CN104388894A - 脉冲激光沉积制备低带隙铁电光伏薄膜的方法 - Google Patents
脉冲激光沉积制备低带隙铁电光伏薄膜的方法 Download PDFInfo
- Publication number
- CN104388894A CN104388894A CN201410749275.5A CN201410749275A CN104388894A CN 104388894 A CN104388894 A CN 104388894A CN 201410749275 A CN201410749275 A CN 201410749275A CN 104388894 A CN104388894 A CN 104388894A
- Authority
- CN
- China
- Prior art keywords
- film
- low band
- pulsed laser
- band gaps
- sample table
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000004549 pulsed laser deposition Methods 0.000 title claims abstract description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims abstract description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000001301 oxygen Substances 0.000 claims abstract description 21
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 20
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000008367 deionised water Substances 0.000 claims abstract description 11
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000919 ceramic Substances 0.000 claims abstract description 4
- 238000004140 cleaning Methods 0.000 claims abstract description 3
- 239000010408 film Substances 0.000 claims description 47
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 12
- 229960000935 dehydrated alcohol Drugs 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 238000005477 sputtering target Methods 0.000 claims description 2
- 238000004804 winding Methods 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims 1
- 238000000427 thin-film deposition Methods 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 abstract description 2
- 239000004065 semiconductor Substances 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 238000000861 blow drying Methods 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 238000005240 physical vapour deposition Methods 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 239000013077 target material Substances 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 238000000151 deposition Methods 0.000 description 17
- 239000000463 material Substances 0.000 description 12
- 230000008021 deposition Effects 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000010748 Photoabsorption Effects 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000005621 ferroelectricity Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/088—Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3435—Applying energy to the substrate during sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/184—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
- H01L31/1844—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Physical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Abstract
本发明提供一种脉冲激光沉积制备低带隙铁电光伏薄膜的方法,具体步骤为:以Pt/Ti/SiO2/Si(100)作为衬底,依次用丙酮、无水乙醇、去离子水经超声波清洗器清洗10分钟,超声波工作频率40kHz,然后用氮气吹干后立即装入真空腔内,设定衬底温度为600~800℃、真空室氧压为0~5Pa、激光脉冲能量为100~500mJ、脉冲激光频率为1~20Hz,烧蚀陶瓷靶材得到低带隙薄膜产物。本发明为物理气相沉积法,其所选用的原料较少、经济、无污染,制备工艺简单、操作方便,易于生产,为开发基于铁电半导体的太阳能电池开辟了一种全新的途径。
Description
技术领域
本发明涉及一种脉冲激光沉积制备低带隙铁电光伏薄膜的方法。该方法采用脉冲激光沉积,一种物理气相沉积法,制备得到结晶性良好并且可吸收大部分可见光的低带隙铁电光伏薄膜,属于光伏材料与技术领域。
背景技术
作为铁电材料特征之一的自发极化在太阳能电池应用中具有巨大潜力,因为由光吸收产生的正电荷和负电荷(光生载流子)能在自发极化形成的内建电场作用下有效分离,这使得它们更容易被高效收集。但是,大多数已知的铁电材料都有比较宽的禁带,即它们只吸收构成太阳光谱一小部分的高能光子,例如目前被广泛研究的BiFeO3体系铁电光伏薄膜,最低带隙约为2.7eV,波长大于460nm的可见光都不能被其有效吸收。2013年,Ilya Grinberg等人采用常规的固态反应合成方法,利用廉价和无毒性的元素制成了单相氧化物固溶体[KNbO3]1-x[BaNi1/2Nb1/2O3-δ]x(Nature,503,509-512,DOI:10.1038/nature12622),这类氧化物既具有铁电性质,还表现出了变化范围在1.1~3.8eV的直接带隙。在x=0.1下,[KNbO3]1-x[BaNi1/2Nb1/2O3-δ]x的光电流密度比经典的铁电体(Pb,La)(Zr,Ti)O3材料大~50倍,光吸收能力比目前的铁电体材料高3至6倍。
到目前为止,尚未见文献报道制备(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1(以下简称为KBNNO)铁电光伏薄膜材料的方法,本发明创新性地利用脉冲激光沉积(PLD)法制备(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1(KBNNO)铁电光伏薄膜材料。通过控制脉冲激光能量、脉冲频率、沉积时间、沉积温度、沉积氧压等参数,在Pt/Ti/SiO2/Si(100)衬底上得到了结晶性良好的(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1(KBNNO)薄膜,并且通过调节沉积氧压对禁带宽度进行调控,得到低带隙的铁电薄膜,它可吸收绝大部分可见光,为提高太阳能电池的光电转换效率提供了可能。
发明内容
本发明提供脉冲激光沉积制备低带隙铁电光伏薄膜的方法,它是一种物理气相沉积法,即:脉冲激光沉积法。一方面其弥补了目前(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1(KBNNO)铁电光伏薄膜制备手段上的缺失,另一方面,相比于陶瓷块材,薄膜材料在太阳能电池器件中具有更为直接的用途。
本发明提供脉冲激光沉积制备低带隙铁电光伏薄膜的方法,包括以下步骤:
(1)将(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1(KBNNO)陶瓷靶材和清洗后的衬底分别固定在靶台和样品台上装入真空室,调整样品台与靶台间距;
(2)调节样品台加热器功率,升温并稳定在生长低带隙薄膜所需的温度值;
(3)通过调节氧气进气角阀和旁抽阀,使真空室中的氧气压强稳定在生长低带隙薄膜所需的氧压值;
(4)根据设计的实验方案设定激光器的工作模式为恒能模式,并选择所需的激光脉冲能量、激光脉冲频率等参数;
(5)先启动样品台和靶台的自转,再开激光器高压,激光预溅射靶材3分钟,然后旋开样品台的挡板,开始沉积薄膜,一定时间后停止沉积并关闭激光器,关闭氧气进气角阀后让样品自然冷却至室温后再取出真空室。
本发明的步骤(1)中选用的衬底为Pt/Ti/SiO2/Si(100)基片,依次用丙酮、无水乙醇、去离子水经超声波清洗器清洗10分钟,超声波清洗器工作频率40kHz,然后用氮气吹干后立即装入真空腔内,并调节样品台与靶台间距为30~60mm。
本发明的步骤(2)中衬底温度为600~800℃。
本发明的步骤(3)中真空室的氧压为0~5Pa。
本发明的步骤(4)中激光脉冲能量为100~500mJ,激光脉冲频率为1~20Hz。
本发明的有益效果为:
1、本发明方法为物理气相沉积法,其所选用的原料较少、经济、无污染,制备工艺简单、操作方便,易于生产。
2、本发明利用物理气相沉积法,即脉冲激光沉积法,制备得到低带隙(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1(KBNNO)铁电光伏薄膜。
3、确定适宜低带隙薄膜制备的各工艺参数,得到带隙约为1.5eV的低带隙(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1(KBNNO)铁电光伏薄膜材料。该材料带隙是现有铁电光伏薄膜材料报道中的最低值之一,它可吸收绝大部分可见光,而目前被广泛研究的BiFeO3体系铁电光伏薄膜,最低带隙约为2.7eV,波长大于460nm的可见光都不能被其有效吸收。本发明方法为开发基于铁电体半导体的太阳能电池提供了一种全新的光吸收材料的制备手段。
附图说明
图1为本发明方法所制备的低带隙(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1铁电光伏薄膜的X射线衍射(XRD)测试图谱;
图2为本发明方法所制备的低带隙(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1铁电光伏薄膜的吸收系数平方(α2)与入射光子能量(hν)关系曲线。
具体实施方式
实施例1
采用Pt/Ti/SiO2/Si(100)作为衬底,依次用丙酮、无水乙醇、去离子水经超声波清洗器清洗10分钟,超声波清洗器工作频率40kHz,然后用氮气吹干后立即装入真空腔内。设定靶台与样品台间距为30mm、衬底温度为600℃、真空室氧压为0Pa、激光脉冲能量为100mJ、脉冲激光频率为1Hz、样品台和靶台自转速度分别为10r/min和5r/min、沉积时间为10分钟条件下,制备得到低带隙(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1(KBNNO)铁电光伏薄膜。
实施例2
采用Pt/Ti/SiO2/Si(100)作为衬底,依次用丙酮、无水乙醇、去离子水经超声波清洗器清洗10分钟,超声波清洗器工作频率40kHz,然后用氮气吹干并立即装入真空腔内。设定靶台与样品台间距为30mm、衬底温度为700℃、真空室氧压为0.01Pa、激光脉冲能量为100mJ、脉冲激光频率为5Hz、样品台和靶台自转速度分别为10r/min和5r/min、沉积20分钟,制备得到低带隙(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1(KBNNO)铁电光伏薄膜。
实施例3
采用Pt/Ti/SiO2/Si(100)作为衬底,依次用丙酮、无水乙醇、去离子水经超声波清洗器清洗10分钟,超声波清洗器工作频率40kHz,然后用氮气吹干并立即装入真空腔内。设定靶台与样品台间距为55mm、衬底温度为700℃、真空室氧压为0Pa、激光脉冲能量为300mJ、脉冲激光频率为5Hz、样品台和靶台自转速度分别为10r/min和5r/min、沉积时间为20分钟条件下,制备得到(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1(KBNNO)铁电光伏薄膜。图2示出该薄膜吸收系数与入射光子能量关系曲线,从中可得知此KBNNO薄膜的禁带宽度(带隙)约为1.4eV,而目前被广泛研究的BiFeO3体系铁电光伏薄膜的最低带隙约为2.7eV,由此可知,本发明的KBNNO薄膜具有较窄的禁带宽度。
实施例4
采用Pt/Ti/SiO2/Si(100)作为衬底,依次用丙酮、无水乙醇、去离子水经超声波清洗器清洗10分钟,超声波清洗器工作频率40kHz,然后用氮气吹干并立即装入真空腔内。设定靶台与样品台间距为55mm、衬底温度为700℃、真空室氧压为0.1Pa、激光脉冲能量为300mJ、脉冲激光频率为5Hz、样品台和靶台自转速度分别为10r/min和5r/min、沉积时间为20分钟条件下,制备得到低带隙(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1(KBNNO)铁电光伏薄膜。对得到的薄膜进行XRD测试,结果如图1所示,表明该低带隙KBNNO铁电光伏薄膜具有正交钙钛矿结构,结晶性良好并沿(101)方向择优取向生长,良好的结晶性能为其铁电性研究和在光电领域应用提供了可能。该薄膜吸收系数平方与入射光子能量关系曲线如图2所示,从中可得出其带隙约为1.5eV。
实施例5
采用Pt/Ti/SiO2/Si(100)作为衬底,依次用丙酮、无水乙醇、去离子水经超声波清洗器清洗10分钟,超声波清洗器工作频率40kHz,然后用氮气吹干并立即装入真空腔内。设定靶台与样品台间距为55mm、衬底温度为700℃、真空室氧压为0.3Pa、激光脉冲能量为300mJ、脉冲激光频率为5Hz、样品台和靶台自转速度分别为10r/min和5r/min、沉积时间为20分钟条件下,制备(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1铁电光伏薄膜。所得到的薄膜结构如图1XRD图谱所示,该薄膜具有正交钙钛矿结构,结晶性良好并具有(101)择优取向;其禁带宽度可从图2所示的吸收系数平方与入射光子能量关系曲线得出,约为1.5eV。
实施例6
采用Pt/Ti/SiO2/Si(100)作为衬底,依次用丙酮、无水乙醇、去离子水经超声波清洗器清洗10分钟,超声波清洗器工作频率40kHz,然后用氮气吹干并立即装入真空腔内。设定靶台与样品台间距为55mm、衬底温度为700℃、真空室氧压为0.5Pa、激光脉冲能量为300mJ、脉冲激光频率为10Hz、样品台和靶台自转速度分别为10r/min和5r/min、沉积时间为60分钟条件下,制备得到低带隙(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1铁电光伏薄膜。所得到的薄膜结构如图1XRD图谱所示,该薄膜具有正交钙钛矿结构,结晶性良好并具有(101)择优取向;其禁带宽度可从图2所示的吸收系数平方与入射光子能量关系曲线得出,约为1.6eV。
实施例7
采用Pt/Ti/SiO2/Si(100)作为衬底,依次用丙酮、无水乙醇、去离子水经超声波清洗器清洗10分钟,超声波清洗器工作频率40kHz,然后用氮气吹干并立即装入真空腔内。设定靶台与样品台间距为60mm、衬底温度为800℃、真空室氧压为0.5Pa、激光脉冲能量为300mJ、脉冲激光频率为10Hz、样品台和靶台自转速度分别为10r/min和5r/min、沉积时间为60分钟条件下,制备得到低带隙(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1(KBNNO)铁电光伏薄膜。
实施例8
采用Pt/Ti/SiO2/Si(100)作为衬底,依次用丙酮、无水乙醇、去离子水经超声波清洗器清洗10分钟,超声波清洗器工作频率40kHz,然后用氮气吹干并立即装入真空腔内。设定靶台与样品台间距为60mm、衬底温度为800℃、真空室氧压为5Pa、激光脉冲能量为500mJ、脉冲激光频率为20Hz、样品台和靶台自转速度分别为10r/min和5r/min、沉积时间为100分钟条件下,制备得到低带隙(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1(KBNNO)铁电光伏薄膜材料。
Claims (5)
1.脉冲激光沉积制备低带隙铁电光伏薄膜的方法,其特征在于,包括以下步骤:
(1)将(KNbO3)0.9(BaNi0.5Nb0.5O3)0.1陶瓷靶材和清洗后的衬底分别固定在靶台和样品台上装入真空室,调整样品台与靶台间距;
(2)调节样品台加热器功率,升温并稳定在生长低带隙薄膜所需的衬底温度值;
(3)通过调节氧气进气角阀和旁抽阀,使真空室中的氧气压强稳定在生长低带隙薄膜所需的氧压值;
(4)设定激光器的工作模式为恒能模式,并选择所需的激光脉冲能量、激光脉冲频率参数;
(5)先启动样品台和靶台的自转,再开启激光器高压,激光预溅射靶材3分钟,然后旋开样品台的挡板,开始沉积薄膜,薄膜沉积结束后关闭激光器、氧气进气角阀,样品自然冷却至室温后再取出真空室。
2.根据权利要求1所述的脉冲激光沉积制备低带隙铁电光伏薄膜的方法,其特征在于,步骤(1)中,选用的衬底为Pt/Ti/SiO2/Si(100),将所述Pt/Ti/SiO2/Si(100)衬底依次用丙酮、无水乙醇、去离子水经超声波清洗器清洗10分钟,超声波清洗器工作频率40kHz,用氮气吹干衬底后立即装入真空腔内,并调节样品台与靶台间距为30~60mm。
3.根据权利要求1所述的脉冲激光沉积制备低带隙铁电光伏薄膜的方法,其特征在于,步骤(2)中,生长低带隙薄膜所需的衬底温度值为600~800℃。
4.根据权利要求1所述的脉冲激光沉积制备低带隙铁电光伏薄膜的方法,其特征在于,步骤(3)中,生长低带隙薄膜所需的氧压值为0~5Pa。
5.根据权利要求1所述的脉冲激光沉积制备低带隙铁电光伏薄膜的方法,其特征在于,步骤(4)中,激光脉冲能量为100~500mJ,激光脉冲频率为1~20Hz。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410749275.5A CN104388894B (zh) | 2014-12-09 | 2014-12-09 | 脉冲激光沉积制备低带隙铁电光伏薄膜的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410749275.5A CN104388894B (zh) | 2014-12-09 | 2014-12-09 | 脉冲激光沉积制备低带隙铁电光伏薄膜的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104388894A true CN104388894A (zh) | 2015-03-04 |
CN104388894B CN104388894B (zh) | 2018-09-21 |
Family
ID=52606849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410749275.5A Expired - Fee Related CN104388894B (zh) | 2014-12-09 | 2014-12-09 | 脉冲激光沉积制备低带隙铁电光伏薄膜的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104388894B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104868014A (zh) * | 2015-05-08 | 2015-08-26 | 哈尔滨工业大学 | 一种基于窄带隙铁电薄膜的光伏器件的制备方法 |
CN108365030A (zh) * | 2018-01-24 | 2018-08-03 | 湖北大学 | 一种三明治结构无铅铁电光伏器件及其制备方法 |
CN109809486A (zh) * | 2019-03-26 | 2019-05-28 | 暨南大学 | 一种向KNbO3钙钛矿中掺杂Ba和Ni离子的方法 |
CN112853278A (zh) * | 2019-11-12 | 2021-05-28 | 中国科学院微电子研究所 | 一种短脉冲激光沉积薄膜的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102796988A (zh) * | 2012-08-24 | 2012-11-28 | 广州金升阳科技有限公司 | 一种溅射法制备高度取向的CuInS2外延薄膜的方法 |
CN103387391A (zh) * | 2013-07-23 | 2013-11-13 | 武汉理工大学 | 采用水溶液凝胶法制备含钽/铌的叠层介电薄膜的方法 |
CN103882383A (zh) * | 2014-01-03 | 2014-06-25 | 华东师范大学 | 一种脉冲激光沉积制备Sb2Te3薄膜的方法 |
CN103938156A (zh) * | 2014-03-17 | 2014-07-23 | 华东师范大学 | 一种铕掺杂的铁酸铋薄膜及其制备方法和应用 |
-
2014
- 2014-12-09 CN CN201410749275.5A patent/CN104388894B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102796988A (zh) * | 2012-08-24 | 2012-11-28 | 广州金升阳科技有限公司 | 一种溅射法制备高度取向的CuInS2外延薄膜的方法 |
CN103387391A (zh) * | 2013-07-23 | 2013-11-13 | 武汉理工大学 | 采用水溶液凝胶法制备含钽/铌的叠层介电薄膜的方法 |
CN103882383A (zh) * | 2014-01-03 | 2014-06-25 | 华东师范大学 | 一种脉冲激光沉积制备Sb2Te3薄膜的方法 |
CN103938156A (zh) * | 2014-03-17 | 2014-07-23 | 华东师范大学 | 一种铕掺杂的铁酸铋薄膜及其制备方法和应用 |
Non-Patent Citations (1)
Title |
---|
ILYA GRINBERG ET AL: "Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials", 《NATURE》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104868014A (zh) * | 2015-05-08 | 2015-08-26 | 哈尔滨工业大学 | 一种基于窄带隙铁电薄膜的光伏器件的制备方法 |
CN108365030A (zh) * | 2018-01-24 | 2018-08-03 | 湖北大学 | 一种三明治结构无铅铁电光伏器件及其制备方法 |
CN109809486A (zh) * | 2019-03-26 | 2019-05-28 | 暨南大学 | 一种向KNbO3钙钛矿中掺杂Ba和Ni离子的方法 |
CN112853278A (zh) * | 2019-11-12 | 2021-05-28 | 中国科学院微电子研究所 | 一种短脉冲激光沉积薄膜的制备方法 |
CN112853278B (zh) * | 2019-11-12 | 2023-01-17 | 中国科学院微电子研究所 | 一种短脉冲激光沉积薄膜的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104388894B (zh) | 2018-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104388894A (zh) | 脉冲激光沉积制备低带隙铁电光伏薄膜的方法 | |
CN101661971B (zh) | 一种制备CuInSe2基薄膜太阳能电池光吸收层的方法 | |
CN103302917B (zh) | 一种双吸收层TiON耐候性光热涂层及其制备方法 | |
CN103060768A (zh) | 一种非晶硅薄膜的低温快速晶化方法 | |
CN103088295A (zh) | 一种巨红移高吸收钒镓共掺杂氧化钛薄膜的制备方法 | |
CN103762308A (zh) | 多态镓锑-硒化锡多层纳米复合相变材料及其制备和应用 | |
CN109545975B (zh) | 绒面均匀钙钛矿膜的液膜抑爬原位冷冻升华析晶制备方法 | |
CN103938156B (zh) | 一种铕掺杂的铁酸铋薄膜及其制备方法和应用 | |
CN102796988B (zh) | 一种溅射法制备高度取向的CuInS2外延薄膜的方法 | |
CN108085650A (zh) | 一种磁控溅射制备高质量铁酸铋铁电光伏薄膜的方法 | |
CN102214737A (zh) | 太阳能电池用化合物薄膜的制备方法 | |
EP4143363A1 (en) | Rapid hybrid chemical vapor deposition for perovskite solar modules | |
CN102544230A (zh) | 一种生长可变禁带宽度的Cd1-xZnxTe薄膜的方法 | |
CN103233202B (zh) | 一种利用脉冲激光沉积法制备CuInS2纳米棒的方法 | |
CN108269862A (zh) | 一种基于磁控溅射法的czts叠合吸收层及其制备方法 | |
CN101540345B (zh) | 纳米硅薄膜三叠层太阳电池及其制备方法 | |
CN104269461B (zh) | n型In2S3缓冲层的成膜方法及其应用 | |
CN1885595A (zh) | 一种可集成的全固态锂离子薄膜微电池正极的制备方法 | |
CN104975291A (zh) | 制备铁酸铋薄膜的装置、方法及制备太阳能电池的方法 | |
Baranov et al. | Synthesis of a-SiO x: H thin films by the gas-jet electron beam plasma chemical vapor deposition method | |
CN102492927B (zh) | 一种禁带宽度可调的碲锌镉薄膜材料的制备方法 | |
CN103114269B (zh) | 一种透明导电氧化物CuAlO2薄膜的制备方法 | |
CN110029308A (zh) | 一种铁酸铋光伏薄膜的制备方法及其制备的铁酸铋光伏薄膜 | |
CN103060758B (zh) | 纳米和微米硅薄膜的脉冲电子束沉积方法 | |
CN108365030A (zh) | 一种三明治结构无铅铁电光伏器件及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180921 Termination date: 20211209 |