CN104465793A - 肖特基势垒二极管和用于制造肖特基势垒二极管的方法 - Google Patents

肖特基势垒二极管和用于制造肖特基势垒二极管的方法 Download PDF

Info

Publication number
CN104465793A
CN104465793A CN201310757126.9A CN201310757126A CN104465793A CN 104465793 A CN104465793 A CN 104465793A CN 201310757126 A CN201310757126 A CN 201310757126A CN 104465793 A CN104465793 A CN 104465793A
Authority
CN
China
Prior art keywords
type epitaxial
epitaxial loayer
schottky electrode
cylindrical portion
schottky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310757126.9A
Other languages
English (en)
Other versions
CN104465793B (zh
Inventor
郑永均
千大焕
洪坰国
李钟锡
朴正熙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Original Assignee
Hyundai Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co filed Critical Hyundai Motor Co
Publication of CN104465793A publication Critical patent/CN104465793A/zh
Application granted granted Critical
Publication of CN104465793B publication Critical patent/CN104465793B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供一种肖特基势垒二极管及制造肖特基势垒二极管的方法。该二极管包括:设置在n+型碳化硅衬底的第一表面上的n-型外延层;和设置在上述n-型外延层内的多个p+区域。n+型外延层设置在上述n-型外延层上,肖特基电极设置在上述n+型外延层上,欧姆电极设置在上述n+型碳化硅衬底的第二表面上。上述n+型外延层包括设置在上述n-型外延层上的多个柱形部和设置在上述柱形部之间且露出上述p+区域的多个开口。每个柱形部包括接触上述n-型外延层的大致直线部、和从上述大致直线部延伸的大致曲线部。

Description

肖特基势垒二极管和用于制造肖特基势垒二极管的方法
技术领域
本发明涉及一种包括碳化硅(SiC)的肖特基势垒二极管和用于制造该肖特基势垒二极管的方法。
背景技术
利用肖特基结的肖特基势垒二极管(SBD:Schottky Barrier Diode),与常规的P-N二极管不同,其中金属与半导体形成一结(iunction),而不利用P-N结,这种SBD表现出快速的开关特性,而且与P-N二极管相比具有更低的导通电压特性。
常规的肖特基势垒二极管利用p+区域形成在肖特基结部的下端的结型势垒肖特基(JBS:Junction Barrier Schottky)结构,以降低漏电流,由此通过使在施加反向电压时扩散的P-N结耗尽层重叠,获得阻断漏电流的效果,并提高击穿电压。然而,由于在肖特基结部存在p+区域,作为正向电流路径的肖特基电极与n-外延层或n-漂移层之间的接触面积减小,导致电阻值升高,并且当施加正向电压时,肖特基势垒二极管的导通电阻升高。
本章节公开的上述信息仅仅用于增强对本发明的背景技术的理解,因此其可能包含不构成本国本领域技术人员所已知的现有技术的信息。
发明内容
本发明提供一种肖特基势垒二极管,其中通过增加肖特基结面积,在施加正向电压时,降低导通电阻。
本发明的一示例性实施例提供一种肖特基势垒二极管,该肖特基势垒二极管可以包括:设置在n+型碳化硅衬底的第一表面上的n-型外延层;设置在上述n-型外延层内的多个p+区域;设置在上述n-型外延层上的n+型外延层;设置在上述n+型外延层上的肖特基电极;以及设置在上述n+型碳化硅衬底的第二表面上的欧姆电极,其中上述n+型外延层可以包括设置在上述n-型外延层上的多个柱形部和设置在上述柱形部之间的开口,上述开口可以露出上述p+区域,并且每个柱形部可以包括接触上述n-型外延层的大致直线部、和从上述大致直线部延伸的大致曲线部。
上述肖特基电极可以包括:设置在柱形部上并且接触上述柱形部的上述大致曲线部的第一肖特基电极;以及从上述第一肖特基电极突出的第二肖特基电极。上述第二肖特基电极可以设置在上述n+型外延层的开口中,上述第二肖特基电极的下端可以接触上述p+区域。上述第二肖特基电极的侧面可以接触柱形部的上述大致直线部。
本发明的另一示例性实施例提供一种制造肖特基势垒二极管的方法,该方法可以包括:在n+型碳化硅衬底的第一表面上,形成n-型外延层的步骤;通过向上述n-型外延层的表面的一部分中注入p+离子,形成多个p+区域的步骤;在上述n-型外延层和上述p+区域上,形成氧化层的步骤;通过刻蚀上述氧化层,形成可以露出上述n-型外延层的一部分的第一氧化层图案的步骤;在上述氧化层图案之间和上述氧化层图案上,形成预备(备用)n+型外延层的步骤;通过去除设置在上述氧化层图案上的上述预备n+型外延层,在上述氧化层图案之间形成预备n+型外延层图案的步骤;通过去除上述氧化层图案并且刻蚀上述预备n+型外延层图案的上部,形成n+型外延层的步骤;在上述n+型外延层上,形成肖特基电极的步骤;以及在上述n+型碳化硅衬底的第二表面上,形成欧姆电极的步骤。
而且,上述n+型外延层可以包括设置在上述n-型外延层上的多个柱形部、和设置在上述柱形部之间且露出上述p+区域的多个开口。每个柱形部可以包括接触上述n-型外延层的大致直线部、和从上述大致直线部延伸的大致曲线部。上述开口可以通过去除上述氧化层图案而形成,上述柱形部可以通过刻蚀上述预备n+型外延层图案的上部而形成。上述形成肖特基电极的步骤可以包括:在上述柱形部上和上述开口中形成肖特基电极的步骤。上述氧化层图案的上表面的高度约等于上述预备n+型外延层图案的上表面的高度。
根据本发明的示例性实施例,上述n+外延层可以包括柱形部和开口,而且上述肖特基电极可以设置在柱形部上和开口中,以增加肖特基结面积,由此能降低施加正向电压时的导通电阻。因此,能够提高肖特基势垒二极管的电流密度。
附图说明
图1是本发明的示例性实施例的肖特基势垒二极管的示例性截面图。
图2至图9是本发明的示例性实施例的用于制造肖特基势垒二极管的方法的示例图。
附图标记
100:n+型碳化硅衬底
200:n-型外延层
300:p+区域
310:氧化层
400:n+型外延层
410:柱形部
411:直线部
412:曲线部
420:开口
500:肖特基电极
510:第一肖特基电极
520:第二肖特基电极
600:欧姆电极
具体实施方式
本文使用的术语仅仅是为了说明示例性实施例的目的而不是意在限制本发明。如本文所使用的,单数形式“一个、一种(a、an和the)”也意在包括复数形式,除非上下文中清楚指明。还可以理解的是,在说明书中使用的术语“包括(comprises和/或comprising)”是指存在所述特征、整数(Integer,整体)、步骤、操作、元件和/或部件,但是不排除存在或添加一个或多个其它特征、整数、步骤、操作、元件、部件和/或其群组。如本文所使用的,术语“和/或”包括一个或多个相关所列项目的任何和所有组合。
如本文所使用的,除非特别声明或从上下文中明显看出,术语“大约(about)”应理解为处于本领域的正常公差范围内,例如在平均值的2个标准差内。“大约”可理解为在标注值(stated value)的10%,9%,8%,7%,6%,5%,4%,3%,2%,1%,0.5%,0.1%,0.05%,或0.01%内。除非从上下文中另外明确地看出,否则本文所提供的所有数值被术语“大约”修饰(限制)。
在下文中,将参考附图,对本发明的示例性实施例进行详细描述。本领域技术人员可以理解,所描述的示例性实施例可以以各种方式进行修改,而均不脱离本发明的精神或范围。相反,本文介绍的示例性实施例是为了使所公开内容详尽和完整,并且向本领域技术人员充分传达本发明的精神。
在附图中,为了清楚起见,夸大表示了层、薄膜、板、区域等的厚度。应当理解,当提及一个层在另一个层或衬底“上”时,该层可以直接位于该另一个层或衬底上,也可以与该另一个层或衬底隔开(间接地在该另一个层之上)。说明书全文中,相同的附图标记指代相同的元件。
图1是本发明的示例性实施例的肖特基势垒二极管的示例性截面图。参考图1,在肖特基势垒二极管中,n-型外延层200可设置在一n+型碳化硅衬底100的第一表面上,多个p+区域300可设置在n-型外延层200内。浓度高于n-型外延层200的n+型外延层400可设置在n-型外延层200上,肖特基电极500可设置在p+区域300和n+型外延层400上。欧姆电极600可设置在n+型碳化硅衬底100的第二表面上。
n+型外延层400可包括多个柱形部(pillar part)400(例如,突出部)和多个开口420(例如,凹进部),该开口420可以设置在柱形部410之间,并且可以露出p+区域300。每个柱形部410可包括可以与n-型外延层200接触的大致直线部411(例如,突出部的侧面可以为大致直线)和可从大致直线部411延伸的大致曲线部412(例如,突出部的一端可以为大致凸形(convex shape))。大致曲线部412可以为突出状。柱形部410之间的间隔可以大致(substantially)与p+区域300的宽度相等。
肖特基电极500可包括第一肖特基电极510和从该第一肖特基电极510突出的第二肖特基电极520。第一肖特基电极510可与n+型外延层400的每个柱形部410的大致曲线部412接触。第二肖特基电极520可设置在n+型外延层400的每个开口420中,第二肖特基电极520的下端可接触p+区域300。而且,由于第二肖特基电极520可设置在n+型外延层400的每个开口420中,因此第二肖特基电极520的侧面可接触n+型外延层400的每个柱形部410的大致直线部411。
换句话说,第一肖特基电极510可接触n+型外延层400的每个柱形部410的大致曲线部412,第二肖特基电极520可接触n+型外延层400的每个柱形部410的大致直线部411,因此与现有技术相比,肖特基结面积得以增大。因此,当施加正向电压时,导通电阻降低,从而提高了肖特基势垒二极管的电流密度。而且,在施加反向偏置电压时,在p+区域300之间可形成耗尽层,从而降低漏电流。
再者,参考图1和图2至图9,详细描述本发明的示例性实施例的制造肖特基势垒二极管的方法。图2至图9是本发明的示例性实施例的用于制造肖特基势垒二极管的方法。
参考图2,可准备n+型碳化硅衬底100,并且通过第一外延生长,在n+型碳化硅衬底100的第一表面上形成n-型外延层200。参考图3,可将p+离子注入n-型外延层200的表面的某些部分,形成多个p+区域300(例如,未将p+离子注入n型外延层的整个表面)。参考图4,在该n-型外延层200和p+区域300上形成氧化层310。在这个结构中,氧化层310可用其它容易刻蚀的材料替换。
参考图5,可通过刻蚀氧化层310,形成氧化层图案320,其中该氧化层图案320可露出n-型外延层200的一部分。换句话说,氧化层图案320可设置在p+区域300上。参考图6,预备n+型外延层400a可通过第二外延生长,形成在氧化层图案320之间的n-型外延层200上。该预备n+型外延层400a可设置在氧化层图案320之间,也可以设置在氧化层图案320上。参考图7,通过去除氧化层图案320上的第一预备n+型外延层400a,可在氧化层图案320之间形成预备n+型外延层图案400b。具体而言,该预备n+型外延层图案400b的上表面的高度可约等于氧化层图案320的上表面的高度。参考图8,通过去除氧化层图案320,可形成可露出p+区域300的多个开口420。每个开口420可设置在预备n+型外延层图案400b之间。
参考图9,可通过回蚀工艺(etch back process)刻蚀预备n+型外延层图案400b的上部,从而形成突出的预备n+型外延层图案400b的上部,形成可包括大致直线部411和从该大致直线部411延伸的大致曲线部412的柱形部410。具体而言,该柱形部410和设置在该柱形部410之间的开口420可形成n+型外延层400。n+型外延层400的柱形部410可设置在n-型外延层200上,n+型外延层400的柱形部410的大致直线部411可接触n-型外延层200。这样,n+型外延层400的开口420无需刻蚀n+型外延层400就可以形成。
如图1所示,在n+型外延层400的柱形部410上和n+型外延层400的开口420中,可形成肖特基电极500而且在n+型碳化硅衬底100的第二表面上可形成欧姆电极600。肖特基电极500可包括第一肖特基电极510和从该第一肖特基电极510突出的第二肖特基电极520。第一肖特基电极510可接触n+型外延层400的每个柱形部410的大致曲线部412。第二肖特基电极520可设置在n+型外延层400的开口420中,第二肖特基电极520的下端可接触p+区域300,而且第二肖特基电极520的侧面可接触n+型外延层400的每个柱形部410的大致直线部411。
虽然本发明结合目前被认为是示例性实施例的实施例进行了描述,但应当理解,本发明并不限于所公开的实施例,而相反,其意在覆盖在包括在所附权利要求的精神和范围内的各种修改和等同配置。

Claims (11)

1.一种肖特基势垒二极管,其特征在于,包括:
设置在n+型碳化硅衬底的第一表面上的n-型外延层;
设置在所述n-型外延层内的多个p+区域;
设置在所述n-型外延层上的n+型外延层;
设置在所述n+型外延层上的肖特基电极;以及
设置在所述n+型碳化硅衬底的第二表面上的欧姆电极,其中
所述n+型外延层包括设置在所述n-型外延层上的多个柱形部和设置在所述柱形部之间的多个开口,
所述多个开口露出所述p+区域,并且
每个柱形部包括接触所述n-型外延层的大致直线部、和从所述大致直线部延伸的大致曲线部。
2.如权利要求1所述的肖特基势垒二极管,其特征在于,所述肖特基电极包括:
设置在每个柱形部上并且接触每个柱形部的所述大致曲线部的第一肖特基电极;以及
从所述第一肖特基电极突出的第二肖特基电极。
3.如权利要求2所述的肖特基势垒二极管,其特征在于:
所述第二肖特基电极设置在每个开口中,所述第二肖特基电极的下端接触所述p+区域。
4.如权利要求3所述的肖特基势垒二极管,其特征在于:
所述第二肖特基电极的一侧接触每个柱形部的所述大致直线部。
5.一种制造肖特基势垒二极管的方法,其特征在于,包括:
在n+型碳化硅衬底的第一表面上,形成n-型外延层的步骤;
通过向所述n-型外延层的表面的一部分中注入p+离子,形成多个p+区域的步骤;
在所述n-型外延层和所述p+区域上,形成氧化层的步骤;
通过刻蚀所述氧化层,形成第一氧化层图案的步骤,其中所述第一氧化层图案露出所述n-型外延层的一部分;
在所述氧化层图案之间和所述氧化层图案上,形成预备n+型外延层的步骤;
通过去除设置在所述氧化层图案上的所述预备n+型外延层,在所述氧化层图案之间,形成预备n+型外延层图案的步骤;
通过去除所述氧化层图案并且刻蚀所述预备n+型外延层图案的上部,形成n+型外延层的步骤;
在所述n+型外延层上,形成肖特基电极的步骤;以及
在所述n+型碳化硅衬底的第二表面上,形成欧姆电极的步骤,其中
所述n+型外延层包括设置在所述n-型外延层上的多个柱形部、和设置在所述柱形部之间且露出所述p+区域的多个开口,并且
每个柱形部包括接触所述n-型外延层的大致直线部、和从所述大致直线部延伸的大致曲线部。
6.如权利要求5所述的方法,其特征在于:
所述开口通过去除所述氧化层图案而形成,所述柱形部通过刻蚀所述预备n+型外延层图案的上部而形成。
7.如权利要求6所述的方法,其特征在于,所述形成肖特基电极的步骤包括:
在每个柱形部上和每个开口中形成肖特基电极的步骤。
8.如权利要求7所述的方法,其特征在于,所述肖特基电极包括:
设置在每个柱形部上且接触所述大致曲线部的第一肖特基电极;以及
从所述第一肖特基电极突出的第二肖特基电极。
9.如权利要求8所述的方法,其特征在于:
所述第二肖特基电极设置在每个开口中,所述第二肖特基电极的下端接触所述p+区域。
10.如权利要求9所述的方法,其特征在于:
所述第二肖特基电极的一侧接触每个柱形部的所述大致直线部。
11.如权利要求10所述的方法,其特征在于:
所述氧化层图案的上表面的高度约等于所述预备n+型外延层图案的上表面的高度。
CN201310757126.9A 2013-09-13 2013-12-27 肖特基势垒二极管和用于制造肖特基势垒二极管的方法 Active CN104465793B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130110672A KR101490937B1 (ko) 2013-09-13 2013-09-13 쇼트키 배리어 다이오드 및 그 제조 방법
KR10-2013-0110672 2013-09-13

Publications (2)

Publication Number Publication Date
CN104465793A true CN104465793A (zh) 2015-03-25
CN104465793B CN104465793B (zh) 2019-03-01

Family

ID=52579814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310757126.9A Active CN104465793B (zh) 2013-09-13 2013-12-27 肖特基势垒二极管和用于制造肖特基势垒二极管的方法

Country Status (4)

Country Link
US (1) US9006746B2 (zh)
KR (1) KR101490937B1 (zh)
CN (1) CN104465793B (zh)
DE (1) DE102013114807B4 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579121A (zh) * 2016-07-05 2018-01-12 现代自动车株式会社 肖特基势垒二极管及其制造方法
CN113130624A (zh) * 2021-03-26 2021-07-16 先之科半导体科技(东莞)有限公司 一种低损耗肖特基整流管及其成型工艺
CN113130625A (zh) * 2021-03-26 2021-07-16 先之科半导体科技(东莞)有限公司 一种高压快速的碳化硅二极管及其生产方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265274B2 (ja) * 2014-09-17 2018-01-24 富士電機株式会社 半導体装置
US9368650B1 (en) * 2015-07-16 2016-06-14 Hestia Power Inc. SiC junction barrier controlled schottky rectifier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060255423A1 (en) * 2005-05-11 2006-11-16 Sei-Hyung Ryu Silicon carbide junction barrier schottky diodes with supressed minority carrier injection
CN102738213A (zh) * 2011-04-06 2012-10-17 罗姆股份有限公司 半导体装置
CN102779858A (zh) * 2012-07-30 2012-11-14 江苏能华微电子科技发展有限公司 一种功率二极管器件及其制备方法
US20120319132A1 (en) * 2011-06-16 2012-12-20 Alpha And Omega Semiconductor Incorporated Split-gate structure in trench-based silicon carbide power device
US20130112991A1 (en) * 2011-11-07 2013-05-09 Hyundai Motor Company Silicon carbide schottky-barrier diode device and method for manufacturing the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719409A (en) * 1996-06-06 1998-02-17 Cree Research, Inc. Silicon carbide metal-insulator semiconductor field effect transistor
US6184564B1 (en) * 1998-12-28 2001-02-06 International Rectifier Corp. Schottky diode with adjusted barrier height and process for its manufacture
US6404033B1 (en) * 1999-04-01 2002-06-11 Apd Semiconductor, Inc. Schottky diode having increased active surface area with improved reverse bias characteristics and method of fabrication
US7186609B2 (en) * 1999-12-30 2007-03-06 Siliconix Incorporated Method of fabricating trench junction barrier rectifier
JP2001289881A (ja) 2000-04-04 2001-10-19 Shimadzu Corp ピーク検出方法
FR2816113A1 (fr) * 2000-10-31 2002-05-03 St Microelectronics Sa Procede de realisation d'une zone dopee dans du carbure de silicium et application a une diode schottky
KR100373219B1 (ko) * 2000-11-13 2003-02-25 주식회사 케이이씨 쇼트키 베리어 다이오드 및 그 제조방법
JP4831272B2 (ja) 2001-03-26 2011-12-07 株式会社デンソー 半導体装置の製造方法
US6855970B2 (en) * 2002-03-25 2005-02-15 Kabushiki Kaisha Toshiba High-breakdown-voltage semiconductor device
US7187021B2 (en) * 2003-12-10 2007-03-06 General Electric Company Static induction transistor
JP2005229071A (ja) * 2004-02-16 2005-08-25 Matsushita Electric Ind Co Ltd ショットキーバリアダイオード
KR20130049916A (ko) * 2011-11-07 2013-05-15 현대자동차주식회사 실리콘 카바이드 쇼트키 베리어 다이오드 및 이의 제조방법
KR20130110672A (ko) 2012-03-30 2013-10-10 고요한 큐알 코드 우표
JP2014120685A (ja) * 2012-12-18 2014-06-30 Toshiba Corp 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060255423A1 (en) * 2005-05-11 2006-11-16 Sei-Hyung Ryu Silicon carbide junction barrier schottky diodes with supressed minority carrier injection
CN102738213A (zh) * 2011-04-06 2012-10-17 罗姆股份有限公司 半导体装置
US20120319132A1 (en) * 2011-06-16 2012-12-20 Alpha And Omega Semiconductor Incorporated Split-gate structure in trench-based silicon carbide power device
US20130112991A1 (en) * 2011-11-07 2013-05-09 Hyundai Motor Company Silicon carbide schottky-barrier diode device and method for manufacturing the same
CN102779858A (zh) * 2012-07-30 2012-11-14 江苏能华微电子科技发展有限公司 一种功率二极管器件及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579121A (zh) * 2016-07-05 2018-01-12 现代自动车株式会社 肖特基势垒二极管及其制造方法
US10930797B2 (en) 2016-07-05 2021-02-23 Hyundai Motor Company, Ltd. Schottky barrier diode and method of manufacturing the same
CN107579121B (zh) * 2016-07-05 2021-05-28 现代自动车株式会社 肖特基势垒二极管及其制造方法
CN113130624A (zh) * 2021-03-26 2021-07-16 先之科半导体科技(东莞)有限公司 一种低损耗肖特基整流管及其成型工艺
CN113130625A (zh) * 2021-03-26 2021-07-16 先之科半导体科技(东莞)有限公司 一种高压快速的碳化硅二极管及其生产方法
CN113130625B (zh) * 2021-03-26 2021-11-12 先之科半导体科技(东莞)有限公司 一种高压快速的碳化硅二极管及其制备方法

Also Published As

Publication number Publication date
KR101490937B1 (ko) 2015-02-06
DE102013114807A1 (de) 2015-03-19
CN104465793B (zh) 2019-03-01
DE102013114807B4 (de) 2022-10-13
US20150076515A1 (en) 2015-03-19
US9006746B2 (en) 2015-04-14

Similar Documents

Publication Publication Date Title
US10937784B2 (en) Method of manufacturing a semiconductor device
JP4314277B2 (ja) SiCショットキー障壁半導体装置
US7863682B2 (en) SIC semiconductor having junction barrier Schottky diode
JP5550589B2 (ja) 半導体装置
JPH10335679A (ja) ダイオードとその製造方法
KR101416361B1 (ko) 쇼트키 배리어 다이오드 및 그 제조 방법
CN104465793A (zh) 肖特基势垒二极管和用于制造肖特基势垒二极管的方法
CN107579121B (zh) 肖特基势垒二极管及其制造方法
US9368649B2 (en) Schottky barrier diode and method of manufacturing the same
US20150287840A1 (en) Semiconductor device
JP2017195224A (ja) スイッチング素子
US10083956B2 (en) Semiconductor device
US9159847B2 (en) Schottky barrier diode and method of manufacturing the same
US11949025B2 (en) Wide band gap semiconductor electronic device having a junction-barrier Schottky diode
JP6077309B2 (ja) ダイオード及びダイオードを内蔵した半導体装置
US8502237B2 (en) Semiconductor rectifying device
US20210098579A1 (en) Schottky diode with high breakdown voltage and surge current capability using double p-type epitaxial layers
US11195957B2 (en) Schottky barrier diode
CN210272376U (zh) 半导体器件
JP2016167597A (ja) トレンチ・ショットキー・バリア・ショットキーダイオードを備える半導体装置
US11990553B2 (en) Merged PiN Schottky (MPS) diode and method of manufacturing the same
KR102145909B1 (ko) 전력 반도체 소자 및 이를 포함하는 전력 반도체 회로
CN218123418U (zh) 半导体结构
CN117790583A (zh) 碳化硅半导体装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant