CN104364223A - 透光性稀土类镓石榴石陶瓷及其制造方法以及法拉第旋光器 - Google Patents

透光性稀土类镓石榴石陶瓷及其制造方法以及法拉第旋光器 Download PDF

Info

Publication number
CN104364223A
CN104364223A CN201380030150.0A CN201380030150A CN104364223A CN 104364223 A CN104364223 A CN 104364223A CN 201380030150 A CN201380030150 A CN 201380030150A CN 104364223 A CN104364223 A CN 104364223A
Authority
CN
China
Prior art keywords
rare
pottery
earth
garnet
earth class
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380030150.0A
Other languages
English (en)
Other versions
CN104364223B (zh
Inventor
野泽星辉
八木秀喜
柳谷高公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Publication of CN104364223A publication Critical patent/CN104364223A/zh
Application granted granted Critical
Publication of CN104364223B publication Critical patent/CN104364223B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0036Magneto-optical materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/281Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2103/00Use of resin-bonded materials as moulding material
    • B29K2103/04Inorganic materials
    • B29K2103/06Metal powders, metal carbides or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明提供一种消光比和透光率较高的稀土类镓石榴石陶瓷。在该稀土类镓石榴石陶瓷中,作为烧结助剂,以金属换算计含有5massppm~500massppm的Ge,并且以金属换算计含有20massppm~250massppm的Al。

Description

透光性稀土类镓石榴石陶瓷及其制造方法以及法拉第旋光器
技术领域
本发明涉及透光性稀土类镓石榴石陶瓷、其制造方法、以及使用该陶瓷的法拉第旋光器(Faraday rotator),特别涉及提高陶瓷的消光比的技术。
背景技术
发明者等人正在开发由TGG(Tb3Ga5O12)等多晶石榴石陶瓷形成的法拉第旋光器。为此最初的课题是制作透光率较高的陶瓷,通过在TGG中添加以金属换算计为5~1000massppm(质量ppm)的Ge作为烧结助剂,成功地获得了1mm厚的试样在波长1500nm处为80.3%、在600nm处为78.5%等的直线透光率(专利文献1:JP4878343B)。
然而,法拉第旋光器不仅要求透光性高,还要求消光比也高,实用上要求30dB以上的消光比。于是,发明者对进一步改善专利文献1的陶瓷的消光比进行了研究,从而完成了该发明。
下面描述其它的现有技术。多晶的石榴石陶瓷可以应用于X射线闪烁体,专利文献2:JP2012-72331A中提出了R3(Al1-xGax)5O12(R是稀土类元素,0<x<1)的组成的陶瓷。而且该组成式表示可以任意变更Al与Ga之比。另外,由于Al和Ga在周期表中的位置接近,离子半径也类似,所以可以用Al原子置换陶瓷中的Ga原子,并且可以推定随之发生的晶体的形变、晶格常数的变化等较小。
现有技术文献
专利文献
专利文献1:JP4878343B
专利文献2:JP2012-72331A
发明内容
发明所要解决的课题
该发明的课题在于提供消光比和透光率较高的稀土类镓石榴石陶瓷及其制造方法、以及法拉第旋光器。
用于解决课题的手段
本发明提供一种透光性稀土类镓石榴石陶瓷,其由通式R3Ga5O12(R是选自Y和原子序数为57~71的稀土类元素中的至少1种元素)来表示,所述透光性稀土类镓石榴石陶瓷的特征在于,
作为烧结助剂,以金属换算计含有5massppm~500massppm的Ge,并且以金属换算计含有20massppm~250massppm的Al。
本发明提供一种法拉第旋光器,其由透光性稀土类镓石榴石陶瓷形成,所述透光性稀土类镓石榴石陶瓷由通式R3Ga5O12(R是选自Y和原子序数为57~71的稀土类元素中的至少1种元素)来表示,所述法拉第旋光器的特征在于,
在所述透光性稀土类镓石榴石陶瓷中,作为烧结助剂,以金属换算计含有5massppm~500massppm的Ge,并且以金属换算计含有20massppm~250massppm的Al。
该发明的透光性稀土类镓石榴石陶瓷例如可以作为光隔离器的法拉第旋光器来使用,或者也可以掺杂Nd、Er等元素而制成激光材料。法拉第旋光器是通过将透光性稀土类镓石榴石陶瓷的两端面进行镜面研磨、并设置防反射膜而得到的,该说明书中的有关透光性稀土类镓石榴石陶瓷的记载也可以直接适用于法拉第旋光器。R元素优选为选自Y、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种,特别优选为Tb。优选的是,透光性稀土类镓石榴石陶瓷含有20massppm~200massppm的Al。在该说明书中,Al、Ge的浓度是将透光性稀土类镓石榴石陶瓷的质量设定为100mass%,用以金属换算计的质量来表示。另外,像5~250massppm等这样来表示范围时,是包含上限和下限,有时将massppm仅记为ppm。该说明书中说到稀土类时,包括Y。
将Ge浓度固定为100massppm,使Al浓度在0~500massppm的范围变化时的结果示于表1中。此外,表1表示了不进行HIP时的结果。即使Al为0massppm,在1064nm(YAG激光器的振荡波长)处的散射系数也充分小,消光比也在容许范围内。可是,在633nm(He-Ne激光器的振荡波长)处散射系数大,消光比小。这里,即使掺杂10massppm的Al,散射系数和消光比也不会改善。与此相对照,如果掺杂20massppm的Al,则在1064nm处的散射系数减小,消光比也改善。进而,633nm处的散射系数和消光比显著改善。该效果不限于20massppm的Al,直到Al稍稍少于200masspppm的范围都能获得同等以上的效果,当Al为200massppm时,特性稍有下降,为250ppm时,特性明显下降,当Al为500massppm时,比未添加Al的情况得到更低的特性。如上所述,Al浓度为20~250massppm、特别为20~200massppm时,可以获得高的特性。减小散射系数、增大消光比的效果是通过5~500massppm的Ge与20~250massppm的Al的组合而产生的,例如Ge2massppm与Al50massppm的组合(表1的比较例4)、或Ge1000massppm与Al50massppm的组合(表1的比较例5)不产生上述效果。
在该发明中,即使无HIP,1064nm处的消光比基本上为34dB以上,如果选择烧成时间等,则能够使其为35dB以上,633nm处的消光比基本上为31dB以上,如果选择烧成时间和Al浓度,能够使其为33dB以上。如果对烧成后的陶瓷实施HIP(热等静压压热处理),则能够进一步提高消光比,同时能够进一步减小633nm处的散射系数。此外,消光比和散射系数对于特别吸收波长以外的波长是有意义的。
