯病毒、马铃薯Y病毒、长线病毒,芜菁花叶病毒、番茄丛叶病毒、黄化病毒、随伴病毒,烟草花叶病毒、豇豆花叶病毒、斧耳突花叶病毒、红三叶草脉花叶病毒,雀麦花叶病毒、黄瓜花叶病毒,苜蓿花叶病毒、大麦黄花叶病毒、甜菜坏死黄脉病毒以及双链RNA病毒。
以下种属的病毒也被包括用于本发明的方法中:杆状病毒科和裸病毒科、多去氧核糖核酸病毒科、囊泡病毒科、野田病毒科、四病毒科、番茄丛矮病毒科、冠状病毒科、黄病毒科、披衣病毒科、雀麦花叶病毒科、杆菌状核糖核酸病毒科、整体病毒科、分体病毒科、低毒性病毒科、副黏液病毒科、弹状病毒科、丝线状病毒科、正黏液病毒科、本雅病毒科、沙状病毒科、光滑病毒科、微小核糖核酸病毒科、随伴病毒科、豇豆镶嵌病毒科、马铃薯Y病毒科、杯状病毒科、星状病毒科、野田病毒科、丝状噬菌体科、微小噬菌体科、联体病毒科、圆环病毒科、细小DNA病毒科、肝炎病毒科、逆转录病毒科、囊状噬菌体科、呼肠孤病毒科、双核糖核酸病毒科、肌尾噬菌体科、长尾噬菌体科、短尾噬菌体科、复层噬菌体科、覆盖噬菌体属、芽生噬菌体科、脂毛噬菌体科、微小纺锤形噬菌体科、痘病毒科、非洲猪瘟病毒、虹彩病毒科、藻类去氧核糖核酸病毒科、杆状病毒科、疱疹病毒科、腺病毒科、乳多泡病毒科、多去氧核糖核酸病毒科、披膜病毒、黄病毒科、冠状病毒科、动脉炎病毒、嗜肝病毒科、微小病毒科和痘病毒科。
经验丰富的技术人员将会理解到一种特殊检测中所使用的病毒浓度有赖于多种不同的因素,例如病毒的特性、样本量大小,以及用在一种检测中的其他成分的来源和浓度。更进一步,一种检测中所使用的病毒浓度通常会根据该在一种传统HA检测中发生凝集反应的病毒最低稀释浓度值来确定。这个稀释度被认为是1个凝集单位(HA单位或HAU)。根据1个HAU,一种检测中可能使用稍高或稍低的病毒浓度作为起始点浓度。例如,如果一个1∶128的稀释度是传统HA检测中凝集反应发生的最低病毒稀释浓度,那么在实例中,1∶64、1∶128、1∶512、1∶1024、1∶2048、1∶4096和1∶8192的稀释度也可能被用于此处所提供的方法中。经验丰富的技术人员将会理解到任何稀释度的病毒,或者根据稀释数量2或一些其他数量所进行的任何系列稀释都可能被使用,
D3.细菌分析物
一些实例中,本发明中的方法可以被用来探测细菌,该细菌可能能够与RBCs或可视性颗粒的细胞表面分子结合,并诱导聚集/凝集反应。
D4.凝集颗粒分析物
一些实例中,本发明中的方法可以被用来探测任何可以与细胞或微球结合并导致其聚集的颗粒。这种颗粒被称为“凝集颗粒”。“凝集颗粒”可能包括但不限于病毒、细菌、病毒颗粒、过敏原和抗体。另一个示例中,凝集颗粒包括与RBCs或其他细胞(例如凝集素)表面特异性结合的蛋白质和碳水化合物。更进一步,在有关微球的段落中(如下面所述,可能被制备以使其表面存在各种各样的分子),可能与一个微球表面上的一个分子结合的任何分子都可以具有凝集颗粒的功能。
E.红细胞
一方面,此发明所提供方法用于探察和测定红细胞(RBCs)的凝集反应,红细胞(erythrocytes)可被用来与RBCs相互替换。
红细胞是氧输送细胞,含有血红蛋白,是一种可以与氧气结合的含铁生物分子,并使血液呈现红颜色。来自多种有机体的红细胞都可能被用于此处所示的方法,只要该细胞在一种凝集颗粒诸如病毒存在时有发生凝集反应的可能。适合的红细胞包括但不限于鸟类红细胞,例如鹅、鸡、鸭以及火鸡红细胞;哺乳动物类红细胞,例如人类红细胞、豚鼠红细胞、小鼠红细胞、大鼠红细胞、牛红细胞、马红细胞、山羊红细胞和绵羊红细胞。人红细胞可能来源于一个任意血型的供血者,例如A型红细胞、B型红细胞、AB型红细胞和O型红细胞。
一些实例中,红细胞可能被用于凝集检测并选择其浓度,诸如其存在浓度为红细胞比容0.01%以下、红细胞比容0.05%以下、红细胞比容0.1%以下、红细胞比容0.15%以下、红细胞比容0.2%以下、红细胞比容0.5%以下、红细胞比容1%以下、红细胞比容5%以下、红细胞比容10%以下、红细胞比容15%以下、红细胞比容20%以下、红细胞比容30%以下、红细胞比容40%以下,或者红细胞比容50%以下
红细胞比容(Ht或HCT),或者压积红细胞体积(PCV),或者红细胞体积分数(EVF)是血容量中被红细胞占据的百分比。
E1.红细胞固定
在一些实例中,使用此处所提供的方法对需要分析的红细胞进行预先处理。
传统血液凝集方法中的红细胞反应剂必须使用一种复杂的洗涤操作进行新鲜制备。该传统操作耗费人力、不方便而且耗时。相反,一些实例中,此处所提供的方法使用单一的稳定的固定后的制备红细胞,因此在进行检测的时候不需要进行试剂准备。
预处理可以包括红细胞预固定以生成固定后的红细胞。红细胞预固定可能提供多个优势,包括缩短检测时间,因为消除了从血液样本中新鲜准备红细胞的需要;以及提高凝集检测的可重复性,因为使用了一致的预固定后的红细胞样本。实际工作中已知一些固定红细胞的方法,美国专利编号5,994,139中包括这些方法的说明。
一些实例中,红细胞通过一种有机乙醛的处理进行预固定,包括诸如甲醛的一元醛、戊二醛的乙醛,以及多聚体形式,诸如以甲醛平衡态存在的多聚甲醛。一些实例中,红细胞通过戊二醛的处理而被预先固定。该固定后的细胞本质上是无限期稳定的(以新鲜红细胞相反,后者必须当天准备而且每天都会有变化)。固定并不会使与病毒凝集素相结合的细胞表面受体失活。
一些实例中,动物红细胞产生于新鲜洗涤的动物RBCs,后者通过简短地暴露在戊二醛缓冲液并用盐水深度洗涤后获得。这种处理很大程度上保留了红细胞的自然抗原性,同时使该细胞可以对抗渗透冲击、冷冻-融化或免疫溶血所致的裂解。这些反应剂可能直接用在血液凝集反应操作中,或者可能与各种蛋白耦合在一起用于血液凝集的测试。戊二醛稳定后的RBCs通常保存在0.1%叠氮钠盐水的细胞悬液中。
通过戊二醛固定剂稳定后的红细胞可以由生产厂家提供,例如“FitzgeraldIndustries”(Acton,MA),可以提供来自牛、猫、鸡、狗、山羊、豚鼠、仓鼠、马、猴、小鼠、猪、大鼠、绵羊、火鸡和兔的戊二醛固定后的动物红细胞,所有这些都可以用在此处所提供的方法中。
一些实例中,该红细胞是通过戊二醛固定剂稳定后的火鸡红细胞。一些实例中,新鲜红细胞以及来自不同动物种属的细胞也可以使用。
F.其他类型的细胞
一些实例中,除红细胞以外的其他细胞可以用于此处提供的方法,只要这些细胞在一种病毒颗粒、抗体或其他凝集颗粒存在时发生凝集反应。
G.微球
一些实例中,本发明中的方法可以被用来测量任何非细胞分子或颗粒的凝集反应,所提供的凝集物应该足够大以便用于显微探测。这种颗粒被称为“微球”。这样,此处所提供的检测中,红细胞可以被微球替代,其表面与一种抗原或抗体耦合,选择性地与被探测的病毒颗粒、抗体或其他凝集颗粒结合。
适合的微球示范包括胶乳微球和其他可以随时与病毒颗粒、抗体、蛋白质、碳水化合物或抗原相结合并发生凝集反应的微球。一个实例中,该微球可以是滚珠。一些实例中,微球包含乳胶、黄金、玻璃或二氧化硅材料。一个实例中,该微球是涂有一种受体的乳胶微球,此受体与一种病毒颗粒相结合。一个实例中,微球涂有血凝素蛋白或一种血型抗原(例如抗原A、B、D等等)
一些实例中,本发明中的方法使用抗原涂层的微球进行凝集测试。尽管其名称为微球,但可能是任何形状,包括但不限于球形、立方形、圆柱形和不规则形。它们可能含有任何适合的物质用来粘附抗原并在凝集检测中使用。
抗原可以被耦合在一个微球上。将抗原粘附于微球滚珠上的方法已经为人熟知。耦合位置可能是在微球的外表面,或可以从该外表面到达的一个内表面上。抗原可以被耦合在滚珠上,例如那些由Luminex公司(奥斯汀,德克萨斯州)提供,根据生产厂商建议通过一个两步碳二亚胺操作而获得的产品。一些实例中,该抗原可能被吸附或共价粘附在该微球上。
一些实例中,多种抗原可以被使用,每个抗原与不同的,或同一个微球耦合。用来与微球耦合的抗原包括病毒的抗原部分,它可以被此处所提供的方法中使用的抗体或凝集颗粒识别。病毒的抗原部分包括但不限于病毒膜蛋白和非结构性蛋白。一些实例中,一种每个微球都耦合有一种不同抗原或抗体的微球混合物也可以被使用。
H.非特异性蛋白和其他分子
一些实例中,将一种非特异性蛋白加入到一个凝集检测中以加速凝集反应。添加一种非特异性蛋白可以使反应加速2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、20倍或30倍以上。适合的非特异性蛋白包括但不限于来自不同动物的白蛋白,例如牛、马、绵羊、山羊、鸡和人。其他白蛋白的非限制性示范包括牛血清白蛋白、人血清白蛋白、鸡蛋白蛋白、牛乳白蛋白和人乳白蛋白。
另外,其他大分子也可能被用来加速凝集反应,例如合成的多聚物(如聚乙二醇(PEG)、聚环氧乙烷(PEO))、糖类聚合物(例如右旋糖苷)、硫酸葡聚糖、二乙氨基乙基右旋糖苷(DEAE-右旋糖苷)和聚乙烯吡咯酮。
添加到该检测中的非特异性添加剂的数量可以不同,通常是0.1-50mg/ml之间的任何剂量。在特定的方法中,0.5、1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45或50mg/ml非特异性添加剂被添加到检测中。在一些实例中,不多于0.5、1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45或50mg/ml的非特异性添加剂被添加到检测中。
该非特异性添加剂可以添加到检测中使用的稀释缓冲液或其他缓冲液/反应剂当中。
I.所提供凝集检测的特定优势
此处所述的一些组成、方法、系统和设备提供了有关凝集检测的多个不同优势,优于传统的凝集检测方法。
I1.敏感性增加
实例中,此处所提供的方法可能使有关凝集探测的敏感性增加,优于传统的凝集检测方法。
I1a.敏感性增加-图像分析
一个实例中,凝集检测的敏感性得以增加可能通过使用图像分析对凝集反应进行分析来获得(将在下面做进一步讨论)。该图像分析的使用可能使检测敏感性较传统凝集检测增加2、3、4、5、6、7、8、9、10、15、20、25、30、40、50、75或100倍。
I1b.敏感性增加-浓缩/稀释步骤
另一个实例中,凝集检测的敏感性增加可能是通过对一种含有凝集颗粒(例如病毒颗粒)和可视性颗粒(例如RBCs或微球)的混合液进行浓缩,然后对浓缩后的物质进行稀释并对凝集反应进行分析这种方法来获得的。这种方法中,该凝集颗粒和可视性颗粒在浓缩步骤中相互靠近,有助于该凝集颗粒与该可视性颗粒之间的结合。然后,在对浓缩后物质进行稀释的步骤中,只有特定凝集后的可视性颗粒保持在凝集状态(例如浓缩步骤中非特异性凝集的可视性颗粒在稀释步骤中不会保留其凝集状态)。使用这种方法,检测中可能只使用较少的凝集颗粒即可产生可探测到的凝集。相应地,在HAI检测中,样本中金需要很少的抗体即可造成凝集抑制。因此,由于至需要很少的凝集颗粒和(或)很少的抗体即可导致凝集反应或凝集抑制,该方法可能增加了凝集检测的敏感性。
一个实例中,凝集检测的敏感性得以增加可能通过执行含有以下步骤的凝集检测方法来获得。第一,将一份怀疑含有感兴趣抗体的生物学样本与一种凝集颗粒或可视性颗粒进行混合并孵育。一些方面,在生物学样本可能在添加该可视性颗粒前与该凝集颗粒一起孵育。第二,对含有该凝集颗粒、可视性颗粒以及怀疑含有感兴趣抗体的样本的反应混合物进行离心以生成一个沉淀团块。通常,这种方法的离心很温和(几百到一、两千xg转速下离心几分钟),这样不会生成较难进行再悬浮的压积复合物。第三,移除上清液,并将该沉淀团块用一种缓冲液洗涤一次或两次,这不会干扰已经凝集的颗粒或可视性颗粒。第四,洗涤后的沉淀团块在缓冲液中再悬浮。第五,该再悬浮后的反应混合物被用于凝集分析。
另一个实例中,在使用抗体作为凝集颗粒的凝集检测中,通过将一种对抗感兴趣抗体类型的抗体添加到洗涤后的凝集反应中,该检测的敏感性可能被进一步提高。一个实例中,在含有上述浓缩/稀释步骤的凝集反应中,如果感兴趣抗体是人类抗体,在对洗涤后沉淀团块进行再悬浮时,还会将抗人球蛋白(Coombs反应剂)添加到该再悬浮沉淀物中。该再悬浮沉淀物与抗人球蛋白共同孵育后,该再悬浮反应剂被用于凝集分析。这种方法中,该抗人球蛋白与感兴趣抗体结合,可能使可视性颗粒与之相结合。由于该抗人球蛋白可能将多个感兴趣抗体的抗体聚集在一起,而每一个抗体可能与一个或多个可视性颗粒相结合,所以添加该抗人球蛋白可能增加凝集检测的敏感性。通过使用抗人IgM、IgG或IgA,而不是抗人球蛋白,该方法的特异性可能会得到进一步增加,以便鉴别特殊的抗体类型。
I2.提高速度
一方面,此处提供的方法在检测速度上可能会提供一些优势。传统的凝集检测在进行预处理步骤时需要至少12-18小时的孵育时间。本发明的一些方法中,预处理步骤在不到15分钟、不到半小时、不到一小时或不到两小时内完成。而且,本发明方法取消了新鲜准备红细胞的需要,而使用传统方法时这一过程可以耗时4小时。传统的HAI检测方法中,一份样本的孵育过程,其中可能含有感兴趣抗体和病毒抗原以及红细胞,按两个分开的步骤执行;但是此处所述的一些实例中,病毒抗原和红细胞在一个单一步骤内被一起添加到一份可能含有感兴趣抗体的样本中。在实例中,本发明的一个HA检测或HAI检测在不到1小时、不到1.5小时、不到2小时、不到2.5小时或不到3小时内完成。
本发明中的方法为一份样本中病毒的探察和(或)测定提供了改良措施,一些实例中,该方法实施的整个时间不到500、400、300、200、180、160、140、120、100、90、75、60、45、40、30、15、10、15、10或5分钟。一些实例中,该方法实施的整个时间在30到60分钟之间。
I2a.提高速度-图像分析
一个实例中,凝集检测的速度得以提高可能通过使用图像分析对凝集反应进行分析来获得(将在下面做进一步讨论)。
I2b.提高速度-反应剂和检测步骤
