CN104603273B - 重组系统 - Google Patents

重组系统 Download PDF

Info

Publication number
CN104603273B
CN104603273B CN201380024895.6A CN201380024895A CN104603273B CN 104603273 B CN104603273 B CN 104603273B CN 201380024895 A CN201380024895 A CN 201380024895A CN 104603273 B CN104603273 B CN 104603273B
Authority
CN
China
Prior art keywords
sequence
recombination
nucleic acid
site
recombinase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380024895.6A
Other languages
English (en)
Other versions
CN104603273A (zh
Inventor
诺尔·尼克拉斯·玛利亚·伊丽莎白·佩吉·范
马帝那·贝舒森
伊万内·约翰内斯·奥迪利亚·亚伦德森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DSM IP Assets BV
Original Assignee
DSM IP Assets BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DSM IP Assets BV filed Critical DSM IP Assets BV
Publication of CN104603273A publication Critical patent/CN104603273A/zh
Application granted granted Critical
Publication of CN104603273B publication Critical patent/CN104603273B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及在靶位点进行重组的方法,该方法包括:提供两种或更多种核酸,它们总共包含:(a)能够与靶位点侧翼序列同源重组的序列;(b)两个或更多个位点特异性重组位点;(c)编码识别位点特异性重组位点的重组酶的序列;和(d)编码标记的序列,其中所述两种或更多种核酸能够相互同源重组从而产生单一核酸,并且其中所述两种或更多种核酸中的至少两种各包含编码无功能的部分标记的序列;以及使所述两种或更多种核酸相互重组以及与靶位点的侧翼序列重组,以在靶位点插入编码有功能标记的连续核酸序列和编码重组酶的序列,所述编码标记和/或重组酶的序列的侧翼是至少两个位点特异性重组位点以及所述位点特异性重组位点的侧翼是能够与靶位点的侧翼序列同源重组的序列。

Description

重组系统
发明领域
本发明涉及在靶位点进行重组的方法。所述方法还涉及根据在体内进行的本发明方法制备的细胞。
发明背景
不同的细胞类型可以用于不同的工业目的。例如哺乳动物细胞系用于抗体生产;真菌细胞是生产多肽和次级代谢物的优选生物;细菌细胞优选用于小的代谢物和抗体的生产;植物细胞优选用于口味和风味化合物。
重组技术广泛用于这样的细胞和/或使用这样的细胞的方法的生产力的最优化。这可涉及大量的选择,包括但是不限于过表达感兴趣的基因,竞争途径的缺失或失活,改变酶的区室化(compartmentalization),增加蛋白或代谢物分泌,增加细胞器含量(organelle content)等。
就丝状真菌而言,可获得的可选择标记有限使新细胞系的构建复杂化。典型地,靶序列在体外被改变以产生带有插入的抗生素抗性标记的突变等位基因。然而,鉴于大规模使用携带抗性基因的生产菌株将这种基因扩散到生物圈的潜在风险,大多数国家的监管机构反对使用抗生素抗性标记。此外,适用于丝状真菌的可选择标记数量有限。
因此,可需要除去可选择标记基因以使生产菌株可以在商业上使用和/或以使同样的标记基因可以在连续的菌株修饰中再循环利用。
发明概述
本发明涉及在例如靶基因组内在靶位点(target locus)或多个靶位点(targetloci)进行重组的方法。本发明所述的重组方法导致靶位点的改变,例如在靶位点插入核酸序列。可实施所述的方法以使在靶位点插入新的序列并伴随从靶位点除去现存的序列。也就是说,所述方法可被用于将靶位点上的序列替换为替代性序列。所述方法可方便地在宿主细胞体内实施。
典型地,当在体内实施时,不对人类或动物细胞实施本发明所述的方法。也就是说,典型地不以治疗方法的形式实施本发明所述的方法。可以离体或体外方式实施本发明所述的方法。术语离体或体外应被理解为包括对微生物(对完整活细胞或非细胞物质二者)实施的方法,但排除对人类或动物实施的方法。
典型地,实施所述方法使至少部分插入在靶位点的序列随后被移除。如果实施所述的方法以在靶位点替换序列并随后移除插入的序列,那么结果可以是使靶位点的序列缺失。
因此,可实施本发明所述的方法以改变靶位点的序列。这种改变可以是,例如添加新的序列、置换现存的序列和/或缺失/去除现存的序列。
典型地,本发明在宿主细胞体内进行。宿主细胞可以优选地是生产感兴趣的化合物的细胞。宿主细胞可以在应用本发明方法之前能够生产感兴趣的化合物。在这种情况下,本发明的方法可以用于修饰靶位点以使通过宿主细胞的感兴趣的化合物的生产改变,例如可以增加产量。或者,宿主细胞可以是由于应用本发明的方法而生产感兴趣的化合物的细胞。
因此根据本发明,提供了在靶位点进行重组的方法,该方法包括:
-提供两种或更多种核酸,它们总共包含:(a)能够与靶位点侧翼序列同源重组的序列;(b)两个或更多个位点特异性重组位点;(c)编码识别位点特异性重组位点的重组酶的序列;和(d)编码标记的序列,
其中所述两种或更多种核酸能够相互同源重组从而产生单一核酸,并且
其中所述两种或更多种核酸中的至少两种各包含编码无功能的部分标记基因的序列;以及
-使所述两种或更多种核酸相互重组以及与靶位点的侧翼序列重组,以在靶位点插入编码有功能标记和/或必需基因(essential gene)的连续核酸序列以及编码重组酶的序列,所述编码标记和/或编码重组酶的序列的侧翼是至少两个位点特异性重组位点以及所述位点特异性重组位点的侧翼是能够与靶位点的侧翼序列同源重组的序列。
因此,所述两种或更多种核酸中的至少两种各包含编码无功能的部分标记基因的序列,各包含重组后编码有功能标记的部分序列(并且其中所述部分自身不编码有功能的标记)。
本发明还涉及通过在体内实施的根据本发明所述的方法所产生的细胞。
与现有方法相比,本发明方法的优势在于其允许在菌株转化中连续使用非反向选择标记(non-counterselectable marker)。这是有利的,特别是在丝状真菌中,其中已知的反向选择标记数量有限且再循环标记用于重复使用极其重要。此外,
这种系统允许使用单一多核苷酸中不包含完全敲除盒的载体。这避免了克隆问题,以及更稳定的核苷酸片段(在酵母或E.coli中位点特异性重组酶不能作用于其重组位点,例如因为它们并不都存在)。
而且,使用可以通过利用自动方法扩增产生的核酸片段实施本发明的方法。这导致了更高通量的更为灵活的系统,因为片段扩增(例如通过PCR)比限制性消化更容易自动化。
利用本发明的方法可以得到极其高效的菌株构建(接近100%效率),且所述方法可被用于比使用现有技术更快地产生多重敲除,因为可以在一个步骤中引入和/或除去多个标记。
使用本发明的方法可以更易于表征地追踪菌株构建和修饰,因为位点特异性重组位点可以保留在靶位点(target locus)或多个靶位点(target loci)。
附图简述
图1展示了质粒pDELNicB-3的示意图,其是用于使A.niger中的nicB基因失活的置换盒的基础。置换盒包含nicB的侧翼区域、hygB标记盒、突变loxP位点和E.coli DNA。在实施例部分(参见下文)可以找到关于pDELNicB-3的更多细节。
图2展示了质粒pDEL_PdxA-2的示意图,其是用于使A.niger中的pdxA基因失活的置换盒的基础。置换盒包含pdxA的侧翼区域、ble标记盒、突变loxP位点和E.coli DNA。在实施例部分(参见下文)可以找到关于pDEL_PdxA-2的更多细节。
图3展示了质粒pDEL_EPO_Hyg-1的示意图,其包含使A.niger中的epo基因失活的置换盒的一部分。置换盒包含epo的侧翼区域、hygB标记盒的一部分、突变loxP位点和E.coli DNA。在实施例部分(参见下文)可以找到关于pDEL_EPO_Hyg-1的更多细节。
图4展示了质粒pDEL_EPO_CRE-1的示意图,其包含使A.niger.中的epo基因失活的置换盒的一部分。置换盒包含epo的侧翼区域、hygB标记盒的一部分、突变loxP位点、cre重组酶表达盒和E.coli DNA。在实施例部分(参见下文)可以找到关于pDEL_EPO_CRE-1的更多细节。
图5展示了片段产生以及A.niger中的转化和重组中这些片段的使用的示意图。顶部展示了利用PCR扩增产生“二重左”(“bipartite left“)和“二重右”(“bipartite right“)片段。底部图中展示了通过二重左片段和二重右片段在基因组内的同源重组转化A.niger。
图6展示了片段产生以及A.niger中的转化和重组中这些片段的使用的示意图(同样展示于图5)。这个特定实施例中的各二重(bipartit)片段不同,因为它们另外包含Cre重组酶盒。最后的图展示了Cre诱导的重组事件之后产生的基因组位点的布局。
图7展示了Cre诱导的侧翼为loxP的hygB选择标记的丢失。上部板是Cre未诱导的转化体。下部板是通过涂布在作为碳源的木糖上而使Cre被诱导。百分比展示了Cre诱导后,A.niger菌落中标记移除的百分比。
图8描述了用于在真菌中瞬时表达cre重组酶的pEBA513的图谱。pEBA513是pAMPF21衍生的载体,其包含AMA1区域和CAT氯霉素抗性基因。显示的是cre重组酶基因(cre)表达盒,其包含A.niger glaA启动子(Pgla)、cre重组酶编码区和niaD终止子。此外,还展示了由A.nidulans gpdA启动子(PgpdA)、hygB编码区和P.chrysogenum penDE终止子组成的潮霉素抗性盒。
图9展示了利用PCR检测R.emersonii基因组中的pGBTOPEBA-205表达质粒。分离并利用PCR分析来自转化体A-A4(泳道2-4)和空菌株(泳道5-7)的基因组DNA。质粒DNA被用作PCR反应的对照模板:pGBTOPEBA-4(泳道8)、pGBTOPEBA-8(泳道9)和pGBTOPEBA-205(泳道10)。在PCR反应中,加入针对pGBTOPEBA-4(泳道2、5和8,预计片段:256bp)、pGBTOPEBA-8(泳道3、6和9,预计片段:306bp)和pGBTOPEBA-205(泳道4、7和10,预计片段:452bp)的引物。泳道1和11含有分子量标记。
图10展示了无标记的R.emersonii转化体的表型分析和PCR分析。用milliQ水(对照)或pEBA513构建体转化转化体A-A4以使cre重组酶瞬时表达,其中转化体A-A4含有多拷贝的R.emersonii CbhI和含有侧翼为loxP的ble表达盒的pDEL_Pdx-A2质粒。
(图10A):生长于含10μg/ml腐草霉素的PDA培养基(左侧图)和无选择的PDA(右侧图)的转化体和空菌株的MTP板的图片。行A展示了A-A4的两种milliQ对照转化体,其中A-A4包含具有侧翼为loxP的ble表达盒(lox-ble-lox)的pDEL_Pdx-A2。行B展示了pEBA513转化的两种A-A4转化体(lox-ble-lox+pEBA513)的生长。亲本转化体A-A4(lox-ble-lox,转化前)生长于行C。最后,行D展示了空菌株的生长。
(图10B):利用cre重组酶移除标记之前和之后的转化体以及cre重组酶构建体的PCR分析。泳道2和泳道3展示了通过两种milliQ对照A-A4转化体的PCR分析得到的PCR片段,其中使用针对ble表达构建体中的pdx侧翼的引物。如果转化体仍然含有ble选择标记,那么2752bp的PCR条带是预计被扩增的PCR片段。泳道5和6展示了用pEBA513转化的两种A-A4转化体的PCR分析,其中使用针对pEBA513cre重组酶表达质粒的hygB基因的引物(314bp片段)。泳道8和9展示了用pEBA513转化的两种A-A4转化体的PCR片段,其中使用针对ble表达构建体的pdx侧翼的引物。881bp的PCR片段指示来源于R.emersonii转化体的ble表达盒的缺失。泳道1、4和7含有分子量标记。
图11描述了pEBA1001载体。部分载体片段和pEBA1002载体联合用于二重基因靶向方法以使Rasamsonia emersonii中的ReKu80 ORF缺失。所述载体包含2500bp 5’上游侧翼区、lox66位点、由A.nidulans gpdA启动子驱动的ble编码序列的5’部分和pUC19骨架(Invitrogen,Breda,荷兰)。转化R.emersonii菌株之前,用限制性酶Notl消化除去E.coliDNA。
图12描述了pEBA1002载体。部分载体片段和pEBA1001载体联合用于二重基因靶向方法以使Rasamsonia emersonii中的ReKu80ORF缺失。所述载体包含ble编码区的3’部分、A.nidulans trpC终止子、lox71位点、ReKu80ORF的2500bp 3’下游侧翼区和pUC19骨架(Invitrogen,Breda,荷兰)。转化R.emersonii菌株之前,用限制性酶Notl消化除去E.coliDNA。
图13描述了用于使R.emersonii的ReKu80基因缺失的策略。用于缺失ReKu80的载体包含侧翼为loxP位点的重叠无功能ble选择标记片段(分开的标记)和用于靶向的ReKu80基因的5’和3’同源区(1)。构建体通过在基因组ReKu80位点和在重叠的同源无功能ble选择标记片段处的三同源重组(X)进行整合(2),并且置换基因组ReKu80基因拷贝(3)。随后,通过cre重组酶的瞬时表达导致lox66和lox71位点之间的重组移除选择标记,从而使ble基因缺失且剩余双突变的lox72位点留在基因组中(4)。使用这种总体策略,ReKu80ORF被移除出基因组。
图14展示了ReKu80敲除菌株的Southern印迹分析。从菌株中分离基因组DNA,然后用限制性酶HindIII消化。使用针对ReKu80基因的3’区的探针进行Southern印迹杂交。泳道1:野生型菌株;泳道2和3:两种腐草霉素抗性菌株显示出正确的ReKu80敲除整合的片段大小;泳道4:被标记的分子量标记;泳道5和6:带有正确的ReKu80敲除整合的片段大小的两种腐草霉素敏感菌株。
图15描述了pEBA1005载体,它和pEBA1006载体被联合用于二重基因靶向方法(bipartite gene-targeting method)以缺失Rasamsonia emersonii中的RePepA ORF。所述载体包含2500bp 5’侧翼区、lox66位点、由A.nidulans gpdA启动子驱动的ble编码区的5’部分和pUC19骨架(Invitrogen,Breda,荷兰)。
图16描述了pEBA1006载体,它和pEBA1005载体被联合用于二重基因靶向方法以缺失Rasamsonia emersonii中的RePepA ORF。所述载体包含ble编码区的3’部分、A.nidulanstrpC终止子、lox71位点、ReKu80ORF的2500bp 3’侧翼区和pUC19骨架(Invitrogen,Breda,荷兰)。
图17描述了用于缺失Rasamsonia emersonii中的RePepA ORF的pEBA10056载体。所述载体包含2500bp 5’侧翼区,lox66位点,由A.nidulans gpdA启动子、ble编码区和A.nidulans trpC终止子组成的ble表达盒,lox71位点,ReKu80ORF的2500bp 3’侧翼区和pUC19骨架(Invitrogen,Breda,荷兰)。
图18展示了补充有1%酪蛋白钠盐的PDA平板图,其具有用包含2.5kb侧翼的RePepA缺失构建体转化的ΔReKu80-2菌株和TEC-142S。
图19展示了质粒pPepAHyg的示意图,其包含使R.emersonii中的RePepA基因失活的置换盒的一部分。置换盒包含1500个核苷酸的RePepA5’侧翼区、hygB标记盒的一部分、突变的loxP位点和E.coli DNA。在实施例部分(参见下文)可以找到关于pPepAHyg的更多细节。
图20展示了质粒pPepACre的示意图,其包含使R.emersonii中的RePepA基因失活的置换盒的一部分。置换盒包含RePepA 3’侧翼区、hygB标记盒的一部分、突变的loxP位点、cre重组酶表达盒和E.coli DNA。在实施例部分(参见下文)可以找到关于pPepACre的更多细节。
图21展示了用于R.emersonii中的转化和重组的片段的示意图。用于缺失RePepA的载体包含侧翼为loxP位点的重叠无功能hygB选择标记片段(分开的标记)和用于靶向的RePepA基因的5’和3’同源区(1)。构建体通过在基因组RePepA位点和在重叠的同源无功能hygB选择标记片段处的三同源重组(X)进行整合(2),并且置换基因组RePepA基因拷贝(3)。随后,通过在木糖上培养转化体以诱导cre重组酶的表达导致lox66和lox71位点之间的重组移除选择标记,从而缺失hygB和Cre表达盒且剩余的双突变的lox72位点留在基因组中(4)。
图22展示了Rasamsonia emersonii中Cre诱导的侧翼为loxP的hygB选择标记的丢失。带有侧翼为loxP的hygB选择标记和cre重组酶表达盒被整合至PePepA位点的转化体被涂布在碳源为木糖的平板上以诱导cre重组酶。cre被诱导之后,将菌落转移至无选择的PDA(左)和潮霉素B选择的PDA(右)。空菌株作为选择对照被包括在内。
图23展示了在S.cerevisiae中敲除ADE1基因的过程示意图,其中使用侧翼均在lox71和lox66之间的二重标记和具有诱导型启动子的cre重组酶。
序列表描述
SEQ ID NO:1展示了突变的lox P位点,lox66。
SEQ ID NO:2展示了突变的lox P位点,lox71。
SEQ ID NO:3展示了双突变的lox72位点。
SEQ ID NO:4展示了第一无功能的hygB标记片段(缺失hygB的3’末端编码序列的最后27个碱基的PgpdA-HygB序列)。
SEQ ID NO:5展示了第二无功能的hygB片段(缺失hygB的5’末端编码序列的开始44个碱基的HygB-TtrpC序列)。
SEQ ID NO:6展示了含有A.nidulans木聚糖酶A启动子、cre重组酶和木聚糖酶A终止子的cre重组酶盒,以允许cre重组酶的木糖可诱导表达。
SEQ ID NO:7展示了Ble-正向PCR引物的DNA序列;
SEQ ID NO:8展示了Ble-反向PCR引物的DNA序列;
SEQ ID NO:9展示了EBA205-正向PCR引物的DNA序列;
SEQ ID NO:10展示了EBA205-反向PCR引物的DNA序列;
SEQ ID NO:11展示了pGBTOPEBA4-正向PCR引物的DNA序列;
SEQ ID NO:12展示了pGBTOPEBA4-反向PCR引物的DNA序列;
SEQ ID NO:13展示了pGBTOPEBA8-正向PCR引物的DNA序列;
SEQ ID NO:14展示了pGBTOPEBA8-反向PCR引物的DNA序列;
SEQ ID NO:15展示了Pdx-正向PCR引物的DNA序列;
SEQ ID NO:16展示了Pdx-反向PCR引物的DNA序列;
SEQ ID NO:17展示了Hyg-正向PCR引物的DNA序列;
SEQ ID NO:18展示了Hyg-反向PCR引物的DNA序列;
SEQ ID NO:19展示了ReKu70基因组区的核酸序列(包含侧翼序列);
SEQ ID NO:20展示了ReKu70cDNA的核酸序列;
SEQ ID NO:21展示了ReKu70多肽的氨基酸序列;
SEQ ID NO:22展示了ReKu80基因组区的核酸序列(包含侧翼序列);
SEQ ID NO:23展示了ReKu80cDNA的核酸序列;
SEQ ID NO:24展示了ReKu80多肽的氨基酸序列;
SEQ ID NO:25展示了ReRad50基因组区的核酸序列(包含侧翼序列);
SEQ ID NO:26展示了ReRad50cDNA的核酸序列;
SEQ ID NO:27展示了ReRad50多肽的氨基酸序列;
SEQ ID NO:28展示了ReRad51基因组区的核酸序列(包含侧翼序列);
SEQ ID NO:29展示了ReRad51cDNA的核酸序列;
SEQ ID NO:30展示了ReRad51多肽的氨基酸序列;
SEQ ID NO:31展示了ReRad52基因组区的核酸序列(包含侧翼序列);
SEQ ID NO:32展示了ReRad52cDNA的核酸序列;
SEQ ID NO:33展示了ReRad52多肽的氨基酸序列;
SEQ ID NO:34展示了ReRad54a基因组区的核酸序列(包含侧翼序列);
SEQ ID NO:35展示了ReRad54a cDNA的核酸序列;
SEQ ID NO:36展示了ReRad54a多肽的氨基酸序列;
SEQ ID NO:37展示了ReRad54b基因组区的核酸序列(包含侧翼序列);
SEQ ID NO:38展示了ReRad54bcDNA的核酸序列;
SEQ ID NO:39展示了ReRad54b多肽的氨基酸序列;
SEQ ID NO:40展示了ReRad55基因组区的核酸序列(包含侧翼序列);
SEQ ID NO:41展示了ReRad55cDNA的核酸序列;
SEQ ID NO:42展示了ReRad55多肽的氨基酸序列;
SEQ ID NO:43展示了ReRad57基因组区的核酸序列(包含侧翼序列);
SEQ ID NO:44展示了ReRad57cDNA的核酸序列;
SEQ ID NO:45展示了ReRad57多肽的氨基酸序列;
SEQ ID NO:46展示了ReCDC2基因组区的核酸序列(包含侧翼序列);
SEQ ID NO:47展示了ReCDC2cDNA的核酸序列;
SEQ ID NO:48展示了ReCDC2多肽的氨基酸序列;
SEQ ID NO:49展示了ReLIG4基因组区的核酸序列(包含侧翼序列);
SEQ ID NO:50展示了ReLIG4cDNA的核酸序列;
SEQ ID NO:51展示了ReLIG4多肽的氨基酸序列;
SEQ ID NO:52展示了ReMRE11基因组区的核酸序列(包含侧翼序列);
SEQ ID NO:53展示了ReMRE11cDNA的核酸序列;
SEQ ID NO:54展示了ReMRE11多肽的氨基酸序列;
SEQ ID NO:55展示了Ku80-正向PCR引物的DNA序列;
SEQ ID NO:56展示了Ku80-反向PCR引物的DNA序列;
SEQ ID NO:57展示了Rasamsonia emersonii pepA基因组区和侧翼的核酸序列。
SEQ ID NO:58展示了Rasamsonia emersonii pepA cDNA的核酸序列。
SEQ ID NO:59展示了Rasamsonia emersonii pepA多肽的氨基酸序列。
SEQ ID NO:60展示了第一无功能的ble标记片段(缺失ble的3’末端编码序列的最后104个碱基的PgpdA-ble序列)。
SEQ ID NO:61展示了第二无功能的ble片段(缺失ble的5’末端编码序列的开始12个碱基的ble-TtrpC序列)。SEQ ID NO:62展示了基本构建体1的序列。
SEQ ID NO:63展示了基本构建体2的序列;
SEQ ID NO:64展示了左ADE1敲除侧翼(Left ADE1KO flank)的正向引物序列;
SEQ ID NO:65展示了左ADE1敲除侧翼的反向引物序列;
SEQ ID NO:66展示了带有50bp ADE1敲除侧翼的基本构建体1的正向引物序列;
SEQ ID NO:67展示了基本构建体1的反向引物序列;
SEQ ID NO:68展示了产生与基本构建体1的重叠的基本构建体2的正向引物序列;
SEQ ID NO:69展示了带有50bp ADE1敲除侧翼的基本构建体2的反向引物序列;
SEQ ID NO:70展示了用于扩增右ADE1敲除侧翼的正向引物序列;
SEQ ID NO:71展示了用于扩增右ADE1敲除侧翼的反向引物序列;
SEQ ID NO:72展示了左侧翼ADE1的PCR片段1的序列;
SEQ ID NO:73展示了带有ADE1敲除侧翼的基本构建体1的PCR片段2的序列;
SEQ ID NO:74展示了带有ADE1敲除侧翼的基本构建体2的PCR片段3的序列;
SEQ ID NO:75展示了左侧翼ADE1的PCR片段的序列。
发明详述
在本说明书和所附权利要求书通篇中,词语“包括”、“包含”和“具有”应被解释为包括性的。也就是说,在上下文允许时,这些词语旨在表达可能包括未明确指出的其他要素或整体。
不使用数量词时表示一个或多于一个(即一个或至少一个)的客体。例如,“要素”可表示一个要素或多于一个要素。
根据本发明所述的方法被用于在靶位点实施重组。重组指的是核酸的分子被打断然后被连上不同核酸分子的过程。本发明的重组过程典型地涉及人工和有目的地重组不同核酸分子(其可来自于相同或不同生物体)以创造重组的核酸。
术语“重组”的意思是,例如核酸序列是通过人工组合两种否则分开的序列区段(例如通过化学合成或通过用基因工程技术处理分离的核酸)得到的。
本发明所述的方法依赖于同源重组和位点特异性重组的结合。
“同源重组”指的是具有包含相似核苷酸序列的对应位点的核苷酸序列(即同源序列)之间的反应,通过所述反应分子能够相互作用(重组)以形成新的、重组的核酸序列。相似核苷酸序列的位点在本文中被分别称为“同源序列”。典型地,同源重组的频率随着同源序列的长度的增加而增加。因此,虽然同源重组能够在不完全相同的两种核酸序列之间发生,但随着两种序列之间的差异的增加,重组频率(或效率)下降。可使用将被结合的两种分子的每一种上的一种同源序列以实现重组,从而产生“单交换”的重组产物。或者,两种同源序列可被放置将被重组的两种分子的每一种上。供体上的两种同源序列和靶标上的两种同源序列之间的重组产生“双交换”的重组产物。
如果供体分子上的同源序列的侧翼是将被操作的序列(例如感兴趣的序列),那么与靶分子的双交换重组将产生这样的重组的产物,其中感兴趣的序列置换本来位于靶分子上的同源序列之间的DNA序列。
“位点特异性重组”(也被称为保守的位点特异性重组)是核酸链的交换发生在仅具有有限程度的序列同源性的区段之间的一类重组。位点特异性重组酶识别和结合短DNA序列(位点),在此处切割DNA骨架、交换参与的两种DNA螺旋并重新连接DNA链,从而使核酸区段重新排列。在一些位点特异性重组系统中,仅仅具有重组酶连同重组位点就足以执行所有这些反应;在另一些系统中,可能还需要一些辅助蛋白和辅助位点。
所述方法可被用于在靶位点实施重组以导致靶位点的修饰。因此,本发明可被用于添加、缺失或以另外的方式改变靶位点。靶位点可以是编码序列或非编码序列。可利用本发明所述的方法以使这种编码或非编码序列可被破坏和/或部分或完全缺失和/或置换。因此,本发明所述的方法可被用于置换靶位点的序列,例如用编码标记的序列。
典型地,在宿主细胞(例如微生物的细胞)体内实施本发明。优选地,宿主细胞可产生感兴趣的化合物。所述宿主细胞可以在应用本发明所述的方法之前能够产生感兴趣的化合物。在这种情况下,本发明所述的方法可被用于修饰靶位点以使所述宿主细胞的感兴趣的化合物的生产改变,例如可以增加产量。或者,所述宿主细胞可以由于应用本发明所述的方法而产生感兴趣的化合物。
因此,本发明可被用于,例如最优化宿主细胞的生产力和/或使用它们的工艺。或者,本发明可被用以,例如引入新的核酸以使宿主细胞能够产生感兴趣的新化合物。本发明可被连续使用以引入多个新的核酸序列至宿主细胞,从而引入全新的通路或代谢通路。
靶位点可以是待修饰的任何核酸序列。典型地,靶位点可以是基因组(生物体的完整遗传物质)内的序列,例如染色体上的位点。这种染色体可以是线型或环形的染色体。然而,靶位点可以在染色体外,例如质粒、微型染色体或人工染色体上的位点。靶位点可以位于质粒、噬菌体或任何其它能够在体外或在宿主细胞中复制或者被复制的核酸序列。
本发明所述的方法可以在体外、离体或体内实施。
本发明所述的方法包括:
-提供两种或更多种核酸,它们总共包含:(a)能够与靶位点的侧翼序列同源重组的序列;(b)两个或多个位点特异性重组位点;(c)编码识别位点特异性重组位点的重组酶的序列;和(d)编码标记的序列,
其中所述两种或更多种核酸能够相互同源重组以产生单一核酸,和
其中所述两种或更多种核酸中的至少两种各包含编码无功能的部分标记的序列;和
-使所述两种或更多种核酸相互重组以及与靶位点的侧翼序列重组,以在靶位点插入编码有功能标记的连续核酸序列和编码重组酶的序列,所述编码标记和/或编码重组酶的序列的侧翼是至少两个位点特异性重组位点以及所述位点特异性重组位点的侧翼是能够与靶位点的侧翼序列同源重组的序列。
本发明中,两种或更多种核酸中的至少两种各包含编码无功能的部分标记的序列。也就是说,编码标记的序列在两种或更多种核酸中的至少两种之间分开。因此,该方法可被称为分开标记法(split-marker approach)。
可以在体内实施位点特异性重组位点之间的核酸序列(例如标记)的外重组(out-recombination)。
在本发明的方法中,体内重组可以在任何合适的宿主细胞中进行,例如在原核细胞或真核细胞中进行。
本发明所述的方法中,在体内实施核酸之间的相互重组以及与靶位点的重组。
本发明所述的方法中,提供两种或更多种核酸。所述两种或更多种核酸总共提供:(a)能够与靶位点的侧翼序列同源重组的序列;(b)两个或多个位点特异性重组位点;(c)编码识别位点特异性重组位点的重组酶的序列;和(d)编码标记的序列。
这并不意味着两种或更多种核酸中的每一种都包含(a)、(b)、(c)和(d)中所描述的序列。而是,两种或更多种核酸被总合在一起成为组时,这些核酸必须包含(a)、(b)、(c)和(d)中所描述的序列。因此,一种核酸可包含(a)、(b)、(c)和(d)中所描述的一种或更多种序列,第二种核酸可包含(a)、(b)、(c)和(d)中所描述的另一些序列。典型地,两种或更多种核酸中的每一种都将包含(a)、(b)、(c)和(d)中所描述的至少一种序列。然而,也可以提供不包含(a)、(b)、(c)或(d)中所描述的至少一种序列的额外核酸。
图6展示了所述方法的一种方式,其中使用两种核酸,但技术人员将很容易想到更多的方式。所述方法中使用的核酸的数目可以是2、3、4、5、6或更多。
典型地,编码标记的序列在两种核酸序列之间分开(这两种核酸序列中的每一种都编码无功能的部分标记,但当二者被重组时将编码有功能标记)。然而,编码标记的序列可被分开为3种、4种或更多种核酸序列。
当编码标记的序列在两种核酸序列之间分开时,典型地这两种序列中的每一种都还可以包含位点特异性重组位点。图6中展示了这种方法。或者,位点特异性重组位点可由能够与包含编码标记的序列的核酸序列重组的额外核酸序列提供。
在本发明所述的方法中,两种或更多种核酸能够相互同源重组以产生单一核酸。由于能够与靶位点的侧翼序列同源重组的序列的存在,核酸在靶位点被合并成为单一连续序列。此外,两种或更多种核酸中的至少两种各包含编码无功能的部分标记的序列。
因此,在本发明的方法中,两种或更多种核酸相互重组并与靶位点的侧翼序列重组。以这种方式,编码有功能标记的连续核酸序列可与编码重组酶的序列和至少两个位点特异性重组位点一起被插入至靶位点。这种编码有功能标记的序列典型地被插入在靶位点以使其侧翼是至少两个位点特异性重组位点。当重组酶表达时,位于位点特异性重组位点之间的序列可被外重组(out-recombined)。如果编码标记和/或编码重组酶的序列位于位点特异性重组位点之间,那么它/它们将被外重组。然而,如果编码标记和/或编码重组酶的序列位于位点特异性重组位点之外,那么其将被保留在靶位点。
当重组发生后,位点特异性重组位点、标记和重组酶序列的侧翼将会是能够与靶位点的侧翼序列同源重组的序列。
还可以通过单独加入重组酶实施本发明所述的方法,使用例如质粒(包含编码重组酶的序列),或者通过使用直接加入的重组酶蛋白。
可实施本发明所述的方法以同时靶向多于1个(例如2、3、4、5或更多个)靶位点。以这种方式,所述的两种或更多种核酸总共包含能够与两个或多个靶位点的侧翼序列同源重组的序列。以这种方式,所述的两种或更多种核酸相互重组并与靶位点的侧翼序列重组,从而导致每个靶位点至少插入两个位点特异性重组位点。所提供的两种或更多种核酸使得编码有功能重组酶的核酸序列被插入在至少一个靶位点,任选地,所述靶位点位于至少两个位点特异性重组位点之间。其它靶位点不必须地包含编码有功能重组酶的序列,但每个靶位点将包含至少两个位点特异性重组位点(可被重组酶靶向)。至少提供两种各包含编码无功能标记的序列的核酸。因此,一种或更多种编码有功能标记的序列可被插入在一个或多个靶位点。但也可实施本发明所述的方法以在所有或一些靶位点插入编码有功能标记的序列。
再次,在每个靶位点,所述的位点特异性重组位点以及任何编码标记和编码重组酶的序列的侧翼都将是能够与靶位点的侧翼序列同源重组的序列。
本发明的方法中,所述的两种或更多种核酸能够相互重组以产生单一核酸。由于能够与靶位点的侧翼序列同源重组的序列的存在,核酸在靶位点被合并成为单一连续的序列。
更详细地,本发明所提供的两种或更多种核酸总共包含能够同源重组针对靶位点的两个或多个同源重组位点的序列。典型地当所述方法靶向单一的靶位点时,所述的两种或更多种核酸将提供两种这样的序列。这些序列被提供以使包含至少两种或更多种核酸的连续核酸序列(当被相互重组时)通过与靶序列侧翼的基本同源的序列重组而被插入在靶位点。
为了通过双交换事件实现同源重组,需要这些侧翼序列出现在通过所述的两种或更多种核酸的重组得到的连续序列的两侧/端且与靶位点两侧的序列基本同源,这对技术人员而言是显而易见的,因此,能够同源重组的序列典型地被提供以使它们位于通过所述的两种或更多种核酸的重组得到的核酸序列的“5’”和“3’”末端。
此外,根据本发明所提供的至少两种核酸能够相互重组。因此,核酸的末端被方便地设计以使相互重组能够发生且核酸将以期望的方向和顺序被组装。因此,所提供的核酸的末端序列将与想要与之重组的核酸的末端序列基本同源。
本发明所使用的术语“基本同源”的意思是:第一个核酸序列与想要与之重组的第二个核酸序列在不多于约3kb,优选地不多于约2kb,更优选地不多于约1kb,甚至更优选地不多于约0.5kb,甚至更优选地不多于约0.2kb,甚至更优选地不多于约0.1kb,如不多于约0.05kb,例如不多于约0.03kb的区域中的同一性程度为至少约70%,至少约80%,优选地至少约90%,至少95%,至少98%,至少99%,最优选地100%。在丝状真菌中,最佳大小可从约500bp至约2.5kb。因此,所需的同一性程度可取决于基本同源序列的长度。同源序列越短,同源性百分比可越高。
在本发明中,所述的两种或更多种核酸总共包含两个或多个位点特异性重组位点。这些位点特异性重组位点被由两种或更多种核酸总共编码的重组酶识别。
所述的位点特异性重组位点和重组酶被选择以使重组酶可以靶向位点特异性重组位点,从而导致位于重组位点之间的序列被外重组。
术语“重组酶”或“位点特异性重组酶”或其类似物指的是识别和结合至短核酸位点或“位点特异性重组位点”(即重组酶识别位点)并催化与这些位点相关的核酸重组的酶或重组酶。这些酶包括重组酶、转座酶和整合酶。
“位点特异性重组位点”或其类似物指的是短核酸位点或序列(即重组酶识别位点),其被序列或位点特异性重组酶识别并在位点特异性重组事件过程中变成交换(crossover)区域。序列特异性重组酶靶位点的实例包括但不限于lox位点、att位点、dif位点和frt位点。
本文中使用的术语“lox位点”指的是一种核苷酸序列,其中噬菌体P1的cre基因的产物(即Cre重组酶)能够在该序列上催化位点特异性重组事件。本领域已知的多种lox位点,包括天然存在的loxP、loxB、loxL和loxR以及大量突变的或变体lox位点,例如lox66、lox71、loxP511、loxP514、loxΔ86、loxΔ117、loxC2、loxP2、loxP3和lox P23。
本文中使用的术语“frt位点”指的是一种核苷酸序列,其中酵母2微米质粒的FLP基因的产物(即FLP重组酶)能够在该序列上催化位点特异性重组。
位点特异性重组位点可使重组酶表达后的外重组在靶位点产生不被重组酶识别的单个突变位点特异性重组位点。特别地,所述lox位点可以是lox66和lox71(Albert,H.,Dale,E.C.,Lee,E.,&Ow,D.W.(1995)).Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome.Plant Journal,7(4),649-659)。在一个特定的实施方式中,lox66和lox71位点特异性重组位点可使重组酶表达后的外重组在靶位点产生不被重组酶识别的lox72突变位点特异性重组位点。
本发明所实施的方法中,除了重组酶、位点特异性重组位点和能够与靶位点的侧翼序列同源重组的序列之外,两种或更多种核酸总共还包含编码标记的序列以使所述的两种或更多种核酸的重组导致所述的编码标记基因的序列被插入在靶位点。这种编码标记的序列可位于至少两种能够与靶位点的侧翼序列同源重组的序列之间。
关键地,两种或更多种核酸被提供以使至少两种核酸各包含编码无功能的部分标记编码序列的序列。当所述的两种或更多种核酸被重组时,将产生编码有功能标记的连续序列。因此,本发明的方法被称为“分开标记”法。
在本发明的上下文中,无功能指的是无法编码能够担当有功能选择标记的产物的序列。
典型地,可实施所述方法以使编码标记的序列位于两个或多个位点特异性重组位点之间。以这种方式,标记基因可通过重组酶的表达被外重组。因此,所述方法可被用于显性标记和反向选择标记。
以这种方式,可以使用相同的标记以重复模式实施所述方法,其中所述重复模式具有不止一个循环的与靶位点的侧翼序列的同源重组,然后在重组酶表达后外重组。可进一步将这种方法与突变位点特异性重组位点的使用相结合,其中一旦标记被外重组,所述位点就不能被重组酶靶向。
本发明的一个优势在于:它允许同时、连续或分别实施多个重组事件。
因此,可使用相同的标记以具有不止一个重组循环的重复模式实施所述方法。因此,本发明特别适用于可供使用的标记集合有限的情况。可进一步将这种方法与突变位点特异性重组位点的使用相结合,其中一旦标记被外重组,所述位点就不能被重组酶靶向。由于标记通过重组酶的激活而被消除,因此这个方法允许靶向多个位点且被靶向的位点的数目不受不同标记的可用性的限制。
在本发明的方法中,两种或更多种核酸总共可包含两种或更多种不同的标记编码序列以使所述的两种或更多种核酸的重组导致所述的两种或更多种不同的标记基因编码序列被插入在靶位点。可提供能够与两个或多个靶位点的侧翼序列同源重组的序列以实施这种方法。进一步,可以使用一种标记靶向至少两个靶位点,使用不同的标记靶向一个或多个其它靶位点。
在本发明的方法中,编码标记的序列之一将是分开的。在本发明的另一个优选的实施方式中,两种或更多种或甚至所有的编码标记的序列典型地都将是分开的。也就是说,对于每一个标记,两种或更多种核酸被提供以使至少两种核酸各包含编码无功能的部分标记编码序列的序列。所述的两种或更多种核酸的重组产生编码有功能标记的连续序列。本发明所述的方法可包括至少一种分开的标记。典型地,所用的所有编码标记的序列都以分开的形式被提供。
可实施所述的方法以使一种或更多种相同的或不同的标记被重组至细胞,其中每个标记的侧翼均为lox位点。然后,本发明所述的方法可被用于提供进一步的重组事件,同时除去所有这些标记。
在本发明所述的方法中,靶位点可包含被破坏和/或部分或全部缺失的编码序列。典型地,所述方法在靶位点增加新序列;这种新序列典型地将替换、缺失和/或修饰靶位点的序列。
如上所述,当在宿主细胞体内实施重组时,置换序列可以例如赋予可选择的表型。在这种情况下,所述置换序列包含选择标记。优选地,实施这种方法以使标记可通过重组酶的表达被外重组。
置换序列还可以是靶序列的经修饰形式,例如以改变对感兴趣的序列的调控或表达与原始基因产物相比性质改变的经修饰的基因产物。
置换序列还可以组成已存在于宿主细胞基因组中的感兴趣的序列的额外拷贝,以扩增所述的感兴趣的序列。
置换序列可以相对于宿主细胞是同源的或异源的序列。其可以从任何合适的来源获得或者可通过订制合成制备。
靶序列可以是任何感兴趣的序列。例如,靶序列可以是利用失活或修饰该序列而被研究其功能的序列。靶序列还可以是这样的序列,其失活、修饰或过表达是期望的以赋予宿主细胞期望的表型。典型地,本发明所述的方法将导致靶位点的一些核酸序列被移除。然而,本发明所述的方法可被用于在靶位点插入序列而不从靶位点丢失任何序列。
在本公开的上下文中,术语“核酸”、“核酸序列”、“多核苷酸”、“多核苷酸序列”、“核酸片断”、“分离的核酸片段”在本文中可被交换使用。
这些术语包括核苷酸序列及其类似物。核酸可以是单链或双链的DNA或RNA的聚合物,任选地,其含有合成的、非天然的或改变的核苷酸碱基。
DNA聚合物形式的核酸可包括cDNA、基因组DNA或合成DNA或其混合物中的一种或更多种区段。
术语“分离的核酸”和其类似物指的是大体上不含其它核酸序列(例如但不限于其它染色体的和染色体外的DNA和/或RNA)的核酸。可从分离的核酸天然存在的宿主细胞中将其纯化。
可使用技术人员已知的常规核酸纯化方法获得分离的核酸。该术语还包括重组的核酸和化学合成的核酸。典型地,可利用本领域已知的任何扩增方法(例如PCR、RT-PCR等)产生适用于本发明的两种或更多种核酸中的每一种。本文中使用的术语“扩增”或“扩增反应”指的是用于增加核酸中靶序列拷贝的任何体外方法。有时候,扩增指的是靶核酸的“指数”增加。然而,本文中使用的“扩增”还可以指选择的核酸靶序列的数目线性增加,但典型地不同于一次、单引物延伸步骤。
典型地,两种或更多种核酸被引入宿主细胞以使重组事件可发生。可使用本领域的技术人员公知的多种技术将所述的两种或更多种核酸引入宿主细胞。被用于引入异源的核酸至多种生物体的方法的非限制性实例包括:转化、转染、转导、电穿孔、超声介导的转化、粒子轰击等。在某些情况下,加入载体分子能够增加典型地被认为很难通过常规方法转化的细胞对DNA的摄取。技术人员易于得知转化的常规方法。
用于产生两种或更多种核酸以及之后将它们引入宿主细胞的程序是本领域的技术人员公知的。(参见,例如Sambrook&Russell,Molecular Cloning:A LaboratoryManual,3rd Ed.,CSHL Press,Cold Spring Harbor,NY,2001;和Ausubel et al.,CurrentProtocols in Molecular Biology,Wiley InterScience,NY,1995)。
此外,标准的分子生物学技术(例如DNA分离、凝胶电泳、核酸的酶促限制性修饰、Southern分析、细胞的转化等)是技术人员已知的且被例如Sambrook et al.(1989)"Molecular Cloning:a laboratory manual",Cold Spring Harbor Laboratories,ColdSpring Harbor,New York and Innis et al.(1990)"PCR protocols,a guide tomethods and applications"Academic Press,San Diego描述。
可以按照标准的PCR扩增技术,使用cDNA、mRNA或者基因组DNA作为模板和恰当的寡核苷酸引物扩增适用于本发明所述的方法的核酸。由此扩增的核酸可被克隆至恰当的载体(如果期望)和/或通过核酸序列分析被表征。
可实施本发明所述的方法以使两种或更多种核酸被重组为单一核酸,之后其与靶位点重组。
可实施本发明所述的方法,其中所述的两种或更多种核酸的相互重组以及与靶位点的重组同时发生。
在本发明所述的方法中,至少两种核酸中的两种可各包含编码标记的序列的一部分以使它们总共包含完整的编码标记的序列。
可实施本发明所述的方法以表达针对位点特异性重组位点的重组酶,从而使位于两个位点特异性重组位点之间的序列被外重组。
标记和重组酶的表达典型地受控制序列控制,其中所述控制序列包括能够使重组酶在宿主细胞表达的启动子。也就是说,编码标记和重组酶的序列典型地与启动子序列可操作地连接。
术语“可操作地连接”或“可操作地相连”或其类似物在本文中被定义为下述构型:其中控制序列被放置在相对于DNA序列的编码序列的恰当位置以使控制序列指导mRNA或多肽的产生。
术语“控制序列”在本文中被定义为包括对在体外或宿主细胞中产生mRNA或多肽而言是必须的或有益的所有组分。每个控制序列相对编码多肽的核酸序列而言可以是天然或外源的。这种控制序列包括但不限于引导子(leader)、Shine-Delgarno序列、最佳的翻译起始序列(如Kozak,1991,J.Biol.Chem.266:19867-19870中所述)、聚腺苷酸化序列、原-肽序列(pro-peptide sequence)、前-原-肽序列(pre-pro-peptide sequence)、启动子、信号序列和转录终止子。控制序列至少包括启动子、转录终止信号以及翻译起始信号和翻译终止信号。可针对控制序列的特定目的而对其进行优化。本发明中使用的优选的优化控制序列是W02006/077258中描述的那些。
术语“启动子”在本文中被定义为下述DNA序列:其与RNA聚合酶结合并且将聚合酶引导至编码生物化合物的核酸序列的正确下游转录起始位点以起始转录。RNA聚合酶有效地催化与编码区的合适DNA链互补的信使RNA的组装。术语“启动子”还可被理解为包括用于在转录成mRNA之后的翻译的5’-非编码区(启动子和翻译起点之间)、顺式作用转录控制元件(如增强子)和能与转录因子相互作用的其它核苷酸序列。
因此,可通过提供位于第一核酸上的启动子和位于第二核酸上的编码序列以分开标记,从而使启动子和编码序列通过重组被可操作地连接,即重组将产生有功能的编码标记的序列。
启动子可以是适用于显示转录活性的真核或原核宿主细胞的任何适当的启动子序列,其包括突变的启动子、截短的启动子和杂合的启动子,可以从编码相对于细胞是同源的(天然的)或异源的(外源的)的胞外或胞内多肽的多核苷酸中获得启动子。启动子可以是组成型或诱导型启动子。通过诱导性启动子表达重组酶将允许位于位点特异性重组位点之间的序列的外重组被控制,例如包括编码重组酶的序列。
启动子可以是组成型或诱导型启动子。
可使用的诱导型启动子的实例是淀粉-、纤维素-、半纤维素(比如木聚糖-和/或木糖-诱导型)、铜-、油酸-诱导型启动子。启动子可选自下述组,该组包括但不限于从编码以下的多核苷酸中获得的启动子:A.oryzae TAKA淀粉酶、Rhizomucor miehei天冬氨酸蛋白酶、A.niger中性α-淀粉酶、A.niger酸稳定的α-淀粉酶、A.niger或A.awamori葡糖淀粉酶(glaA)、A.niger或A.awamori木聚糖内切酶(xlnA)或β-木糖苷酶(xlnD)、T.reesei纤维二糖水解酶I(CBHI)、R.miehei脂肪酶、A.oryzae碱性蛋白酶、A.oryzae磷酸丙糖异构酶、A.nidulans乙酰胺酶、Fusarium venenatum淀粉葡糖苷酶(W000/56900)、Fusariumvenenatum Dania(W000/56900)、Fusarium venenatum Quinn(W000/56900)、Fusariumoxysporum类胰蛋白酶蛋白酶(W096/00787)、Trichoderma reeseiβ-葡萄糖苷酶、Trichoderma reesei纤维二糖水解酶I、Trichoderma reesei纤维二糖水解酶II、Trichoderma reesei内切葡聚糖酶I、Trichoderma reesei内切葡聚糖酶II、Trichodermareesei内切葡聚糖酶III、Trichoderma reesei内切葡聚糖酶IV、Trichoderma reesei内切葡聚糖酶V、Trichoderma reesei木聚糖酶I、Trichoderma reesei木聚糖酶II和Trichoderma reeseiβ-木聚苷酶,和NA2_tpi启动子(来自于编码A.niger中性α-淀粉酶和A.0ryzae磷酸丙糖异构酶的多核苷酸的启动子的杂合物)及其突变的、截短的和杂合的启动子。启动子的其它实例是W02006/092396和W02005/100573中描述的启动子,其通过引用而被并入本文。使用启动子的另一实例描述于W02008/098933中。诱导型(异源的)启动子的其它实例是醇诱导型启动子alcA、使用四环素-响应启动子的tet系统、雌激素-响应启动子(Pachlinger et al.(2005),Appl&Environmental Microbiol672-678)。
控制序列还可以包括合适的转录终止子(终止子)序列,其被丝状真菌细胞识别以终止转录。终止子序列与编码多肽的核酸序列的3’-末端可操作地连接。在细胞中有功能的任何终止子都可被用于本发明。
控制序列还可以是合适的引导序列(引导子),其是对丝状真菌细胞的翻译很重要的mRNA的非翻译区。引导序列与编码多肽的核酸序列的5’-端可操作地连接。在细胞中有功能的任何引导序列都可被用于本发明。
取决于宿主,可以从编码A.oryzae TAKA淀粉酶、A.nidulans丙糖磷酸异构酶以及A.niger GlaA和植酸酶的多核苷酸中获得合适的引导子。
可以从Penicillium IPNS基因或pcbC基因、β微管蛋白基因中分离其它的控制序列。WOO1/21779中引用的所有的控制序列均通过引用被并入本文。
控制序列还可以是聚腺苷酸化序列,其与核酸序列的3’-末端可操作地连接,转录时,其被丝状真菌细胞识别为将聚腺苷残基添加至转录的mRNA的信号。在细胞中有功能的任何聚腺苷酸化序列都可被用于本发明。
如本文所述,在本发明所述的方法中,所述的两种或更多种核酸总共包含编码标记的序列以使所述的两种或更多种核酸的重组导致所述的编码标记的序列被定位于同源重组位点之间。
两种或更多种核酸的重组可导致所述编码标记的序列被定位于位点特异性重组位点之间以使标记可通过重组酶的表达而被外重组。
可以使用任何合适的标记并且公知这种标记用于确定核酸是否被包括在细胞内。典型地,标记(例如可选择标记)允许易于选择被转化的细胞。可选择标记是其产物提供杀虫剂或病毒抗性、重金属抗性、对营养缺陷型的原养型等的基因。
标记基因的实例包括但不限于:(1)核酸区段,其编码的产物提供对否则有毒的化合物的抗性(例如抗生素);(2)核酸区段,其编码在受体细胞中否则缺乏的产物(例如必需产物、tRNA基因、营养缺陷型标记);(3)核酸区段,其编码的产物抑制基因产物的活性;(4)核酸区段,其编码的产物易于被鉴定(例如表型标记(例如抗生素抗性标记(例如β-内酰胺酶))、β-半乳糖苷酶、荧光或其它有色标记(例如绿色荧光蛋白(GFP)、黄色荧光蛋白(YFP)、红色荧光蛋白(RFP)和青色荧光蛋白(CFP)和细胞表面蛋白);(5)核酸区段,其与否则对细胞生存和/或功能有害的产物结合;(6)核酸区段,其否则抑制以上1-5中所述的任何核酸区段的活性(例如反义寡核苷酸);(7)核酸区段,其与修饰底物的产物结合(例如限制性内切酶);(8)核酸区段,其可被用于分离或鉴定期望的分子(例如特异性蛋白结合位点);(9)核酸区段,其编码否则可无功能的特定核苷酸序列(例如分子亚群的PCR扩增);(10)核酸区段,当其缺失时,将直接或间接授予对特定化合物的抗性或敏感性;(11)核酸区段,其编码在受体细胞中有毒的或将相对无毒的化合物转化为有毒的化合物的产物(例如单纯疱疹胸苷激酶、胞嘧啶脱氨酶);(12)核酸区段,其抑制含有它们的核酸分子的复制、分离或遗传性;(13)核酸区段,其编码条件性复制功能(例如在某些宿主或宿主细胞株中或者在某些环境条件(例如温度、营养条件等)下复制);和/或编码必需基因的核酸区段。
在丝状真菌细胞中使用的可选择标记可选自下述组,该组包括但不限于amdS(乙酰胺酶)、argB(鸟氨酸氨甲酰基转移酶)、bar(草丁膦乙酰转移酶)、bleA(腐草霉素结合)、hygB(潮霉素磷酸转移酶)、niaD(硝酸还原酶)、pyrG(乳清苷-5'-磷酸脱羧酶)、sC(硫酸腺苷酰转移酶)、NAT或NTC(诺尔斯菌素)和trpC(邻氨基苯甲酸合酶)以及来源于其它物种的等同物。优选的用于Aspergillus和Penicillium细胞是amdS(见例如EP 635574 B1,EP0758020A2,EP1799821A2,WO 97/06261A2)和A.nidulans或A.oryzae的pyrG基因和Streptomyces hygroscopicus的bar基因以及hyg和pheo-。更优选地,使用amdS基因,甚至更优选使用来自A.nidulans或A.niger的amdS基因。最优选的可选择标记基因是A.nidulans amdS编码序列融合至A.nidulans gpdA启动子(EP635574B1)。另一些优选的AmdS标记是在WO2006/040358中描述的标记。也可以使用来自其他丝状真菌的AmdS基因(WO97/06261)。
本发明的方法中,体内重组可以在任何合适的宿主细胞中进行,例如在原核或真核细胞中进行。合适的真核宿主细胞可以是哺乳动物,昆虫,植物,真菌,或藻类细胞。宿主细胞可以是微生物或微生物宿主细胞,例如原核或真核宿主细胞。典型地,本发明的方法不会在人或动物体内进行。
典型地,根据本发明的方法所用的宿主细胞可以是适合感兴趣的化合物生产的细胞并且宿主细胞的选择可以根据这样的用途进行。例如,如果根据本发明在宿主细胞中生产的感兴趣的化合物用于食品应用,宿主细胞可以选自食品等级的生物例如Saccharomyces cerevisiae。特殊的用途包括但是不限于,食品、(动物)饲料、药物、农业例如作物保护,和/或个人护理应用。
本发明的方法可以用于赋予宿主细胞生产感兴趣的化合物的能力和/或修饰现有的感兴趣的化合物生产的方式,例如提高这样的感兴趣的化合物的产量。
适用于本发明方法的微生物宿主细胞可以是原核细胞。优选地,原核宿主细胞是细菌细胞。术语“细菌细胞”包括革兰氏阴性和革兰氏阳性微生物二者。合适的细菌可以选自例如Escherichia,Anabaena,Caulobactert,Gluconobacter,Rhodobacter,Pseudomonas,Paracoccus,Bacillus,Brevibacterium,Corynebacterium,Rhizobium(Sinorhizobium),Flavobacterium,Klebsiella,Enterobacter,Lactobacillus,Lactococcus,Methylobacterium,Staphylococcus或Streptomyces。优选地,细菌细胞选自由B.subtilis,B.amyloliquefaciens,B.licheniformis,B.puntis,B.megaterium,B.halodurans,B.pumilus,G.oxydans,Caulobactert crescentus CB 15,Methylobacterium extorquens,Rhodobacter sphaeroides,Pseudomonaszeaxanthinifaciens,Paracoccus denitrificans,E.coli,C.glutamicum,Staphylococcus carnosus,Streptomyces lividans,Sinorhizobium melioti和Rhizobium radiobacter组成的组。
适合本发明使用的宿主细胞可以是真核宿主细胞。这样的真核细胞可以是哺乳动物,昆虫,植物,真菌或藻类细胞。优选的哺乳动物细胞包括例如中国仓鼠卵巢(CHO)细胞,COS细胞,293细胞,PerC6细胞和杂交瘤。优选的昆虫细胞包括例Sf9和Sf21细胞以及其衍生物。更优选地,真核细胞是真菌细胞,例如酵母细胞,例如Candida,Hansenula,Kluyveromyces,Pichia,Saccharomyces,Schizosaccharomyces或Yarrowia菌株。更优选来自Kluyveromyces lactis,S.cerevisiae,Hansenula polymorpha,Yarrowia lipolytica和Pichia pastoris。最优选地,真核细胞是丝状真菌细胞。
丝状真菌包括Eumycota和Oomycota亚门的所有丝状形式(由Hawksworth等,Ainsworth and Bisby's Dictionary of The Fungi,第8版,1995,CAB International,University Press,Cambridge,UK定义)。丝状真菌的特征是菌丝体的壁由甲壳质,纤维素,葡聚糖,壳聚糖,甘露聚糖和其他复杂的多糖构成。营养生长通过菌丝延长并且碳代谢专性需氧。丝状真菌菌株包括但是不限于以下的菌株:Acremonium,Agaricus,Aspergillus,Aureobasidium,Chrysosporium,Coprinus,Cryptococcus,Filibasidium,Fusarium,Geosmithia,Humicola,Magnaporthe,Mucor,Myceliophthora,Neocallimastix,Neurospora,Paecilomyces,Penicillium,Piromyces,Phanerochaete,Pleurotus,Rasamsonia,Schizophyllum,Talaromyces,Thermoascus,Thermomyces,Thielavia,Tolypocladium和Trichoderma。
优选的丝状真菌细胞属于Acremonium,Aspergillus,Chrysosporium,Myceliophthora,Penicillium,Rasamsonia,Talaromyces,Thielavia,Fusarium或Trichoderma属的物种,最优选的是Aspergillus niger,Acremonium alabamense,Aspergillus awamori,Aspergillus foetidus,Aspergillus sojae,Aspergillusfumigatus,Talaromyces emersonii,Talaromyces thermophilus,Thermomyceslanuginosus,Thermoascus thermophilus,Thermoascus aurantiacus,Thermoascuscrustaceus,Rasamsonia emersonii,Rasamsonia byssochlamyoides,Rasamsoniaargillacea,Rasamsonia brevistipitata,Rasamsonia cylindrospora,Aspergillusoryzae,Chrysosporium lucknowense,Fusarium oxysporum,Myceliophthorathermophila,Trichoderma reesei,Thielavia terrestris或Penicillium chrysogenum的物种。更优选的宿主细胞属于Aspergillus属,更优选的宿主细胞属于物种Aspergillusniger。当根据本发明的宿主细胞是Aspergillus niger宿主细胞,宿主细胞优选地是CBS513.88,CBS124.903或其衍生物。更优选的宿主细胞属于Penicillium属,更优选地,宿主细胞属于Penicillium chrysogenum物种。当根据本发明所述的宿主细胞是Penicilliumchrysogenum宿主细胞时,所述宿主细胞优选地是Wisconsin 54-1255或其衍生物。更优选的宿主细胞属于Rasamsonia属(又名Talaromyces),更优选地,所述宿主细胞属于Talaromyces emersonii物种(又名Rasamsonia emersonii)。
在本发明的方法中,在Rasamsonia细胞中实施体内重组。因此,用于本发明的细胞属于Rasamsonia(又名Talaromyces)属,更优选地宿主细胞属于Talaromyces emersonii(又名Rasamsonia emersonii)物种。当根据本发明的宿主细胞是Talaromyces emersonii(又名Rasamsonia emersonii)宿主细胞时,所述宿主细胞优选地是TEC-142S(TEC-142的单个分离株)(CBS 124.902)或其衍生物。
使用嗜热或耐热的真菌细胞可以是期望的,这种情况下优选的是Humicola、Rhizomucor、Myceliophthora、Rasamsonia,、Talaromyces,、Thermomyces、Thermoascus或Thielavia细胞。
优选的嗜热或耐热的真菌是Humicola grisea var.thermoidea、Humicolalanuginosa、Myceliophthora thermophila、Papulaspora thermophilia、Rasamsoniabyssochlamydoides、Rasamsonia emersonii、Rasamsonia argillacea、Rasamsoniaeburnean、Rasamsonia brevistipitata、Rasamsonia cylindrospora、Rhizomucorpusillus、Rhizomucor miehei、Talaromyces bacillisporus、Talaromyces leycettanus、Talaromyces thermophilus、Thermomyces lenuginosus、Thermoascus crustaceus、Thermoascus thermophilus Thermoascus aurantiacus和Thielavia terrestris。
丝状真菌的几种菌株在许多培养物保藏机构易于被公众获得,例如美国典型培养物保藏中心(American Type Culture Collection(ATCC)),德国微生物和细胞培养物保藏中心(Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH(DSM)),真菌生物多样性中心(Centraalbureau Voor Schimmelcultures(CBS)),农业研究服务专利培养物保藏北区研究中心(Agricultural Research Service Patent Culture Collection,Northern Regional Research Center(NRRL))和俄罗斯莫斯科的俄罗斯科学院的全俄微生物保藏中心(All-Russian Collection of Microorganisms of Russian Academy ofSciences)(俄文缩写-VKM、英文缩写-RCM)。本发明上下文中用到的菌株可以是Aspergillus niger CBS 513.88,CBS124.903,Aspergillus oryzae ATCC 20423,IFO4177,ATCC 1011,CBS205.89,ATCC 9576,ATCC14488-14491,ATCC 11601,ATCC12892,P.chrysogenum CBS 455.95,P.chrysogenum Wisconsin54-1255(ATCC28089),Penicillium citrinum ATCC38065,Penicillium chrysogenum P2,Thielaviaterrestris NRRL8126,Talaromyces emersonii CBS 124.902,Acremonium chrysogenumATCC 36225或ATCC 48272,Trichoderma reesei ATCC 26921或ATCC 56765或ATCC26921,Aspergillus sojae ATCC11906,Myceliophthora thermophila C1,Garg27K,VKM-F3500D,Chrysosporium lucknowense C1,Garg 27K,VKM-F3500D,ATCC44006和其衍生物。
真核细胞具有至少两种分别的、通过其核酸(尤其是DNA)可被整合至宿主基因组的途径(一种通过同源重组(HR),一种通过非同源重组(NHR))。酵母Saccharomycescerevisiae是优先同源重组(HR)的生物。这种生物中非同源重组相对于同源重组(NHR/HR)的比率可在约0.07-0.007之间变化。
WO 02/052026公开了具有提高的DNA序列进入其基因组的靶向效率的S.cerevisiae的突变体。这种突变体菌株缺少参与NHR的基因(KU70)。
与S.cerevisiae相反,大部分更高等的真核生物(例如丝状真菌细胞至哺乳动物细胞)优先NHR。在丝状真菌中,NHR/HR的比率的范围在1和大于100之间。在这种生物体中,靶向整合频率相当低。
因此,为了提高多核苷酸在靶位点组装的效率,优选在本发明的方法中宿主细胞内中同源重组(HR)的效率被提高。
因此,优选地,在根据本发明的方法中,宿主细胞优选地是诱导型增加其同源重组(HR)的效率。由于NHR和HR路径是互联的,因此可通过调控一个或两个路径增加HR效率。HR组分表达的增加将提高HR的效率并且减小NHR/HR的比率。NHR组分表达的减少也将减小NHR/HR的比率。根据本发明的载体-宿主系统的宿主细胞中的HR效率的增加优选地被描述为NHR/HR的比率减小,并且优选地相对于其中HR和/或NHR路径未被调整的亲本宿主细胞计算。HR和NHR二者的效率均可通过本领域技术人员可利用的多种方法测量。一个优选的方法包括测定单个载体构建体在亲本和经调整的宿主细胞中靶向整合和异位整合的效率。然后可计算两种细胞类型的NHR/HR的比率。随后,可计算NHR/HR的比率的减小。在W02005/095624中,详细描述了该方法。
可以通过提高HR路径的效率和/或通过降低NHR路径的效率修饰亲本真核细胞以获得较之亲本细胞具有降低的NHR/HR的比率的宿主细胞。优选地,NHR/HR的比率因而减小至少2倍,优选地至少4倍,更优选地至少10倍。优选地,根据本发明的载体-宿主系统的宿主细胞中的NHR/HR的比率比亲本宿主细胞降低至少5%,更优选地至少10%,甚至更优选地至少20%,甚至更优选地至少30%,甚至更优选地至少40%,甚至更优选地至少50%,甚至更优选地至少60%,甚至更优选地至少70%,甚至更优选地至少80%,甚至更优选地至少90%和最优选地至少100%。
根据一个实施方式,通过提高HR组分的表达水平降低NHR/HR的比率。HR组分是本领域技术人员公知的。HR组分在本文被定义为:参与控制靶向整合多核苷酸进入宿主的基因组的所有基因和元件,所述多核苷酸与靶向整合的宿主基因组的某预定位点具有一定的同源性。
可通过降低NHR组分的表达水平减小NHR/HR的比率。NHR组分在本文被定义为:参与控制多核苷酸整合进入宿主基因组的所有基因和元件,而不管所述多核苷酸与宿主基因组序列的同源性程度。NHR组分对本领域的技术人员是公知的。对于根据本发明的载体-宿主系统的宿主细胞,优选的NHR组分是选自参与NHR路径的酵母基因的同源物或直系同源物(ortholog)的组分:KU70、KU80、RAD50、MRE11、XRS2、LIG4、LIF1、NEJl和SIR4(van denBosch et al.,2002,Biol.Chem.383:873-892和Allen et al.,2003,Mol.Cancer Res.1:913-920)。最优选的是KU70、KU80和LIG4之一以及KU70和KU80二者。可使用本领域技术人员公知的方法实现NHR组分表达水平的降低。
因为有可能降低参与NHR的组分的表达可导致不利的表型效果,所以优选地在根据本发明的载体-宿主系统的宿主细胞中,同源重组效率的提高是诱导型的。这可通过本领域技术人员已知的方法来实现,例如通过使用NHR组分的诱导型方法(例如通过将NHR组分置于诱导型启动子之后)或通过使用NHR组分的瞬时破坏或通过将编码NHR组分的基因放置回基因组。
优选地,当根据本发明的方法使用的宿主细胞是丝状真菌宿主细胞时,已经在基因组中进行了导致至少一种非核糖体肽合酶(优选根据本发明的非核糖体肽合酶,更优选非核糖体肽合酶npsE(见国际专利申请号WO2012/001169)的产生缺陷的本发明微生物宿主细胞另外地在其基因组中包含编码选自以下的产物的多核苷酸的一种或更多种修饰,以使宿主细胞中至少一种由包含所述修饰的多核苷酸编码的产物缺陷:葡糖淀粉酶(glaA)、酸稳定α-淀粉酶(amyA)、中性α-淀粉酶(amyBI和amyBII)、草酸水解酶(oahA)、毒素,优选赭曲霉素和/或伏马毒素,和蛋白酶转录调控子prtT。
因此,真菌宿主细胞额外地包含基因组的修饰,使得葡糖淀粉酶(glaA)、酸稳定α-淀粉酶(amyA)、中性α-淀粉酶(amyBI和amyBII)、草酸水解酶(oahA)、毒素例如赭曲霉素和伏马毒素、优选赭曲霉素和/或伏马毒素,更优选赭曲霉素A和/或伏马毒素B2,和蛋白酶转录调控子prtT中的至少一种缺陷。优选地,宿主细胞在其基因组中额外地包含编码主要细胞外天冬氨酸蛋白酶PepA的多核苷酸的一种或更多种修饰,使得宿主细胞中主要天冬氨酸蛋白酶PepA缺陷。例如,根据本发明的宿主细胞可以进一步包含编码主要细胞外天冬氨酸蛋白酶PepA的pepA基因的破坏。优选地,根据本发明的宿主细胞在基因组中额外地包含hdfA基因编码多核苷酸的一种或更多种修饰,使得宿主细胞中hdfA缺陷。例如根据本发明的宿主细胞可以进一步包含hdfA基因或参与NHEJ过程的其他基因(还如WO06/040312中描述的)的破坏。
优选地,宿主细胞可以额外地包含至少两个基本同源的DNA域,其适合整合一个或更多个拷贝的编码感兴趣的化合物的多核苷酸,其中所述至少两个基本同源的DNA域中的至少一个被改造为相比其所来源的基本同源的DNA域对编码感兴趣的化合物的多核苷酸具有增强的整合偏好性,并且其中经改造的基本同源的DNA域所来源的基本同源的DNA域与所述至少两个基本同源的DNA域中的另一个相比具有至少高10%的基因转化频率。这些细胞在WO2011/009700有描述。含有两个或更多个拷贝的这些基本同源的DNA域的菌株在下文中也称为含有两个或更多个扩增子的菌株。包含这样的扩增子的宿主细胞的实例为例如在van Dijck et al,2003,Regulatory Toxicology and Pharmacology 28;27-35:On thesafety of a new generation of DSM Aspergillus niger enzyme production strains中所描述的。在van Dijck et al中,描述的Aspergillus niger菌株包含7个扩增的葡糖淀粉酶基因位点,即7个扩增子。在该上下文中,可以包含两种或更多种扩增子的优选的宿主细胞属于Acremonium、Agaricus、Aspergillus、Aureobasidium、Chrysosporium、Coprinus、Cryptococcus、Filibasidium、Fusarium、Geosmithia、Humicola、Magnaporthe、Mucor、Myceliophthora、Neocallimastix、Neurospora、Paecilomyces、Penicillium、Piromyces、Phanerochaete、Pleurotus、Rasamsonia、Schizophyllum、Talaromyces、Thermoascus、Thermomyces、Thielavia、Tolypocladium和Trichoderma的物种。
在该上下文中优选的宿主细胞是丝状真菌宿主细胞,优选A.niger宿主细胞,其包含两个或更多个扩增子,优选两个或更多个ΔglaA扩增子(优选包含3、4、5、6、7个ΔglaA扩增子),其中具有最高基因转化频率的扩增子已经被改造为相比于与其所源自的扩增子对编码感兴趣化合物的多核苷酸具有增强的整合偏好性。扩增子的改造可以根据WO2011/009700(在此处通过引用完全并入)描述的任意一种的方法来进行。在WO2011/009700中描述的这些宿主细胞的一个实例是这样的宿主细胞:其包含三个ΔglaA扩增子(为BamHI截短扩增子、SalI截短扩增子和BglII截短扩增子),并且其中BamHI扩增子已经被改造为相比于其所来源的BamHI扩增子对编码感兴趣化合物的多核苷酸有增强的整合偏好性。包含两个或更多个扩增子且其中一个扩增子已被改造为与其所来源的扩增子相比对编码感兴趣化合物的多核苷酸具有增强的整合偏好性的宿主细胞在下文中被称为包含经改造扩增子的宿主细胞。
优选地,根据本发明的宿主细胞额外包含Sec61的修饰。优选的SEC61修饰是产生SEC61的单向突变体的修饰;即其中从头合成的蛋白能通过SEC61进入ER但是蛋白不能通过SEC61离开ER的突变体。这样的修饰在WO2005/123763中广泛的描述。最优选地,SEC 61修饰是S376W突变,其中第376位丝氨酸被色氨酸替代。
在根据本发明的方法中使用的、非核糖体肽合酶缺陷、优选根据本发明的非核糖体肽合酶缺陷,更优选非核糖体肽合酶npsE(见WO2012/001169)缺陷的优选的丝状真菌宿主细胞中额外地具有pepA,葡糖淀粉酶(glaA)、酸稳定α-淀粉酶(amyA)、中性α-淀粉酶(amyBI和amyBII)和草酸水解酶(oahA)缺陷。非核糖体肽合酶缺陷、优选上述非核糖体肽合酶缺陷的另一优选的宿主细胞额外地具有pepA,葡糖淀粉酶(glaA)、酸稳定α-淀粉酶(amyA)、中性α-淀粉酶(amyBI和amyBII)、草酸水解酶(oahA)和hdfA缺陷。非核糖体肽合酶缺陷、优选上述非核糖体肽合酶缺陷的另一优选的宿主细胞额外地具有pepA,葡糖淀粉酶(glaA)、酸稳定α-淀粉酶(amyA)、中性α-淀粉酶(amyBI和amyBII)、草酸水解酶(oahA)、毒素例如赭曲霉素和/或伏马毒素以及hdfA缺陷。非核糖体肽合酶缺陷、优选上述非核糖体肽合酶缺陷的另一优选的宿主细胞额外地具有pepA、葡糖淀粉酶(glaA)、酸稳定α-淀粉酶(amyA)、中性α-淀粉酶(amyBI和amyBII)、草酸水解酶(oahA)、毒素例如赭曲霉素和/或伏马毒素以及hdfA缺陷。优选地,这些宿主细胞中prtT也缺陷。因此,非核糖体肽合酶缺陷、优选上述非核糖体肽合酶缺陷的另一优选的宿主细胞额外地具有pepA、葡糖淀粉酶(glaA)、酸稳定α-淀粉酶(amyA)、中性α-淀粉酶(amyBI和amyBII)、草酸水解酶(oahA)、毒素例如赭曲霉素和/或伏马毒素、prtT和hdfA缺陷。
非核糖体肽合酶缺陷、优选根据本发明的非核糖体肽合酶缺陷,更优选非核糖体肽合酶npsE(见WO2012/001169)缺陷的另一优选的宿主细胞中额外地具有pepA、葡糖淀粉酶(glaA)、酸稳定α-淀粉酶(amyA)、中性α-淀粉酶(amyBI和amyBII)、草酸水解酶(oahA)、赭曲霉素、伏马毒素、prtT、hdfA缺陷并且包含SEC 61修饰,所述SEC 61修饰为其中第376位丝氨酸被色氨酸替代的S376W突变。
优选地,这些宿主细胞为丝状真菌细胞,更优选地为包含上述经改造的扩增子的A.niger宿主细胞。因此,在根据本发明的方法中使用的、非核糖体肽合酶缺陷、优选根据本发明的非核糖体肽合酶缺陷,更优选非核糖体肽合酶npsE(见WO2012/001169)缺陷的宿主细胞为额外地具有pepA、葡糖淀粉酶(glaA)、酸稳定α-淀粉酶(amyA)、中性α-淀粉酶(amyBI和amyBII)和草酸水解酶(oahA)缺陷并且包含上述经改造的扩增子的丝状真菌宿主细胞优选A.niger宿主细胞。非核糖体肽合酶缺陷、优选根据本发明的非核糖体肽合酶缺陷,更优选非核糖体肽合酶npsE(见WO2012/001169)缺陷的另一优选的丝状真菌宿主细胞如A.niger宿主细胞额外地具有pepA、葡糖淀粉酶(glaA)、酸稳定α-淀粉酶(amyA)、中性α-淀粉酶(amyBI和amyBII)、草酸水解酶(oahA)和hdfA缺陷并且包含上述经改造的扩增子。非核糖体肽合酶缺陷、优选根据本发明的非核糖体肽合酶缺陷,更优选非核糖体肽合酶npsE(见WO2012/001169)缺陷的另一优选的丝状真菌宿主细胞如A.niger宿主细胞额外地具有pepA、葡糖淀粉酶(glaA)、酸稳定α-淀粉酶(amyA)、中性α-淀粉酶(amyBI和amyBII)、草酸水解酶(oahA)、一种或更多种毒素优选赭曲霉素和/或伏马毒素以及hdfA缺陷并且包含上述经改造的扩增子。非核糖体肽合酶缺陷、优选根据本发明的非核糖体肽合酶缺陷,更优选非核糖体肽合酶npsE(见WO2012/001169)缺陷的另一优选的丝状真菌宿主细胞如A.niger宿主细胞额外地具有pepA、葡糖淀粉酶(glaA)、酸稳定α-淀粉酶(amyA)、中性α-淀粉酶(amyBI和amyBII)、草酸水解酶(oahA)、一种或更多种毒素优选赭曲霉素和/或伏马毒素以及hdfA缺陷并且包含上述经改造的扩增子。非核糖体肽合酶缺陷、优选根据本发明的非核糖体肽合酶缺陷,更优选非核糖体肽合酶npsE(见WO2012/001169)缺陷的另一优选的丝状真菌宿主细胞如A.niger宿主细胞额外地具有pepA、葡糖淀粉酶(glaA)、酸稳定α-淀粉酶(amyA)、中性α-淀粉酶(amyBI和amyBII)、草酸水解酶(oahA)、一种或更多种毒素优选赭曲霉素和/或伏马毒素、prtT以及hdfA缺陷并且包含上述经改造的扩增子。
非核糖体肽合酶缺陷、优选根据本发明的非核糖体肽合酶缺陷,更优选非核糖体肽合酶npsE(见WO2012/001169)缺陷的另一优选的丝状真菌宿主细胞如A.niger宿主细胞中额外地具有pepA、葡糖淀粉酶(glaA)、酸稳定α-淀粉酶(amyA)、中性α-淀粉酶(amyBI和amyBII)、草酸水解酶(oahA)、一种或更多种毒素优选赭曲霉素和/或伏马毒素、prtT、hdfA缺陷,包含SEC 61修饰,所述SEC 61修饰为其中第376位丝氨酸被色氨酸替代的S376W突变,并且包含上述经改造的扩增子。
这些和其他可行的宿主修饰也在WO2012/001169、WO2011/009700、WO2007/062936、WO2006/040312或WO2004/070022中描述。
典型地,本发明中,宿主细胞是产生感兴趣的化合物的细胞。宿主细胞可以在本发明的方法应用之前能够产生感兴趣的化合物。在这种情况下,本发明的方法可以用于修饰靶位点使得通过宿主细胞的感兴趣化合物的生产改变,例如可提高产量。或者,宿主细胞也可以由于本发明的方法的应用而产生的感兴趣的化合物的细胞。
因此,宿主细胞优选地包含重组的多核苷酸构建体,其包含编码参与合成感兴趣的化合物的化合物的多核苷酸。多核苷酸还可以直接编码感兴趣的化合物。编码感兴趣的化合物或者参与合成感兴趣的生物化合物的多肽的重组多核苷酸构建体可位于染色体外的载体上或宿主细胞的基因组位点。
本发明的宿主细胞可以能够产生期望的化合物,例如酶,任选地其可以由被引入细胞的重组核酸编码。
典型地,这种宿主细胞可含有一种或更多种能够表达纤维素酶、半纤维素酶和/或果胶酶的基因。所述的一种或更多种能表达纤维素酶、半纤维素酶和/或果胶酶的核酸序列可包括纤维二糖水解酶、内切葡聚糖酶和/或β-葡糖苷酶基因。合适的纤维二糖水解酶是纤维二糖水解酶I和/或纤维二糖水解酶II。
然后,本发明的宿主细胞典型地将是产生感兴趣的化合物的细胞。宿主细胞可在应用本发明的方法之前就能产生感兴趣的化合物。在这种情况下,本发明的方法可被用于修饰靶位点以使宿主细胞的感兴趣的化合物的产生被改变,例如产量可被增加。或者,作为应用本发明的方法的结果,宿主细胞可产生感兴趣的化合物。
因此,宿主细胞优选地包含重组的多核苷酸构建体,其包含编码参与合成感兴趣的化合物的化合物的多核苷酸。多核苷酸还可以直接编码感兴趣的化合物。编码感兴趣的化合物或者参与合成感兴趣的生物化合物的多肽的重组多核苷酸构建体可位于染色体外的载体上或宿主细胞的基因组位点。
感兴趣的化合物可以是初级代谢产物、次级代谢产物、生物聚合物(例如肽或多肽)或者可以包括包含宿主细胞自身的生物质。所述化合物可由单一的多核苷酸或组成生物合成或代谢通路的一系列多核苷酸编码,或者可以是单一多核苷酸的直接产物或者可以是一系列多核苷酸的产物。生物化合物相对于宿主细胞可以是天然的或者异源的。可根据WO2010/102982修饰生物化合物。
术语“异源的生物化合物”在本文中被定义为相对于细胞非天然的生物化合物;或天然生物化合物,其中已经进行结构修饰以改变天然生物化合物。
术语“代谢产物”包括初级和次级代谢产物;代谢产物可以是任何代谢产物。优选的代谢产物是柠檬酸,葡糖酸、丁二酸、抗生素,生物活性药物、生物燃料和生物材料构建单元。
代谢产物可以由一个或多个基因(例如在生物合成或代谢路径中)编码。初级代谢产物是细胞的初级或一般代谢的产物,其涉及能量代谢、生长和结构。次级代谢产物是次级代谢的产物(参见,例如R.B.Herbert,Biosynthesis of secondary Metabolites,Chapmanand Hall,New York,1981)。
初级代谢产物可以是但不限于氨基酸、羧酸、脂肪酸、核苷、核苷酸、糖、甘油三酯或维生素。
术语“生物聚合物”在本文中被定义为相同的、类似的或不类似的亚基(单体)的链(或聚合物)。生物聚合物可以是任何生物聚合物。生物聚合物可以是例如但不限于核酸、多胺、多元醇、多肽(或聚酰胺)或多糖。
生物聚合物可以是多肽。多肽可以是具有感兴趣的生物活性的任何多肽。术语“多肽”在本文中不用于指特定长度的编码产物,因此包括肽、寡肽和蛋白质。多肽进一步包括上述多肽和杂合多肽的天然存在的等位变体和工程改造变体。多肽可以是根据W02010/102982被修饰的多肽。
根据本发明的感兴趣的多核苷酸可编码参与合成初级或次级代谢产物(例如有机酸、类胡萝卜素、抗生素、抗癌药、色素类异戊二烯、醇、脂肪酸和维生素)的酶。这些代谢产物可被认为是根据本发明的生物化合物。
感兴趣的化合物可以是选自以下的有机化合物:葡糖二酸、葡糖酸、戊二酸、己二酸、丁二酸、酒石酸、草酸、乙酸、乳酸、甲酸、苹果酸、马来酸、丙二酸、柠檬酸、富马酸、衣康酸、乙酰丙酸、木质酸、乌头酸、抗坏血酸、曲酸、香豆酸、氨基酸、多不饱和脂肪酸、乙醇、1,3-丙二醇、乙烯、甘油、木糖醇、胡萝卜素、虾青素、番茄红素和叶黄素。
或者,感兴趣的化合物可以是β-内酰胺抗生素,例如青霉素G或青霉素V和其发酵衍生物、头孢菌素、环孢素或洛伐他汀。次级代谢产物可以是抗生素、拒食素(antifeedant)、引诱剂、杀细菌剂、杀真菌剂、激素、杀虫剂或杀鼠剂。优选的抗生素是头孢菌素类和β-内酰胺类。
生物聚合物可以是多糖。多糖可以是任何多糖,其包括但不限于粘多糖(例如肝素和透明质酸)和含氮多糖(例如几丁质)。在一个更优选的选择中,多糖是透明质酸。
感兴趣的化合物可以是选自寡肽、多肽、(制药的或工业的)蛋白和酶的肽。在这些方法中,优选地由宿主细胞分泌肽,更优选地肽被分泌至培养基以使所述肽可易于通过分离宿主细胞的生物质和含有肽的培养基而被回收,例如通过离心或(超)过滤。
多肽可以是具有感兴趣的生物活性的任何多肽。术语“多肽”在本文中不旨在指特定长度的编码产物,因此包括肽、寡肽和蛋白质。多肽进一步包括上述多肽和杂合多肽的天然存在的等位变体和工程变体。多肽可以是根据W02010/102982被修饰的多肽。多肽对于宿主细胞可以是天然的或异源的。多肽可以是胶原或明胶或其变体或杂合体。多肽可以是抗体或其部分、抗原、凝集因子、酶、激素或激素变体、受体或其部分、调节蛋白、结构蛋白、报告子(reporter)或转运蛋白、参与分泌过程的蛋白、参与折叠过程的蛋白、分子伴侣、肽氨基酸转运蛋白、糖基化因子、转录因子、合成肽或寡肽、胞内蛋白。胞内蛋白可以是酶,例如蛋白酶、神经酰胺酶、环氧化物水解酶、氨肽酶、酰基转移酶、醛缩酶、羟化酶、氨肽酶、脂肪酶、非核糖体合成酶或聚酮合成酶。多肽可以是胞外分泌的酶。
可在本发明的方法中生产的具有工业应用的蛋白质或(多)肽的实例包括酶,例如脂肪酶(例如用于清洁工业),蛋白酶(用于清洁工业、酿造等,例如蓑肽酶、内切蛋白酶、金属-蛋白酶、丝氨酸-蛋白酶),碳水化合物酶和细胞壁降解酶(例如淀粉酶、葡糖苷酶、纤维素酶(例如内切葡聚糖酶、β-葡聚糖酶、纤维二糖水解酶、GH61酶或β-葡糖苷酶)、GH61-酶、半纤维素酶或果胶分解酶、β-1,3/4和β-1,6-葡糖聚酶、糖醛酸酶(rhamnoga-lacturonase)、甘露聚糖酶、木聚糖酶、支链淀粉酶、半乳聚糖酶、酯酶等),用于水果加工、酿酒等(或饲料),植酸酶、磷脂酶、天冬酰胺酶、糖苷酶(例如淀粉酶、β-葡糖苷酶、阿拉伯糖苷酶、鼠李糖苷酶、洋芹糖苷酶(apiosidases)等)、乳制品酶和产物(例如凝乳酶、酪蛋白)、氧化还原酶(例如氧化酶、转移酶或异构酶)或多肽(例如聚赖氨酸及其类似物、藻青素及其衍生物)。
具有治疗、化妆品或诊断应用的哺乳动物(优选的是人类)多肽包括但不限于胶原和明胶、胰岛素、血清白蛋白(HSA)、乳铁蛋白和免疫球蛋白,包括其片段。所述多肽可以是抗体或其部分、抗原、凝集因子、酶、激素或激素变体、受体或其部分、调节蛋白、结构蛋白、报告子(reporter)或转运蛋白、参与分泌过程的蛋白、参与折叠过程的蛋白、分子伴侣、肽氨基酸转运蛋白、糖基化因子、转录因子、合成肽或寡肽、胞内蛋白。胞内蛋白可以是酶,例如蛋白酶、神经酰胺酶、环氧化物水解酶、氨肽酶、酰基转移酶、醛缩酶、羟化酶、氨肽酶、脂肪酶。
根据本发明,多肽还可以是融合的或杂合的多肽,其中另一个多肽被融合至所述多肽或其片段的N-末端或C-末端。融合多肽是通过将编码一种多肽的核酸序列(或其一部分)融合至编码另一种多肽的核酸序列(或其一部分)产生的。
产生融合多肽的技术是本领域已知的,其包括:连接编码多肽的编码序列以使它们在框架内且融合多肽的表达受相同的启动子和终止子的控制。杂合的多肽可包含从至少两种不同的多肽获得的部分或完整多肽序列的组合,其中一种或更多种相对于宿主细胞可以是异源的。
感兴趣的化合物还可以是可选择标记的产物。可选择标记是感兴趣的多核苷酸的产物,该产物提供杀虫剂或病毒抗性、重金属抗性、对营养缺陷型的原养型等。可选择标记包括但不限于amdS(乙酰胺酶)、argB(鸟氨酸氨甲酰基转移酶)、bar(草丁膦乙酰转移酶)、hygB(潮霉素磷酸转移酶)、niaD(硝酸盐还原酶)、pyrG(乳清苷-5'-磷酸脱羧酶)、sC(硫酸腺苷酰转移酶)、trpC(邻氨基苯甲酸合酶)、ble(腐草霉素抗性蛋白)及其等同物。
当感兴趣的生物化合物是如本文之前定义的生物聚合物时,宿主细胞可以已经能产生生物聚合物。还可以向宿主细胞提供重组的同源或异源多核苷酸构建体,其中所述构建体编码参与生产感兴趣的生物化合物的多肽。本领域技术人员知道怎样修饰微生物宿主细胞以使其能生产参与产生感兴趣的生物化合物的化合物。
术语“重组多核苷酸”在本文指的是被引入Rasamsonia细胞的单链或双链的核酸分子,例如以正常情况下不会存在的形式或位点出现在细胞中的核酸(相对于不包含重组多核苷酸的相应细胞)。
术语“重组多核苷酸构建体”在本文中指的是单链或双链的核酸分子,其分离自天然存在的基因或其已经被修饰以含有自然中不会存在的方式结合的和并置的核酸区段。当核酸构建体含有表达编码序列所需的所有控制序列时,术语重组多核苷酸构建体与术语“表达盒”同义,其中所述控制序列与所述编码序列可操作地连接。本文中描述了合适的控制序列。
本发明的宿主细胞可包含一种或更多种重组多核苷酸或重组多核苷酸构建体以使感兴趣的化合物可被生产。
为了促进表达,编码参与产生感兴趣的化合物的多肽的多核苷酸可以是合成的多核苷酸。优选地,根据W02006/077258或W02008/000632中描述的方法,可对合成的多核苷酸的密码子使用进行优化。W02008/000632解决了密码对优化。密码对优化是这样的方法,其中编码多肽的核苷酸序列已经针对它们的密码子使用特别是被使用的密码对被修饰,以获得编码多肽的核苷酸序列的改进表达和/或所编码的多肽的改进生产。密码对被定义为在编码序列(CDS)中的一组两个相继的三联体(密码子)。
此外,标准分子克隆技术(例如DNA分离、凝胶电泳、核酸的酶促限制性修饰、Southern分析、细胞的转化等)是技术人员已知的并且被例如Sambrook et al.(1989)"Molecular Cloning:a laboratory manual",Cold Spring Harbor Laboratories,ColdSpring Harbor,New York and Innis et al.(1990)"PCR protocols,a guide tomethods and applications"Academic Press,San Diego描述。
可以使用cDNA、mRNA或基因组DNA作为模板和恰当的寡核苷酸引物,根据标准PCR扩增技术扩增核酸。如此扩增的核酸可被克隆进适当的运载体并且通过DNA序列分析表征。
可使用本领域已知的程序培养根据本发明的宿主细胞(转化体)。对于启动子和宿主细胞的每一种组合,有利于编码多肽的DNA序列的表达的培养条件是可以得到的。达到期望的细胞密度或多肽效价之后,停止培养并利用已知的程序回收多肽。
发酵培养基可包括含有碳源(例如葡萄糖、麦芽糖、糖浆、淀粉、纤维素、木聚糖、果胶、木质纤维素生物质水解产物等)、氮源(例如硫酸铵、硝酸铵、氯化铵等)、有机氮源(例如酵母提取物、麦芽提取物、蛋白胨等)和无机营养源(例如磷酸盐、镁、钾、锌、铁等)的培养基。任选地,还可包括诱导物(例如纤维素、果胶、木聚糖、麦芽糖、麦芽糊精或木半乳糖醛酸聚糖)。
适当培养基的选择可基于表达宿主的选择和/或基于表达构建体的调节需要。这种培养基对本领域技术人员是已知的。如果期望,培养基可含有其它成分,所述成分相对于其它潜在的污染微生物有利于经转化的表达宿主。
发酵可进行从大约0.5到大约30天的时间。其可以是合适地在例如从大约20到大约90℃,优选地20-55℃,更优选地40-50℃的范围内的温度下和/或在例如从大约2到大约8,优选地从大约3到大约5的pH下的分批、补料分批或连续方法。适当的条件典型地是基于表达宿主的选择和待表达的多肽来选择。
发酵后,必要时,可通过离心或过滤手段从发酵液中去除细胞。在发酵已停止后或细胞去除后,然后可回收本发明的多肽,如果期望,通过常规手段纯化并分离所述多肽。
可以使用cDNA、mRNA或基因组DNA作为模板和恰当的寡核苷酸引物,根据标准PCR扩增技术扩增核酸。如此扩增的核酸可被克隆进适当的运载体并且通过DNA序列分析表征。
为了本发明的目的,此处定义:为了确定两种氨基酸序列或两种核酸序列的同一性百分比,以达到最佳比较目的比对完整的序列。为了优化两个序列之间的比对,可在被比较的两个序列中的任一个中引入缺口。在被比较的序列的全长上实施这种比对。同一性是报告的比对区域中两个序列之间的相同匹配的百分比。
可使用数学算法完成两个序列之间的序列比较和同一性百分比的确定。技术人员将了解下述事实:一些不同的计算机程序可被用于比对两个序列并判断两个序列之间的同源性(Kruskal,J.B.(1983)An overview of sequence comparison In D.Sankoff和J.B.Kruskal编,Time warps,string edits and macromolecules:the theory andpractice of sequence comparison,pp.1-44Addison Wesley)。可使用Needleman和Wunsch算法确定两个氨基酸序列之间的同一性百分比以比对两个序列(Needleman,S.B.和Wunsch,C.D.(1970)J.Mol.Biol.48,443-453)。所述算法比对氨基酸序列以及核苷酸序列。Needleman-Wunsch算法已被应用于计算机程序NEEDLE。为了本发明的目的,使用来自EMBOSS包的NEEDLE程序(版本2.8.0或更高,EMBOSS:The European Molecular BiologyOpen Software Suite(2000)Rice,P.Longden,I.and Bleasby,A.Trends in Genetics16、(6)pp276—277,http://emboss.bioinformatics.nl/)。对于蛋白序列,EBLOSUM62被用作替代矩阵。对于核苷酸序列,使用EDNAFULL。可指定其它矩阵。为了本发明的目的,用于比对氨基酸序列的参数是:缺口空缺罚分为10,缺口延伸罚分为0.5。技术人员将意识到,当使用不同的算法时,所有这些不同的参数将产生略微不同的结果,但两种序列总体的同一性百分比不会显著改变。
本文提到的蛋白序列可进一步被用作“查询序列”以针对序列数据库进行搜索,例如以鉴定其它的家族成员或相关的序列。可使用BLAST程序进行这种搜索。进行BLAST分析的软件通过国家生物技术信息中心(http://www.ncbi.nlm.nih.gov)是公开可用的。BLASTP被用于氨基酸序列,BLASTN被用于核苷酸序列。在BLAST程序中,可使用下述默认值设置:
-缺口空缺损失:默认值=5(对核苷酸)/11(对蛋白质)
-缺口延伸损失:默认值=2(对核苷酸)/1(对蛋白质)
-核苷酸错配罚分:默认值=-3
-核苷酸匹配奖励:默认值=1
-预计值:默认值=10
-字节:默认值=11(对核苷酸)/28(对megablast)/3(对蛋白质)
本文提到的核酸序列可被进一步用作“查询序列”以针对公共数据库进行搜索,例如以鉴定其它的家族成员或相关的序列。可使用Altschul,et al.(1990)J.Mol.Biol.215:403—10中的NBLAST和XBLAST程序(版本2.0)进行这种搜索。可以利用NBLAST程序(分数=100,字长=12)进行BLAST核苷酸搜索以得到与本发明的核酸分子同源的核苷酸序列。
本文提供的序列信息不应被狭隘地解释为需要包含被错误鉴定的碱基。本文公开的特定序列可容易地被用于从丝状真菌特别是A.niger分离完整的基因,其反过来能够易于进行进一步的序列分析从而鉴定测序错误。
除非特别声明,通过对本文的DNA分子测序确定的所有核苷酸序列都是使用自动DNA测序仪测定的,且所有由在本文中测定的DNA分子编码的多肽的氨基酸序列均通过以上确定的核酸序列的翻译而被预测。因此,如本领域所知,对于任何通过这种自动的方法测定的DNA序列,本文测定的任何核苷酸序列可能含有一些错误。通过自动化测定的核苷酸序列典型地至少约90%,更典型地至少约95%到至少约99.9%与被测序DNA分子的实际核苷酸序列相同。可通过其它方法更精确地确定实际的序列,所述方法包括本领域公知的手工DNA测序法。本领域还了解,与实际序列相比,测定的核苷酸序列中单一的插入或缺失将导致核苷酸序列翻译的移码,从而所预测的由测定的核苷酸序列编码的氨基酸序列将从这种插入或缺失点开始完全不同于由被测序的DNA分子实际编码的氨基酸序列。
本领域技术人员能够鉴定这种被错误鉴定的碱基并知道如何纠正这种错误。
本文引用的专利文件或作为现有技术给出的其它材料不能被认为是承认在任何权利要求的优先权日之前,所述文件或材料是已知的或者其包含的信息是公共常识的一部分。
本文所述的任何参考文献的公开内容均通过引用被整体并入本文。
通过下述实施例进一步阐释本发明。
实施例
需要了解的是,当表明本发明的优选实施方式时,这些实施例仅以实例说明被给出。从上述讨论和这些实施例中,本领域的技术人员能够确定本发明的必要特征,且在不脱离其宗旨和范围时,本领域的技术人员可对本发明做出多种改变和修改以适应多种用途和条件。因此,从前面的描述中,除了本发明展示和描述的那些之外的多种改变对本领域技术人员而言是明显的。这种改变也意图落入所附的权利要求的范围内。
菌株
WT1:这种Aspergillus niger菌株被用作野生型菌株。这种菌株被保藏在CBS研究所,保藏号为CBS 513.88。
GBA302:菌株Aspergillus niger GBA 302(ΔglaA、ΔpepA、ΔhdfA)被用作转化中的受体菌株。WO2011009700中描述了GBA 302的构建。
本文中使用的Rasamsonia emersonii(R.emersonii)菌株来源于ATCC16479,其被用作野生型菌株。ATCC16479以前也被称为Talaromyces emersonii和Penicilliumgeosmithia emersonii。使用名称Rasamsonia emersonii也表示Talaromyces emersonii。R.emersonii ATCC16479的其它菌株名称是CBS393.64、IFO31232和IMI116815。
Rasamsonia(Talaromyces)emersonii菌株TEC-142于2009年7月1日被保藏在CENTRAAL BUREAU VOOR SCHIMMELCULTURES,Uppsalalaan 8,P.O.Box 85167,NL-3508ADUtrecht,荷兰,登录号为CBS 124902。TEC-142S是TEC-142的单分离株。
分子生物学技术
在这些菌株中,使用技术人员已知的分子生物学技术(参见:Sambrook&Russell,Molecular Cloning:A Laboratory Manual,3rd Ed.,CSHL Press,Cold Spring Harbor,NY,2001),一些基因被过表达且另一些基因被下调(如下所述)。过表达基因的表达载体和用于下调的破坏载体的一般设计、转化、标记和选择培养基的使用的实例可在例如WO199846772、WO199932617、WO2001121779、WO2005095624、EP635574B和WO2005100573中找到。
培养基和溶液
马铃薯葡萄糖琼脂,PDA,(Fluka,Cat.No.70139)
基本培养基琼脂平板
8.8g葡萄糖、6.6g琼脂,加H2O至400ml。在115℃下高压灭菌20分钟,然后冷却至55℃。加入溶液I,混合并倒板。
溶液I
11ml储液A、11ml储液B、0.44ml微量元素储液(1000×)、4.4ml青霉素/链霉素溶液和13.2ml H2O。
储液A
120g NaNO3、10.4g KCl、30.4g KH2PO4、22.5ml 4M KOH,加H2O至500ml。
在120℃下高压灭菌20分钟。
储液B(40×)
10.4g MgSO4.7H2O,加H2O至500ml。在120℃下高压灭菌20分钟。
微量元素储液(1000×)
2.2g ZnSO4.7H2O、1.1g H3BO3、0.5g FeSO4.7H2O、0.17g CoCl 2.6H2O、0.16gCuSO4.5H2O、0.5g MnCl2.4H2O、0.15g Na2MoO4.2H2O、5.0g EDTA。
将EDTA和ZnSO4.7H2O溶解至75ml milliQ水中,然后用1M NaOH将pH设为6.0。当维持pH在6.0时,逐个溶解组分。就绪后,用1M HCl将pH设为4.0,然后用milliQ水调整体积至100ml。在120℃下高压灭菌20分钟。
Rasamsonia琼脂培养基
盐级分组合物
“3号盐级分”与WO98/37179中表1的公开内容相符。与这个表中组合物的差异是:CaCl2.2H2O 1.0g/l、KCl 1.8g/L和一水柠檬酸0.45g/L(螯合剂)。
Rasamsonia摇瓶培养基
Rasamsonia培养基1
Rasamsonia培养基2
Rasamsonia孢子批量制备
来自储备的菌株在10cm直径培养皿中的Rasamsonia琼脂培养基上在40℃下生长5-7天。对于MTP发酵,菌株生长于含有Rasamsonia琼脂培养基的96孔板中。菌株储备在-80℃下存储于10%甘油中。
染色体DNA分离
菌株在42℃、250rpm的条件下于YGG培养基(每升:8g KCl、16g葡萄糖.H2O、20ml10%酵母提取物、10ml 100x青霉素/链霉素、6.66g YNB+氨基酸、1.5g柠檬酸和6g K2HPO4)中生长16小时,然后使用DNeasy植物小提试剂盒(Qiagen,Hilden,德国)分离染色体DNA。
Rasamsonia的MTP发酵
含有形成孢子的Rasamsonia菌株的96孔微量滴定板(MTP)被用于收获MTP发酵的孢子。为此,向每个孔中加入200μl Rasamsonia培养基1,重悬混合物,然后在湿度瓶(Infors)中孵育100μl孢子悬浮液,孵育条件为:44℃,550rpm,80%湿度,持续16小时。随后,使用50μl预培养物接种至MTP板中的250μl Rasamsonia培养基2。在44℃,550rpm和80%湿度的条件下,在湿度瓶(Infors)中孵育96孔板6天。离心板并收获上清液。
蛋白分析
在还原条件下,在NuPAGE 4-12%Bis-Tris凝胶(Invitrogen,Breda,荷兰)上分离蛋白样品并根据指示染色。根据制造商的说明,用InstantBlue(Expedeon,Cambridge,英国)、SimplyBlue safestain(Invitrogen,Breda,荷兰)或Sypro Ruby(Invitrogen,Breda,荷兰)染色凝胶。
对于Western印迹,蛋白质被转移至硝酸纤维素。用含有3%脱脂乳的TBST(含有0.1%Tween 40的Tris缓冲盐水)封闭硝酸纤维素滤膜,然后用抗FLAG M2抗体(Sigma,Zwijndrecht,荷兰)孵育16小时。用TBST洗涤印迹两次10分钟,然后用缀合辣根过氧化物酶的兔-抗-小鼠抗体(DAKO、Glostrup、丹麦)染色1小时。用TBST洗涤印迹五次10分钟后,使用SuperSignal(Pierce,Rockford,美国)显现蛋白。
酶活性的测量
脯氨酸特异性内切蛋白酶活性
在37℃下,利用pH为5的柠檬酸盐/磷酸二钠缓冲液中的CBZ-Gly(甘氨酸)-Pro(甘氨酸)-pNA,适时使用分光光度计在410nm处测量脯氨酸特异性内切蛋白酶的蛋白水解活性。1U脯氨酸特异性内切蛋白酶被定义为:在上述条件下在pH 5和37℃下,每分钟转化1μmol(微摩)CBZ-Gly(甘氨酸)-Pro(甘氨酸)-pNA的酶的量。
纤维素酶试验:麦秸检验(WSU试验)
预处理的、经洗涤的麦秸底物的制备
分析之前,用水洗涤被稀酸预处理过的麦秸直至含有麦秸的溶液的pH为6.5或更高,然后使用分散机(ultra-turrax)将物质均化,冻干并磨碎。为了获得预处理的麦秸,可利用如Linde,M.et al,Biomass and Bioenergy 32(2008),326-332中所述的稀酸预处理和如Schell,D.J.,Applied Biochemistry and Biotechnology(2003),vol.105-108,pp69-85中所述的设备。
以WSU/ml表示的纤维素酶活性的测量
1WSU表示:在65℃、pH 4.50下,通过200μl酶混合物中的20小时,2.1重量/体积%经洗涤的预处理麦秸释放0.119mg/ml葡萄糖。
葡萄糖释放不是组合物中酶的量的线性函数。换言之,相同时间内两倍量的酶不必然产生两倍量的葡萄糖。因此,优选地,选择待被检测WSU活性的组合物的稀释度以使WSU不超过40。
从摇瓶实验中收获的400μl上清液被稀释4.5倍。稀释的样品被用于执行两种测量,其中分析200μl稀释的样品。第一种测量中,200μl稀释的样品被转移至小瓶,其中含有含3%(重量/体积)经预处理的、洗涤的麦秸底物的干物质的700μl水和的100μl 250mM柠檬酸盐缓冲液,终pH被调至pH 4.5。第二种测量中,200μl稀释的样品(空白样品)被转移至小瓶,其中含有代替经预处理的、洗涤的麦秸底物的700μl水和100μl250mM柠檬酸盐缓冲液,终pH被调至pH 4.5。在65℃下孵育试验样品20小时。试验样品被孵育后,加入100μl内部标准溶液(D2O中20g/L马来酸和40g/L EDTA)。葡萄糖释放量基于在27℃下、由在500MHz的质子频率下操作的1D 1H NMR测定的相对于二甲基-硅-戊烷-磺酸盐的5.20ppm处的信号。利用从在用麦秸孵育的样品中测量到的葡萄糖的量中减去在空白样品中检测到的葡萄糖的量的数据计算WSU数。
实施例1:构建并描述Aspergillus缺失载体
在A.niger CBS513.88的基因组序列中鉴定候选被破坏的三个基因。A.niger基因的所有核苷酸序列和它们的基因组环境可从例如EMBL(http://www.ebi.ac.uk/embl/)的NCBI(http://www.ncbi.nlm.nih.gov/)中得到。nicB基因由ORF An11g10910编码,PdxA基因由An03g04280编码,epo基因由An08g04490编码。
根据已知的原理设计并根据EP635574B和WO 98/46772中同样描述的常规克隆程序构建基因置换载体。大体上,这些载体包含各个ORF序列的约1-2kb侧翼区以在预定的基因组位点靶向同源重组。它们可以含有例如A.nidulans双向amdS选择标记、潮霉素B标记或腐草霉素选择标记以进行转化。本文的所有实施例中实施基因替换的方法都使用线型DNA,其通过双交换在侧翼序列的同源位点整合至基因组,从而用标记基因(例如amdS基因)替换待被缺失的基因。amdS标记的丢失例如可通过涂板至氟-乙酰胺培养基而被选择。
基于基因组序列,nicB、PdxA和epo的基因置换载体被设计如下:大体上,nicB缺失载体pDELNicB-3包含nicB ORF的约1000bp 5’上游侧翼区(Nic-US)和1000bp 3’下游侧翼区(Nic-DS)以允许在预定的基因组nicB位点靶向同源重组。此外,pDELNicB-3含有潮霉素B选择标记盒(来自pAN7-1、NCBI gi:475166)且突变的loxP位点(lox66和lox71,分别地SEQID No:1和2)如所示被放置于HygB标记周围(pDELNicB-3的总体布局请参见图1)。
用于pdxA缺失的pDEL_PdxA-2载体被类似地构建,其含有相似长度的PdxA ORF的5’侧翼区(Pdx-US)和3’侧翼区(Pdx-DS)。与pDEL_NicB-3不同,pDEL_PdxA-2载体包含腐草霉素选择标记(如pAN8-1中的腐草霉素标记,NCBI gi:475899)且突变的loxP位点(lox66和lox71,分别地SEQ ID No:1和2)位于标记盒周围(pDEL_PdxA-2的总体布局请参见图2)。SEQID NO:3展示了双突变的lox72位点以供参考。
用于缺失epo基因的载体以略微不同的方式被设计,其包含构建和使用两种不同的载体。两个载体的插入片段一起能被应用于所谓的“二重基因靶向”方法(Nielsen etal.,2006,43:54-64)。这种方法使用重叠的选择标记的两个无功能DNA片段(二重方法的更多细节请参见WO2008113847)连同基因靶向序列。正确的同源重组后,选择标记通过在同源靶位点的整合变得有功能。如WO 2008113847中同样详述的,设计和构建两个不同的缺失载体pDEL_EPO_Hyg-1和pDEL_EPO_CRE-1以能够提供用于二重基因靶向的两个重叠的DNA分子。第一个载体pDEL_EPO_Hyg-1(总体布局请参见图3)包含第一个无功能的hygB标记片段(PgpdA-HygB序列缺失hygB的3’末端编码序列的最后27个碱基,SEQ ID NO:4)和位于hygB盒一端的lox71序列位点以及epo ORF的5’上游基因侧翼区(EPO-US)。第二个pDEL_EPO_CRE-1载体(总体布局请参见图4)包含第二个无功能的hygB片段(HygB-TtrpC序列缺失hygB的5’末端编码序列的开始44个碱基,SEQ ID NO:5)以及位于hygB盒一端的cre重组酶盒、lox66序列位点以及epo ORF的3’下游基因侧翼区(EPO-DS)。cre重组酶盒含有A.nidulans木聚糖酶A启动子、cre重组酶和木聚糖酶A终止子以允许cre重组酶(SEQ ID NO:6)的木糖诱导型表达。同源重组后,第一个和第二个无功能的片段变得有功能,其产生有功能的hygB盒。epo上游和下游基因侧翼区都在预定的epo基因组位点靶向二重片段的同源重组。
在下述实施例中,我们将展示:本文中使用的cre-lox系统是用于单次转化之后基因破坏和标记移除的非常有效的系统。此外,当使用NHEJ存在缺陷的菌株时,二重基因靶向方法结合cre-lox系统产生用于制造具有确定修饰的无标记菌株的高效系统。
实施例2:使用无有功能标记的多个重叠DNA片段(二重基因靶向方法)和小的重叠 序列进行有效缺失基因
这个实验中研究了无功能标记片段的重叠序列大小对通过双同源重组的转化效率和靶向频率的影响。利用pDELNicB-3质粒作为模板产生足量的PCR片段,所述片段包含变化的hygB标记长度,其侧翼是1kb NicB侧翼区(参见图5)。用2μg每种PCR片段转化菌株GBA302(ΔglaA、ΔpepA、ΔhdfA)的原生质体。基于潮霉素B抗性选择转化体,然后根据如EP635574B中所述的标准程序纯化菌落,纯化之后进行分析。利用诊断PCR判断靶向频率,其中所用的引物一个在hygB盒内,一个在基因组侧翼区内但在靶向核苷酸区域之外(参见图5)。表1中显示的数据清楚地证明:在良好的转化效率下,对于不同大小的重叠标记序列,整合盒的靶向频率都高且有效。因此,我们得出以下结论:比在本文的实施例1和WO2008113847的实施例4中提到的约1kb的大小更小的重叠序列对靶向频率没有副作用。以这种方式,通过PCR或DNA合成的片段产生被简化,因此破坏突变的构建体更为有效。
表1:使用长度变化的重叠标记序列时,NicB缺失盒的转化效率和靶向频率
重叠长度(bp) 转化体的数量 靶向(%)
960 236 100
750 240 95
640 88 85
380 252 100
实施例3:使用不具有有功能标记且具有loxP位点的多个重叠DNA片段同时缺失基 因并在一个转化步骤之后移除标记
编码参与NHEJ的组分的基因存在缺陷的突变体(例如至少一个hdf基因的失活)的使用导致通过(双)同源重组的整合载体的靶向效率显著增加(例如,如先前在WO2005095624和WO2008113847中所述)。
此外,可依照WO2008113847中所述获得同源重组靶向效率的提高。这种二重基因靶向方法包括提供两组DNA分子,其中第一组包括这样的DNA分子,其各包含感兴趣的置换序列的第一个无功能片段,其5’端侧翼是与靶序列侧翼的染色体DNA序列基本同源的DNA序列;第二组包括这样的DNA分子,其各包含与第一个无功能片段重叠的感兴趣的DNA置换序列的第二个无功能片段,其3’端侧翼是与靶序列侧翼的染色体DNA序列基本同源的DNA序列,其中第一个和第二个无功能片段经重组变得有功能。
基因置换载体pDEL_EPO_Hyg-1和pDEL_EPO_CRE-1(布局如实施例1中所述)都包含用于在epo ORF同源重组的约1kb侧翼区。此外,它们都含有(无功能的)hygB选择标记和loxP位点(lox71和lox66)。pDEL_EPO_CRE-1构建体还含有受A.nidulans木聚糖酶A启动子控制的噬菌体P1Cre基因以允许基于木糖诱导的诱导型Cre表达。
使用pDEL_EPO_Hyg-1和pDEL_EPO_CRE-1质粒作为模板,利用PCR产生足量的用于破坏epo的两种线型二重基因靶向片段。在这种情况下,两种核苷酸片段在无功能hygB基因处的重叠约为1kb。对于每种片段,使用2μg DNA转化Aspergillus niger GBA302。基于潮霉素B抗性选择转化体,然后根据如EP635574B中所述的标准程序纯化菌落,之后纯化后进行分析。从实施例2中可以了解到:使用1kb侧翼序列得到大部分转化体且和1kb重叠导致在同源的epo位点的高频率靶向整合,从而用有功能的hygB基因替换靶位点(如图6所示)。
为了诱导受木聚糖酶启动子控制的cre重组酶,使用含1%木糖和1%葡萄糖的基本培养基(木聚糖酶诱导培养基)琼脂平板。将转化体从PDA平板转移至木聚糖酶诱导培养基。随后,在30℃下孵育平板5天。当Cre重组酶被木糖诱导时,可通过切除发生位于两个特异的loxP位点之间的DNA盒的缺失。检验在木糖酶诱导培养基上生长之后产生的菌落的潮霉素B抗性。使用牙签将来自转化体的孢子转移至含有和不含潮霉素B(60μg/ml)的PDA平板。在30℃下孵育平板48小时。
在于PDA淀粉上生长后的24个最初的潮霉素B抗性菌落中,4个转化体自发地丢失了它们的潮霉素B抗性(菌株检测请参见图7)。在于木糖上生长后的24个最初的潮霉素B抗性菌落中,19个转化体丢失了它们的潮霉素B抗性。潮霉素B抗性的丢失可与通过cre重组酶活性的hygB标记盒的丢失相联系。事实上,利用epo位点的PCR分析证实了标记的移除。
这个实施例显示:在NHEJ缺陷的菌株中,联合使用二重基因靶向和根据本发明的诱导型重组系统允许构造无标记菌株时非常有效的菌株构建/破坏,而不需要菌株构建中的第二次转化或反向选择程序。
实施例4:使用不具有有功能标记的多个重叠DNA片段同时缺失多个基因并在一个 转化步骤之后移除多个标记
在这个实施例中,我们描述了显著缩短的菌株构建程序的方法,其通过在NHEJ缺陷宿主菌株中联合使用多个二重片段和cre-lox以获得多基因缺失。为了便于在单个转化步骤中移除多个标记,至少一个构建体含有携带诱导型木聚糖酶A启动子的Cre基因是必需的。
使用pDEL_Pdx-2和pDEL_EPO_Hyg-1&pDEL_EPO_CRE-1质粒作为模板,利用PCR产生足量的分别用于破坏pdxA和epo的双倍的两种线型二重基因靶向片段。这两种核苷酸片段在无功能的腐草霉素ble基因处的重叠约为350bp,对于hygB基因则约为1kb。对于四种片段中的每一种,使用2μg DNA转化Aspergillus niger GBA302。在含有潮霉素B和腐草霉素的培养基上选择双缺失的转化体。菌落被纯化的菌株通过下述方式被检验:正确的表型和利用PCR判断pdxA和epo的基因替换。通过转移至含有木糖的生长培养基诱导CRE后,两种选择标记都被移除。利用PCR分析NicB和PdxA位点证实了标记的移除。
这个实施例显示:在NHEJ缺陷的菌株中,联合使用多个二重基因靶向和根据本发明的诱导型重组系统允许构造具有两个修饰的无标记菌株时非常高效的菌株构建/破坏,而不需要菌株构建中的第二次或第三次转化步骤或者反向选择程序。
实施例5:转化Rasamsonia emersonii产生能够生产由被引入转化体的基因编码 的期望的酶的无选择标记转化体
本实施例描述了含有一个或多个额外Cbhl拷贝的无标记的R.emersonii转化体的构建。通过在R.emersonii转化体中瞬时表达cre重组酶移除标记。
克隆编码cre重组酶的瞬时表达质粒pEBA513
pEBA513由DNA2.0(Menlo Park、USA)构建,其含有下述组分:由A.niger glaA启动子、编码cre重组酶的ORF(AAY56380)和A.nidulans niaD终止子组成的表达盒;由A.nidulans gpdA启动子、编码潮霉素B抗性蛋白的ORF和P.chrysogenum penDE终止子(Genbank:M31454.1,核苷酸1750-2219)组成的表达盒;含有AMA1区域和CAT氯霉素抗性基因的pAMPF21衍生质粒。图8展示了pEBA513的图谱。
用pDEL PdxA-2和CbhI表达构建体pGBTOP205转化R.emersonii
为了获得过表达Cbhl的R.emersonii菌株,R.emersonii被转化以获得多拷贝Cbhl菌株。WO2011\054899中描述的受A.niger葡糖淀粉酶启动子控制的编码R.emersonii CbhI的质粒pGBTOPEBA205被用于转化。使用1μg of pDEL_pPdxA-2(克隆细节和说明请参见实施例1和图2)和9μg of pGBTOPEBA205共转化R.emersonii,然后利用PCR分析鉴定共转化体。使用引物Ble-For(SEQ ID NO:7)和Ble-Rev(SEQ ID NO:8)判断pDEL_PdxA-2质粒的存在,使用引物EBA205-For(SEQ ID NO:9)和EBA205-Rev(SEQ ID NO:10)判断pGBTOPEBA205的存在。针对pGBTOPEBA4(SEQ ID NO:11和12)和pGBTOPEBA8(SEQ ID NO:13和14)的引物被用作对照。
Ble-For(SEQ ID NO:7):5’-AGTTGACCAGTGCCGTTCC-3’;和
Ble-Rev(SEQ ID NO:8):5’-CACGAAGTGCACGCAGTTG-3’。
EBA205-For(SEQ ID NO:9):5’-CTTCTGCTGAGCAGCTCTGCC-3’;和
EBA205-Rev(SEQ ID NO:10):5’-GTTCAGACCGCAAGGAAGGTTG-3’。
EBA4-For(SEQ ID NO:11):5’-CGAGAACCTGGCCTACTCTCC-3’
EBA4-Rev(SEQ ID NO:12):5’-CAGAGTTGTAGTCGGTGTCACG-3’
EBA8-For(SEQ ID NO:13):5’-GAAGGGTATCAAGAAGCGTGCC-3’
EBA8-Rev(SEQ ID NO:14):5’-GCCGAAGTTGTGAGGGTCAATG-3’
PCR反应条件:根据Phusion高保真聚合酶操作手册(Finnzymes,Espoo,芬兰),含5μl模板DNA、20pmol每种引物、0.2mM dNTPs、1x Phusion HF缓冲液和1U Phusion DNA-聚合酶的50μl反应混合物在98℃下变性30秒,扩增30个循环(10秒98℃、10秒55℃、15秒72℃)以及最后在72℃下孵育10分钟。
转化体A-A4是含有一个或多个pGBTOPEBA205拷贝的共转化体。在泳道4,在转化体中观察到了期望的pGBTOPEBA-205的452bp PCR产物(图9,泳道4),其在使用pGBTOPEBA205作为模板的对照PCR中被检测到(泳道10),但在空菌株中未被检测到(泳道7)。在EBA4和EBA8PCR反应中,转化体中未观察到特定条带,但当使用质粒DNA作为模板时,分别产生了期望的256bp和306bp PCR产物(泳道8和9)。
总之,产生了带有多拷贝R.emersonii CbhI的R.emersonii转化体。
纤维素酶活性试验
在MTP中发酵转化体A-A4和对照菌株,然后在WSU纤维素酶活性试验中分析上清液的纤维素酶活性。与空菌株相比,在转化体A-A4的上清液中观察到的纤维素酶活性的1.25倍增加,这表明得到的带有多拷贝R.emersonii CbhI的转化体具有提高的纤维素酶活性。
用携带cre重组酶基因的AMA质粒pEBA513转化腐草霉素抗性R.emersonii转化体 并选择腐草霉素-敏感转化体
在R.emersonii转化体A-A4中瞬时表达cre重组酶以通过在lox66和lox71位点上的重组移除侧翼为loxP的腐草霉素抗性基因。用milliQ水(对照)或10μg携带Cre重组酶和潮霉素表达盒的pEBA513转化转化体。被pEBA513转化的原生质体涂布在含有50μg/ml潮霉素B的再生培养基上层。使潮霉素抗性转化体生长在含有50μg/ml潮霉素B的PDA上以允许cre重组酶的表达。使转化体生长在含有和不含10μg/ml腐草霉素的培养基上,通过表型检验ble标记的移除。用pEBA513(携带cre重组酶)转化后的大部分(>90%)转化体对腐草霉素敏感,这表明cre重组酶在R.emersonii中高效工作且转化体在重组酶的诱导和表达后丢失了(ble)标记。图10A中展示了含有10μg/ml腐草霉素的PDA和PDA上的不同转化体和空菌株的实例。
还利用PCR分析了一部分转化体。使转化体在44℃、250rpm下,在YGG培养基中生长16小时,然后使用DNeasy植物小提试剂盒(Qiagen,Hilden,德国)分离染色体DNA。利用PCR分析含有侧翼为loxP的ble基因的亲本菌株和过表达cre重组酶的转化体,其中使用针对紧邻loxP位点外的侧翼序列的pdx引物:
Pdx-For(SEQ ID NO:15):5’-TTGAGCTGTTGCTCCGGTAG-3’;和
Pdx-Rev(SEQ ID NO:16):5’-CTCCGTAGTCATCGTCAATGG-3’
此外,使用针对质粒的HygB选择标记的引物,利用PCR判断pEBA513的存在。
Hyg-For(SEQ ID NO:17):5’-GCGTCGGTTTCCACTATC-3’
Hyg-Rev(SEQ ID NO:18):5’-GAGGTCGCCAACATCTTC-3’
PCR条件如上所述。图10B中展示了琼脂糖凝胶的结果。在含有侧翼为loxP的ble表达盒的转化体中观察到了2752bp特定PCR条带(泳道2和3)。与此不同,在ble重组酶通过cre重组酶被移除的转化体中,881bp PCR片段被扩增(泳道8和9),这表明ble基因通过cre重组酶被移除。因此,我们成功地利用cre-lox系统从R.emersonii转化体中移除了侧翼为loxP的ble选择标记。
通过HygB PCR判断pEBA513AMA-Cre质粒的存在。有趣的是,两个转化体中有一个没有检测到HygB片段。由于转化体在无hygB选择的条件下生长,因此转化体可能已经丢失了附加型cre表达质粒和与其相连的hygB标记。
移除pEBA513质粒以获得无标记的转化体
移除ble选择标记之后,鉴定自发丢失pEBA513质粒的菌株。当在含有和不含腐草霉素的PDA板上选择腐草霉素-敏感克隆时,我们已经观察到部分转化体已经丢失了AMA质粒。为了检验转化体于无潮霉素选择的条件下生长后,附加型AMA质粒pEBA513的自发性丢失,将孢子转移至含有和不含潮霉素B的板上。在一轮无选择的生长之后,利用hygB PCR证实(如上所述)50-75%的转化体已对潮霉素B敏感。
标记被移除后,转化体仍然含有多拷贝R.emersonii CbhI,且与空菌株相比,纤维素酶活性仍有1.25倍的提高。
总之,我们通过使用两个显性标记成功地产生了无标记的R.emersonii转化体,所述的两个显性标记是:被用于和感兴趣的基因一起共转化的侧翼为loxP的ble标记,和用携带cre重组酶基因的AMA质粒被用于瞬时转化R.emersonii转化体的潮霉素标记。用cre重组酶瞬时转化R.emersonii足以移除侧翼为loxP的ble标记。
实施例6:鉴定参与非同源末端连接的Rasamsonia emersonii基因并构建缺失载
对Rasamsonia emersonii菌株CBS393.64的基因组DNA测序并分析。表2中列出了翻译的蛋白质被注释为参与非同源末端连接的已知基因的同源物的基因。
表2:在Rasamsonia emersonii中参与非同源末端连接的基因以及它们在A.niger、P.chrysogenum和S.cerevisiae中的同源物
参与非同源末端连接的Rasamsonia emersonii基因序列包含开放阅读框(ORF)(含内含子)以及约1500bp 5’和3’侧翼区域的基因组序列、cDNA和蛋白序列。
根据常规克隆程序构建两个ReKu80替换载体:pEBA1001和pEBA1002(参见图11和12)。这两个载体的插入片段一起能够被应用于所谓的“二重基因靶向”方法(Nielsen etal.,2006,43:54-64)。这种方法使用选择标记的两个重叠的无功能DNA片段(二重方法的更多细节请参见WO2008113847)和基因靶向序列。正确的同源重组后,选择标记通过在同源靶位点整合变得有功能。如WO2008113847所述设计缺失载体pEBA1001和pEBA1002,以能够提供用于二重基因靶向的两个重叠的DNA分子。
pEBA1001载体包含用于在ReKu80位点靶向的ReKu80ORF的2500bp 5’侧翼区、lox66位点和由A.nidulans gpdA启动子驱动的ble编码区的无功能的5’部分(PgpdA-ble序列丢失了ble的3’末端编码序列的最后104个碱基的,SEQ ID NO:60)(图11)。pEBA1002载体包含ble编码区的无功能的3’部分、A.nidulans trpC终止子(ble-TtrpC序列丢失了ble的5’末端编码序列的最初12个碱基,SEQ ID NO:61)、A.nidulans trpC终止子、lox71位点和用于在ReKu80位点靶向的ReKu80ORF的2500bp 3’侧翼区(图12)。
实施例7:使ReKu80基因在Rasamsonia emersonii中失活
使用之前WO2011\054899中所述的方法,分离缺失构建体pEBA1001和pEBA1002的线型DNA并用其转化Rasamsonia emersonii菌株TEC-142S。这些线型DNA能够在ReKu80位点整合至基因组,从而用ble基因替换ReKu80基因(如图13所示)。在腐草霉素培养基上选择转化体,然后纯化菌落,之后根据如WO2011\054899中所述的程序进行检测。利用PCR判断生长的菌落中ReKu80位点的整合,其中使用缺失盒的gpdA启动子中的引物和针对紧邻5’靶向区域上游的基因组序列的引物。约250个转化体的库中,4个菌株显示出基因组ReKu80基因的移除。
随后,用pEBA513转化3个候选ReKu80敲除菌株以通过瞬时表达cre重组酶移除ble选择标记。将pEBA513转化体涂布在含有50μg/ml潮霉素B的再生培养基上层。使潮霉素抗性转化体生长在含有50μg/ml潮霉素B的PDA上以允许cre重组酶的表达。将单菌落涂布在非选择性的Rasamsonia琼脂培养基上以获得纯化的孢子批。使转化体生长在含有和不含10μg/ml腐草霉素的培养基上,通过表型检验ble标记的移除。用pEBA513(携带cre重组酶)转化后的大部分(>90%)转化体对腐草霉素敏感,这表明基于pEBA1001和pEBA1002的ble标记被移除。随后,使转化体生长在含有和不含50μg/ml潮霉素的培养基上,通过表型判断ble-阴性菌株中pEBA513构建体的移除。由于pEBA513质粒的自发丢失,约50%转化体丢失了潮霉素抗性。
利用Southern分析检测候选无标记敲除菌株中ReKu80基因的缺失。分离染色体DNA并用限制性酶HindIII消化。用针对ReKu80基因3’区域的探针与Southern印迹杂交(图14)。下述引物被用于产生探针:
SEQ ID NO:Ku80-For:AGGGTATATGTGGTCTAGTAACGC(SEQ ID NO:55)
SEQ ID NO:Ku80-Rev:TCACAAGTCCATCACGGAACCGGG(SEQ ID NO:56)
野生型菌株、腐草霉素抗性ReKu80敲除菌株和腐草霉素敏感菌株中预计的片段大小分别为4132bp、3197bp和1246bp。野生型对照菌株显示出预计的4132bp片段(图14,泳道1)。2个候选腐草霉素抗性ReKu80敲除菌株确实显示出预计的3197bp片段(泳道2和3)。利用cre重组酶移除ble基因导致片段大小减小;通过Southern印迹可检测到1246bp条带(泳道5和6)。总之,我们利用Southern印迹证实:我们获得了2个独立的无标记ReKu80缺失菌株。
菌株ΔReKu80-2被选为ReKu80基因失活的代表菌株。
实施例8:克隆RePepA缺失载体
对Rasamsonia emersonii菌株CBS393.64的基因组DNA测序并分析。鉴定其翻译蛋白被注释为蛋白酶pepA的基因。Rasamsonia emersonii pepA(RePepA)序列包括ORF和约2500bp的5’和3’侧翼区的基因组序列、cDNA和蛋白序列,它们被分别展示于序列表57、58和59。
使用二重基因靶向方法设计并根据常规克隆程序构建用于RePepA的基因置换载体(参见图15和16)。pEBA1005载体包含用于在RePepA位点靶向的RePepA ORF的2500bp 5’侧翼区、lox66位点和由A.nidulans gpdA启动子驱动的ble编码区的5’部分(PgpdA-ble序列丢失了ble的3’末端编码序列的最后104个碱基,SEQ ID NO:60)(图15)。pEBA1006载体包含ble编码区的3’部分(ble-TtrpC序列丢失了ble的5’末端编码序列的最初12个碱基,SEQID NO:61)、A.nidulans trpC终止子、lox71位点和用于在RePepA位点靶向的RePepA ORF的2500bp 3’侧翼区(图16)。此外,构建带有完整的RePepA缺失盒的pEBA10056(图17)。pEBA10056构建体包含用于在RePepA位点靶向的RePepA ORF的2500bp5’侧翼区、lox66位点、含有A.nidulans gpdA启动子的ble表达盒、ble编码区和A.nidulans trpC终止子、lox71位点和用于在RePepA位点靶向的RePepA ORF的2500bp 3’侧翼区。
除了含有1500bp RePepA侧翼的pEBA1005和pEBA1006之外,还产生由500、1000和1500 bp RePepA侧翼构成的构建体以检测最佳的侧翼长度。pEBA1005和pEBA1006是仅侧翼长度不同的这些构建体的代表。
实施例9:提高RePepA位点的同源重组事件的靶向
通过用缺失载体转化TEC-142S和ΔReKu80-2菌株评估ReKu80敲除菌株相对于野生型菌株的靶向效率,其中缺失载体被设计为使编码主要细胞外酸性天冬氨酸蛋白酶的RePepA基因在基因组失活。利用PCR扩增RePepA缺失载体,然后使用PCR产物转化TEC-142S和ΔReKu80-2菌株的原生质体。根据实施例7中所述选择转化体。
利用指示RePepA失活的基于活性的平板试验评估靶向效率。通过使转化体在提供有1%酪蛋白钠盐的PDA平板上繁殖实施平板试验。在总共20个转化体中,分析每个转化体的晕轮(halo)形成。被2.5 kb RePepA缺失构建体转化后,大部分CBS393.64转化体仍显示晕轮形成,然而ΔReKu80-2转化体中没有观察到晕轮形成(图18)。表3中展示了根据酪蛋白平板上的晕轮形成判断的靶向频率。
表3.带有不同侧翼长度的RePepA缺失载体在ΔReKu80-2菌株与CBS393.64菌株中相比的靶向频率。用“(二重)”指示使用二重基因靶向方法的缺失载体。
*,由于转化体量少而未检测
与CBS393.64菌株相比,ΔReKu80-2菌株中的靶向效率显著提高。在野生型菌株中,当应用2.5kb侧翼并使用二重基因靶向方法时,观察到最高的靶向效率(10%)。使用携带完整缺失盒的质粒使RePepA缺失在ΔReKu80-2菌株90%的转化体是成功。当使用二重基因靶向方法时,在ΔReKu80-2菌株中,1.5kb侧翼已足以获得100%靶向,1kb侧翼已足以高效获得正确的转化体。
这些发现表明:在使至少一个参与Rasamsonia emersonii非同源末端连接的基因失活后,菌株同源重组的提高的效率导致通过双同源重组的整合载体的靶向效率显著提高。本实施例中,ReKU80的破坏已经阐明了这一点。
实施例10:构建Rasamsonia缺失载体用于使用不具有有功能标记和具有loxP位点 的多个重叠DNA片段同时缺失基因并在一个转化步骤之后移除标记
如实施例3所述使用二重靶向方法设计RePepA基因置换载体,其中有一个例外:约1500bp RePepA侧翼区域被用于在RePepA ORF同源重组。第一个载体pPepAHyg(总体布局请参见图19)包含第一个无功能的hygB标记片段(PgpdA-HygB序列缺失hygB的3’末端编码序列的最后27个碱基,SEQ ID NO:4)和位于hygB盒一端的lox71序列位点以及RePepA ORF的5’上游基因侧翼区(5’区pepA)。第二个pPepACre载体(总体布局请参见图20)包含无功能的hygB片段(HygB-TtrpC序列缺失hygB的5’末端编码序列的开始44个碱基,SEQ ID NO:5)以及位于hygB盒一端的cre重组酶、lox66序列位点以及RePepA ORF的3’下游基因侧翼区(3’区RePepA)。cre重组酶盒含有A.nidulans木聚糖酶A启动子、cre重组酶和木聚糖酶A终止子以允许cre重组酶(SEQ ID NO:6)的木糖诱导型表达。同源重组后,第一个和第二个无功能的片段变得有功能并能产生有功能的hygB盒。RePepA上游和下游基因侧翼区都靶向在预定的RePepA基因组位点二重片段的同源重组。
在下述实施例中,我们将展示:本文中使用的cre-lox系统是用于单次转化之后基因破坏和标记移除的非常有效的系统。此外,当使用NHEJ缺陷的菌株时,二重基因靶向方法结合cre-lox系统产生用于制造具有确定修饰的无标记菌株的高效系统。
实施例11:使用不具有有功能标记的多个重叠DNA片段(二重基因靶向方法)和小 的重叠序列有效缺失基因
使用编码参与NHEJ的组分的基因存在缺陷的突变体(例如至少一个Ku基因的失活)导致通过(双)同源重组的整合载体的靶向效率显著提高(参见实施例9)。
此外,可依照实施例9中所述提高同源重组的靶向效率。这种二重基因靶向方法包括提供两组DNA分子,其中第一组包括这样的DNA分子,其各包括感兴趣的置换序列的第一个无功能片段,其5’端侧翼是与靶序列侧翼的染色体DNA序列基本同源的DNA序列;第二组包括这样的DNA分子,其各包括与第一个无功能片段重叠的感兴趣的置换序列的第二个无功能片段,其3’端侧翼是与靶序列侧翼的染色体DNA序列基本同源的DNA序列,其中第一个和第二个无功能片段经重组变得有功能。
基因置换载体pPepAHyg和pPepACre(布局如实施例10中所述)都包含用于在RePepA开放阅读框同源重组的约1.5kb侧翼区。此外,它们都含有(无功能的)hygB选择标记和loxP位点(lox71或lox66)。pPepACre构建体还含有受A.nidulans木聚糖酶A启动子控制的噬菌体P1Cre基因以允许基于木糖诱导的诱导型Cre表达。
使用pPepAHyg和pPepACre质粒作为模板,利用PCR产生足量的用于破坏RePepA的两种线型二重基因靶向片段。在这种情况下,两种核苷酸片段在无功能hygB基因处的重叠约为1kb。这些线型DNA分子能够在RePepA位点整合至基因组,从而用hygB基因替换RePepA基因(如图21所示)。
对于每种片段,使用2μg DNA转化R.emersonii菌株ΔReKu80-2。基于潮霉素B抗性选择转化体,然后根据如实施例5中所述的标准程序纯化菌落,之后进行纯化后分析。
为了诱导受木聚糖酶启动子控制的cre重组酶,使用含1%木糖和1%葡萄糖的基本培养基(木聚糖酶诱导培养基)琼脂平板和0.2%酵母提取物。将转化体从PDA平板转移至含酵母提取物的木聚糖酶诱导培养基。随后,在42℃下孵育平板5天。在木糖上生长后产生的菌落被涂布在非选择性Rasamsonia琼脂培养基上以获得纯化的孢子批。当Cre重组酶被木糖诱导时,可通过剪切删除位于两个特异的loxP位点之间的DNA盒。使转化体生长在含有和不含50μg/ml潮霉素B的培养基上,通过表型判断hygB标记的移除。约65%cre被诱导的转化体不能在潮霉素B上生长(图22)。潮霉素B抗性的丢失可通过cre重组酶活性与hygB标记盒的丢失相联系。事实上,通过利用RePepA位点的PCR分析证实了标记的移除。
这个实施例显示:在NHEJ缺陷的菌株中,将二重基因靶向的使用与根据本发明的诱导型重组系统联合允许在构造无标记菌株时非常高效地构建/破坏菌株,而不需要菌株构建中的第二次转化或反向选择程序。
实施例12:使用侧翼均在lox71和lox66之间的二重标记和带有诱导型启动子的 cre重组酶敲除S.cerevisiae中的ADE1基因
图23示意性地展示了这个程序。在这个克隆程序中使用两个基本构建体。基本构建体可以从DNA2.0或者任何其它提供合成的DNA序列的商业公司订购。基本构建体1含有lox71位点,其后是无功能的KanMX标记盒的部分(SEQ ID NO:62)。序列能够被克隆至合成DNA供应商所使用的标准E.coli克隆载体中。第二个基本构建体含有无功能的KanMX标记盒的部分,其具有50bp与第一个构建体的无功能的KanMX标记盒的部分重叠的序列。当两个无功能KanMX标记片段通过体内同源重组进行重组时,将形成有完整功能的KanMX标记盒。第二个构建体还含有带有半乳糖诱导型GAL启动子的cre重组酶和lox66。在序列表中,基本构建体2的序列以SEQ ID NO:63被提供。进行以下步骤以敲除S.cerevisiae中的ADE1基因。
使用YeaStar基因组DNA试剂盒TM(ZYMO Research)分离染色体DNA
向24孔板中的1ml YephD(2%葡萄糖)中接种S.cerevisiae CEN.PK113-7D(MATaMAL2-8c SUC2)酵母菌株,于摇床中在30℃、550rpm和80%湿度下孵育过夜。使用biochromUltrospec 2000分光光度计测量OD660以得到如试剂盒操作手册中所述的正确量的细胞(1-5x107个细胞)。按照YeaStar基因组DNA试剂盒TM操作手册中的流程Ⅱ所述进行分离。分离后,使用Nanodrop ND-1000(Thermo Scientific)测量浓度,浓度通常低(10ng/μl左右),但足以适用于PCR用途。
PCR扩增并纯化片段以转化至S.cerevisiae
首先PCR扩增转化至S.cerevisiae所必需的片段。PCR片段1(SEQ ID NO:72)是需要缺失的ADE1序列上游的基因组整合侧翼。其使用SEQ ID NO:64的正向引物和SEQ ID NO:65的反向引物进行扩增。
PCR片段2(SEQ ID NO:73)是基本构建体1的序列,其具有50bp与PCR片段1重叠的同源序列。其使用序列SEQ ID NO:66和SEQ ID NO:67的引物进行扩增。它含有lox66和无功能的KanMX标记盒的部分。
PCR片段3(SEQ ID NO:74)是基本构建体2的序列,其含有与PCR片段2的无功能KanMX标记盒重叠的序列。它还含有Cre重组酶表达盒和lox71位点。PCR片段3的3’末端序列含有50bp与PCR片段4重叠的序列。使用序列SEQ ID NO:68和SEQ ID NO:69的引物扩增PCR片段3。
PCR片段4(SEQ ID NO:75)是待缺失的ADE1序列下游的基因组整合侧翼。使用序列SEQ ID NO:70和序列SEQ ID NO:71的引物扩增PCR片段4。
按照操作手册使用Phusion聚合酶(Finnzymes)扩增DNA片段。分别使用基本构建体1和基本构建体2作为PCR反应2和PCR反应3的模板。使用CEN.PK113-7D基因组DNA(如前所述进行分离)作为模板以扩增5’和3’ADE1缺失侧翼。利用标准琼脂糖电泳技术检验PCR片段的大小。按照操作手册使用Macherey-Nagel的96PCR磁珠试剂盒纯化PCR扩增的DNA片段,然后利用GC biotech的Trinean96测量DNA浓度。
将PCR片段转化至S.cerevisiae
按照Gietz和Woods(2002;Transformation of the yeast by the LiAc/SScarrier DNA/PEG method.Methods in Enzymology 350:87-96)进行S.cerevisiae的转化。用1μg每种经扩增并纯化过的PCR片段(PCR片段1-4)转化CEN.PK113-7D(MATa MAL2-8cSUC2)。将转化混合物涂布在含G418(400μg/ml)YEPhD-琼脂(BBL植物蛋白胨20.0g/l、酵母提取物10.0g/l、氯化钠5.0g/l、琼脂15.0g/l和2%葡萄糖)上。在30℃下孵育3-5天之后,菌落将出现在板上,但负对照(即在转化实验中不加入DNA)将产生空白平板。ADE1基因的正确敲除将产生红色或粉红色的菌落表型。
有效外重组标记盒和Cre重组酶
从转化平板上挑取6个红色菌落,用接种环转移至12ml greiner管中含20g/l半乳糖和0.5g/l葡萄糖的2ml YEP培养基(蛋白胨10.0g/l、酵母提取物10.0g/l、氯化钠5.0g/l)中。在30℃下孵育过夜之后,将恰当稀释的培养物涂布在含2%半乳糖的YEP-琼脂上以在平板上得到单菌落,然后在30℃下孵育2-4天。挑取一些菌落,将其分别重新划线于单独的新鲜YEPhD-琼脂板上,并将相同的菌落重新划线于含G418(400μg/ml)的单独的YEPhD-琼脂板上。S.cerevisiae转化体将在不含G418的YEPhD-琼脂板上生长,它们之中的大部分将不在含G418的YEPhD-琼脂板上生长,表明cre重组酶诱导的lox66和lox71位点的重组使KanMX标记盒和cre重组酶基因丢失。继续利用丢失了标记和Cre盒的菌落。
这个方法能够利用快速有效的单步骤程序,使用都在lox66位点和lox77位点之间的分开的标记和cre重组酶基因在S.cerevisiae中敲除基因并移除标记。
实施例13:使用不具有有功能标记的多个重叠DNA片段(二重基因靶向方法)和小 的重叠序列进行自动化和高通量的基因缺失
基于实施例1中用于epo基因的使用两个不同的基因置换载体的方法,设计用于大量靶基因的两个基因置换载体。大体上,这些载体包含约0.9-1.2kb的各个ORF序列的侧翼区以在预定的基因组位点靶向同源重组。它们含有潮霉素B标记,还可以含有例如用于转化的A.nidulans双向amdS选择标记或腐草霉素选择标记。
基于基因组序列,用于96个选定基因的基因置换载体被设计如下:
第一个载体pDEL_UP_Hyg-1(总体布局如图3所示)包含第一无功能的hygB标记片段(PgpdA-HygB序列缺失hygB的3’末端编码序列的最后27个碱基,SEQ ID NO:4)和位于hygB盒一端的Lox71序列位点以及900-1200bp的靶ORF的5’上游基因侧翼区(-US)。这种上游基因侧翼区能够通过合成生成或者通过使用用于PCR扩增的片段特异性寡核苷酸的PCR生成。
第二pDEL_Down_CRE-1载体(总体布局如图4所示)包含无功能的hygB片段(HygB-TtrpC序列缺失hygB的5’末端编码序列的开始44个碱基,SEQ ID NO:5)以及位于hygB盒一端的cre重组酶盒、Lox66序列位点以及靶ORF的3’下游基因侧翼区(-DS)。cre重组酶盒在上文中的实施例1中有描述。对于每个特定的靶基因/基因组区域,制造特定的基因置换载体组:一种用于上游片段的pDEL_UP_Hyg-1类型和一种用于下游片段的pDEL_Down_CRE-1类型。可通过多种方法制造这些载体,例如基因合成,Gibson克隆(Gibson DG,Young L,Chuang RY,Venter JC,Hutchison CA 3rd,Smith HO.(2009)."Enzymatic assembly ofDNA molecules up to several hundred kilobases".Nature Methods 6(5):343–345;Gibson DG.(2011)."Enzymatic assembly of overlapping DNA fragments".Methods inEnzymology498:349–361),通过以下的克隆:限制性消化,连接和E.coli转化以及在酵母体内重组,优选的是能够被自动化且在MTP中进行的方法。
本实施例中实施基因置换的方法使用线型DNA片段,优选地在MTP板中通过PCR生成,其中对于每个特定的基因使用两种不同类型的基因置换载体pDEL_UP_Hyg-1和pDEL_Down_CRE-1作为模板。如在WO 2008113847中同样详述的,设计并构建这两种不同的片段以能够提供用于二重基因靶向的两种重叠的DNA分子。因此,利用各自的基因特异性质粒作为模板,通过PCR产生足量的线型DNA片段。优选地,使用移液机器人混合PCR片段并在MTP板中生成。用2μg每种PCR片段转化菌株GBA302(ΔglaA、ΔpepA、ΔhdfA)的原生质体。
优选地,按照(WO 2008/000715)的方法完成转化并在MTP中进行。基于潮霉素B抗性选择转化体,优选地在含有hygB的再生平板中进行选择。除了之前所述的大规模琼脂板,优选地,这种平板能够是带有琼脂培养基的MTP平板。实施第二选择步骤以菌落纯化菌株,这能够根据所述的标准程序(EP635574B)或者通过再次涂布于MTP形式的含60μg/ml hygB的PDA培养基上完成。
为了诱导受木聚糖酶启动子控制的cre重组酶,使用含1%木糖和1%葡萄糖的基本培养基琼脂板(木聚糖酶诱导培养基)。将转化体从PDA板转移至木聚糖酶诱导培养基(优选地在MTP板中)。随后,在30℃下孵育平板6天。随后,孢子被转移至含1%木糖和1%葡萄糖的新的琼脂MTP板中。如上所述,通过检验在木糖酶诱导培养基上再次生长之后产生的菌落在含有和不含潮霉素B(60μg/ml)的平板上的生长,检验它们的潮霉素B抗性。
在纯化和于木聚糖酶诱导培养基上生长之后,所分析的大部分菌落已经丢失了它们的潮霉素B抗性。能够检验单独转化体各自的基因破坏。通过这种方法得到的靶向频率与如上所述的使用一种类型的片段的转化(例如对于nicB或epo)的靶向频率相似。此外,在片段克隆、PCR扩增、片段的转化和菌落纯化之后,96个基因的总体成功百分比超过90%。
在这个实施例中,我们展示了本文中所使用的cre-lox系统是非常有效的在单次转化之后用于基因破坏和标记移除的系统。此外,当使用NHEJ缺陷的菌株时,二重基因靶向方法与cre-lox系统的结合产生用于制造具有确定修饰的无标记菌株的高效系统,其能够被非常好地自动化并被有效用于高通量基因和基因组范围基因破坏项目,从而产生能够被用于随后的转化中的无标记菌株。

Claims (16)

1.在靶位点实施重组以使所述靶位点的现存序列缺失的方法,其中所述方法包括:
-提供两种或更多种核酸,它们合在一起成为组时总共包含:(a)能够与靶位点的侧翼序列同源重组的序列;(b)两个或更多个位点特异性重组位点;(c)编码识别所述位点特异性重组位点的重组酶的序列;和(d)编码标记的序列,
其中所述两种或更多种核酸能够相互同源重组以产生单一核酸,和
其中所述两种或更多种核酸中的至少两种各包含编码无功能的部分标记的序列;和
-使所述两种或更多种核酸相互重组和与靶位点的侧翼序列重组,以在靶位点插入编码有功能标记的连续核酸序列、编码重组酶的序列和至少两个位点特异性重组位点,所述编码标记和/或编码重组酶的序列的侧翼是至少两个位点特异性重组位点,以及所述位点特异性重组位点的侧翼是能够与靶位点的侧翼序列同源重组的序列,其中在真菌细胞体内实施所述核酸的相互重组和与靶位点的侧翼序列的重组,
所述方法还包括:
-表达所述重组酶以使位于所述位点特异性重组位点之间的序列被外重组,其中在体内实施所述位点特异性重组位点之间的核酸序列的外重组,
其中:所述位点特异性重组位点是lox位点,以及所述重组酶是Cre;所述位点特异性重组位点是FRT位点,以及所述重组酶是Flp;所述重组位点是Vlox位点,以及所述重组酶是VCre;或者所述重组位点是Slox,以及所述重组酶是SCre。
2.根据权利要求1所述的方法,其中所述两种或更多种核酸总共包含能够与两个或更多个靶位点的侧翼序列同源重组的序列,以使所述两种或更多种核酸相互重组和与靶位点的侧翼序列重组导致在每个靶位点插入至少两个位点特异性重组位点,其中所述两种或更多种核酸的重组导致:
每个靶位点都存在编码有功能标记的连续序列;
至少一个靶位点存在编码有功能重组酶的序列;
所述编码标记和/或编码重组酶的序列位于至少两个位点特异性重组位点之间;和
所述位点特异性重组位点的侧翼是能够与靶位点的侧翼序列同源重组的序列。
3.根据权利要求1或2所述的方法,其中所述至少两种核酸中的两种各包含编码无功能的部分重组酶的序列以使它们总共包含编码有功能重组酶的核酸序列。
4.根据权利要求1或2中的任一项所述的方法,其中一种或更多种标记被外重组。
5.根据权利要求4所述的方法,其中重组酶的表达被诱导型启动子控制。
6.根据权利要求2所述的方法,其中所述两种或更多种核酸总共包含编码至少两种不同标记的序列,其中对于每一种标记,所述两种或更多种核酸中的至少两种各包含编码无功能的部分标记的序列,以使所述两种或更多种核酸的重组导致不同的标记基因编码序列被插入在各靶位点。
7.根据权利要求6所述的方法,其中所述两种或更多种核酸的重组导致所述标记编码序列被插入在各靶位点,以使它们位于位点特异性重组位点之间并可通过重组酶的表达从靶位点被外重组。
8.根据权利要求1或2中的任一项所述的方法,其中所述真菌细胞是酵母细胞。
9.根据权利要求8所述的方法,其中所述酵母细胞是S.cerevisiae、Yarrowialypolytica或K.lactis。
10.根据权利要求1或2中的任一项所述的方法,其中所述真菌细胞是丝状真菌细胞。
11.根据权利要求10所述的方法,其中所述丝状真菌细胞是属于Aspergillus、Penicillium、Talaromyces或Trichoderma属的物种的细胞。
12.根据权利要求1或2中的任一项所述的方法,其中所述方法在作为亲本宿主细胞的变体的细胞中进行,所述亲本宿主细胞优先进行非同源重组,其中所述变体中非同源重组/同源重组的比例比在相同条件下测量的所述亲本生物中的所述比例低。
13.根据权利要求1或2中的任一项所述的方法,其中所述位点特异性重组位点使得表达重组酶之后的外重组在靶位点产生不被所述重组酶识别的单一突变位点特异性重组位点。
14.根据权利要求1或2中的任一项所述的方法,其中所述靶位点包含被破坏和/或部分或全部缺失的编码序列。
15.根据权利要求1或2中的任一项所述的方法,其中所述方法被平行地实施两次或更多次。
16.根据权利要求15所述的方法,其中以250μl或更小的体积实施各平行反应。
CN201380024895.6A 2012-03-12 2013-03-12 重组系统 Expired - Fee Related CN104603273B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12159098 2012-03-12
EP12159098.8 2012-03-12
PCT/EP2013/055048 WO2013135729A1 (en) 2012-03-12 2013-03-12 Recombination system

Publications (2)

Publication Number Publication Date
CN104603273A CN104603273A (zh) 2015-05-06
CN104603273B true CN104603273B (zh) 2019-09-10

Family

ID=47844399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380024895.6A Expired - Fee Related CN104603273B (zh) 2012-03-12 2013-03-12 重组系统

Country Status (4)

Country Link
US (1) US9657309B2 (zh)
EP (1) EP2825651B1 (zh)
CN (1) CN104603273B (zh)
WO (1) WO2013135729A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2898076B1 (en) 2012-09-19 2018-03-07 DSM IP Assets B.V. Cell modification method using essential genes as markers and optionally recycling these
ES2706742T3 (es) 2013-12-02 2019-04-01 Dsm Ip Assets Bv Proteína estructuradora del hielo
WO2016110453A1 (en) 2015-01-06 2016-07-14 Dsm Ip Assets B.V. A crispr-cas system for a filamentous fungal host cell
EP3302076A1 (en) 2015-06-02 2018-04-11 DSM IP Assets B.V. Use of ice structuring protein afp19 expressed in filamentous fungal strains for preparing food
US10913938B2 (en) 2016-07-29 2021-02-09 Dsm Ip Assets B.V. Polypeptides having cellulolytic enhancing activity and uses thereof
US20190225988A1 (en) * 2016-09-15 2019-07-25 Novozymes A/S Genomic integration of DNA fragments in fungal host cells
WO2018114941A1 (en) 2016-12-21 2018-06-28 Dsm Ip Assets B.V. Lipolytic enzyme variants
EP3559221A1 (en) 2016-12-21 2019-10-30 DSM IP Assets B.V. Lipolytic enzyme variants
WO2018114912A1 (en) 2016-12-21 2018-06-28 Dsm Ip Assets B.V. Lipolytic enzyme variants
WO2018114938A1 (en) 2016-12-21 2018-06-28 Dsm Ip Assets B.V. Lipolytic enzyme variants
EP3635112A2 (en) * 2017-06-06 2020-04-15 Zymergen, Inc. A htp genomic engineering platform for improving fungal strains
CN110129346A (zh) * 2018-02-02 2019-08-16 杭州菁因康生物科技有限公司 一种高效的基因工程载体
JP2021526799A (ja) 2018-06-06 2021-10-11 ザイマージェン インコーポレイテッド 発酵および産生中の真菌の形態を制御するためのシグナル伝達に関与する遺伝子の操作
BR112020025589A2 (pt) 2018-06-19 2021-03-23 Dsm Ip Assets B.V. variantes de enzima lipolítica
GB201810053D0 (en) * 2018-06-19 2018-08-01 Medizinische Univ Innsbruck Genetic selection markers based on enzymatic activities of the pyrimidine salvage pathway
CN110713941A (zh) * 2019-10-22 2020-01-21 上海应用技术大学 高表达细胞色素p450单加氧酶赭曲霉菌株及其构建方法与应用
CN111440827A (zh) * 2020-05-22 2020-07-24 苏州泓迅生物科技股份有限公司 一种信息存储介质、信息存储方法及应用
US11479779B2 (en) 2020-07-31 2022-10-25 Zymergen Inc. Systems and methods for high-throughput automated strain generation for non-sporulating fungi
AU2022297881A1 (en) 2021-06-24 2024-01-18 Fonterra Co-Operative Group Limited Recombinant beta-lactoglobulin
WO2024115669A1 (en) * 2022-11-30 2024-06-06 Evaxion Biotech A/S Process for production of synthetic circular dna

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283233A (zh) * 1997-11-13 2001-02-07 住友制药株式会社 突变型loxP序列及其应用
CN1292416A (zh) * 2000-08-25 2001-04-25 林忠平 利用定位重组系统删除转基因植物特定组织或器官中靶基因的分子方法
CN102296059A (zh) * 2011-08-17 2011-12-28 石振宇 一种多段dna并行组装的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176602A (ja) 2001-12-27 2005-07-07 National Institute Of Advanced Industrial & Technology 麹菌遺伝子
US7314974B2 (en) 2002-02-21 2008-01-01 Monsanto Technology, Llc Expression of microbial proteins in plants for production of plants with improved properties
AU2003231028A1 (en) 2002-04-22 2003-11-03 Novozymes Biotech, Inc. Methods for increasing homologous recombination of a nucleic acid sequence
CN101061214B (zh) 2004-10-22 2012-12-05 诺维信公司 多个多核苷酸拷贝的稳定基因组整合
DK2683732T3 (en) 2011-03-11 2016-12-12 Dsm Ip Assets Bv Vector-host-system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283233A (zh) * 1997-11-13 2001-02-07 住友制药株式会社 突变型loxP序列及其应用
CN1292416A (zh) * 2000-08-25 2001-04-25 林忠平 利用定位重组系统删除转基因植物特定组织或器官中靶基因的分子方法
CN102296059A (zh) * 2011-08-17 2011-12-28 石振宇 一种多段dna并行组装的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Gene-speciWc disruption in the Wlamentous fungus Cercospora nicotianae using a split-marker approach;Bang-Jau You et al;《Arch Microbiol》;20091231;第191卷;615-622 *
Selection-marker-Free Modification of the Murine β-Casein Using a Lox2722 site;Andreas F. Kolb;《Analytical Biochemistry》;20011231;摘要,第261页左栏第3段-第262页左栏第1段,图1 *

Also Published As

Publication number Publication date
EP2825651A1 (en) 2015-01-21
US9657309B2 (en) 2017-05-23
US20150050739A1 (en) 2015-02-19
EP2825651B1 (en) 2018-04-25
CN104603273A (zh) 2015-05-06
WO2013135729A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
CN104603273B (zh) 重组系统
CN104981542B (zh) 重组系统
CN103459600B (zh) 用于生产感兴趣的化合物的方法
US9322045B2 (en) Host cell for the production of a compound of interest
CN102224245B (zh) 在丝状真菌细胞中使用阳性和阴性选择性基因的方法
CN101218348A (zh) 具有提高的同源重组效率的丝状真菌突变体
CN102414323A (zh) 用于生产感兴趣的重组多肽的方法
CN105308171A (zh) Agse缺陷菌株
CN109790510A (zh) 在不存在诱导底物下丝状真菌细胞中的蛋白产生
CN105189730A (zh) 淀粉酶缺陷菌株
CN104838003A (zh) Rasamsonia转化体
KR20020026456A (ko) 사상균에서 발현된 dna 라이브러리의 고산출량 스크리닝
CN107075451A (zh) 丝状真菌双重突变体宿主细胞
JPH08500733A (ja) グルコースの存在下で活性的な真菌プロモーター
CN102174551A (zh) 丝状真菌中dna表达文库的高通量筛选
CN103261420B (zh) 用于在真菌细胞中表达基因的启动子
CN108779155A (zh) RlmA灭活的丝状真菌宿主细胞
WO2001025468A1 (en) High-throughput screening of expressed dna libraries in filamentous fungi
CN104640990B (zh) 使用必需基因作为标记并任选地将其再循环的细胞修饰方法
CN107109424A (zh) 真菌宿主菌株、dna构建体及使用方法
CN105420267A (zh) 用于在真菌细胞中表达基因的启动子
De Maeseneire Myrothecium gramineum as a novel fungal expression host

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190910

Termination date: 20210312

CF01 Termination of patent right due to non-payment of annual fee