CN104478000A - 镁掺杂三维有序大孔铁酸镧气敏材料及其制备方法 - Google Patents

镁掺杂三维有序大孔铁酸镧气敏材料及其制备方法 Download PDF

Info

Publication number
CN104478000A
CN104478000A CN201410619248.6A CN201410619248A CN104478000A CN 104478000 A CN104478000 A CN 104478000A CN 201410619248 A CN201410619248 A CN 201410619248A CN 104478000 A CN104478000 A CN 104478000A
Authority
CN
China
Prior art keywords
magnesium
metal
sensitive material
room temperature
lanthanum ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410619248.6A
Other languages
English (en)
Inventor
秦健
崔振铎
杨贤金
朱胜利
李朝阳
梁砚琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201410619248.6A priority Critical patent/CN104478000A/zh
Publication of CN104478000A publication Critical patent/CN104478000A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)

Abstract

本发明公开镁掺杂三维有序大孔铁酸镧气敏材料及其制备方法,以聚甲基丙烯酸甲酯微球为模板,以La(NO3)3·6H2O、Mg(NO3)2和Fe(NO3)3·9H2O的醇溶液进行浸渍,然后进行焙烧以保证模板的去除以及材料的结晶。本发明制得的材料不仅在结构上具有三维长程有序行,并且通过调节前驱体溶液中La3+与Mg2+的比例,成功制备出不同Mg掺杂量的铁酸镧气敏材料;另一方面,通过此方法制备的三维长程有序大孔铁酸镧气敏材料表现出优异的气敏性能。