在其他实例中,凝集检测的速度得以提高可能通过使用改良的反应剂以及(或)检测步骤来加速凝集反应的进行和(或)分析。例如,如此文其他地方所述,样本预处理的任何一个或几个步骤的改进(例如通过使用神经酰胺酶)、使用预先固定的RBCs或微球、使用结合在一起的检测步骤(例如在一个单一孵育步骤内将凝集颗粒、可视性颗粒和含抗体样本进行混合,而不是在添加可视性颗粒之前先对凝集颗粒和含抗体样本进行孵育),以及对检测介质成分的改良都可能减少必要的时间而获得准确的凝集检测结果。
I3.减小容量
一方面,此处提供的方法在反应容量上可能会提供一些优势。一些实例中,此处提供的凝集检测方法可能在一个大约50、40、30、20、10、9、8、7、6、5、4、3、2、1微升或更少的反应容量下进行。一些实例中,此处提供的凝集检测可能使用大约50、40、30、20、10、9、8、7、6、5、4、3、2、1、0.8、0.6、0.4、0.2、0.1微升或更少的血液样本进行。
J.一般原则-凝集检测
探测凝集反应通常涉及使用一个成像设备,诸如一台扫描仪、照相机、探测仪或传感器,对该凝集反应产物进行图像拍摄。一些实例中,一台成像设备与一台显微镜耦合在一起。
通常情况下,使用一种能够盛接该反应的设备,例如一个微量滴定板(如96孔或其他模式)、一个检测试管、一个微量离心管、一根毛细管、移液管吸头或其他容器进行检测。一份含有需检测抗体的预处理后的生物学标本选择性地被一种稀释缓冲液(例如含有BSA的PBS)进行系列稀释。下一步,病毒颗粒可能被添加到一个容器中,该容器内的内容物被轻柔地混合。然后,预先固定的红细胞悬液可能被添加进来,并对其进行轻柔混合。该反应过程被孵育一段适合的时间,例如总共大约15分钟。但是,比15分钟更短或更长的孵育时间也可能被使用,例如大约5、10、20、25、30、35、40、50、60分钟,或更短,或更长的时间。孵育过程可能在室温下进行(例如25℃),或者在一个低于室温或高于室温的温度下进行,例如大约4、8、12、14、16、20、30、35、40、45、50、55、60、65或70℃。该孵育温度和时间可以被优化以同时获得检测最好的检测速度和准确性。该反应板结果在一台扫描仪上被读取,其最后的反应终结点图像被拍摄,首选该反应板倾斜角度在20-75°之间时,例如大约20、25、30、35、40、45、50、55、60、65、70或70℃。
在一些实例中,该凝集检测图像被一种光学设备所拍摄,其中包括一台显微镜。在这些实例中,其检测过程通常如上所述,唯一的不同是将预先固定的RBCs或可视性颗粒加入该反应物中后,将反应孔中一个微量样本(例如1-2μL)直接转移至一个比色杯或吸头内,并在一种包含显微镜在内的光学设备下进行成像。图像被收集并进行分析,以计算出相关因子,这在此处有更详尽的描述。
进行凝集检测所持续的时间通常被优化以便同时获得最好的检测速度和准确性。一些实例中,执行该检测并探测凝集的发生花费不到一个小时,例如大约10、15、20、30、40、50或者60分钟。一些实例中,执行该检测并探测凝集的发生花费超过一个小时,但是少于2、3、4、5、6、7或者8个小时。
一些实例中,一种凝集检测可能在一个系统或设备上进行,其中该凝集检测的一个或多个步骤是自动进行的,或者通过云端计算基础结构模式进行控制。例如,此处所描述的凝集检测可能在一个系统或设备上进行,该系统或设备在美国申请号13/244,947或美国申请号13/355,458中有所描述,该描述以引用的方式完全并入本文中。
一个实例中,一个设备包括一个可以在一种适合凝集反应的条件下向一份样本内加入一种凝集颗粒组成部分(从而引发一个凝集检测);一个能够获取一套该凝集检测图像的组成部分;以及一个能够分析该图像以对该样本的凝集反应进行测量的组成部分。能够分析一套图像以对该样本的凝集反应进行测量的组成部分可能是该设备内一种装置的一部分,该装置同样被设计用于获得多幅凝集检测图像。能够分析一套图像以对该样本的凝集反应进行测量的组成部分可能被安装在该设备内。能够分析一套图像以对该样本的凝集反应进行测量的组成部分可能被设计在该设备内执行多种类型的分析,或者可能被用于多种用途。能够分析一套图像以对该样本的凝集反应进行测量的组成部分可能被放置在远离该设备的位置。能够分析一套图像以对该样本的凝集反应进行测量的组成部分可能被放置在一台云端计算基础结构模式内(如云端计算)。能够分析一套图像以对该样本的凝集反应进行测量的组成部分可能位于云端内,而且该设备可能被设计受来自该云端的动态控制。一些实例中,该设备被设计用来根据一项凝集检测分析结果对一个继发操作产生影响。在一些实例中,一台能够执行此处所述凝集检测的设备可能被设计作为一种美国系列号13/244,947中所描述的设备,该描述以引用的方式完全纳入本文中。
一个实例中,此处显示的一个系统可能包括一个可以在一种适合凝集反应的条件下向一份样本内加入一种凝集颗粒的设备,从而引发一个凝集检测;一台能够获取一套该凝集检测图像的照相机;以及一台能够分析该套图像以对该样本的凝集反应进行测量的计算机。能够分析一套图像以对该样本的凝集反应进行测量的计算机可能是该系统内一种装置的一部分,该装置同样被设计用于获得多于一张的整套凝集检测图像。设计用来分析一整套图像以对该样本的凝集反应进行测量的计算机可能被安装在该系统内。设计用来分析一整套图像以对该样本的凝集反应进行测量的计算机可能被设计在该系统内执行多种类型的分析,或者可能被用于多种用途。设计用来分析一套图像以对该样本的凝集反应进行测量的计算机可能是被置于远离一台照相机的位置,该照相机被设计用于获得多幅的整套凝集检测图像。设计用来分析一整套图像以对该样本的凝集反应进行测量的计算机可能位于云端内。设计用来分析一套图像以对该样本的凝集反应进行测量的计算机可能位于云端内,而且该系统可能被设计接受来自该云端的动态控制。该系统可能被设计用来根据一项凝集检测分析结果对一个继发操作产生影响。在一些实例中,一个能够执行此处所述凝集检测的系统可能被设计作为一种美国系列号13/244,947中所描述的系统,该描述以引用的方式完全纳入本文中。
III.探测和图像分析
一方面,本发明提供了根据图像分析聚集反应、凝集反应或血液凝集的优势性的客观方法。
在一个试管或反应孔(像一个滴定板)中进行的一种传统凝集检测中,凝集反应是通过视觉观察来确定的,一个反应孔底部的RBCs活动性降低(凝集反应发生的情况),还是倾斜滴定板时,在重力作用下压积在一起的RBCs出现限制性的流动(缺乏凝集反应的情况)。凝集反应发生时RBCs活动性降低是由RBCs和凝集颗粒之间的吸引力所致。
为了解读凝集反应,会使用几种视觉观察(目视的)方法。但是,所有这些现行的方法都是通过简单的肉眼检查观察悬液中成块物质的属性来发现RBCs相互间的结合。
一方面,此处所提供的是基于图像分析的凝集反应分析方法。在一个实例中,图像分析方法被用来分析RBCs的整体运动,或者在一个锥形反应孔或试管内的凝集反应检测中出现的可视性颗粒。在另一个实例中,图像分析方法被用来分析RBCs的显微图像,或者一种凝集反应检测悬液中的可视性颗粒,以便查看该RBCs或可视性颗粒悬液的精细结构。
A.RBCs/可视性颗粒整体运动的图像分析
一方面,此处所提供的方法用于RBCs和可视性颗粒整体运动的图像分析如上所述,在图3所示一个锥形(V形)反应容器内(例如试管或反应孔),未凝集细胞通常松散地沉淀到该容器底部压积呈“纽扣”状,而凝集后的细胞通常更牢固地相互黏附在一起。所以,如果将一个含有凝集细胞的锥形反应容器倾斜,该细胞通常不会离开该容器的底部,因为这些细胞通常相对牢固地相互黏附在一起。相反,如果将一个含有未凝集细胞的锥形反应容器倾斜,一些细胞通常会在重力作用下离开该容器的底部,以致形成一个包括“泪滴”形状在内的细胞沉淀团。用于与上述情况相关的凝集检测图像分析的多种方法在此处被提供。
A1.整体运动-在反应容器内的指定位点进行图像分析
一个实例中,一种方法被提供用来使用一个反应容器内的指定位置(例如反应试管或反应孔)对凝集反应进行图像分析。图6显示的是与该方法相关的示意图。在这种方法中,区域610包括在(或紧邻)一个反应容器600的底部。该反应容器600的底部可能含有一个细胞沉淀团块605。该反应容器的图像可能在倾斜该反应容器之前、之中和(或)之后被拍摄。细胞的位置可能参照反应容器内指明的区域来确定,这可能被用来确定该样本凝集的程度并(或者)进行相关的计算。一些情况下,倾斜该反应容器时可能会形成一个“泪滴样”细胞团615。未凝集细胞可能会形成一个泪滴样形状,而凝集后的细胞可能不会形成一个泪滴形状。凝集后的细胞可能保留其压积后形状或“纽扣”形状。一些情况下,一个检测可能造成细胞的部分凝集。区域610可能具备围绕纽扣状细胞区域和(或)泪滴样细胞区域的轮廓线以及一些背景细胞(图6A),或者该区域可能具备较小的只占有纽扣状或泪滴样细胞区域的轮廓线(图6B)。
在一个实例中,使用一个反应容器内指定区域凝集反应的图像分析可能包括以下一个或多个步骤:
首先,一个含有反应混合物反应孔的一幅数字化图像被采集。
第二,使用模式识别技术,参照检测孔上的框标或者纽扣或泪滴状识别,为该图像定向。
第三,对该图像相对于该反应容器内的区域进行定向。覆盖每个区域的光学信号可能被逐像素测量。所测量的信号可能是,例如使用白光照明:a)透射光%(T)(当该图像通过背景光获得时的灰阶);b)反射光%(R)(当该图像通过顺光照明获得时的灰阶)。透射光百分比可能是通过在光线路径中细胞存在时透过的光线和无细胞存在时透过的光线之间的比值来确定;反射光百分比可能是以一种相似的模式来确定。每一个T%和R%都涉及到一个照明光源和一个探测器。在透射情况下,该样本可能被放置在一个光学透明的容器内,位于照明光源和探测器之间,并与其在一条线上。如果从该照明光源发出的光线强度为I0,而到达该探测器时(穿过样本之后)的强度为I,那么透射率可能被计算为T=I/I0。
第四,透射率(%T)和反射率(%R)可能被转化为吸收率(A),所依据的公式为:(A=-LOG[%T])(Beer定律)或K/S(这里K=吸收率;而S是散射)(Kubelka-Munk方程)。Beer定律是所测得的吸收率和分析底物浓度之间的关系。
A和K/s直接与光吸收物质的浓度有关,如下:A=浓度*M*1*C(其中M是摩尔消光系数;I是样本的路径长度;C是感兴趣分析底物的浓度,也就是吸收物质);K/S=(1-(0.01R)2)/(2*0.01R))。对于光散射,该照明光源相对于探测器是大约90度角。光散射密度是被样本散射(被探测器收集到的)的光线密度(来自光源的)。
如图7所示,当用信号强度(%T或%R)与区域数量(图6A示意图)作图时,就能获得一个反应与凝集程度关系的示意图。
上面的等式用于一个单一波长,如果使用的是白光,那么A或K/S值将代表一个波长范围的平均值。这些值仍然可以为凝集反应分析提供可接受的结果。
一些实例中,使用吸收率或K/S作为测量信号,大于背景的信号可能在每一个区域内被平均。而且,如果吸收率或K/S比一个任意阈值大,但小于临界值,那么进行分析时该信号可能被设定为1或0。
A2.整体运动-使用扫描进行图像分析
一个实例中,一种方法被提供用来使用压积细胞扫描对凝集反应进行图像分析。该压积细胞包括一个扣状和(或)泪滴样区域。图8显示的是与该方法相关的示意图。这种方法中,在一个锥形容器内进行凝集反应,然后倾斜该反应容器。下一步,可能沿该扣状和(或)泪滴状长轴建立一个扫描区域。用来分析的轴线可能比该纽扣、泪滴或二者结合后的区域短或长。沿轴线的一些位置可能被指定编号,例如位置0是轴线的起始阶段,在纽扣区的外侧;位置20为轴线的终点,位于泪滴状区域的外侧。根据速度和准确性的最佳组合,这些位置的号码可能是随意选择的。轴线的长度数据可能被获得用于一个光学信号,例如%T或%R。该信号可能被用来相对轴线的位置进行作图。图9显示了沿图8中所示的轴线,一个多种样本类型中光学信号强度对位置编号的代表性图形(凝集(三角形)、部分凝集(正方形)以及未凝集(菱形)。沿该纽扣状和(或)泪滴状区域长轴的光学信号可能被用来确定样本内的凝集程度并(或者)进行相关的计算。
在一个实例中,使用纽扣状和(或)泪滴状区域扫描进行凝集反应的图像分析可能包括以下一个或多个步骤:
首先,一个含有反应混合物反应孔的一幅数字化图像被采集。
第二,使用模式识别技术,参照检测孔上的框标或者纽扣或泪滴状识别,为该图像定向。
第三,沿该扣状和(或)泪滴状长轴的一个扫描区域可能被用于%T或%R的数据提取。
第四,光学信号(如在“整体运动-在反应容器内的指定位点进行图像分析”中所定义的)沿轴线被逐像素地测量。
大于背景的信号可能在几个像素之后被计算均值,并与该轴线垂直。
第六,对信号与轴线位置进行作图。
A3.整体运动-面积或周长的图像分析
一个实例中,一种方法被提供用来使用一种凝集反应的压积细胞面积和(或)周长的确定对凝集反应进行图像分析。该压积细胞可能包括一个扣状和(或)泪滴样区域。一些实例中,压积细胞的扣状和(或)泪滴样区域的面积和(或)周长可能被确定。图10显示的是与该方法相关的示意图。这种方法中,在一个锥形容器内进行凝集反应,然后倾斜该反应容器。下一步,一幅倾斜后的整个样本图像可能被获得。然后整个图像的光学信号可能被测量。而且,模式识别方法可能被用来识别一个样本的纽扣状和(或)泪滴样区域。图10中,该样本具有一个纽扣状区域1005(区域A)和一个泪滴样区域1010(区域B)。纽扣状和(或)泪滴样区域的面积和(或)周长可能被测量。这个信息可能被用来确定样本内的凝集程度并(或者)进行相关的计算。
在一个实例中,使用纽扣状和(或)泪滴状区域的面积和(或)周长分析进行凝集反应的图像分析可能包括以下一个或多个步骤:
首先,一个含有反应混合物反应孔的一幅数字化图像被采集。
第二,使用模式识别技术,参照检测孔上的框标或者纽扣或泪滴状识别,为该图像定向。