本发明提供一种透光性稀土类镓石榴石陶瓷的制造方法,其是由通式R3Ga5O12(R是选自Y和原子序数为57~71的稀土类元素中的至少1种元素)所表示的透光性稀土类镓石榴石陶瓷的制造方法,所述制造方法的特征在于,进行下述步骤:
调配纯度为99.9%以上的稀土类氧化物粉体的步骤,在所述稀土类氧化物粉体中,作为烧结助剂,以金属换算计含有5massppm~500massppm的Ge,并且以金属换算计含有20massppm~250massppm的Al;
在所述粉体中添加粘合剂,并成型为成型密度与理论密度之比为55%以上的成型体的步骤;以及
对所述成型体进行热处理而除去粘合剂之后,在氢、稀有气体、氢与稀有气体的混合气体、或真空中,于1250℃~1450℃烧成0.5小时~72小时的步骤。
成型密度较高更好,从能够容易成型的条件考虑,设定为例如70%以下。烧成时间优选设定为2小时以上,由于长时间烧成是优选的,所以将上限设定为72小时,更实用的是将上限设定为24小时。烧成时间例如是指在最高温度下的保持时间。如表3所示,55%以上的成型密度能够显著减小散射系数,同时能够显著增大消光比。另外,如表4所示,1250℃~1450℃的烧成能够减小散射系数,增大消光比,0.5小时以上的烧成能够减小散射系数,增大消光比。烧成气氛设定成氢、Ar等稀有气体、氢与稀有气体的混合气体、或真空,在上述气氛的范围内即使改变气氛,结果也是相同的。
优选的是,进行下述步骤:将通过烧成而得到的陶瓷在1000℃~1450℃的处理温度和45MPa~200MPa的压力下进行热等静压压热处理。如表5所示,HIP可显著改善消光比。
附图说明
图1是实施例的光隔离器的截面图。
具体实施方式
以下示出本发明的实施例,实施例可以附加公知技术来进行变更。
实施例
实施例1
使纯度为99.95%以上的氧化铽溶解于硝酸中,同样使纯度为99.95%以上的硝酸镓溶解于超纯水中,从而调配出浓度为1mol/L的硝酸铽溶液和浓度为1mol/L的硝酸镓溶液。接着,将上述的硝酸铽溶液300mL、上述的硝酸镓溶液500mL、和浓度为1mol/L的硫酸铵水溶液150mL混合,加入超纯水而将总量设定为10L。一边搅拌得到的混合液,一边将浓度为0.5mol/L的碳酸氢铵水溶液以5mL/min的滴加速度滴加,直到pH达到8.0为止,一边继续搅拌,一边在室温下进行2天养护。养护后,反复进行过滤和超纯水的水洗数次,然后放入150℃的干燥机中干燥2天。将得到的前体粉末放入氧化铝坩埚中,用电炉在1100℃煅烧3小时。如上所述地制作比表面积为6.0m2/g的铽-镓-石榴石(TGG)原料粉末(纯度为99.95mass%以上,Ge含量和Al含量分别低于5massppm)。
在得到的原料粉末75g中加入作为溶剂的乙醇50g、作为粘合剂的聚乙烯醇(PVA)0.75g、作为增塑剂的聚乙二醇(PEG)0.75g、作为润滑剂的硬脂酸0.375g。此外,粘合剂等的种类和浓度是任意的。按照相对于烧结体的以金属换算计的含量使Ge达到100massppm、Al达到50massppm的方式,在上述原料粉末中添加GeO2和Al2O3作为烧结助剂。使用尼龙锅和尼龙球,将上述的混合材料进行100小时的球磨混合。将得到的混合粉体供给喷雾干燥机(喷雾干燥),从而制作出颗粒,将干燥的球状体装入到直径5mm的模具中,在20MPa下进行一次成型后,在250MPa的压力下用冷静水压(CIP)法进行成型,制得用阿基米德法得到的相对密度为59.8%的成型体。将该成型体以10℃/hr升温至600℃,在该温度下保持20小时以除去粘合剂、增塑剂、润滑剂,为了进一步充分除去粘合剂等,将该成型体升温至1100℃,保持10小时。然后,用真空炉在1350℃保持8小时以进行烧成。炉内的真空度设定为10-1Pa以下。
用金刚石锯切割机将得到的陶瓷(直径3mm×长度25mm)的两端切断,将其两端面用金刚石料浆进行镜面研磨(无防反射涂层)。对得到的直径3mm×长度20mm的陶瓷测定波长1064nm(YAG激光)和633nm(He-Ne激光)处的消光比和散射系数。在消光比的测定中,在陶瓷的两侧配置偏振片,在不施加磁场的情况下测定透射光量,使一个偏振片旋转360°,由透射光量的最大值与最小值之比,根据3)式求出消光比。
散射系数和消光比由下式算出,对于全部试样,测定法都是相同的。
散射系数α=((TGG的理论透过率)-((W2/W1)×100))/试样长度(cm)1)
W1:未放置陶瓷时的激光强度的值。
W2:光路中放入了陶瓷时的激光强度的值。
TGG的理论透过率=(((R-1)2/(R+1)2)-1)2×100(R:折射率)2)
(1064nm的折射率为1.95,TGG的理论透过率T为80.3%)
(633nm的折射率为1.98,TGG的理论透过率T为79.5%)
消光比E=10×log 10(W4/W3)3)
W3:在光路中放入了陶瓷的状态下,使偏振片旋转时的激光强度的最小值。
W4:在光路中放入了陶瓷的状态下,使偏振片旋转时的激光强度的最大值。
实施例2~9和比较例1~5
除了改变Ge浓度和Al浓度之外,与实施例1同样地制作透光性稀土类石榴石陶瓷。这些试样的性能示于表1中。