Description

镁掺杂三维有序大孔铁酸镧气敏材料及其制备方法
技术领域
本发明属于功能材料技术领域,更加具体地说,涉及镁掺杂三维有序大孔铁酸镧气敏材料及其制备方法,具体的说是一种利用PMMA模板制备Mg2+掺杂的三维有序大孔La1-xMgxFeO3气敏材料的方法。
背景技术
随着人类工业化进程的发展,人们赖以生活的环境虽发生了很大的变化,大气中的各种污染性气体日益增多。不可否认,这些污染性气体不仅对大气,对环境造成了极大的危害,也时刻在威胁这我们人类的健康,例如臭氧层的破坏,温室效应的加剧,以及酸雨的频频发生等一系列的问题已经不容忽视,它们已经严重影响到了人类的生存、生产。另一方面,在工业生产过程中,对于有毒有害,甚至易燃易爆气体,要进行严格的精确调控,以避免危险的发生。虽然,气体传感器已经在实际工业生产以及家庭生活得到应用,但是随着人们对生活质量和环境要求的提高,对气体检测的精确性,及时性以及稳定性等也提出了更高的要求。所以,新型气敏材料和气敏传感器的研究迫在眉睫。
目前市场上应用最多的气敏传感器材料都是以单一金属氧化物为基的半导体材料,如SnO2、ZnO、WO3、TiO2以及In2O3等。但这些单金属氧化物半导体在诸多方面还未能满足人们实际生产生活的需要,而复合金属氧化物比单一的金属氧化物半导体具有更高的灵敏度,更好的选择性以及稳定性,所以,复合金属氧化物半导体的制备和开发新型气敏材料已经成为半导体气敏材料研究的一个重要领域。在众多的复合金属氧化物半导体气敏材料中,钙钛矿型的复合金属氧化物铁酸镧(LaFeO3)由于其高的灵敏度,好的选择性以及强的可逆变化性而备受关注。
目前应用中的几乎所有气敏传感器都未能很好的满足上述要求,特别是灵敏度,响应速度以及稳定性不能够同时得到满足,这在很大程度上限制了气敏材料的应用。现在,氧化物半导体基气敏传感器研究中,科研工作者致力于开发新型气敏材料,以及将材料向纳米化发展,制备出性能更好的新型纳米结构气敏材料,抑或是对现有材料进行改性,对材料进行掺杂或表面修饰处理。对材料进行掺杂或表面改性,是提高材料灵敏度和选择性的一种常用的手段。掺杂的方法,其原理是以其他原子对La或Fe原子的替代,来增加其晶格内部缺陷,以产生更多的氧空位来改善其性能。而表明修饰则是通过两步合成法,在已制备好的的材料中贵金属离子或其他的金属氧化物,亦或在材料表面涂一层有催化作用的物质。对LaFeO3基气敏材料,由于其内部La3+和Fe3+在结构上的差异性,更多的科研工作者选择以掺杂的方式改善其性能。
发明内容
本发明的目的在于克服现有技术的不足,提供镁掺杂三维有序大孔铁酸镧气敏材料及其制备方法,制得的材料不仅在结构上具有三维长程有序行,并且通过调节前驱体溶液中La3+与Mg2+的比例,成功制备出不同Mg掺杂量的La1-xMgxFeO3;另一方面,通过此方法制备的三维长程有序大孔La1-xMgxFeO3表现出优异的气敏性能。
本发明的技术目的通过下述技术方案予以实现:
镁掺杂三维有序大孔铁酸镧气敏材料及其制备方法,按照下述步骤进行制备:
步骤1,将La(NO3)3·6H2O、Mg(NO3)2和Fe(NO3)3·9H2O固体粉末溶于乙二醇中,再向乙二醇中加入甲醇,形成最终的金属醇溶液,其中所述乙二醇和甲醇的体积比为2:3,所述金属镧、金属镁和金属铁摩尔比满足(1—x):x:1,x大于0且小于1,例如0.02—0.15,所述金属镧、金属镁和金属铁的总量为1M;
步骤2,选择将聚甲基丙烯酸甲酯微球作为模板,浸渍到步骤1制备的金属醇溶液中,待浸渍后对体系进行抽滤处理,将留存在滤纸上的物质在室温20—25摄氏度下进行干燥。
所述聚甲基丙烯酸甲酯微球为单分散的纳米级微球,微球粒径为200nm—500nm;优选浸渍条件下室温20—25摄氏度下浸渍1—6h。
步骤3,将经过步骤2处理的物质进行焙烧,自室温20—25摄氏度升温至550—600℃保温1—6h后自然冷却至室温20—25摄氏度,控制升温速度1—2℃/min,以保证PMMA微球模板的去除和铁酸镧的结晶。
在上述技术方案中,铁酸镧气敏材料为钙钛矿型的LaFeO3,金属镁以二价离子的形式掺入铁酸镧气敏材料中。
在上述技术方案中,铁酸镧气敏材料平均孔径可达180—260nm,比表面积可达18—30m2/g。
本发明制备的镁掺杂三维有序大孔铁酸镧气敏材料在甲醇气体响应材料中的应用。
与现有技术相比,本发明的技术方案与其他材料制备方法相比,模板法操作方法更为简单,可批量生产,且实验过程绿色无污染,所选用的材料对人体无毒性。一方面,制得的材料不仅在结构上具有三维长程有序行,并且通过调节前驱体溶液中La3+与Mg2+的比例,成功制备出不同Mg掺杂量的La1-xMgxFeO3;另一方面,通过此方法制备的三维长程有序大孔La1-xMgxFeO3表现出优异的气敏性能。
附图说明
图1是本发明的技术方案的过程示意图。
图2是本发明技术方案中使用的PMMA微球模板的扫描电镜照片。
图3是本发明技术方案制备的Mg掺杂的三维长程有序大孔铁酸镧的扫描电镜照片。
图4是本发明技术方案制备的Mg掺杂的三维长程有序大孔铁酸镧的XRD谱图。
图5是本发明技术方案制备的Mg掺杂的三维长程有序大孔铁酸镧的氮吸附测试曲线。
图6是本发明技术方案制备的不同Mg掺杂量的三维长程有序大孔铁酸镧的不同温度气敏响应曲线图。
图7是本发明技术方案制备的Mg掺杂的三维长程有序大孔铁酸镧的气体浓度—响应曲线图。
图8是本发明技术方案制备的Mg掺杂的三维长程有序大孔铁酸镧的不同气体的选择性响应图。
图9是本发明技术方案制备的Mg掺杂的三维长程有序大孔铁酸镧的电阻动态变化曲线图。
具体实施方式
下面结合具体实施方式对本发明作进一步详细地描述。
在本发明的技术方案,选择聚甲基丙烯酸甲酯(PMMA)微球作为模板进行浸渍,以获得不同孔径的铁酸镧气敏材料,依据参考文献进行PMMA微球的制备,以得到不同粒径的PMMA微球,例如Three-Dimensionally Ordered Macroporous(3DOM)Materials ofSpinel-Type Mixed Iron Oxides.Synthesis,Structural Characterization,andFormationMechanism of Inverse Opals with a Skeleton Structure,Masahiro Sadakane,ChigusaTakahashi,Nobuyasu Kato,1Hitoshi Ogihara,Yoshinobu Nodasaka,Yoshihiro Doi,YukioHinatsu,Wataru Ueda,bulletin of the Chemical Society of Japan(Bull.Chen.Soc.Jpn.),2007,7(7),2213-2219。
不同粒径的PMMA微球的制备:
(1)三维有序PMMA微球模板的制备。具体步骤如下:将500ml的三口烧瓶固定在恒温水浴磁力搅拌器上,向烧瓶内通入氮气,10ml甲基丙烯酸甲酯单体和88ml的去离子水同时加入至烧瓶中,匀速搅拌15min;将0.0584g的过硫酸钾溶于7.5ml的去离子水后,加入到三口烧瓶中,匀速搅拌并加热溶液至70℃,继续通氮气5min;待溶液温度达到70℃,恒温反应2h,溶液转变为白色乳液,停止反应,将乳液快速冷却至室温;将制得的PMMA微球单分散液倒入烧杯中超声10min,将其保存备用;对单分散乳液进行3000r/min的离心速度离心5小时,制得粒径为280nm的PMMA微球模板。
(2)将三口烧瓶固定在恒温水浴磁力搅拌器上,向烧瓶内通入氮气,14ml甲基丙烯酸甲酯单体和88ml的去离子水同时加入至烧瓶中,匀速搅拌15min;将0.0584g的过硫酸钾溶于7.5ml的去离子水后,加入到三口烧瓶中,匀速搅拌并加热溶液至70℃,继续通氮气5min;待溶液温度达到70℃,恒温反应2h,溶液转变为白色乳液,停止反应,将乳液快速冷却至室温;将制得的PMMA微球单分散液倒入烧杯中超声10min,将其保存备用;对单分散乳液进行3000r/min的离心速度离心5小时,制得粒径为380nm的PMMA微球模板。
(3)将三口烧瓶固定在恒温水浴磁力搅拌器上,向烧瓶内通入氮气,18ml甲基丙烯酸甲酯单体和88ml的去离子水同时加入至烧瓶中,匀速搅拌15min;将0.0584g的过硫酸钾溶于7.5ml的去离子水后,加入到三口烧瓶中,匀速搅拌并加热溶液至70℃,继续通氮气5min;待溶液温度达到70℃,恒温反应2h,溶液转变为白色乳液,停止反应,将乳液快速冷却至室温;将制得的PMMA微球单分散液倒入烧杯中超声10min,将其保存备用;对单分散乳液进行3000r/min的离心速度离心5小时,制得粒径为500nm的PMMA微球模板。
以上述PMMA微球为模板,进行铁酸镧气敏材料的制备:
实施例1
步骤1,称取10.584g的La(NO3)3·6H2O、0.07383g的Mg(NO3)2和10.1g的Fe(NO3)3·9H2O固体粉末,将其溶于10ml的乙二醇中,将上述溶液倒入25ml的容量瓶中,加入甲醇至溶液体积等于25ml,溶液中金属离子浓度达到1M。
步骤2,选择将聚甲基丙烯酸甲酯微球280nm作为模板,浸渍到步骤1制备的金属醇溶液中,浸渍3h,待浸渍后对体系进行抽滤处理,将留存在滤纸上的物质在室温25摄氏度下进行干燥12h。
步骤3,将经过步骤2处理的物质进行焙烧,自室温25摄氏度升温至600℃保温1h后自然冷却至室温25摄氏度,控制升温速度2℃/min,以保证PMMA微球模板的去除和铁酸镧La0.98Mg0.02FeO3的结晶。
实施例2
步骤1,称取10.26g的La(NO3)3·6H2O、0.185457g的Mg(NO3)2和10.1g的Fe(NO3)3·9H2O固体粉末溶于10ml乙二醇中,将上述溶液倒入25ml的容量瓶中,加入甲醇至溶液体积等于25ml,溶液中金属离子浓度达到1M;
步骤2,选择将聚甲基丙烯酸甲酯微球380nm作为模板,浸渍到步骤1制备的金属醇溶液中,浸渍6h,待浸渍后对体系进行抽滤处理,将留存在滤纸上的物质在室温20摄氏度下进行干燥12h。
步骤3,将经过步骤2处理的物质进行焙烧,自室温20摄氏度升温至550℃保温6h后自然冷却至室温20摄氏度,控制升温速度1℃/min,以保证PMMA微球模板的去除和铁酸镧La0.95Mg0.05FeO3的结晶。
实施例3
步骤1,称取9.72g的La(NO3)3·6H2O、0.36915g的Mg(NO3)2和10.1g的Fe(NO3)3·9H2O固体粉末溶于10ml乙二醇中,将上述溶液倒入25ml的容量瓶中,加入甲醇至溶液体积等于25ml,溶液中金属离子浓度达到1M;
步骤2,选择将聚甲基丙烯酸甲酯微球500nm作为模板,浸渍到步骤1制备的金属醇溶液中,浸渍3h,待浸渍后对体系进行抽滤处理,将留存在滤纸上的物质在室温20摄氏度下进行干燥12h。
步骤3,将经过步骤2处理的物质进行焙烧,自室温20摄氏度升温至580℃保温3h后自然冷却至室温20摄氏度,控制升温速度1℃/min,以保证PMMA微球模板的去除和铁酸镧La0.9Mg0.1FeO3的结晶。
实施例4
步骤1,称取La(NO3)3·6H2O、Mg(NO3)2和Fe(NO3)3·9H2O固体粉末溶于10ml乙二醇中,将上述溶液倒入25ml的容量瓶中,加入甲醇至溶液体积等于25ml,溶液中金属离子浓度达到1M,金属镧、金属镁和金属铁摩尔比满足0.9:0.1:1;
步骤2,选择将聚甲基丙烯酸甲酯微球500nm作为模板,浸渍到步骤1制备的金属醇溶液中,浸渍4h,待浸渍后对体系进行抽滤处理,将留存在滤纸上的物质在室温20摄氏度下进行干燥12h。
步骤3,将经过步骤2处理的物质进行焙烧,自室温25摄氏度升温至600℃保温4h后自然冷却至室温20摄氏度,控制升温速度2℃/min,以保证PMMA微球模板的去除和铁酸镧La0.9Mg0.1FeO3的结晶。
对本发明制备的金属镁掺杂的LaFeO3气敏材料进行表征如下:
(1)XRD:通过Rigaku D/max-Ra型X射线衍射仪对制备的样品进行了表面物相分析,测试参数如下:采用CuKα射线源,使用波长为λ=0.15418,测试电压50kV,测试电流250mA,测试速度为4deg/min,选择测试范围为10°~80°。对样品测试取得的XRD数据使用jade软件进行分析。
(2)扫描:使用日立公司生产的S-4800型场发射电子扫描显微镜对样品微观表面形貌进行观察和拍摄。
(3)EDS:使用Genesis Xm2EDAX来获得并分析的。
(4)氮吸附:通过Quantachrome AsiQOV002-4对样品进行了氮吸附测试。吸附试验实验Gemini VII表面积和孔分布系统,在-196℃下进行。利用氮吸附得到的平衡曲线,分布采用Brunauer–Emmett–Teller(BET)和Barrett–Joyner–Halenda(BJH)方法分析材料的比表面积以及孔分布。
(5)气敏性能测试:使用中科微纳物联网技术有限公司研发的多功能精密传感器测试仪(NS-4003系列)对甲醇、乙醇、丙酮蒸汽进行测试。
将制备的PMMA微球模板,在扫描电子显微镜(S4800型)下进行观察,从附图2中可以看到模板成型三维长程有序性,并且PMMA微球平均粒径可达200—500nm。经过焙烧后得到的金属镁掺杂的LaFeO3在电子扫描显微镜下观察如图3,制得的金属镁掺杂的LaFeO3呈现三维长程有序大孔结构,孔内部联通,平均孔径可达180—260nm。
对制得的金属镁掺杂的LaFeO3进行XRD物相分析,得到XRD图谱如图4中所示,在经过焙烧之后,所得样品均呈现为钙钛矿型的四方结构,每一个峰都对完美应于JCPDS卡片中No.88-0641所对应的LaFeO3峰位,并且没有出现其他杂峰,这说明使用本方法制得的样品为纯LaFeO3相。Mg2+在制得样品中以二价形式存在,顺利掺入材料中。
比表面积是影响材料气敏性能的另一个重要因素,对材料进行氮吸附测试,得到材料的比表面积及孔分布如图5所示,本发明制备的三维长程有序大孔LaFeO3具有最大的比表面积,可达18—30m2/g。
对三维长程有序大孔金属镁掺杂的LaFeO3进行气敏性能测试,如附图6—9所示,在190℃是,材料表现出最高的响应为146,其中Sref为无模板时制得材料对气体的响应,一方面说明三维有序大孔结构有利于提高材料的气敏性能,另一方面说明,较小的孔,较大的比表面积可以得到更好的气敏性能。随着甲醇浓度的增大,材料的响应也随着增大。而对不同气体的响应则体现了材料的选择特异性,材料对甲醇的响应要远高于对乙醇和丙酮的响应,说明材料具有良好的选择性。材料在气敏响应过程中电子的动态变化,可以看出,经过三个循环,材料的性能依旧很好得到保持,稳定性较好。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (6)

1.镁掺杂三维有序大孔铁酸镧气敏材料,其特征在于,铁酸镧气敏材料为钙钛矿型的LaFeO3,金属镁以二价离子的形式掺入铁酸镧气敏材料中,铁酸镧气敏材料平均孔径可达180—260nm,比表面积可达18—30m2/g,按照下述步骤进行制备:
步骤1,将La(NO3)3·6H2O、Mg(NO3)2和Fe(NO3)3·9H2O固体粉末溶于乙二醇中,再向乙二醇中加入甲醇,形成最终的金属醇溶液,其中所述乙二醇和甲醇的体积比为2:3,所述金属镧、金属镁和金属铁摩尔比满足(1—x):x:1,x大于0且小于1,例如0.02—0.15,所述金属镧、金属镁和金属铁的总量为1M;
步骤2,选择将聚甲基丙烯酸甲酯微球作为模板,浸渍到步骤1制备的金属醇溶液中,待浸渍后对体系进行抽滤处理,将留存在滤纸上的物质在室温20—25摄氏度下进行干燥;
步骤3,将经过步骤2处理的物质进行焙烧,自室温20—25摄氏度升温至550—600℃保温1—6h后自然冷却至室温20—25摄氏度,控制升温速度1—2℃/min,以保证PMMA微球模板的去除和铁酸镧的结晶。
2.根据权利要求1所述的镁掺杂三维有序大孔铁酸镧气敏材料,其特征在于,所述聚甲基丙烯酸甲酯微球为单分散的纳米级微球,微球粒径为200nm—500nm。
3.根据权利要求1所述的镁掺杂三维有序大孔铁酸镧气敏材料,其特征在于,浸渍条件下室温20—25摄氏度下浸渍1—6h。
4.镁掺杂三维有序大孔铁酸镧气敏材料的制备方法,其特征在于,按照下述步骤进行制备:
步骤1,将La(NO3)3·6H2O、Mg(NO3)2和Fe(NO3)3·9H2O固体粉末溶于乙二醇中,再向乙二醇中加入甲醇,形成最终的金属醇溶液,其中所述乙二醇和甲醇的体积比为2:3,所述金属镧、金属镁和金属铁摩尔比满足(1—x):x:1,x大于0且小于1,例如0.02—0.15,所述金属镧、金属镁和金属铁的总量为1M;
步骤2,选择将聚甲基丙烯酸甲酯微球作为模板,浸渍到步骤1制备的金属醇溶液中,待浸渍后对体系进行抽滤处理,将留存在滤纸上的物质在室温20—25摄氏度下进行干燥;
步骤3,将经过步骤2处理的物质进行焙烧,自室温20—25摄氏度升温至550—600℃保温1—6h后自然冷却至室温20—25摄氏度,控制升温速度1—2℃/min,以保证PMMA微球模板的去除和铁酸镧的结晶。
5.根据权利要求4所述的镁掺杂三维有序大孔铁酸镧气敏材料的制备方法,其特征在于,所述聚甲基丙烯酸甲酯微球为单分散的纳米级微球,微球粒径为200nm—500nm。
6.根据权利要求4所述的镁掺杂三维有序大孔铁酸镧气敏材料的制备方法,其特征在于,浸渍条件下室温20—25摄氏度下浸渍1—6h。
CN201410619248.6A 2014-11-05 2014-11-05 镁掺杂三维有序大孔铁酸镧气敏材料及其制备方法 Pending CN104478000A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410619248.6A CN104478000A (zh) 2014-11-05 2014-11-05 镁掺杂三维有序大孔铁酸镧气敏材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410619248.6A CN104478000A (zh) 2014-11-05 2014-11-05 镁掺杂三维有序大孔铁酸镧气敏材料及其制备方法

Publications (1)

Publication Number Publication Date
CN104478000A true CN104478000A (zh) 2015-04-01

Family

ID=52752644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410619248.6A Pending CN104478000A (zh) 2014-11-05 2014-11-05 镁掺杂三维有序大孔铁酸镧气敏材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104478000A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152337A (zh) * 2017-12-19 2018-06-12 太原理工大学 一种高气敏性能的LaFeO3基乙醇气体传感器及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631525A (zh) * 2004-11-16 2005-06-29 燕山大学 铁酸镧/锂纳米复合粉体光催化剂及其制备工艺
CN101318708A (zh) * 2008-07-23 2008-12-10 黑龙江大学 以介孔二氧化硅为模板合成高比表面积纳米铁酸镧的方法
CN101746834A (zh) * 2009-12-19 2010-06-23 山西大学 钙钛矿型复合氧化物La1-xCaxFeO3超细粉末的制备方法
CN101852754A (zh) * 2010-05-14 2010-10-06 云南大学 一种掺杂铁酸镧甲醛气敏材料及其制备方法
CN101857275A (zh) * 2010-05-19 2010-10-13 北京化工大学 镁掺杂铁酸镧气敏材料及其制备方法和用途
CN102408132A (zh) * 2011-08-12 2012-04-11 湖州师范学院 一种微波法制备铁酸镧纳米粉体的方法
CN103553140A (zh) * 2013-10-14 2014-02-05 济南大学 一种铁酸镧纳米盘的制备方法
CN103922415A (zh) * 2013-01-10 2014-07-16 兰州大学 一种掺杂钯的铁酸镧粉末的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631525A (zh) * 2004-11-16 2005-06-29 燕山大学 铁酸镧/锂纳米复合粉体光催化剂及其制备工艺
CN101318708A (zh) * 2008-07-23 2008-12-10 黑龙江大学 以介孔二氧化硅为模板合成高比表面积纳米铁酸镧的方法
CN101746834A (zh) * 2009-12-19 2010-06-23 山西大学 钙钛矿型复合氧化物La1-xCaxFeO3超细粉末的制备方法
CN101852754A (zh) * 2010-05-14 2010-10-06 云南大学 一种掺杂铁酸镧甲醛气敏材料及其制备方法
CN101857275A (zh) * 2010-05-19 2010-10-13 北京化工大学 镁掺杂铁酸镧气敏材料及其制备方法和用途
CN102408132A (zh) * 2011-08-12 2012-04-11 湖州师范学院 一种微波法制备铁酸镧纳米粉体的方法
CN103922415A (zh) * 2013-01-10 2014-07-16 兰州大学 一种掺杂钯的铁酸镧粉末的制备方法
CN103553140A (zh) * 2013-10-14 2014-02-05 济南大学 一种铁酸镧纳米盘的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAHIRO SADAKANE, ET AL.: ""Preparation of three-dimensionally ordered macroporous perovskite-type lanthanum-iron-oxide LaFeO3 with tunable pore diameters_ high porosity and photonic property"", 《JOURNAL OF SOLID STATE CHEMISTRY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152337A (zh) * 2017-12-19 2018-06-12 太原理工大学 一种高气敏性能的LaFeO3基乙醇气体传感器及其制备方法
CN108152337B (zh) * 2017-12-19 2020-06-02 太原理工大学 一种高气敏性能的LaFeO3基乙醇气体传感器及其制备方法

Similar Documents

Publication Publication Date Title
Qin et al. Synthesis of three-dimensionally ordered macroporous LaFeO3 with enhanced methanol gas sensing properties
CN105301062B (zh) 一种基于分级多孔wo3微米球的气体传感器及其制备方法
CN105609322B (zh) 一种硒化钴/氮掺杂碳复合材料及其制备方法和应用
Tomer et al. A facile nanocasting synthesis of mesoporous Ag-doped SnO2 nanostructures with enhanced humidity sensing performance
Xiao et al. 3D hierarchical Co3O4 twin‐spheres with an urchin‐like structure: large‐scale synthesis, multistep‐splitting growth, and electrochemical pseudocapacitors
Chen et al. Templated synthesis of hierarchically porous manganese oxide with a crystalline nanorod framework and its high electrochemical performance
CN106596656B (zh) 一种基于mof模板法合成的二氧化钛负载三氧化二铁纳米异质结构的气敏元件
Rong et al. Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core–shell and cage structures
CN104150525B (zh) 氧化物多孔材料及其普适性制备方法
CN109903999A (zh) 一种Ti3C2/NiCo2O4复合电极材料及其制备方法
CN108080000A (zh) 一种中空多孔微球催化材料及其制备方法和降解no应用
CN103342388A (zh) 一种α型氧化钼纳米棒气敏材料及其制备方法和应用
CN103641165B (zh) 一种以天然矿物为模板制备二氧化钛纳米管的方法
Wu et al. Hydrothermal synthesis of SnO2 nanocorals, nanofragments and nanograss and their formaldehyde gas-sensing properties
CN110015698B (zh) 一种花状铝掺杂四氧化三钴及其制备方法与应用
CN106167274B (zh) 一种具有多孔结构的氧化铟纳米颗粒的制备方法
CN103553140A (zh) 一种铁酸镧纳米盘的制备方法
Wu et al. Synthesis and characterization of aerogel-like mesoporous nickel oxide for electrochemical supercapacitors
Nethaji et al. V-Ag doped ZnO nanorod as high-performance electrode material for supercapacitors with enhanced specific capacitance and cycling stability
CN105129858B (zh) 一种蜂窝状分级结构纳米二氧化锰及其制备方法
CN101342491B (zh) 球形高压耐硫变换催化剂的制备
Bai et al. Sonochemical synthesis of hierarchically assembled tungsten oxides with excellent NO2-sensing properties
CN106964362A (zh) 金属钼酸盐/碳复合纳米纤维及其制备方法以及复合材料及其应用
CN101979327B (zh) 一种钙钛矿型氧化物LaMnO3空心球的制备方法
CN104478000A (zh) 镁掺杂三维有序大孔铁酸镧气敏材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150401