第三,对该图像相对于区域进行定向,如以上“整体运动-在反应容器内的指定位点进行图像分析”中所述。
第四,光学信号(如在“整体运动-在反应容器内的指定位点进行图像分析”中所定义的)沿整个图像被逐像素地测量。
第五,模式识别方法可能被用来识别与纽扣状和,如果存在的话,泪滴样一致的区域。这些区域将具备明显高于背景的吸收率。纽扣状和(或)泪滴样区域的面积和(或)周长被测量。一些实例中,对每一个已知的试管位置,其图像节段可起始于该试管的中间部分。由红细胞或可视性颗粒形成的暗区可以通过局部增加法或自适应阈值进行分段,生成一个含有与细胞存在相应的区域的二进制图像。该分段区域的形状可以通过分布特征值、或者通过拟合一个诸如椭圆形的参数化形状、或者通过计算其他形状的诸如局部偏心性或转动惯量参数进行分析。该分段部分可以被叠放在原始图像上;而且,该局部的分布密度和其他密度数据也可以被计算出来。
第六,当将每一个纽扣和泪滴样区域总面积的%(区域A/(区域A+区域B)和与区域B/(区域A+区域B);图11分别由菱形标记的直线和正方形标记的直线)凝集程度作图,即获得一个清晰的标准化反应图。区域B/A的比值(图11,三角形标记的直线)可能为凝集反应提供了一个更敏感的反应。或者,超过阈值的总面积可能被用来作为一个凝集测量值。一个凝集测量值还可能通过将形状与密度信息联合在一起而获得。
A4.总则-RBCs/可视性颗粒整体运动的图像分析
与由观察人员对同一个反应的视觉分析相比,通过使用此处所提供的方法对RBCs/可视性颗粒整体运动进行分析可能获得一个更早期的和(或)更准确的凝集反应探测。
一些实例中,光源可能被用来为此处所提供的任何方法收集整体运动的图像。顺光照明或逆光照明都可能被使用。光源可能是,例如,白光或LED(单色)。探测器可以是任何成像类型,例如,CCD或CMOS。图像可能在一个单一时间点被拍摄,或者一个视频系列图像可以与图像一起在不同间隔时间内被拍摄。视频中,图像可能以任何间隔被拍摄,包括15幅/秒、10幅/秒、5幅/秒、1幅/秒、0.5幅/秒或0.1幅/秒。上述分析方法是用于一次只分析一张单一图像的情况。一些方面,当对一个凝集检测进行视频录像时,各种信号参数可能被转化为对时间的变化率(dS/dT)。
在此处所提供的任何方法中,对多个像素进行平均可能被用于减少随机噪音。像素可能同时在X轴和Y轴方向上进行平均,其中X轴是重力方向。在一些方面,横排或竖列上至少5个相邻的像素,或以至少5个像素做为边缘的正方形或长方形区域(一个正方形区域为25个像素)被平均。在此处所提供的一些样本图像中,每个范围内有几百个像素,因此平均后仍然提供了较好的空间分辨率数据。
B.RBCs/可视性颗粒显微成像的图像分析
一方面,此处所提供的是图像分析方法,用于分析一个凝集检测中悬浮液内RBCs或可视性颗粒的显微图像,以便获取该悬浮液或悬浮液质地中细胞或颗粒的精细结构数据。这些图像分析可能提供关于该悬浮液内细胞或颗粒凝集反应的信息。一些方面,与凝集反应可能通过细胞或颗粒整体运动分析被探测相比,这些方法可能允许我们更快地探测到一个反应内的凝集现象。与传统的依靠视觉解读的方法相比,这些方法还可能更可靠,而且更适合于自动测量。
一些实例中,图像分析包括根据每一幅所述图像中所拍摄的单个红细胞之间的中心到中心的距离,计算出该红细胞-凝集颗粒反应簇的大小。单个红细胞中心-中心的距离可以根据诸如与含有参照红细胞或可视性颗粒大小的图像进行内部校准来获得。另一个示范中,它可能根据该光学系统的绝对校准来获得。显微镜下,该红细胞可能显示为明亮的实心圆点或者明亮的环形(因照明体系而异)。任意一种情况下,每个红细胞的中心都可以通过计算其圆形的质心而确定。一旦每个圆形的质心被确定,中心-中心的距离即可能被计算出来。
RBC中心信息可以与一个临界值距离联合使用,用来鉴别相互吸引的细胞。根据两个细胞之间中心-中心的距离,一个“临界”距离可能被应用。另外,根据另一个与两个细胞之间距离相关的可测量参数(例如两个细胞外缘之间最接近位点间的距离),一个“临界”距离可能被应用。尽管可能会有变异,一个“临界”距离通常是一个到两个细胞直径的距离。一些实例中,该“临界距离”是该细胞直径的距离(例如,一个“临界距离”可能是检测中一个由于发生凝集而相互之间紧密压积在一起的可视性颗粒的直径;紧密压积后的可视性颗粒相互之间可能马上靠在一起,这样一个第一个压积后的颗粒直接与一个第二个被压积颗粒向接触,第一个颗粒和第二个颗粒中心之间的距离就等于一个可视性颗粒的直径)。一些实例中,该“临界”距离大约是一个RBC直径的0.5倍或更短、一个RBC直径的1倍或更短、一个RBC直径的2倍或更短、或者一个RBC直径的2.5倍或更短。该临界距离可以通过校准进行确定,或者通过对检测中RBCs吸引时相互之间距离的一个估计值来确定。
实例中,一个临界距离可能通过对图像内一组可视性颗粒计算其径向分布函数(成对相关函数)来进行确定。在实例中,一个径向分布函数g(r)对一个参照颗粒距离r内发现一个可视性颗粒的可能性进行定量。径向分布函数在诸如“K.Younge et.al.,AmericanJournal of Physics,Vol.72(9)pp.1247(2004)”文献中被描述,该描述以引用的方式完全纳入本文。在实例中,g(r)作为一个检测样本的一副图像中的所有颗粒平均值以及一个检测样本的多幅图像的平均值来计算。可能用g(r)对距离r作图,例如如图9所示。在实例中,该临界距离被选择为最高g(r)峰值时的r值。在实例中,最高g(r)峰值可能被称为g最大峰值。凝集检测中,通常最高g(r)峰值的r值与两个相互吸引的可视性颗粒之间的距离一致。因此,距离r(或者一个与距离r接近的一个数值)可能作为一个有效的临界距离鉴别相关的可视性颗粒。实例中,该临界距离可能是0.5μm或以下、1μm或以下、2μm或以下、3μm或以下、4μm或以下、5μmL或以下、6μm或以下、7μm或以下、8μm或以下、9μmL或以下、10μm或以下、11μm或以下、12μm或以下、13μm或以下、14μm或以下、15μm或以下、20μm或以下、25μm或以下、30μm或以下、35μm或以下、40μm或以下或者50μm或以下。
使用临界距离和细胞位置信息,RBC反应簇可以被识别出来。此处的“反应簇”指两个或多个细胞接触在一起,根据所确定的临界距离这些细胞是相互关联的。使用此处所述检测可能探测到的反应簇大小可能根据检测中所使用的成分而有所变化,包括红细胞来源的以及具有抗血清和病毒属性的成分,使用该检测可能对少至两个红细胞的反应簇即可探测到。一些特殊方面,使用此处所提供的凝集检测可能探测到大约3、4、5、6、7、8、9、10、20、25、30、50、75或100个红细胞以下的反应簇。实例中,可视性颗粒的“反应簇”可能通过涉及一种成对分析的方法进行鉴别。成对分析方法可能检查诸如,任何所给的两个可视性颗粒的位置其中心-中心的距离是否处于或小于一个所选择的临界距离。如果是,这两个可视性颗粒可能被归类在同一个反应簇部分。这一分析过程可能运用在一副图像或图像区域内的所有可视性颗粒,然后可能对反应簇进行鉴别。例如,如果一个两个可视性颗粒组成的反应簇被识别后,这个被识别反应簇中的任何一个可视性颗粒都可能被查询以鉴别在该可视性颗粒周围所选择的临界距离内是否有任何其他相邻的可视性颗粒。如果是,该其他可视性颗粒可能被识别为与前两个颗粒属于同一个反应簇的一部分。这一过程可能被重复进行直到该反应簇一个或多个全部区域被确定(例如位于该反应簇或反应簇区域内的可视性颗粒组成,等等)。实例中,可视性颗粒的“反应簇”可能通过涉及确定三个或多个可视性颗粒之间关系的方法进行鉴别。例如,一些实例中,当一个所给的可视性颗粒位置与同一个所给反应簇中至少两个可视性颗粒的距离在所选择的临界距离内,该可视性颗粒即可能被归类属于该所给反应簇。实例中,反应簇可能通过对一幅图像中多个可视性颗粒之间的距离同时进行评估来进行鉴别,这样反应簇在一个单一步骤内即可被鉴别。另一个实例中,反应簇可能通过对一幅图像中不同可视性颗粒之间的距离顺序进行评估来进行鉴别,这样反应簇在一个多步骤过程中被鉴别。
一些实例中,一个反应簇中的颗粒可能被安排为一个随机或半随机方位,这样该反应簇没有一个稳定的长度和宽度。另一些实例中,一个反应簇中的颗粒可能被安排为一个有序的方位,例如该反应簇有一个稳定的长度和(或)宽度(如反应簇中可能含有链接成链的颗粒,其中该颗粒链具有一个单一颗粒的宽度和从2个到5、10、20、50、100或更多颗粒不等的长度)。
一些实例中,对于一个给定的样本,两个或多个颗粒形成的反应簇数目可能被计数,并且计算出反应簇大小的柱状图。为了计算一个反应簇尺寸的柱状图,同一个样本的多幅图像可能被用于反应簇分析,而且该柱状图可能包含从多幅图像中获得的或平均得到的反应簇数值(例如来自同一个样本中的2、3、4、5、6、7、8、9、10或更多幅图像的反应簇大小值。根据反应簇大小的柱状图,一个平均反应簇值(S平均)可以被计算出来。
其中Ni是反应簇大小的数量;i是反应簇中颗粒的数量。
一个代表反应簇大小更简便的方式是通过所谓的“相关因子”,定义为,
相对一个最小值进行标准化,它可能与诸如一个对照样本相对应。在涉及对一个给定样本进行不同程度稀释的检测中,可以将平均反应簇大小对用于所有样本的稀释因子作图以获得一个滴定值。
反应簇大小的柱状图以及一种对含有一种凝集病毒样本进行HA检测的相关因子的代表性图形显示在图13中。框A中的图形显示了该样本和对照五种稀释时反应簇大小的分布。样本稀释度1含有最高的样本浓度;每一个后序稀释编号含有前一个稀释度一半的浓度。对照反应物中不含任何样本。所有样本稀释度的相关因子显示在图13B中。很明显,含有高病毒浓度的样本稀释度(对应于低样本稀释程度,样本1-2)显示出较高的相关因子数值,而样本4、5以及对照中(对应于高样本稀释程度或根本不含样本)显示出减小的相关因子数值。样本2和样本4之间的转型状态也得到证实。图13B中的插图显示的是源自典型的、具有同样样本稀释度的、在微量滴定板上进行的HA检测结果,其中第一栏(左侧)显示的图形来自一个未受干扰的滴定板图像,第二栏(右侧)显示的是倾斜后的滴定板图像。可以看到样本1-3显示出一些凝集状态,而其他三个样本显示出RBC流动,表明未出现凝集。从这些图像中,可以得出的结论是从凝集状态到非凝集状态的转型阶段为样本3,它非常接近相关因子图形中的拐点。这正面铜鼓此处提供的方法所得出的结果与现存的凝集检测方法有很好的一致性。
因此,使用本发明中的图像分析方法可以包括根据图像中红细胞中心到中心的距离计算反应簇的大小,而且可以根据源自所述反应簇大小的相关因子确定一份样本中一种病毒或一种抗体的存在。
病毒颗粒或抗体浓度的定量分析可能通过对需要检测的生物学样本和已知浓度或滴定度的病毒颗粒或抗体对照(校准标准)进行平行检测来进行。该结果可以制成图形作为进行校准的标准,并可能提供校准曲线。
实例中,凝集反应的图像分析或光学分析可能包括以下一个或多个步骤。含有可视性颗粒和凝集颗粒的凝集检测样本可能放置在一种结构内被提供,可能通过该结构获得一幅该检测样本的图像,例如一个光学透明的移液管吸头、毛细管、显微切片或其他容器或表面。一些实例中,一个容器可能含有两个或多个流体性分开的空腔,这样两个或多个不同的检测样本可能被引入到同一个容器中进行分析。例如,一个容器可能是一个含有无色塑料盒垂直侧壁的比色杯足以支持2、3、4、5、6、7、8、9、10、15、20、25、50、100或更多个独立的凝集检测。实例中,该检测样本被引入一个微型管道或其他容器或表面内的狭窄结构中,这样从一个很小量检测样本中即可能获得图像。例如,该检测样本可能被放置在一个结构内,这样可能从一个50μl或以下、40μl或以下、30μl或以下、25μl或以下、20μl或以下、15μl或以下、10μl或以下、9μl或以下、8μl或以下、7μl或以下、6μl或以下、5μl或以下、4μl或以下、3μl或以下、2μl或以下、1μl或以下、0.5μl或以下或0.1μl或以下的检测样本中获得图像。支持该凝集检测样本的结构可能被放置在一个显微目镜附近,这样可视性颗粒被带入到该显微镜内进行聚焦。为了将该结构放置在一个显微目镜附近,该结构可能被移动、显微镜目镜可能被移动,或者二者都可能被移动。同样,为了对物体聚焦或改变物镜内的视野,该结构可能被移动、显微镜目镜可能被移动,或者二者都可能被移动。该检测样本的一幅或多幅图像可以被获得。在实例中,该检测样本可能通过CCD、CMOS、或其他带有一台显微镜的光纤通信设备中的图像传感器来获得。实例中,一个单一样本不同视野的多幅图像可能被获取。例如,一个单一检测样本视野的2幅或以上、3幅或以上、4幅或以上、5幅或以上、6幅或以上、7幅或以上、8幅或以上、9幅或以上、10幅或以上、15幅或以上、20幅或以上、25幅或以上、50幅或以上、100幅或以上、500幅或以上或1000幅以上的图像可能被获得。一副图像可能被分析以对该图像中可视性颗粒(例如RBCs)的位置进行定位。实例中,该图像被分析用以确定该图像中、或图像中感兴趣区域内的所有可视性颗粒的位置。对于每一个被识别的可视性颗粒,该可视性颗粒的中心也可能被确定。该图像可能被分析以对识别可视性颗粒的反应簇。实例中,反应簇可能通过使用一种计算方法被识别,其中包括一个“临界距离”作为计算值的一部分,该“临街距离”作为一个描述点数值,例如,分开距离小于该“临界距离”数值的两个可视性颗粒可能被认为是彼此相关的,并且是同一个反应簇的组成部分;而分开距离大于该“临界距离”数值的两个可视性颗粒可能被认为是彼此无关的,并且不必要是同一个反应簇的组成部分。一个“临界”距离可能根据此处所描述的任何方法被确定。一个“临界”距离选择完毕后,根据此处所描述的反应簇识别方法,该样本一幅或多幅图像中的反应簇可能被确定。实例中,含有不同可视性颗粒数量的反应簇数目可能被确定(例如,一幅图像中,可能有7个各自含有10个可视性颗粒的反应簇;3个各自含有15个可视性颗粒的反应簇,等等)。实例中,一个该样本反应簇大小的柱状图可能被确定。实例中,该样本的一个平均反应簇大小可能被确定。在进一步的实例中,一个样本的平均反应簇大小可能被转化为一个相关因子,如此文其他位置所述。实例中,不同样本的反应簇大小柱状图、不同样本的平均反应簇大小或者不同样本相关因子可能被用来确定不同样本的凝集水平。实例中,根据一个样本不同稀释度时的凝集程度,或者一个凝集检测给定一段时间之后一个样本的凝集程度,一种抗体、病毒颗粒或样本中感兴趣的其他颗粒可能被确定。
此处所提供的方法可能被用来确定一份样本内凝集颗粒或凝集抑制颗粒(例如对抗凝集颗粒的抗体)的滴度。例如,一个感兴趣样本的多个不同稀释度可能被制备,而且可能对这些不同的样本稀释度抑制或导致可视性颗粒凝集的能力进行检测。根据该检测信息与样本稀释相关信息相结合后的信息,该样本内凝集颗粒或凝集抑制颗粒的滴度可能被确定。
一些实例中,此处所提供的方法中,只对一份感兴趣样本的径向分布函数g(r)进行确定,该g(r)值的密度/程度可能被用来确定一份样本的凝集程度。例如,第一个样本在g(r)-距离r图形最高峰处中有一个相对高的g(r)值(第一个样本的g最大),可能被认为发生了凝集反应;第二个样本在g(r)-距离r图形最高峰处中有一个相对低的g(r)值(第一个样本的g最大),可能被认为没有发生凝集反应。这种确定可能是根据这样一个概念,就是与第二个样本相比,如果第一个样本中在相互之间为特定值r的距离有比较多的颗粒(这就造成了在g(r)-距离r图形最高峰g最大中第一个样本较第二个样本有一个相对高的g(r)值),那么第一个样本较第二个样本可能含有更多的凝集后的颗粒。
在一些实例中,图像分析方法可能包括对一幅凝集检测图像中悬浮液内RBCs或可视性颗粒的结构进行分析。该悬浮液中颗粒的结构可能提供关于该悬浮液内颗粒凝集状态的信息。通常,一种悬浮液中的可视性颗粒发生凝集时会导致该悬浮液较相应的未凝集颗粒悬浮液表现得更多团块和粗糙的结构。悬浮液的结构可能以不同的方式进行分析以获得该悬浮液内颗粒凝集状态的相关信息。
含有颗粒的悬浮液在凝集检测过程中或过程后可能被转送至一个容器内或表面上,并可能由此获得该悬浮液的图像或光线。例如,一个凝集检测可能被传送至一个移液管吸头、一个毛细管或一个显微切片内。该检测的一幅或多幅图像可能通过任何本文其他地方所描述的光学设置获得。实例中,该凝集检测的图像可能在一台显微镜辅助下获得。实例中,图像可能通过一台CCD或CMOS图像传感器获得。图像认知规程(例如匹配方案模板)可能识别含有一个凝集检测材料的图像或视野区域(例如一个容器的内部),和不含有检测材料的图像或视野区域(例如支持该检测容器的侧壁)。
根据对含颗粒悬浮液凝集检测的一幅或多幅图像的获取,该图像可能被进行图像或区域的结构分析。任何适合用于图像结构分析的方法都可能用于此处所提供的方法中。例如,一幅图像可能会受到一个局部二进制模式(LBP)操纵器、灰度共生矩阵(GLCM)操纵器、Gabor特征识别或Tamura结构特征识别的检测。例如,在“T.Ojala et.al.,PatternRecognition,vol.29,pp.51-59,M.Heikkila et al.,Pattern Recognition 42(3):425-436,P.Howarth and S.Ruger”中所描述的图像结构分析方法,用于基于内容的图像检索的结构特征评价的“Third International Conference,CIVR 2004,pp.326-334(2004),andP.Howarth and S.Ruger,Robust Texture Features for Still-ImageRetrieval.Vision,Image,and Signal Processing,IEE Proceedings,vol.152,issue6”,都以引用的方式完全纳入本文中。实例中,一种图像分析方法可能包括MPEG-7元件,例如MPEG-7描述符、描述示意图、描述定义语言或系统工具。
实例中,一个局部二进制模式操纵器看病难被用在图像的结构分析中。通常,一个局部二进制模式操纵器涉及在图像内选择一个感兴趣区域。该感兴趣区域可能是整个图像或者图像的一个或几个部分。可选择地,一个感兴趣区域可能被分为一个所选像素数目的两个或多个细胞(例如10x10、12x12、16x16、18x18、25x25、30x50像素,等等)。在一个感兴趣区域内,一些或所有像素都可能被提取与该像素周围相关的密度数据。例如,对于一个给定的像素,该像素的密度可能需要与其最近的和相邻区域的每一个像素密度进行比较(例如给定像素位于一个3x3像素格的中心,该给定像素要与同一个3x3像素格内的其他每一个像素密度进行比较)。当对一个给定像素和该给定像素相邻区域像素的密度进行比较时,该给定像素相邻区域的像素可能按一个有序的方向进行评估,例如围绕该给定的像素顺时针或逆时针进行。一个给定像素和其周围像素之间的比较可能被转化为一个二进制编码。例如,当一个给定像素和其周围像素进行比较时,如果该给定像素密度大于其周围像素时,它可能被指定为数字“1”。相反,如果该给定像素密度弱于其周围像素时,它可能被指定为数字“0”。因此,当一个给定像素与多个相邻像素比较时,该给定像素可能被指定为一个多位数字的二进制号码,该二进制号码中的每一个数字都对应着一个该给定像素与其周围一个像素之间的比较。例如,在一个给定像素位于一个3x3像素格中心的情况下,根据该给定的中心像素与同一个3x3像素格内其相邻像素之间的顺序比较,该给定像素可能被指定为一个8位数字的二进制号码。可选择地,指定给该给定像素的二进制号码可能被转化为一个十进位数字。根据对一个普通区域(例如细胞的感兴趣区域)内多个像素密度值(例如二进制号码或十进制号码)的确定,可能会确定一个该普通区域的柱状图。该柱状图可能含有关于不同像素相关密度的信息。实例中,该柱状图可能被标准化。实例中,来自多个细胞的柱状图可能被联系起来。来自一个感兴趣区域内多个细胞的柱状图连接可能为该感兴趣区域提供了一个特征向量。该特征向量可能通过一种诸如支持向量机的机器学习程序处理,以便根据其确定后的结构对该图像进行分类。
通常,此处所提供的涉及根据一种凝集检测结构的图像分析而进行凝集检测的方法涉及将来自感兴趣区域的结构信息和来自已知凝集状态(例如已凝集或未凝集)的样本所生成的信息进行比较。因此,此处所提供的方法可能包括获取含颗粒悬浮液中已知凝集状态的样本图像,并对这些样本的结构进行分析。这个信息可能被包括在一种机器学习程序中,或与之一起使用,以辅助对一份感兴趣样本的凝集状态进行分类。实例中,已知凝集状态的样本图像可能被用来与此处所提供的方法和规程一起使用,作为“培训设置”的一部分辅助对未知凝集状态的样本图像进行分类。
此处所提供的方法可能同时被用于一份样本凝集状态的定性评估和定量评估。例如,实例中,此处所提供的方法可能被用来对感兴趣样本已凝集或未凝集状态进行定性评估。另一个实例中,此处所提供的方法可能被用来对感兴趣样本的凝集状态进行定量评估,例如评估一份样本的凝集程度。为了支持对一份样本凝集状态的定量评估,含有不同凝集程度样本的训练设置(例如轻度凝集、中度凝集、重度凝集、10%凝集、20%凝集,等等)可能被提供。实例中,与当凝集检测只用来对凝集或非凝集状态进行定性评估时确定样本滴度所需的稀释度和时间相比,一份凝集检测样本凝集程度的定量评估可能允许对一份样本内的一种病毒、抗体或其他感兴趣颗粒的滴定值在较少的样本稀释度和较短时间内被确定。
一些实例中,一幅图像的结构分析可能被用来与对该图像的一种或多种其他的特征分析相结合。例如,用于结构分析的一幅图像也可能被用来分析横跨图像感兴趣区域的一个或多个波长或彩色通道的强度。而且,横跨该图像或图像一部分的一个波长或彩色通道强度的平均值和标准差可能被确定。对横跨感兴趣区域的一个彩色通道信号强度的测量可能提供一些信息,例如被成像的检测悬浮液中颗粒的数量。例如,如果一份检测样本中悬浮液中有许多红细胞(例如非凝集红细胞情况下),该检测图像中整个图像的红色通道内可能有一个相对较高的信号。相反,如果一份检测样本中悬浮液中有相对较少的红细胞(例如红细胞凝集后的情况下,红细胞倾向于聚集在一起并从悬浮液中沉淀出去),该检测图像中整个图像的红色通道内可能有一个相对较低的信号。对横跨感该图像彩色通道信号强度标准差的测量也可能提供一些与检测物质凝集状态相关的信息。例如,如果该检测材料是凝集状态,横跨ROI一个彩色通道信号强度标准差可能较非凝集检测材料高,因为已凝集的材料可能较未凝集材料具有较多的团块,且不均匀。另一个实例中,用于凝集检测结构分析的一幅图像也可能被分析以确定沉淀出检测悬浮液的颗粒数量。这些颗粒可能聚积在诸如一个支持检测物质容器的底部(例如一个尖端)。一个容器底部的颗粒数量可能通过对含有沉淀颗粒的感兴趣区域的识别并决定这些区域的大小和(或)密度来确定。
图20是根据此处提供的方法实例,对评估一份样本凝集状态所提供的典型的步骤流程图。参考图20,一个支持性容器或表面内含颗粒悬浮液凝集检测的一幅或多幅图像可能被获得2005。该图像可能接受在一种机器程序模板2015或其他图像识别规程的检测,以对图像中含有或不含有凝集检测材料的图像部分进行识别。例如,一幅图像可能被处理以识别图像的哪个部分与支持容器相对应;哪个部分与检测材料相对应。该图像可能被进一步处理以识别图像中用于分析的感兴趣区域(ROI)2025。通常情况下,该感兴趣区域位于含有凝集检测材料的图像部分内。对一幅图像中的ROI确认完毕后,该ROI可能被分析以确定检测材料图像的特性。这一过程可能被称作“特征提取”2035。实例中,特征提取过程中,可能对该检测物质的图像结构或其他特征进行分析。此处所示的任何用于结构分析的方法都可能被用来分析该图像的结构。一些实例中,一个局部二进制模式(LBP)操纵器可能被用于图像的结构分析中。而且,结构以外的其他特征可能从一幅图像中被提取,例如横跨感兴趣区域的一个所选彩色通道的信号强度。下一步,获得的有关图像结构或其他特征信息可能被用于两种或多种不同方法中的至少一种方法中。首先,如果该凝集检测作为一个已知凝集状态的检测被提供,那么来自该检测图像中所分析的结构信息可能被用来作为训练设置的一个部分来开发一种支持向量机(SVM)分类模式2045。第二,如果该凝集检测具有一种未知的凝集状态,而且被提供进行凝集状态确定,那么来自该检测图像中所分析的结构信息可能被用来作为提供给SVM分类模式的检测设置的一个部分,以生成一个SVM分类预测2055。该SVM预测可能根据检测图像的结构提供有关该样本凝集状态的信息。实例中,该SVM预测可能被进一步处理以生成进一步的输出信息2065,这些信息可能源于图像分析的结果。例如,根据凝集反应确定血型的检测中,该凝集结果可能被进一步处理以生成一个用于凝集检测的血液样本的血型输出信息。
在实例中,此处所描述的用于检测图像“结构”分析或类似术语与用于检测的“结构”分析或类似术语可以相互替换,除非上下文明确指明其他方式。而且,一些实例中,此处所述的图像可能被描述为含有关于一个或多个特征的“成像信息”。可能需要理解的是,这种短语指的是一幅较大图像的一个元素或组成部分。因此,在实例中,可能需要理解的是含有诸如关于一个可视性颗粒“成像信息”的一幅图像是一幅图像,其拍摄视野中包括一个可视性颗粒。
C.一般原则-图像获取和分析
显微成像方法是众所周知的,在美国专利发行号2009/0214114A1,2011/0013821A1,2008/0212865A1,和2010/0183216A1中有所描述,并以引用的方式完全纳入本文中。
适合与本发明方法一起使用的显微成像方法在提交日期为2011年1月21日的美国临时申请序列号61/435,250中也有所描述,并以引用方式完全纳入本文。
此处所提供方法的一个优势是能够使用小容量的样本。一些实例中,使用大约1-1.5μL进行分析。在一些实例中,使用大约不到1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45或50μL的样本量进行分析。
一些实例中,该光学设备含有一台照相机、传感器或探测器。一些实例中,该光学设备可选择地与一台显微镜耦合在一起,或者该光学设备含有选择地与一台显微镜耦合在一起的传感器、探测器或照相机。
一些实例中,该图像使用一台CCD照相机进行拍摄。该CCD照相机可能是一台USBCCD相机。一些实例中,该图像使用一台CMOS照相机进行拍摄。。显微镜载物台可能被移动以便沿反应容器或管道对一个不同的视野成像并拍照。
在一些实例中,样本的分析和反应产物的检测通过使用数码成像来进行。该检测反应容器可能被调准以便在一个操作中完成测量和扫描或成像。在一些实例中,这可以通过机械性成分被自动完成。检测反应容器可能被放置在一个暗盒、设备或系统定义的位置,然后移动到一台扫面仪或照相机处用于成像和(或)分析。一些实例中,当该反应容器被移到到一台扫面仪或照相机处时,其方位维持恒定。一些实例中,一台扫面仪或照相机可能被移动到一个反应容器处。
一些实例中,该成像区域位于一个微型流体管道内。一些实例中,该样本被提取并引入到一个含有微型管道(此处也称作微型流体管道)的显微比色杯内。一些实例中,该微型管道可以是一个横截面大约125μmx1000μm,长约7mm的管道。除此以外,其他尺寸的微型管道也可能被用于此处所提供的方法中。该管道可能被加载至一个标准亮视野显微镜处,其配备有一个宽带光源和一个物镜(例如10x的物镜)。该显微镜可能被调整,这样其视野总是来自该管道的侧壁,而且该图像被对焦以便清晰地观察到单个RBCs或可视性颗粒。
一个样本分析完毕后,另一个样本(例如带有不同的病毒或抗体浓度)可能被提取并加载至一个新比色杯内,然后重复图像获取过程。一些实例中,对每个样本采集大约10幅图像。一些实例中,对每个样本采集的图像少于或多于幅,例如每个样本至少是2、3、4、5、6、7、8、9、10、11、12、13、14、15、20、25、30、50或100幅图像。该采集的图像可能被进一步处理以对RBC进行准确的定位,并附带从所有图像中探测到的RBC中心。
通过扫描或成像获得的图像可以是一个二维像素排列,其中每一个像素都含有大量的密度数值与不同的检测光谱区相对应。
照明背景可能释放等密度的白光覆盖整个表面。该光输出可能会有一些变化,产生一个正常的像素密度分布以供成像仪或传感器探测到。曝光时间可能是该传感器读取数据之前被允许采集图片的时间。对于一个定量的光线,当曝光时间延长时,该读取数值可能较大。这种控制可能是对应用的“粗调”。增益可能用来控制调节应用于传感器信号的振幅大小。增益增加可能会提高来自传感器的信号数值。增益可能是微调。
分析过程可以使用一种光学设置来进行。该光学设置可以包括一个光源、一个光圈以及一个传感器或一个探测器。一些实例中,这种设置可以包括一台照相机,其中该相机可以是一个网络相机;相机传感器可以是CCD芯片;镜头可以是带有一个5-100mm任意焦距的玻璃;而且光源可能是一种白光光源。
一个实例中,此处所示是一个读取器组件护盖一个探测器组件,后者包括一个传感器或一个探测器用于探测凝集检测,以及可选择的其他检测类型。根据将要实施的检测类型和将要使用的探测机制,该探测组件可能被置于一个反应容器上方,或与该反应容器相关的不同的位置。该探测其组件可以被移到至与该反应容器相交通的位置,或者该反应容器可以被移到至与该探测其组件相交通的位置。
该光学探测器或传感器可以是任何类型的成像传感器,例如CCDs。一些实例中,一个探测组合可能包括大量光纤形成的光纤束连接到CCD探测器上。这些光纤束可以由分开的光纤组成,或由许多小纤维融合在一起形成一个实体束。。这种实体束有成品提供,而且非常容易与CCD探测器衔接。
一个探测器或传感器还可以含有一个光源,例如一个灯泡或发光二极管(LED)。该光源可以对一个检测过程照明,以获得探测结果。该照明光源可以是激光、单色LED、来自荧光灯或LEDs的宽频光、LED阵列、红绿蓝混合光源、被LED激活的磷光、荧光管、白炽灯以及诸如一个频闪管的弧形光源。该探测器还可以含有将光源输送到检测部位的光学设备,例如一个透镜或光纤镜。
一个比色杯或反应容器的成像区域可能被设计,以便为感兴趣的应用提供足够的细胞数量。例如,计数大量的RBCs可能只需要计数1000-2000个细胞,以及一个稀释后的样本和比色杯中一个很小的成像区域。
一个比色杯可能被设计通过一个标准移液机制以自动化的方式被提取,并允许将该比色杯移送至一个成像平台。该移液机制的吸头弹出器可以将该比色杯从该移液机制中弹到成像平台上。比色杯到成像平台的过程可能分两步。将该比色杯转移至该成像平台上后,比色杯上的静止注册结构可能与成像平台上的结合结构向对接,使该比色杯与成像平台的光学轴线(X、Y注册)调准平行。注册可能通过一个位于成像平台上的机制来完成。这个机制可能将该比色杯倾向于与该成像平面光学轴线(Z注册),因此将该样本限制在成像平台的聚焦范围内。
此处所提供的方法用于不同的照明计划:暗视野和亮视野。该设置的模块类型还允许整合时相对比和微分干涉对比(DIC)。
亮视野照明可能通过使用沿载物台聚光器的白光光源来获得以产生Koehler照明。一个显微镜载物台可能与机控步进电机相连接,以允许在X和Y方向上的转译(例如水平方向)。在每一个位置上,所需数量的图像可能被拍摄,然后该载物台可能移动到下一个XY位置。
一些实例中,此处所提供的是一种确定是否存在一种抗体、病毒颗粒、或凝集颗粒的方法,包括凝集图像的拍摄。
一个实例中,一种方法被提供用于探测一份生物学样本内一种抗体表达,其中该抗体选择性地与一种病毒颗粒结合。该方法包括:(a)在允许红细胞通过与病毒颗粒的相互作用而产生凝集反应的条件下,对红细胞、病毒颗粒和怀疑含有该抗体的生物学样本混合液进行孵育;(b)探测该混合液中是否发生了凝集反应,其中无凝集反应发生说明存在所述抗体,所述步骤(a)-(b)在不到一个小时内完成。凝集反应的存在通过红细胞-病毒颗粒簇的形成来证实,其中该反应簇存在于一个成像区域内(相应于一个非常小的容量),而且该探测步骤包括:(i)使用一个光学设备对成像区域的不同位点对反应簇进行多幅图像拍摄;(ii)根据对该图像的分析探测凝集反应的发生。一些实例中,步骤(a)包括添加红细胞之前对该病毒颗粒和该生物学样本的混合物进行孵育。
另一方面,此处提供的是一种用于探测一份生物学样本内一种抗体表达的方法,其中该抗体选择性地与一种病毒颗粒结合。该方法包括:(a)在允许红细胞通过与病毒颗粒的相互作用而产生凝集反应的条件下,对红细胞、病毒颗粒和怀疑含有该抗体的生物学样本混合液进行孵育;(b)在一种光学设备的辅助下对该混合液拍摄一副图像(或一段时间内的一系列图像),其中存在一种红细胞-病毒颗粒凝集簇表明发生了凝集反应,且缺乏可探测的抗体数量;而缺乏该凝集簇则表明无凝集反应发生,且存在可探测到的抗体数量。一些实例中,步骤(a)包括添加红细胞之前对该病毒颗粒和该生物学样本的混合物进行孵育。
另一个实例中,此处所提供的是一种确定一份生物学样本中是否存在一种病毒颗粒的方法,包括:(a)在允许红细胞通过与病毒颗粒的相互作用而产生凝集反应的条件下,对一种红细胞和怀疑含有该病毒颗粒的一份生物学样本进行孵育;(b)在一种光学设备的辅助下对该混合液拍摄一副图像,其中存在一种红细胞-病毒颗粒凝集簇表明发生了凝集反应,且存在可探测的病毒颗粒数量;而缺乏该凝集簇则表明无凝集反应发生,且缺乏可探测到的病毒颗粒数量。
一些实例中,此处所提供的方法可能涉及对一份样本透射、反射或散射的光线进行探测。源自样本的光线可能通过光学设备被探测,包含诸如CCD或CMOS的图像传感器,或者诸如光电倍增管(PMTs)或光点二极管的光探测器。
以上提供的任何一种方法中,该方法还可以在使用一种可视性颗粒替代红细胞,以及(或者)使用一种凝集颗粒替代一种病毒颗粒的情况下使用。
D.通过探测检测光线对凝集检测进行分析
一些实例中,凝集检测和凝集抑制检测可能通过测量穿透或来自一个检测的光线运动来进行评估。例如,,来自一个光源的光线可能到达一个凝集检测,然后对被该检测反射、透射或散射的光线进行测量。实例中,当悬浮液中的颗粒凝集时,它们比非凝集颗粒更快地从悬浮液中沉淀出。这样,从颗粒发生凝集的检测中发出或穿透的光线与颗粒未发生凝集的检测不同。例如,凝集后的颗粒可能比非凝集颗粒更快地从悬浮液中沉淀出。这样,经过一段时间后,有颗粒凝集的检测物质上半部分可能较没有颗粒凝集的检测物质上半部分更快地变为更加透明。更透明的检测物质可能较相应的未发生凝集和沉淀的检测物质透过的光线更多或散射的光线更少。同样,有颗粒凝集的检测物质下半部分可能较没有颗粒凝集的检测物质下半部分更快地变为较高的光密度。密度更高的检测物质可能较相应的未发生凝集和沉淀的检测物质透过的光线更少或散射的光线更多。例如,来自一个检测的光线可能被诸如PMT或光电二极管的一个光探测器探测到。此处所描述的任何光源、光探测器或光学设备都可能被用来测量穿透或来自一个检测的光线运动。实例中,当一个检测被放置在一个容器,诸如移液管吸头或多孔比色杯中时,穿透或来自该检测的光线运动可能被测量。
IV.应用
一些实例中,此处所提供的血液凝集和血液凝集抑制检测可能被用于测量病毒抗原和抗病毒抗体。标准的WHO血液凝集抑制方法相当缓慢,而且不得不通过肉眼来诠释。一方面,此处所提供的是快速、读取数据客观,而且较好标准化的检测方法,可被用来快速获得凝集检测结果,从而可以对危险状态的患病人群及时采取措施进行处理和治疗。
对怀疑有感染的个体进行鉴别
一方面,一种方法被提供用于对一个感染一种病原的受试者和(或)其接触人群进行识别,这样可以对该受试者和(或)其接触人群进行隔离,从而防止感染的传播。
一些实例中,一个怀疑接触了一种病原菌,例如一种病毒颗粒的受试者可以使用此处所提供的方法进行检查一确定该病毒颗粒是否存在,或者是否含有与该病毒颗粒特异性结合的抗体。一份诸如血清或血浆的生物学样本可能从该受试者处获得并用于该项检查。
研究对象及免疫计划的评估
使用本发明中的方法对抗体进行探测和(或)测量对确定一个研究对象是否被有效免疫非常有用。此处所用的术语“有效免疫”意味着一种研究对象体内足以诱导出一种保护性免疫反应的状态。从来自该研究对象的一个生物学样本中探测到对抗给定病毒或病毒抗原的抗体,该研究对象则可能被认为已经被有效免疫。对来自该研究对象的一个生物学样本中所含抗给定病毒或病毒抗原的抗体进行测量可能被用于评估有效免疫。
此处所提供的方法还可以用来评估对一个群体或一组研究对象进行免疫的免疫计划是否有效。在一些方面中,此处所提供的方法可能被用来在一个定点服务检查站,例如学校、工作地点或研究对象家中,对一个群体或一组研究对象的免疫状况进行评估。
一方面,此处所提供的是一种方法用来确定一个研究对象是否获得有效免疫,包括:(a)从一名受试者身上获得一份生物学样本,该受试者已经接受了一个针对一种病毒颗粒的第一疫苗的第一个剂量的免疫接种;(b)在允许红细胞通过与病毒颗粒的相互作用而产生凝集反应的条件下,对红细胞、该病毒颗粒和该生物学样本混合液进行孵育;(c)根据该红细胞凝集形成的凝集簇确定该样本中一种对抗该病毒的抗体浓度,其中所述步骤(b)-(c)在不到一个小时内完成。
一方面,此处所提供的是一种方法用来确定一个研究对象是否获得有效免疫,包括:(a)从一名受试者身上获得一份生物学样本,该受试者已经接受了一个针对一种病毒颗粒的第一疫苗的第一个剂量的免疫接种;(b)在允许红细胞通过与病毒颗粒的相互作用而产生凝集反应的条件下,对红细胞、该病毒颗粒和该生物学样本混合液进行孵育;(c)在一种光学设备的辅助下对该混合液拍摄一副图像;(d)根据该红细胞凝集形成的凝集簇确定所述样本中一种对抗该病毒的抗体浓度,其中该图像中存在一种红细胞-病毒颗粒凝集簇表明发生了凝集反应,且缺乏可探测的抗体数量;而缺乏该凝集簇则表明无凝集反应发生,且存在一个可探测到的抗体数量。
以上或其他地方提供的任何一种方法中,该方法还可以在使用一种可视性颗粒替代红细胞,以及(或者)使用一种凝集颗粒替代一种病毒颗粒的情况下使用。同样,此处所称的“细胞”或“红细胞”也包括可视性颗粒,除非上下文中明确指明其他情况。而且,此处所称的“病毒颗粒”也包括凝集颗粒,除非上下文中明确指明其他情况。
因此,此处所提供的方法可以被用来实时和(或)即刻测量疫苗的有效性,并可以据此调整疫苗的剂量。更进一步,替代性疫苗,如果提供,可以用于对被检测疫苗无反应的研究对象。因此,疫苗提供者可以优化该项免疫计划和剂量。
确定血型的方法
本发明中的方法还可以用来确定一份含有红细胞样本的血型。一些实例中,可以检测对抗不同血型抗原的抗体诱导一份含红细胞样本发生血液凝集的能力,从而确定该红细胞的血型。
一些实例中,一些方法被提供用于确定一份含血样本的血型。血型可以使用标准A、B和Rh抗原抗体和额外的一份学学样本进行确定。A、B和Rh抗原的特异性抗体众所周知,而且被常规用于血液检测中。例如,如果加入A型血抗体并出现凝集,则该血型为A型或AB型。为了在A型和AB型之间进行确定,在一个分开的检测中再加入B型血抗体;如果没有出现凝集,则该血型为A型。本发明中的方法还可以应用在交叉配血中,以评估输血中供体-受体的相容性。在交叉配血中,当供体红细胞和受体血清或血浆共同孵育时出现凝集反应,则表明该供体血液与该特定受体不相容。
本发明中的方法为确定一份样本中的血型提供了改良措施;一些实例中,该方法实施的整个时间不到500、400、300、200、180、160、140、120、100、90、75、60、45、40、30、15、10、15、10、5、2或1分钟;又或者30、20、10、5、3或1秒钟。一些实例中,该方法实施的整个时间在0.5到5分钟之间。
实例中,此处所提供的方法或反应剂可能被用于链球菌酶(抗链球菌抗体-特异性地对抗链球菌NAD酶、DNA酶、链激酶、链球菌溶菌素O和透明质酸酶的抗体)或抗红细胞抗体的凝集检测。
V.试剂盒
一些实例中,本发明还提供一种试剂盒,其中包括预固定的红细胞和一种病毒颗粒。用于HA和HAI检测的红细胞可以是不稳定的,需要抓紧时间和人力进行新鲜准备,这也会造成检测可重复性的误差。在一个实例中,本发明中的一个试剂盒提供预先固定的红细胞和一种病毒颗粒,适合探测或测量该病毒抗体,而无需新鲜制备红细胞。在另一个实例中,本发明中的一个试剂盒提供微球和一种病毒颗粒,适合探测或测量该病毒抗体。在另一个实例中,本发明中的一个试剂盒提供可视性颗粒和凝集颗粒,适合探测或测量该凝集颗粒的抗体。此处所示的试剂盒通过使用标准化的反应剂还可能提供检测可重复性的优势。
其他反应剂也可能被随盒提供,例如不同的缓冲液和酶、BSA,以及对照(阴性对照和/或阳性对照),它可以是诸如病毒颗粒和(或)含有已知滴定度的抗体。而且,进行检测的说明书可能被随盒提供。
示范
示范1
预处理方法
材料:神经酰胺酶1U(Sigma N7885-1UN,3.78U/mg蛋白);缓冲液A:100mM醋酸钠,pH 5.5;0.15M NaCl;4mM CaCl2;缓冲液B:;100mM磷酸钠pH 8.2;1.5%枸橼酸钠;神经酰胺酶溶液[4毫单位(mU)神经酰胺酶加入5mL缓冲液A中,最终浓度为0.8mU/mL]。
方法:
1.4体积神经酰胺酶溶液加入1体积血清中(0.2mL神经酰胺酶+0.05mL血清)
2.将该混合液在37±2℃下孵育25分钟
3.将5体积的缓冲液B添加到该混合液中
4.将该混合液在56±2℃下孵育5分钟以使神经酰胺酶失活
5.允许该血浆在室温下进行冷却。该血清的最终稀释度为1∶10(用于抗体滴度确定的系列稀释中的起始稀释度)。
示范2
血液凝集抑制检测-图像分析方法的比较
材料:稀释缓冲液中的流感病毒A H3N2/布里斯班/10/07(4HA U/50μL)病毒颗粒;稀释缓冲液[磷酸缓冲盐水pH 7.2,含有0.05%叠氮化钠和0.05%牛血清白蛋白;(PBS/A/BSA)];含有抗流感病毒B抗体的人体血浆;和稀释缓冲液中戊二醛固定的火鸡RBC(0.6%v/v)。
方法:
1)向一个微量滴定板中所有的反应孔内加入25μL PBS/A/BSA,除外RBC对照孔和处理后含抗体样本系列稀释的第一孔。
2)向第一孔中加入50μL处理后含抗体(在处理缓冲液中以1/10进行稀释)的样本(血清或血浆)。
3)通过将25μL样本从第一孔转移至含25μL PBS/A/BSA的相邻孔中的操作对该样本进行系列稀释。重复此步骤脂质该系列的最后一个反应孔。这个步骤为选择性步骤,并可能被一个单一稀释浓度所替代。
4)向所有含有处理后样本的反应孔中加入25μL稀释在在PBS/A/BSA(4HA U/50μL)中的流感病毒B/佛罗里04/06病毒。
5)将50μL PBS/A/BSA添加到RBC对照孔中。
6)通过轻轻敲打该微量滴定板侧壁对反应孔中内容物进行混合。
7)将在PBS/A/BSA中准备的50μL戊二醛固定的火鸡RBC悬浮液(0.6%)添加到所有反应孔中。
在该反应的整体运动分析中,也会实施以下步骤(8-11):
8)通过轻轻敲打该微量滴定板侧壁对反应孔中内容物进行混合。
9)覆盖该滴定板并在室温下孵育总共大约15分钟。
10)15分钟后,在扫描仪上对该滴定板进行解读,并在滴定板倾斜45-60°时拍摄最后的终点图像(图14B)。
11)对该图形进行扫描并对与压积红细胞相对应的暗区面积和周长进行计算。
在显微图像的图像分析中,步骤7)后实施以下步骤:
12)从该反应孔中将一个小容量样本(~1或2μL)直接移液至一个比色杯中,并在显微镜下成像。
13)图像被收集并进行分析,以计算出RBCs的相关因子,如本文其他地方所述。
使用显微图像的图像分析技术,针对不同样本的相关因子图形显示在图14A中。使用整体运动的图像分析技术,针对不同样本的压积细胞面积或周长图形显示在图14D中。样本从1-6进行编号,并复制。图14B显示了倾斜后反应孔沉淀物检测中的一幅显微视觉图像。图14B显示了经过阈值数字化后图14B的一幅扫描图像。图中从下至上反应孔编号为1-6,右列和左列是同一水平稀释度的样本复制。如图14A所示,高抗体浓度的样本(低稀释程度,样本1-3)显示出较低的相关因子数值;而样本4、5和6(低样本浓度)显示出较高的相关因子数值。样本3和样本4之间的转型状态也得到证实。如图14D所示,高抗体浓度的样本(低稀释程度,样本1-3)其压积细胞显示出较高的周长和面积数值(例如泪滴状区域内的细胞较多);而样本4-6(低样本浓度)其压积细胞显示出较低的周长和面积数值(例如泪滴状区域内的细胞较少)。样本3和样本4之间的转型状态也得到证实。在沉淀物检测的宏观视觉图像中(图14B),可以看到样本4-6显示出凝集状态,而样本1-3显示出RBC流动,表明未出现凝集。从以上每一个方法中,可以得出的结论是从凝集状态到非凝集状态的转型阶段在样本#3和#4之间。因此,这个数据证明此处所提供图像分析方法(显微图像的图像分析(图14A)和整体运动的图像分析(图14D)与根据对凝集检测反应孔的肉眼检查而进行的传统分析(图14B)之间有很好的一致性。
示范3
基于显微技术的RBC凝集探测方法
一份含有一种对抗感兴趣病毒抗体的生物学样本与该病毒共同孵育一段少于或等于5分钟的指定时间。孵育后,将红细胞添加到该样本中,并进行混合。该样本的一部分(大约1-1.5μL)被提取并置于一个含有一个微型通道的显微比色杯内。该微型管道有一个125μmx1000μm的横截面,而且大约7mm长。该管道被加载至一个标准亮视野显微镜处,其配备有一个宽带光源和一个10x的物镜。每个视野对应于一个~700μmx500μm的区域。调整该显微镜使其视野总是来自该管道的侧壁,而且该图像被对焦以便清晰地观察到单个RBCs。使用一种USB CCD照相机拍摄该图像。该显微镜载物台沿该管道的轴线移动以便对沿该管道的不同视野进行成像并拍照。大约有10个视野被拍摄。样本图像显示在图12中。
采集后的图像被进行精确的处理以对RBC定位。对来自所有图像的RBC中心进行探测。图12显示了两个样本的代表性图像;对照样本(左侧框A),(其代表了一个非凝集样本);和凝集样本(右侧框B)。根据肉眼对该图像观察时,很难将这两个样本进行鉴别,;而当RBC中心信息与一个临界距离联合使用时,则有可能对相互连接在一起的细胞进行鉴别。
示范4
传统预处理方法与本发明的预处理方法的比较
A.传统的预处理方法
受体破坏酶(RDE)的来源是Sigma C8772霍乱滤过物质,从霍乱弧菌中粗提出来的。
0.1单位的RDE用5mL无菌蒸馏水复原。1ml复原后的RDE用pH7.2的钙盐溶液稀释至20mL。4体积稀释后RDE中加入1体积EDTA抗凝人血浆(0.4mLRDE+0.1mL血浆)。样本被准备成四份分开的复制样本。对于对照(未处理的)检测,4体积钙盐溶液加入1体积血浆中(0.4mL钙盐溶液+0.1mL血浆)。
该混合液在37℃下孵育30、60、360分钟或一整夜(>16小时)。对照液在37℃下孵育一整夜(>16小时)。
将5体积的1.5%枸橼酸钠(0.5mL)添加到每一分样本中。将样本在56℃下孵育30分钟以使RDE失活。允许该血浆在室温下进行冷却。该处理后血清的最终稀释度为1∶10(用于抗体滴度确定的系列稀释中的起始稀释度)。
B.本发明中的预处理方法
神经酰胺酶来源于Sigma公司,3.78U/mg蛋白。神经酰胺酶溶液是4m U神经酰胺酶加入到5mL缓冲液A中:100mM醋酸钠,pH 5.5;0.15M NaCl和4mM CaCl2(最终浓度为0.8mU/mL)。
4体积神经酰胺酶溶液加入1体积血浆中(0.2mL神经酰胺酶+0.05mL血浆),并将该混合液在37℃下孵育25分钟。将5体积的缓冲液B(磷酸钠中含有1.5%枸橼酸钠,pH8.2)添加到该混合液中,并将该混合液在56℃下孵育5分钟以使神经酰胺酶失活。允许该血浆在室温下进行冷却。该血浆的最终稀释度为1∶10(用于抗体滴度确定的系列稀释中的起始稀释度)。
C.比较
其结果的比较分析显示在图15中。正如所见到的,两种方法都消除了非特异性反应,但是本发明中的神经酰胺酶法(实心条)较传统方法(斜线填充条)快许多。图16显示的是遵循上面所描述和指导的不同预处理方法所得出的一个HAI检测结果。对照样本(实心黑色条)、用RDE处理一整夜的样本(后向斜线条),或者用神经酰胺酶处理25分钟的样本(前向斜线条)。3对血浆和血清样本(每个都来自一份单独血液样本)被检测。样本1和3是病毒抗体阴性,而样本2是阳性。两种样本预处理方法都消除了假阳性反应,而保留真阳性反应。如图所见,本发明中的方法对消除假阳性反应和保留真阳性反应同样有效,而且被发明中的方法快许多。
示范5
本发明中的方法与传统HAI方法的比较
在这项试验中,将本发明中用于实施HAI检测的特定方法与传统的用于实施HAI检测的方法进行比较。
用一种单一病毒抗原进行的HAI检测
一个试验中,HAI检测使用流感A H1N1/加利福尼亚/04/2009作为病毒抗原实施检测,并且使用来自已接种抗H1N1病毒疫苗的受试者生物学样本。
该检测按以下步骤实施:
预处理步骤
对于使用传统方法的样本,对来自H1N1病毒疫苗接种受试者的血浆样本预处理按示范4,部分A中所提供的方法进行。
对于使用本发明方法的样本,对来自H1N1病毒疫苗接种受试者的血浆样本预处理按示范4,部分B中所提供的方法进行。
HAI检测步骤
对于使用传统方法的样本,HAI检测按示范2步骤1-10中所提供的方法进行。该检测结果通过肉眼(视觉)对倾斜反应孔的检查来确定。
对于使用本发明方法的样本,HAI检测按示范2步骤1-7,外加12-13中所提供的方法进行。该检测结果由根据凝集反应显微图像的图像分析所计算出的该样本相关因子来确定。
根据来自这些方法的信息,每个样本的滴度可被确定。
分析
用使用本发明方法的样本其抗体滴定对数与传统方法样本的抗体滴定对数制图。如图17所见,我们获得了极好的相关性,而且回归线的斜率和截距数值表明这两种方法的结果完全一致。相关直线的R2值为0.89,来自H1N1接种患者的血浆样本数位N=10.
用一种多病毒抗原进行的HAI检测
在另一个试验中,检测按上述单一病毒抗原的HAI检测方法实施,唯一不同是,除使用流感A H1N1/加利福尼亚/04/2009作为被动颗粒外,该检测还使用流感B(流感B/佛罗里达/04/06)和流感A(流感A/H3N2/布里斯班/10/07)。该血浆样本来自H1N1(2009)流行病毒接种后的个体,以及以往可能暴露在季节性病毒流感B和H3N2病毒下的个体。如上所述,传统方法和本发明中的方法均可被用于预处理和HAI检测步骤。
参考图18,三种病毒抗原被用于检测相应的抗体。对结果分别进行绘图,然后作为所有三种病毒的聚合数据组。所有病例中回归参数均显示这两种方法的结果是相等的。传统方法中没有一例样本(总共31个样本)获得大于2x稀释度(参照方法的溶液界限)的结果。该试验还表明两种方法对远小于2x两倍稀释度的平均效果的检测非常精确。两种方法对比的统计学参数显示在下面表2中。
表2
示范6
通过图像特征提取确定血型
在这个试验中,通过此处提供的图像特征提取分析方法,包括结构分析,将血液分为A、B、AB或O型,以及Rh+或Rh-。
三个EDTA处理后的血液样从三个不同受试者处获得。每一分样本被混匀并在10000rpm下离心沉淀红细胞(RBCs)。从每个样本中吸取20微升沉淀RBCs,用180微升盐水进行稀释,生成RBCs体积为10%的悬浮液。为每一分RBC悬浮液准备四个试管或检测:1)抗A型血抗体;2)抗b型血抗体;3)抗d型血抗体(Rh因子);4)对照。24微升稀释液(PBS+0.1%BSA+0.1%聚山梨酯20)加入到试管#1-3中,30微升稀释液加入到试管#4中。试管#1-3中分别加入6微升各自的抗体。用一个移液管将20微升10%RBC悬液分别加入到试管#1-4中,将反应液混匀,以在每个试管中产生一个凝集检测。针对每一份RBC悬液,将10微升每一个检测液吸取到一个移液管吸头内。将该移液管吸头放置在一个含有白光光源和CCD相机的分析仪内,在每个凝集检测开始后的5分钟和10分钟时间点获取该吸头的图像。三个不同样本(样本“I”、“II”和“III”)中的每一个凝集检测(检测“1”、“2”、“3”和“4”)孵育5分钟后的吸头图像显示在图21中(图21A显示样本I;图21B显示样本II;图21C显示样本III)。每个吸头的图像通过此文其他地方描述的图像结构分析方法进行分析。简单讲,使用一种模板匹配算法,识别该移液管吸头尖端2105与检测物质的半月面2110。根据该移液管吸头尖端与检测物质的半月面的位置,确定含有该检测物质的图像感兴趣区域(ROI)2115。该感兴趣区域2115被定义为半月面下方、移液管吸头尖端上方和移液管吸头侧壁之间的一个长方形区域。用于样本I,检测1吸头内一个典型的ROI2115显示在图21A中。下一步,在ROI内进行特征提取。特征提取包括i)确定ROI内红色管道密度的平均值和标准差;ii)确定局部二进制模式(LBP)。该LBP操纵器捕获具备空间模式和灰阶对比。从这些图像中提取的特征被提供给一个支持向量机分类器。该支持向量机分类器以前已经经过来自已知凝集状态(已凝集或未凝集)检测图像信息的训练。使用从这些图像中提取的特征,该支持向量机将每一个ROI分类为含有已凝集检测物质和未凝集检测物质两种(作为一个二进制类别)。最后,对一份样本的每一个ROI的分类信息被用于鉴别样本的血型。通常情况下,如果一个样本与一个给定抗原(A、B或D)抗体相凝集,该检测表明该样本对于相应的抗原是阳性。据此,样本I被鉴定为B型Rh阳性(B阳性)血(图21A中的吸头2和3含有凝集物质,因此该血液中含有被抗血型B抗体和抗血型D(Rh)抗体所识别的抗原);样本II被鉴定为A型Rh阳性(图21B中的吸头1和3含有凝集物质);样本III被鉴定为O型血(图21C中的吸头3含有凝集物质)。样本I、II和III的血型也使用一种传统的血型鉴别方法(Eldoncard)进行分析。此处所提供的试验结果与来自传统血型鉴别方法的结果向匹配,因此确认了此处所提供的方法的准确性。
在以上对本发明首选实例进行全面描述的同时,有可能使用各种替代物、修饰物和等价物。因此,本发明涵盖范围不应该参照上述描述来决定,而应该参照附加权利要求以及等价物的全部范围来决定。任何配置,无论是否愿意,都可以与其他任何配置结合,无论是否愿意。附加权利要求不应该被解释作为包括意义加功能上的限制,除非类似限制已经在所给权利要求中使用词组“意味着”明确列出。应该理解的是,正如在此说明和以下整个权利要求中所使用的,除非上下文明确指明,单数形式“一个(a)”、“一个(an)”和“这个,该(the)”包括复数概念。还应该理解的是,正如在此说明和以下整个权利要求中所使用的,除非上下文明确指明,“在..之内(in)”的意思包括“在..之内(in)”和“在..之上(on)”。最后,正如在此说明和以下整个权利要求中所使用的,“包括(include)”和“包含(contain)”是开放式的,而且不除外额外的、无关的元素或方法步骤。最后,正如在此说明和以下整个权利要求中所使用的,除非上下文明确指明,“和(and)”和“或(or)”的意思既包括连接意思也包括转折意思,而且可以互相转换使用。因此当上下文中使用“and”或“or”时,除非上下文明确指明,类似连词用法并不除外“and/or”的意思。

Claims (76)

1.一种用于探测一份生物学样本内一种抗体表达的方法,其中所述抗体选择性地与一种病毒颗粒结合,该方法含有:
(a)在单一孵育步骤内对一种红细胞、病毒颗粒和怀疑含有所述抗体的生物学样本混合液进行孵育,在此条件下允许红细胞通过与该病毒颗粒的相互作用而产生凝集反应并且不需要进行红细胞试剂准备;
(b)探测所述混合液中是否发生了凝集反应,其中无凝集反应发生说明存在所述抗体,
所述步骤(a)-(b)在不到一个小时内发生。
2.如权利要求1所述的方法,其中所述红细胞是预先固定的。
3.如权利要求2所述的方法,其中所述红细胞是通过戊二醛处理进行预先固定。
4.如权利要求1-3中任一项所述的方法,其中所述红细胞含有火鸡红细胞。
5.如权利要求1所述的方法,其中所述病毒颗粒含有一种流感病毒。
6.如权利要求1所述的方法,其中所述生物学样本含有血浆或血清。
7.如权利要求6所述的方法,其中所述血浆或血清源自一位已经接种了对抗所述病毒颗粒疫苗的研究对象。
8.如权利要求1所述的方法,其中所述生物学样本经过神经酰胺酶的预处理。
9.如权利要求8所述的方法,其中通过将所述生物学样本与神经氨酸酶共同孵育来进行预处理,且该混合液中神经氨酸酶的最终浓度在0.1和1.5U/L之间。
10.如权利要求8所述的方法,其中通过将所述样本与活化的神经氨酸酶孵育不到30分钟来进行处理。
11.如权利要求1所述的方法,其中所述生物学样本在步骤(a)之前被系列稀释。
12.如权利要求1所述的方法,其中所述步骤(a)-(b)在30-60分钟内发生。
13.如权利要求1所述的方法,其中所述凝集反应的存在是通过红细胞-病毒颗粒簇的形成来证实的,而且所述反应簇在一个光学设备的成像区域内被拍摄,而且所述的探测步骤含有:
(i)使用该光学设备在所述成像区域的不同位点对反应簇进行多幅图像拍摄;
(ii)根据对所述图像的分析探测所述凝集反应的发生。
14.如权利要求13所述的方法,其中所述光学设备含有一台照相机。
15.如权利要求13或14所述的方法,其中所述光学设备含有一台显微镜。
16.如权利要求13所述的方法,其中所述成像区域位于一个微型流体管道内。
17.如权利要求13所述的方法,根据每一幅所述图像中所拍摄的单个红细胞之间中心到中心的距离,其中所述的分析含有计算所述反应簇的大小来进行。
18.如权利要求1所述的方法,其中步骤(a)包括添加红细胞之前对所述病毒颗粒和所述生物学样本的混合物进行孵育。
19.一种用于探测一份生物学样本内一种抗体表达的方法,其中所述抗体选择性地与一种病毒颗粒结合,该方法含有:
(a)在单一孵育步骤内对一种红细胞、病毒颗粒和怀疑含有所述抗体的生物学样本混合液进行孵育,在此条件下允许红细胞通过与该病毒颗粒的相互作用而产生凝集反应并且不需要进行红细胞试剂准备;
(b)在一种光学设备的辅助下对所述混合液拍摄一幅 图像,其中在所述图像中存在一种红细胞-病毒颗粒凝集簇表明发生了凝集反应,且缺乏可探测的所述抗体数量;而缺乏所述凝集簇则表明无凝集反应发生,且存在可探测到的所述抗体数量。
20.如权利要求19所述的方法,根据对所述图像中所拍摄的单个红细胞之间中心到中心的距离进行评估,确定所述的红细胞-病毒颗粒反应簇的形成。
21.如权利要求19或20所述的方法,其中所述步骤(a)含有添加所述红细胞之前对所述病毒颗粒和所述生物学样本的混合物进行孵育。
22.一种用来确定一份生物学样本中是否存在一种病毒颗粒的方法,含有:
(a)在允许红细胞通过与所述病毒颗粒的相互作用而产生凝集反应并且不需要进行红细胞试剂准备的条件下,在单一孵育步骤内对一种红细胞和怀疑含有所述病毒颗粒的一份生物学样本混合液进行孵育;
(b)探测所述混合液中是否发生了所述凝集反应,其中存在所述凝集反应说明存在所述的病毒颗粒,
且其中步骤(a)-(b)在不到一个小时内发生。
23.一种用来确定一份生物学样本中是否存在一种病毒颗粒的方法,含有:
(a)在允许红细胞通过与所述病毒颗粒的相互作用而产生凝集反应并且不需要进行红细胞试剂准备的条件下,在单一孵育步骤内对一种红细胞和怀疑含有所述病毒颗粒的一份生物学样本混合液进行孵育;
(b)在一种光学设备的辅助下对所述混合液拍摄一幅图像,其中所述图像中存在一种红细胞-病毒颗粒凝集簇表明发生了所述凝集反应,且存在可探测的病毒颗粒数量;而缺乏所述凝集簇则表明无所述凝集反应发生,且缺乏可探测到的所述病毒颗粒数量。
24.一种用于探测一名受试者是否获得有效免疫的方法,含有:
(a)从一名研究对象处获得一份生物学样本,该研究对象已经接受了对抗一种病毒颗粒的第一种疫苗的第一剂量免疫;
(b)在允许红细胞通过与所述病毒颗粒的相互作用而产生凝集反应并且不需要进行红细胞试剂准备的条件下,在单一孵育步骤内对红细胞、病毒颗粒和所述生物学样本混合液进行孵育;
(c)根据该红细胞发生凝集时形成的反应簇,探测所述样本中对抗所述病毒的一种抗体的浓度,其中无凝集反应发生说明存在所述抗体,
而且,所述步骤(b)-(c)在不到一个小时内发生。
25.一种用于探测一名受试者是否获得有效免疫的方法,含有:
(a)从一名研究对象处获得一份生物学样本,该研究对象已经接受了对抗一种病毒颗粒的第一种疫苗的第一剂量免疫;
(b)在允许红细胞通过与所述病毒颗粒的相互作用而产生凝集反应并且不需要进行红细胞试剂准备的条件下,在单一孵育步骤内对红细胞、所述病毒颗粒和所述生物学样本混合液进行孵育;
(c)在一种光学设备的辅助下对所述混合液拍摄一幅图像;
(d)根据该红细胞发生凝集时形成的反应簇,探测所述样本中对抗所述病毒的一种抗体的浓度,其中无凝集反应发生说明存在所述抗体,
其中在所述图像中存在一种红细胞-病毒颗粒凝集簇表明发生了凝集反应,且缺乏可探测的所述抗体数量;而缺乏所述凝集簇则表明无凝集反应发生,且存在可探测到的所述抗体数量。
26.如权利要求23或24所述的方法,进一步包括,如果抗体浓度低于一个预定水平,则给予研究对象一个对抗所述病毒颗粒的第一种疫苗的第二剂量。
27.如权利要求23或24所述的方法,进一步包括,如果抗体浓度低于一个预定水平,则给予研究对象一个对抗所述病毒颗粒的第二种疫苗。
28.如权利要求19、23和25中任一项所述的方法,其中所述图像是一幅显微图像。
29.一种用于探测一份生物学样本内一种抗体表达的方法,其中所述抗体选择性地与一种病毒颗粒结合,该方法含有:
(a)在允许红细胞通过与所述病毒颗粒的相互作用而产生凝集反应并且不需要进行红细胞试剂准备的条件下,在单一孵育步骤内对红细胞、病毒颗粒和怀疑含有所述抗体的生物学样本混合液进行孵育;
(b)与步骤(a)同时或顺序进行,将该混合液提供至一个容器内,该容器上端具有一个开口,而底部内侧呈锥形;
(c)倾斜该容器以致倾斜后至少该混合液的一部分较倾斜前更接近于该容器上端的开口;且至少该样本的一部分倾斜后仍然保留在该容器内;
(d)在一种光学设备的辅助下对所述混合液拍摄一幅图像,其中倾斜容器内的红细胞位置可能被用于确定样本内所述抗体的表达和数量。
30.一种用于探测一份生物学样本内一种病毒颗粒的表达的方法,其中所述病毒颗粒可能选择性地被一种抗体结合,该方法含有:
(a)在允许红细胞通过与所述病毒颗粒的相互作用而产生凝集反应并且不需要进行红细胞试剂准备的条件下,在单一孵育步骤内对红细胞、抗体和怀疑含有所述病毒颗粒的生物学样本混合液进行孵育;
(b)与步骤(a)同时或顺序进行,将该混合液提供至一个容器内,该容器上端具有一个开口,而底部内侧呈锥形;
(c)倾斜该容器以致倾斜后至少该混合液的一部分较倾斜前更接近于该容器上端的开口;且至少该样本的一部分倾斜后仍然保留在该容器内;
(d)在一种光学设备的辅助下对所述混合液拍摄一幅图像,其中倾斜容器内的红细胞位置可能被用于确定样本内所述病毒颗粒的表达和数量。
31.如权利要求29或30所述的方法,其中一个或多个用于分析的区域存在在该容器内或在该容器内被建立。
32.如权利要求31所述的方法,其中对一个或多个区域所测量的光学信号可能被用于确定样本内红细胞凝集或未凝集的数量。
33.如权利要求29或30所述的方法,其中一个用于分析的轴线存在在该容器内或在该容器内被建立,而且光学信号沿该轴线进行测量。
34.如权利要求33所述的方法,其中该轴线穿过该容器底部压积红细胞一个纽扣状部分,如果存在的话,和一个泪滴状部分的中心。
35.如权利要求33或34所述的方法,其中沿轴线所测量的光学信号可能被用于确定样本内红细胞凝集或未凝集的数量。
36.如权利要求29或30所述的方法,其中该容器底部压积红细胞被进行鉴别,且对其面积或周长进行测量。
37.如权利要求36所述的方法,该方法进一步含有使用一种模式识别方法鉴别压积红细胞的一个纽扣状和泪滴状区域。
38.如权利要求36所述的方法,其中压积红细胞的面积或周长可能被用于确定样本内红细胞凝集或未凝集的数量。
39.一种用于探测一份生物学样本内一种抗体表达的方法,其中所述抗体选择性地与一种凝集颗粒结合,该方法含有:
(a)在允许可视性颗粒通过与所述凝集颗粒的相互作用而产生凝集反应并且不需要进行红细胞试剂准备的条件下,在单一孵育步骤内对一种可视性颗粒、凝集颗粒和怀疑含有所述抗体的生物学样本混合液进行孵育;
(b)探测所述混合液中是否发生了凝集反应,其中无凝集反应发生说明存在所述抗体,
所述步骤(a)-(b)在不到一个小时内发生。
40.如权利要求39所述的方法,其中所述可视性颗粒是微球。
41.如权利要求39或40所述的方法,其中所述凝集颗粒包含一种病毒、感染性蛋白质或细菌。
42.如权利要求39所述的方法,其中所述生物学样本含有血浆或血清。
43.如权利要求42所述的方法,其中所述血浆或血清源自一位已经接种了对抗所述凝集颗粒疫苗的研究对象。
44.如权利要求39所述的方法,其中所述生物学样本经过神经酰胺酶的预处理。
45.如权利要求44所述的方法,其中通过将所述生物学样本与神经氨酸酶共同孵育来进行预处理,且该混合液中神经氨酸酶的最终浓度在0.1和1.5U/L之间。
46.如权利要求45所述的方法,其中通过将所述样本与活化的神经氨酸酶孵育不到30分钟来进行处理。
47.如权利要求39所述的方法,其中所述生物学样本在步骤(a)之前被系列稀释。
48.如权利要求39所述的方法,其中所述步骤(a)-(b)在30-60分钟内发生。
49.如权利要求39所述的方法,其中所述凝集反应的存在是通过可视性颗粒-凝集颗粒簇的形成来证实的,而且所述反应簇在一个光学设备的成像区域内被拍摄,而且所述的探测步骤含有:
(i)使用该光学设备在所述成像区域的不同位点对反应簇进行多幅图像拍摄;
(ii)根据对所述图像的分析探测所述凝集反应的发生。
50.如权利要求49所述的方法,其中所述光学设备含有一台照相机。
51.如权利要求49所述的方法,其中所述光学设备含有一台显微镜。
52.如权利要求49所述的方法,其中所述成像区域位于一个微型流体管道内。
53.如权利要求49所述的方法,根据每一幅所述图像中所拍摄的单个红细胞之间中心到中心的距离,其中所述的分析含有计算所述反应簇的大小来进行。
54.如权利要求49所述的方法,其中步骤(a)包括添加红细胞之前对病毒颗粒和所述生物学样本的混合物进行孵育。
55.一种用于探测一份生物学样本内一种抗体表达的方法,其中所述抗体选择性地与一种凝集颗粒结合,该方法含有:
(a)在允许可视性颗粒通过与所述凝集颗粒的相互作用而产生凝集反应并且不需要进行红细胞试剂准备的条件下,在单一孵育步骤内对一种可视性颗粒、凝集颗粒和怀疑含有所述抗体的生物学样本混合液进行孵育;
(b)在一种光学设备的辅助下对所述混合液拍摄一幅 图像,其中在所述图像中存在一种可视性颗粒-凝集颗粒凝集簇表明发生了凝集反应,且缺乏可探测的所述抗体数量;而缺乏所述凝集簇则表明无凝集反应发生,且存在可探测到的所述抗体数量。
56.如权利要求55所述的方法,根据对所述图像中所拍摄的单个可视性颗粒之间中心到中心的距离进行评估,确定所述的可视性颗粒-凝集颗粒反应簇的形成。
57.如权利要求55或56所述的方法,其中所述步骤(a)含有添加所述可视性颗粒之前对所述凝集颗粒和所述生物学样本的混合物进行孵育。
58.一种用来确定一份生物学样本中是否存在一种凝集颗粒的方法,含有:
(a)在允许可视性颗粒通过与所述凝集颗粒的相互作用而产生凝集反应并且不需要进行红细胞试剂准备的条件下,在单一孵育步骤内对一种可视性颗粒和怀疑含有所述凝集颗粒的生物学样本混合液进行孵育;
(b)探测所述混合液中是否发生了所述凝集反应,其中存在所述凝集反应说明存在所述的凝集颗粒,
且其中步骤(a)-(b)在不到一个小时内发生。
59.一种用来确定一份生物学样本中是否存在一种凝集颗粒的方法,含有:
(a)在允许可视性颗粒通过与所述凝集颗粒的相互作用而产生凝集反应并且不需要进行红细胞试剂准备的条件下,在单一孵育步骤内对一种可视性颗粒和怀疑含有所述凝集颗粒的生物学样本混合液进行孵育;
(b)在一种光学设备的辅助下对所述混合液拍摄一幅图像,其中所述图像中存在一种可视性颗粒-凝集颗粒凝集簇表明发生了所述凝集反应,且存在可探测的凝集颗粒数量;而缺乏所述凝集簇则表明无所述凝集反应发生,且缺乏可探测到的所述凝集颗粒数量。
60.一种用于探测一名受试者是否获得有效免疫的方法,含有:
(a)从一名研究对象处获得一份生物学样本,该研究对象已经接受了对抗一种凝集颗粒的第一种疫苗的第一剂量免疫;
(b)在允许可视性颗粒通过与所述凝集颗粒的相互作用而产生凝集反应并且不需要进行红细胞试剂准备的条件下,在单一孵育步骤内对一种可视性颗粒、凝集颗粒和所述生物学样本混合液进行孵育;
(c)根据该可视性颗粒发生凝集时形成的反应簇,探测所述样本中对抗所述凝集颗粒的一种抗体的浓度,
而且,所述步骤(b)-(c)在不到一个小时内发生。
61.一种用于探测一名受试者是否获得有效免疫的方法,含有:
(a)从一名研究对象处获得一份生物学样本,该研究对象已经接受了对抗一种凝集颗粒的第一种疫苗的第一剂量免疫;
(b)在允许可视性颗粒通过与所述凝集颗粒的相互作用而产生凝集反应并且不需要进行红细胞试剂准备的条件下,在单一孵育步骤内对一种可视性颗粒、所述凝集颗粒和所述生物学样本混合液进行孵育;
(c)在一种光学设备的辅助下对所述混合液拍摄一幅图像;
(d)根据该可视性颗粒发生凝集时形成的反应簇,探测所述生物学样本中对抗所述凝集颗粒的一种抗体的浓度,
其中在所述图像中存在一种可视性颗粒-凝集颗粒凝集簇表明发生了凝集反应,且缺乏可探测的所述抗体数量;而缺乏所述凝集簇则表明无凝集反应发生,且存在可探测到的所述抗体数量。
62.如权利要求60或61所述的方法,进一步包括,如果所述抗体浓度低于一个预定水平,则给予所述研究对象一个对抗所述凝集颗粒的所述第一种疫苗的第二剂量。
63.如权利要求60或61所述的方法,进一步包括,如果所述抗体浓度低于一个预定水平,则给予所述研究对象一个对抗所述凝集颗粒的第二种疫苗。
64.如权利要求19、23、25、55、59和61中任一项所述的方法,其中所述图像是一幅显微图像。
65.一种用于探测一份生物学样本内一种抗体表达的方法,其中所述抗体选择性地与一种凝集颗粒结合,该方法含有:
(a)在允许可视性颗粒通过与所述凝集颗粒的相互作用而产生凝集反应并且不需要进行红细胞试剂准备的条件下,在单一孵育步骤内对一种可视性颗粒、凝集颗粒和怀疑含有所述抗体的生物学样本混合液进行孵育;
(b)与步骤(a)同时或顺序进行,将该混合液提供至一个容器内,该容器上端具有一个开口,而底部内侧呈锥形;
(c)倾斜该容器以致倾斜后至少该混合液的一部分较倾斜前更接近于该容器上端的开口;且至少该样本的一部分倾斜后仍然保留在该容器内;
(d)在一种光学设备的辅助下对所述混合液拍摄一幅图像,其中倾斜容器内的可视性颗粒位置可能被用于确定样本内所述抗体的表达和数量。
66.一种用于探测一份生物学样本内一种凝集颗粒的表达的方法,其中所述凝集颗粒可能选择性地被一种抗体结合,该方法含有:
(a)在允许可视性颗粒通过与所述凝集颗粒的相互作用而产生凝集反应并且不需要进行红细胞试剂准备的条件下,在单一孵育步骤内对一种可视性颗粒、抗体和怀疑含有所述凝集颗粒的生物学样本混合液进行孵育;
(b)与步骤(a)同时或顺序进行,将该混合液提供至一个容器内,该容器上端具有一个开口,而底部内侧呈锥形;
(c)倾斜该容器以致倾斜后至少该混合液的一部分较倾斜前更接近于该容器上端的开口;且至少该样本的一部分倾斜后仍然保留在该容器内;
(d)在一种光学设备的辅助下对所述混合液拍摄一幅图像,其中倾斜容器内的可视性颗粒位置可能被用于确定样本内所述凝集颗粒的表达和数量。
67.如权利要求65或66所述的方法,其中一个或多个用于分析的区域存在在该容器内或在该容器内被建立。
68.如权利要求67所述的方法,其中对一个或多个区域所测量的光学信号可能被用于确定样本内可视性颗粒凝集或未凝集的数量。
69.如权利要求65或66所述的方法,其中一个用于分析的轴线存在在该容器内或在该容器内被建立,而且光学信号沿该轴线进行测量。
70.如权利要求69所述的方法,其中该轴线穿过该容器底部压积可视性颗粒一个纽扣状部分,如果存在的话,和一个泪滴状部分的中心。
71.如权利要求69所述的方法,其中沿轴线所测量的光学信号可能被用于确定样本内可视性颗粒凝集或未凝集的数量。
72.如权利要求65或66所述的方法,其中该容器底部压积可视性颗粒被进行鉴别,且对其面积或周长进行测量。
73.如权利要求72所述的方法,该方法进一步含有使用一种模式识别方法鉴别压积可视性颗粒的一个纽扣状和泪滴状区域。
74.如权利要求72所述的方法,其中压积可视性颗粒的面积或周长可能被用于确定样本内可视性颗粒凝集或未凝集的数量。
75.如权利要求19、23、25、29、30、55、59、61、65和66中任一项所述的方法,其中多幅图像被收集,而且所述的多幅图像通过视频收集。
76.如权利要求1、9、22-25、29-30、39、55、58-61和65-66中任一项所述的方法,其中该方法在一个定点服务站点被实施。
CN201380048275.6A 2012-07-18 2013-07-18 探察并测定凝集反应的方法 Active CN104641234B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910613564.5A CN110346568A (zh) 2012-07-18 2013-07-18 探察并测定凝集反应的方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261673215P 2012-07-18 2012-07-18
US61/673,215 2012-07-18
PCT/US2013/051165 WO2014015194A2 (en) 2012-07-18 2013-07-18 Methods for detecting and measuring aggregation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201910613564.5A Division CN110346568A (zh) 2012-07-18 2013-07-18 探察并测定凝集反应的方法

Publications (2)

Publication Number Publication Date
CN104641234A CN104641234A (zh) 2015-05-20
CN104641234B true CN104641234B (zh) 2019-08-06

Family

ID=49949384

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910613564.5A Pending CN110346568A (zh) 2012-07-18 2013-07-18 探察并测定凝集反应的方法
CN201380048275.6A Active CN104641234B (zh) 2012-07-18 2013-07-18 探察并测定凝集反应的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201910613564.5A Pending CN110346568A (zh) 2012-07-18 2013-07-18 探察并测定凝集反应的方法

Country Status (13)

Country Link
US (5) US9389229B2 (zh)
EP (1) EP2875354A4 (zh)
JP (3) JP2015522825A (zh)
KR (1) KR20150038155A (zh)
CN (2) CN110346568A (zh)
AU (1) AU2013292395A1 (zh)
BR (1) BR112015001087A2 (zh)
CA (2) CA3153334A1 (zh)
HK (1) HK1210266A1 (zh)
IL (1) IL236769B (zh)
MX (1) MX366275B (zh)
SG (1) SG11201500344XA (zh)
WO (1) WO2014015194A2 (zh)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2657699B1 (en) 2007-10-02 2017-03-22 Theranos, Inc. Modular point-of-care devices and uses thereof
TWI748368B (zh) 2011-01-21 2021-12-01 美商拉布拉多診斷有限責任公司 樣本使用最大化之系統及方法
US9619627B2 (en) 2011-09-25 2017-04-11 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US8475739B2 (en) 2011-09-25 2013-07-02 Theranos, Inc. Systems and methods for fluid handling
US20140170735A1 (en) 2011-09-25 2014-06-19 Elizabeth A. Holmes Systems and methods for multi-analysis
US9268915B2 (en) 2011-09-25 2016-02-23 Theranos, Inc. Systems and methods for diagnosis or treatment
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US9810704B2 (en) 2013-02-18 2017-11-07 Theranos, Inc. Systems and methods for multi-analysis
US9250229B2 (en) 2011-09-25 2016-02-02 Theranos, Inc. Systems and methods for multi-analysis
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US9389229B2 (en) 2012-07-18 2016-07-12 Theranos, Inc. Methods for detecting and measuring aggregation
AU2014317990A1 (en) * 2013-09-06 2016-02-25 Theranos Ip Company, Llc Systems and methods for detecting infectious diseases
MX2016002797A (es) 2013-09-06 2016-05-26 Theranos Inc Dispositivos, sistemas, metodos y equipos para recibir un hisopo.
CN106661764B (zh) * 2014-07-28 2020-06-30 赛诺菲巴斯德维思设计公司 血凝抑制分析(hai)的自动化成像和分析
US9838635B2 (en) 2014-09-30 2017-12-05 Qualcomm Incorporated Feature computation in a sensor element array
US10515284B2 (en) 2014-09-30 2019-12-24 Qualcomm Incorporated Single-processor computer vision hardware control and application execution
US20170132466A1 (en) 2014-09-30 2017-05-11 Qualcomm Incorporated Low-power iris scan initialization
US9940533B2 (en) 2014-09-30 2018-04-10 Qualcomm Incorporated Scanning window for isolating pixel values in hardware for computer vision operations
US9986179B2 (en) 2014-09-30 2018-05-29 Qualcomm Incorporated Sensor architecture using frame-based and event-based hybrid scheme
US9923004B2 (en) 2014-09-30 2018-03-20 Qualcomm Incorporated Hardware acceleration of computer vision feature detection
US10728450B2 (en) 2014-09-30 2020-07-28 Qualcomm Incorporated Event based computer vision computation
US9554100B2 (en) 2014-09-30 2017-01-24 Qualcomm Incorporated Low-power always-on face detection, tracking, recognition and/or analysis using events-based vision sensor
US9762834B2 (en) 2014-09-30 2017-09-12 Qualcomm Incorporated Configurable hardware for computing computer vision features
US9704056B2 (en) 2015-04-02 2017-07-11 Qualcomm Incorporated Computing hierarchical computations for computer vision calculations
WO2017100660A1 (en) * 2015-12-09 2017-06-15 Indevr, Inc. Automated agglutination analyzer with contour comparison
WO2017132166A1 (en) * 2016-01-28 2017-08-03 Siemens Healthcare Diagnostics Inc. Methods and apparatus adapted to quantify a specimen from multiple lateral views
EP3427024A4 (en) 2016-02-18 2019-11-06 Optofluidics, Inc. SYSTEM AND METHOD FOR CHARACTERIZING PARTICLES IN A LIQUID SAMPLE
EP3249406A1 (de) * 2016-05-27 2017-11-29 PerkinElmer Cellular Technologies Germany GmbH Verfahren zur bestimmung der anzahl von infektionsherden einer zellkultur
CN106092860A (zh) * 2016-05-29 2016-11-09 江苏英诺华医疗技术有限公司 一种血小板活化率的检测方法
EP3532985B1 (en) 2016-10-28 2023-07-12 Beckman Coulter, Inc. Substance preparation evaluation system
US10984235B2 (en) 2016-12-16 2021-04-20 Qualcomm Incorporated Low power data generation for iris-related detection and authentication
US10614332B2 (en) 2016-12-16 2020-04-07 Qualcomm Incorportaed Light source modulation for iris size adjustment
KR101997097B1 (ko) * 2016-12-30 2019-07-05 주식회사 이지다이아텍 거대 자성입자 복합체를 이용한 자동 면역분석장치 및 방법
US11680900B2 (en) 2017-03-12 2023-06-20 Ilytica Llc Digital molecular assays
CN108663527A (zh) * 2017-03-27 2018-10-16 南京市畜牧兽医站 血凝和血凝抑制试验读数仪
CN106980860A (zh) * 2017-04-07 2017-07-25 广州誉康医药有限公司 一种用于液体介质交叉配血的结果自动判读方法
US11529628B2 (en) 2017-04-28 2022-12-20 Ezdia Tech Inc. Automated immunoassay device and method using large magnetic particle complex
EP3467563A1 (de) * 2017-10-06 2019-04-10 Siemens Healthcare GmbH Mikroskopiervorrichtung
EP3906413A4 (en) * 2019-01-03 2022-11-16 Pixcell Medical Technologies Ltd. SYSTEMS AND METHODS FOR ANALYZING A FLUID SAMPLE
EP3938077A4 (en) * 2019-03-12 2023-05-03 Novilux, LLC POINT OF CARE CONCENTRATION ANALYZER
WO2020192972A1 (en) * 2019-03-28 2020-10-01 Bio-Rad Europe Gmbh Apparatus and method for classifying pictures of gel-card reactions
CN110286239A (zh) * 2019-08-12 2019-09-27 杭州美川合佳生物科技有限公司 一种血型全自动分析装置
US11796446B2 (en) * 2019-10-01 2023-10-24 National Taiwan University Systems and methods for automated hematological abnormality detection
JP7370573B2 (ja) 2019-10-03 2023-10-30 学校法人福岡大学 顕微鏡下凝集試験のための感染診断装置及び方法
US11130994B2 (en) 2019-12-13 2021-09-28 Autonomous Medical Devices Inc. Automated, cloud-based, point-of-care (POC) pathogen and antibody array detection system and method
US20210318309A1 (en) * 2020-04-09 2021-10-14 Ilytica Llc Assays with induced aggregation for enhanced sensitivity
US20230152318A1 (en) * 2020-04-24 2023-05-18 Siemens Healthcare Diagnostics Inc. Compositions, kits, and methods for anti-microbial serology assays using anti-human immunoglobulin antibody
JP7252925B2 (ja) 2020-06-25 2023-04-05 オートノマス メディカル デバイシズ,インコーポレイテッド ポイントオブケア(poc)で病原体及び抗体アレイを検出するクラウドベースの自動検出システム及び方法
KR102656008B1 (ko) * 2020-09-08 2024-04-11 경북대학교 산학협력단 질병 진단용 키트, 질병 진단용 키트를 이용한 질병 진단 방법 및 질병 진단용 키트의 제조 방법
WO2023288323A2 (en) * 2021-07-15 2023-01-19 Techcyte, Inc. Image analysis for classifying hemagglutination and quantifying presence of antibodies
JP2023150022A (ja) 2022-03-31 2023-10-16 日本光電工業株式会社 血液検査装置、血液検査方法、および血液検査プログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176174A (en) * 1974-07-19 1979-11-27 Burroughs Wellcome Co. Viral antibody diagnostic test system
US4298346A (en) * 1978-02-06 1981-11-03 Takeda Chemical Industries, Ltd. Virus hemagglutination-inhibition reaction
US4403037A (en) * 1980-10-10 1983-09-06 American Hoechst Corporation Erythrocyte preparations and use thereof in hemagglutination tests
US4556641A (en) * 1981-11-02 1985-12-03 Olympus Optical Co., Ltd. Method of judging a particle agglutination reaction and a reaction vessel for use in the method
US4829011A (en) * 1987-08-27 1989-05-09 Biotrack, Inc. Agglutination assay
EP0435246B1 (en) * 1989-12-27 1995-08-09 Olympus Optical Co., Ltd. Reaction vessel
US8007999B2 (en) * 2006-05-10 2011-08-30 Theranos, Inc. Real-time detection of influenza virus

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197088A (en) 1977-09-23 1980-04-08 Akro-Medic Engineering, Inc. Method for qualitative and quantitative determination of immunological reactions
US4857457A (en) * 1986-07-24 1989-08-15 Shamsuddin Abulkalam M Screening test for large intestinal cancer
JP2897026B2 (ja) * 1988-10-27 1999-05-31 スズキ株式会社 免疫学的凝集反応検出装置
GB8905807D0 (en) 1989-03-14 1989-04-26 Health Lab Service Board Particle aggregation
US5330897A (en) 1989-04-27 1994-07-19 South Alabama Medical Science Foundation Sialic acid binding lectin of protozoan origin
US5169601A (en) 1990-04-27 1992-12-08 Suzuki Motor Corporation Immunological agglutination detecting apparatus with separately controlled supplementary light sources
JPH05297001A (ja) * 1992-04-15 1993-11-12 Fujirebio Inc 磁性粒子を用いた自動免疫測定方法及び装置
JPH08304401A (ja) * 1995-05-09 1996-11-22 Fujirebio Inc 検体の検査装置
US5541417A (en) * 1995-05-18 1996-07-30 Abbott Laboratories Quantative agglutination reaction analysis method
JP3706190B2 (ja) * 1996-02-28 2005-10-12 デンカ生研株式会社 ヒトパルボウイルスb19の測定方法
US5994139A (en) 1998-04-07 1999-11-30 Coulter International Corp. Stable hematology control composition and method of use
GB2339615B (en) 1998-07-14 2001-02-07 Cozart Bioscience Ltd Screening device and method of screening an immunoassay test
GB9816088D0 (en) 1998-07-23 1998-09-23 Axis Biochemicals Asa System
US7026131B2 (en) 2000-11-17 2006-04-11 Nagaoka & Co., Ltd. Methods and apparatus for blood typing with optical bio-discs
US7087203B2 (en) 2000-11-17 2006-08-08 Nagaoka & Co., Ltd. Methods and apparatus for blood typing with optical bio-disc
US6992819B2 (en) 2000-12-01 2006-01-31 Auburn University High-resolution optical microscope for quick detection of pathogens
JP4290492B2 (ja) * 2003-06-30 2009-07-08 シスメックス株式会社 免疫クロマトグラフィー検査用検体前処理液、免疫クロマトグラフィー検査方法及び免疫クロマトグラフィー検査キット
US20070054405A1 (en) 2003-10-23 2007-03-08 Ortho-Clinical Diagnostics, Inc. Patient sample classification based upon low angle light scattering
CN1905896A (zh) * 2003-12-05 2007-01-31 贝克顿·迪金森公司 增强皮内隔室中的免疫反应的方法和其中使用的化合物
JP2006125994A (ja) * 2004-10-28 2006-05-18 Osaka Prefecture インフルエンザウイルス抗原性解析用粒子
WO2007053654A2 (en) 2005-10-31 2007-05-10 Cedars-Sinai Medical Center Agglutination-based method for fast detection, isolation and quantification of apoptotic cells
GB0523019D0 (en) 2005-11-11 2005-12-21 Dunex Technologies Inc Automated immunoassay apparatus
AT502855B1 (de) * 2005-11-30 2009-10-15 Oridis Biomed Forschungs Und E Verfahren und vorrichtung zur automatischen zerstörungsfreien analyse einer vielzahl von biologischen proben
AU2007238586B2 (en) * 2006-04-14 2014-03-20 Carnegie Mellon University Cellular labeling and quantification for nuclear magnetic resonance techniques
JP2010500573A (ja) 2006-08-04 2010-01-07 イコニシス インコーポレーテッド 顕微鏡システムのための画像処理方法
US7718420B2 (en) 2006-10-10 2010-05-18 Postech Academy-Industry Foundation Microfluidic biochip for blood typing based on agglutination reaction
EP2101917A1 (en) 2007-01-10 2009-09-23 Scandinavian Micro Biodevices A/S A microfluidic device and a microfluidic system and a method of performing a test
JP5178069B2 (ja) 2007-06-29 2013-04-10 ベックマン コールター, インコーポレイテッド Mtシステムによる凝集像自動判定方法、装置、プログラムおよび記録媒体
US7989177B2 (en) 2007-08-20 2011-08-02 Allied Innovative Systems, Llc Method and device for ultrasound assisted particle agglutination assay
US20090214114A1 (en) 2008-02-19 2009-08-27 Diascan Ab Pixel classification in image analysis
US9201059B2 (en) 2008-03-14 2015-12-01 Scandinavian Micro Biodevices Aps Microfluidic system and a method of performing a test
CN101903532A (zh) 2008-03-24 2010-12-01 株式会社尼康 细胞观察的图像解析方法、图像处理程序和图像处理装置
US20090325148A1 (en) 2008-06-30 2009-12-31 Vaxdesign Inc. Bead Array Reader Based-Hemagglutination and Hemagglutination Inhibition Assay
JP2010032327A (ja) * 2008-07-28 2010-02-12 Panasonic Corp 被検出物質検出方法および被検出物質検出装置ならびに深さ位置計測方法および深さ位置計測装置
US20100137159A1 (en) 2008-10-28 2010-06-03 The Board Of Regents For Oklahoma State University Simple Tests for Rapid Detection of Canine Parvovirus Antigen and Antibodies
JP5426181B2 (ja) 2009-01-21 2014-02-26 シスメックス株式会社 検体処理システム、細胞画像分類装置、及び検体処理方法
EP2491394B1 (en) 2009-10-20 2018-04-18 Sanofi Pasteur Vaxdesign Corp. Surface-assisted hemagglutination inhibition assays
US20110229914A1 (en) 2009-10-21 2011-09-22 Frances Eun-Hyung Lee Use of Antibody Secreting Cell Elispot To Assess Antibody Responses Following Antigen Exposure
JP5660273B2 (ja) * 2010-01-04 2015-01-28 日本電気株式会社 画像診断方法、画像診断装置および画像診断プログラム
TWI748368B (zh) * 2011-01-21 2021-12-01 美商拉布拉多診斷有限責任公司 樣本使用最大化之系統及方法
US8435738B2 (en) 2011-09-25 2013-05-07 Theranos, Inc. Systems and methods for multi-analysis
WO2013175318A2 (en) * 2012-05-23 2013-11-28 King Abdullah University Of Science And Technology Microbead agglutination based assays
US9389229B2 (en) 2012-07-18 2016-07-12 Theranos, Inc. Methods for detecting and measuring aggregation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176174A (en) * 1974-07-19 1979-11-27 Burroughs Wellcome Co. Viral antibody diagnostic test system
US4298346A (en) * 1978-02-06 1981-11-03 Takeda Chemical Industries, Ltd. Virus hemagglutination-inhibition reaction
US4403037A (en) * 1980-10-10 1983-09-06 American Hoechst Corporation Erythrocyte preparations and use thereof in hemagglutination tests
US4556641A (en) * 1981-11-02 1985-12-03 Olympus Optical Co., Ltd. Method of judging a particle agglutination reaction and a reaction vessel for use in the method
US4829011A (en) * 1987-08-27 1989-05-09 Biotrack, Inc. Agglutination assay
EP0435246B1 (en) * 1989-12-27 1995-08-09 Olympus Optical Co., Ltd. Reaction vessel
US8007999B2 (en) * 2006-05-10 2011-08-30 Theranos, Inc. Real-time detection of influenza virus

Also Published As

Publication number Publication date
MX366275B (es) 2019-07-03
AU2013292395A1 (en) 2015-01-29
MX2015000809A (es) 2015-05-07
IL236769A0 (en) 2015-03-31
WO2014015194A2 (en) 2014-01-23
US20150198591A1 (en) 2015-07-16
US20190293665A1 (en) 2019-09-26
CA2878880C (en) 2022-06-14
BR112015001087A2 (pt) 2017-06-27
US20170023595A1 (en) 2017-01-26
US20160266142A1 (en) 2016-09-15
JP2015522825A (ja) 2015-08-06
JP2022069520A (ja) 2022-05-11
CN110346568A (zh) 2019-10-18
WO2014015194A3 (en) 2014-05-15
KR20150038155A (ko) 2015-04-08
US20140045170A1 (en) 2014-02-13
EP2875354A2 (en) 2015-05-27
US10281479B2 (en) 2019-05-07
SG11201500344XA (en) 2015-02-27
IL236769B (en) 2019-07-31
US9389229B2 (en) 2016-07-12
EP2875354A4 (en) 2016-03-02
JP2019148610A (ja) 2019-09-05
CA2878880A1 (en) 2014-01-23
HK1210266A1 (zh) 2016-04-15
CN104641234A (zh) 2015-05-20
CA3153334A1 (en) 2014-01-23

Similar Documents

Publication Publication Date Title
CN104641234B (zh) 探察并测定凝集反应的方法
KR101524107B1 (ko) 혈액샘플의 다중분석
Jamonneau et al. Revisiting the immune trypanolysis test to optimise epidemiological surveillance and control of sleeping sickness in West Africa
JP4554766B2 (ja) 血液の分析方法および血液分析キット
CN104126120A (zh) 纸基诊断测试
JP6950087B2 (ja) デジタルホログラフィック顕微鏡検査を用いた特異的マラリア検出
CN103025886A (zh) 用于确定颗粒和/或细胞分散体的迁移率的全息波动显微装置和方法
CN106687812A (zh) 用于分析血液样品中的葡萄糖‑6‑磷酸脱氢酶活性的方法和组合物
CN103492882B (zh) 诊断甲状腺素运载蛋白淀粉状变性的方法及其试剂盒
US20210190781A1 (en) Detection of Interaction Between an Assay Substance and Blood or Blood Components for Immune Status Evaluation and Immune-Related Disease Detection and Diagnosis
Ameku et al. Rapid detection of anti-SARS-CoV-2 antibodies with a screen-printed electrode modified with a spike glycoprotein epitope
KR100896396B1 (ko) 점착성 미세소포의 제거 방법
US20180238876A1 (en) Method For Assessing Cell Surface Receptors of Blood Cells
JPH02170053A (ja) 微生物の検出方法及び装置
CN101680894A (zh) 检测待测物的试剂及其方法
CN109964130A (zh) 估计细胞群体
JP2017508961A (ja) 赤血球検出
US20170168075A1 (en) Crossmatching blood samples
CN105074464A (zh) 免疫检测
CN103149355A (zh) 一种利用夹心法检测牛布鲁氏菌抗体的检测试纸卡
Ulander Two-colour fluorescence-based method for detecting virus particles in solution
JPS62168051A (ja) 凝集反応試験用水性溶媒
Jamonneau et al. Revisiting the Immune Trypanolysis Test to Optimise Epidemiological

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1210266

Country of ref document: HK

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20180130

Address after: American California

Applicant after: Serranos intellectual property limited liability company

Address before: American California

Applicant before: Theranos, Inc.

GR01 Patent grant
GR01 Patent grant