[表1]实施例1~9、比较例1~5
Al浓度低于20massppm时,消光比和散射系数与仅有Ge 100massppm的TGG大致相同,看不到Al的添加效果。如果Al浓度超过250massppm,则散射系数增加并且消光比下降。另外,Ge浓度低于5massppm或超过500massppm时,散射系数变小,消光比下降。如上所述,20~250massppm的Al与5~500massppm的Ge的组合可特别地改善消光比,并且散射系数变小。当Ge浓度以金属换算计为5massppm~500massppm、Al浓度以金属换算计为20massppm~250massppm时,波长1064nm和633nm处的消光比变为30dB以上,散射系数变为1%/cm以下。此外,制作的陶瓷的光路长大至20mm,而专利文献1中的光路长为1mm。另外,Al的含量以金属换算计超过250massppm时,消光比下降,散射系数增加,但原因不明。
实施例10~19
除了将Tb元素替换为Y、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb或Lu以外,与实施例1同样地制作的透光性稀土类镓石榴石陶瓷的消光比和散射系数示于表2中。此外,当在测定波长的633nm或1064nm处具有特别吸收时,未进行测定。消光比和散射系数与实施例1同等,由此可知,即使将Tb元素替换为Y、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu等其它的稀土类元素,Al的添加效果也是有效的。
[表2]实施例10~实施例19
实施例20~22和比较例6~8
除了改变CIP成型时的成型压力并改变成型体的密度以外,与实施例1同样地制作陶瓷。消光比与散射系数相对于成型密度的关系示于表3中。如果增加成型密度,则消光比增加,散射系数下降。如果成型时的成型密度较低,则由于在致密化的部分以外存在因烧结不良而产生的残留气孔,所以散射系数变高,而且消光比下降。从表3的结果可知,为了获得在波长1064nm和633nm处的消光比为30dB以上、散射系数为1%/cm以下的陶瓷,55%以上的成型密度是必要的。
[表3]实施例20~22和比较例6~8
实施例23~29和比较例9~14
除了将烧成温度和时间进行各种改变以外,与实施例1同样地制作的陶瓷的消光比和散射系数示于表4中。此外,烧成时间是在最高温度下的保持时间,烧成温度为1100℃时,不能得到致密的陶瓷,消光比和散射系数都未测定。烧成温度为1200℃的陶瓷的相对密度为99%以上,但透光性低,用SEM观察陶瓷的微细结构组织,结果存在大量气孔。烧成温度为1250℃~1450℃时,能够使波长1064nm和633nm处的消光比为30dB以上、使散射系数为1%/cm以下。可是,即便是1250℃~1450℃的烧成温度,当烧成时间低于0.5小时时,尽管结晶粒子充分生长,但由于气孔不能充分除去,所以无法获得满足的透光性陶瓷。如果烧成温度超过1450℃,则一部分微细结构组织产生异常晶粒生长,所以不能充分排除气孔,消光比下降,散射系数增加。由以上的结果可知,烧成温度优选为1250℃~1450℃、烧成时间优选为0.5小时以上。
[表4]实施例23~29和比较例9~14
实施例30~39和比较例15、16
将在实施例1的条件下制作的陶瓷进行HIP处理以谋求消光比和散射系数的改善。HIP中将处理温度的保持时间固定为3小时,在各种温度和压力下进行时的消光比和散射系数示于表5中。HIP处理中,作为压力介质,使用Ar气。通过在1000℃~1450℃的处理温度和45MPa~200MPa的压力下进行HIP处理,能够使波长1064nm处的消光比为40dB以上、散射系数为0.1%/cm,使波长633nm处的消光比为38dB以上、散射系数为0.3%/cm以下。但是,如果将处理温度设定为950℃并将压力设定为196MPa,或将处理温度设定为1200℃并将压力设定为45MPa,则不能将烧结体内部的微细气孔排除,所以消光比和散射系数未改善。另外,如果将HIP处理温度设定为1500℃以上,则一部分微细结构组织会产生异常晶粒生长,引起散射系数的增加和消光比的下降。从以上结果可知,1000℃~1450℃的处理温度和45MPa~200MPa压力是优选的。HIP的处理时间例如设定为0.5小时~12小时。
[表5]实施例30~39和比较例15、16
实施例40~43
在与实施例1同样的调配条件下制作改变了Ge浓度和Al浓度的陶瓷。结果示于表6中。
[表6]实施例40~43
光隔离器
图1表示了光隔离器2的结构。4是法拉第旋光器,是对实施例的透光性稀土类镓石榴石陶瓷的两端进行镜面研磨、并实施防反射涂层而得到的。6、6是左右的一对起偏器,将透射光的偏光面改变了45°。8是永久磁铁,按照使透射光的偏光面旋转45°的方式对法拉第旋光器4施加磁场。若如上所述地配置,则来自激光器的光作为直线偏光通过光隔离器2,当激光被反射而回到光隔离器2时,偏光面进一步旋转45°,所以相对于起偏器,偏光面错开90°,因而反射光不会回到激光侧。
符号说明:
2    光隔离器    4    法拉第旋光器    6    起偏器
8    永久磁铁    10   外罩

Claims (8)

1.一种透光性稀土类镓石榴石陶瓷,其由通式R3Ga5O12来表示,其中R是选自Y和原子序数为57~71的稀土类元素中的至少1种元素,所述透光性稀土类镓石榴石陶瓷的特征在于:
作为烧结助剂,以金属换算计含有5massppm~500massppm的Ge,并且以金属换算计含有20massppm~250massppm的Al。
2.根据权利要求1所述的透光性稀土类镓石榴石陶瓷,其特征在于:含有20massppm~200massppm的Al。
3.根据权利要求1所述的透光性稀土类镓石榴石陶瓷,其特征在于:在波长1064nm处的消光比为35dB以上。
4.根据权利要求2所述的透光性稀土类镓石榴石陶瓷,其特征在于:在波长1064nm处的消光比为35dB以上。
5.一种法拉第旋光器,其由透光性稀土类镓石榴石陶瓷形成,所述透光性稀土类镓石榴石陶瓷由通式R3Ga5O12来表示,其中R是选自Y和原子序数为57~71的稀土类元素中的至少1种元素,所述法拉第旋光器的特征在于:
在所述透光性稀土类镓石榴石陶瓷中,作为烧结助剂,以金属换算计含有5massppm~500massppm的Ge,并且以金属换算计含有20massppm~250massppm的Al。
6.根据权利要求5所述的法拉第旋光器,其特征在于:所述透光性稀土类镓石榴石陶瓷含有20massppm~200massppm的Al。
7.一种透光性稀土类镓石榴石陶瓷的制造方法,其是由通式R3Ga5O12所表示的透光性稀土类镓石榴石陶瓷的制造方法,其中R是选自Y和原子序数为57~71的稀土类元素中的至少1种元素,所述制造方法的特征在于,进行下述步骤:
调配纯度为99.9%以上的稀土类氧化物粉体的步骤,在所述稀土类氧化物粉体中,作为烧结助剂,以金属换算计含有5massppm~500massppm的Ge,并且以金属换算计含有20massppm~250massppm的Al;
在所述粉体中添加粘合剂,并成型为成型密度与理论密度之比为55%以上的成型体的步骤;以及
对所述成型体进行热处理而除去粘合剂之后,在氢、稀有气体、氢与稀有气体的混合气体、或真空中,于1250℃~1450℃烧成0.5小时~72小时的步骤。
8.根据权利要求7所述的透光性稀土类镓石榴石陶瓷的制造方法,其特征在于,进行下述步骤:将通过烧成而得到的陶瓷在1000℃~1450℃的处理温度和45MPa~200MPa的压力下进行热等静压压热处理。
CN201380030150.0A 2012-07-06 2013-04-05 透光性稀土类镓石榴石陶瓷及其制造方法以及法拉第旋光器 Active CN104364223B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012152248 2012-07-06
JP2012-152248 2012-07-06
PCT/JP2013/060474 WO2014006947A1 (ja) 2012-07-06 2013-04-05 透光性希土類ガリウムガーネットセラミックスとその製造方法及びファラデー回転子

Publications (2)

Publication Number Publication Date
CN104364223A true CN104364223A (zh) 2015-02-18
CN104364223B CN104364223B (zh) 2016-04-06

Family

ID=49881712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380030150.0A Active CN104364223B (zh) 2012-07-06 2013-04-05 透光性稀土类镓石榴石陶瓷及其制造方法以及法拉第旋光器

Country Status (5)

Country Link
US (1) US10012850B2 (zh)
EP (1) EP2871170B1 (zh)
JP (1) JP5999853B2 (zh)
CN (1) CN104364223B (zh)
WO (1) WO2014006947A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107614459A (zh) * 2015-08-27 2018-01-19 神岛化学工业株式会社 透光性稀土类铝石榴石陶瓷

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132429B2 (ja) * 2013-04-01 2017-05-24 信越化学工業株式会社 ファラデー回転子及び光アイソレータの製造方法
US10128438B2 (en) * 2016-09-09 2018-11-13 Arm Limited CEM switching device
US10103327B2 (en) 2016-09-14 2018-10-16 Arm Limited CEM switching device
US10121967B2 (en) 2016-11-29 2018-11-06 Arm Limited CEM switching device
US11636316B2 (en) 2018-01-31 2023-04-25 Cerfe Labs, Inc. Correlated electron switch elements for brain-based computing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001556A (ja) * 2006-06-22 2008-01-10 Konoshima Chemical Co Ltd 透光性希土類ガリウムガーネット焼結体及びその製造方法と光学デバイス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202051A (ja) * 1990-11-30 1992-07-22 Sumitomo Electric Ind Ltd 透光性ggg焼結体及びその製造方法
WO2004067474A1 (ja) * 2003-01-27 2004-08-12 Konoshima Chemical Co., Ltd. 希土類ガーネット焼結体とその製造方法
JP4878343B2 (ja) * 2007-12-12 2012-02-15 神島化学工業株式会社 透光性希土類ガリウムガーネット焼結体及びその製造方法と磁気光学デバイス
JP5462515B2 (ja) * 2009-03-31 2014-04-02 株式会社ワールドラボ 透明セラミックス及びその製造方法並びにその透明セラミックスを用いたデバイス
JP5528827B2 (ja) * 2010-01-25 2014-06-25 信越化学工業株式会社 光アイソレータ
JP5498908B2 (ja) 2010-09-29 2014-05-21 株式会社東芝 固体シンチレータ用材料、固体シンチレータ、およびそれを用いた放射線検出器並びに放射線検査装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001556A (ja) * 2006-06-22 2008-01-10 Konoshima Chemical Co Ltd 透光性希土類ガリウムガーネット焼結体及びその製造方法と光学デバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107614459A (zh) * 2015-08-27 2018-01-19 神岛化学工业株式会社 透光性稀土类铝石榴石陶瓷
CN107614459B (zh) * 2015-08-27 2020-09-29 神岛化学工业株式会社 透光性稀土类铝石榴石陶瓷

Also Published As

Publication number Publication date
EP2871170A4 (en) 2016-03-02
CN104364223B (zh) 2016-04-06
WO2014006947A1 (ja) 2014-01-09
EP2871170A1 (en) 2015-05-13
US20150129816A1 (en) 2015-05-14
EP2871170B1 (en) 2018-05-30
JP5999853B2 (ja) 2016-09-28
US10012850B2 (en) 2018-07-03
JPWO2014006947A1 (ja) 2016-06-02

Similar Documents

Publication Publication Date Title
CN104364223B (zh) 透光性稀土类镓石榴石陶瓷及其制造方法以及法拉第旋光器
JP5393271B2 (ja) 酸化物及び磁気光学デバイス
JP5762715B2 (ja) 磁気光学材料、ファラデー回転子、及び光アイソレータ
CN100455536C (zh) 一种镥铝石榴石基透明陶瓷及其制备方法
US11161274B2 (en) Method for manufacturing transparent ceramic material for faraday rotator
JP5528827B2 (ja) 光アイソレータ
CN107614459B (zh) 透光性稀土类铝石榴石陶瓷
JP5526313B2 (ja) 磁気光学素子用透光性酸化テルビウム焼結体
KR102560859B1 (ko) 상자성 가닛형 투명 세라믹스, 자기 광학 재료 및 자기 광학 디바이스
JP6881391B2 (ja) 焼結用複合酸化物粉末の製造方法及び透明セラミックスの製造方法
JP2009143751A (ja) 透光性希土類ガリウムガーネット焼結体及びその製造方法と磁気光学デバイス
JP5000934B2 (ja) 透光性希土類ガリウムガーネット焼結体及びその製造方法と光学デバイス
Luo et al. Fabrication and spectral properties of hot-pressed Co: MgAl2O4 transparent ceramics for saturable absorber
JP2019104674A (ja) 焼結用ガーネット型複合酸化物粉末の製造方法、及び透明セラミックスの製造方法
JP5575719B2 (ja) 磁気光学素子用焼結体及び磁気光学デバイス
JP5695594B2 (ja) 磁気光学素子用焼結体及び磁気光学素子
CN109354496A (zh) 一种钒酸钇透明陶瓷的制备方法
US20240091853A1 (en) Ceramic scintillating materials and methods of fabrication thereof
CN101659552B (zh) 一种Nd-YVO4透明激光陶瓷材料的制备方法
Cheng et al. Preparation and Properties of Up-Conversion Luminescent NaYF4: Yb3+, Er3+ Ceramics
JP2022019246A (ja) 磁気光学材料及び磁気光学デバイス
WO2009063388A2 (en) Green emitting solid-state laser comprising a sesquioxide and/or ceramic material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant