CN109354496A - 一种钒酸钇透明陶瓷的制备方法 - Google Patents

一种钒酸钇透明陶瓷的制备方法 Download PDF

Info

Publication number
CN109354496A
CN109354496A CN201811214466.6A CN201811214466A CN109354496A CN 109354496 A CN109354496 A CN 109354496A CN 201811214466 A CN201811214466 A CN 201811214466A CN 109354496 A CN109354496 A CN 109354496A
Authority
CN
China
Prior art keywords
yttrium
obtains
yttrium orthovanadate
orthovanadate
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811214466.6A
Other languages
English (en)
Other versions
CN109354496B (zh
Inventor
郭艳艳
王殿元
王庆凯
段兴凯
吴杏华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiujiang University
Original Assignee
Jiujiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiujiang University filed Critical Jiujiang University
Priority to CN201811214466.6A priority Critical patent/CN109354496B/zh
Publication of CN109354496A publication Critical patent/CN109354496A/zh
Application granted granted Critical
Publication of CN109354496B publication Critical patent/CN109354496B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种钒酸钇透明陶瓷的制备方法,该方法包括以下步骤:先将六水硝酸钇溶于去离子水,磁力搅拌得到硝酸钇水溶液,然后加入适量柠檬酸和偏钒酸铵,磁力搅拌得到混合溶液;再将混合溶液置于烘箱内蒸发掉水分,得到褐色固体产物,产物粉碎后于马弗炉内退火,用稀硝酸和去离子水洗涤、干燥,得到钒酸钇纳米粉末;最后将所得钒酸钇纳米粉末干压成型,空气气氛下无压烧结得到钒酸钇透明陶瓷。通过本发明制备的钒酸钇陶瓷致密度高、透光性好,并且本发明方法具有烧结温度低、制备工艺简单、生产周期短、成本低等优点,适于钒酸钇透明陶瓷材料的工业化生产。

Description

一种钒酸钇透明陶瓷的制备方法
技术领域
本发明涉及一种钒酸钇透明陶瓷的制备方法。
背景技术
钒酸钇(YVO4)属四方晶系,具有四方相锆英石结构,空间群为D4h,晶胞参数a = b= 0.712 nm,c = 0.629 nm,密度4.22 g/cm3,熔点1825℃,热导率5.10~5.23 W/mK。钒酸钇的化学稳定性、热稳定性和机械性能都很好,可以掺杂高浓度的稀土发光离子并获得高效率的可见区荧光,因此钒酸钇是一种优良的发光基质材料。如铕离子掺杂的钒酸钇(YVO4:Eu3+)发光材料在紫外光激发下能发出比较纯正的红光,该材料在高压汞灯、阴极发射管、X射线探测器等得到广泛应用。
钒酸钇单晶是一种具有优良物理光学性能的双折射晶体材料。该晶体透光范围宽(400 ~ 5000 nm)、透过率高、双折射系数大、莫氏硬度较大、不易潮解、易于加工。因此,钒酸钇晶体也被广泛应用于光纤通信、激光、闪烁体等领域。钒酸钇单晶通常以铱坩埚作容器、中频感应加热、提拉法生长,产品的缺陷少、光学均一性高。但总的来说,生长钒酸钇晶体所需设备复杂、生产周期长、实验条件要求高、成本高、尺寸受限制,因此这些因素也严重影响了其工业化生产和应用。
近年来,随着陶瓷制备技术的发展,人们已成功制备出了Y3Al5O12(YAG)、Y2O3、CaF2等一批高光学质量的透明陶瓷,其性能已可以与单晶材料相媲美,如掺钕离子的钇铝石榴石(YAG:Nd3+)透明陶瓷已实现了瓦量级的连续激光输出,因此采用先进的透明陶瓷制备技术,制备高透光率的钒酸钇透明陶瓷必将大大提高钒酸钇的生产效率,缩短生产周期、降低生产成本。中国发明专利CN200910094955.7和CN200910094957.6中冯晶等人分别提出了一种含镧系稀土和钪的YVO4透明激光陶瓷的制备方法、一种Nd-YVO4透明激光陶瓷材料的制备方法,他们提出了以氧化钇粉、氧化钒粉为主要原料,氧化钪粉或氧化钕粉或氧化铥粉为掺杂原料,另外加入氧化镁粉、高纯TEOS为助剂,经球磨、粉体成型、真空烧结得到钒酸钇透明陶瓷,但未提供陶瓷样品的实物图片,且高温烧结温度高达1800℃,时间长达30小时。
发明内容
本发明其目的就在于提供一种钒酸钇透明陶瓷的制备方法,解决了现有技术方法存在生产成本高、操作复杂、耗时长的问题。
为实现上述目的而采取的技术方案是,一种钒酸钇透明陶瓷的制备方法,该方法包括以下步骤:
(1)将六水硝酸钇溶于去离子水,磁力搅拌得到硝酸钇水溶液;
(2)在步骤(1)得到的溶液中加入适量柠檬酸,进行磁力搅拌;
(3)在步骤(2)得到的混合溶液中加入适量偏钒酸铵,进行磁力搅拌,得到混合溶液;
(4)将步骤(3)得到的混合溶液置于电热烘箱内蒸发掉水分,得到褐色固体产物;
(5)将步骤(4)得到的产物粉碎后,于马弗炉内退火,用稀硝酸和去离子水洗涤、干燥,得到钒酸钇纳米粉末;
(6)将步骤(5)得到的钒酸钇纳米粉末干压成型,在空气气氛下无压烧结,得到钒酸钇透明陶瓷。
所述硝酸钇、柠檬酸和偏钒酸铵的摩尔比为1:0.7~0.9:1。
所述步骤(1)(2)(3)中的磁力搅拌时间为10~30 min。
所述步骤(4)中的烘箱内蒸发水分时,需先在70~80℃蒸发2~3天,再在100~120℃蒸发12~24 h。
所述步骤(5)中的退火温度为900~1000℃,时间为40~60 min。
所述步骤(6)中的成型压力为50~60 MPa,成型时间为5~10 min;所述高温烧结为两步烧结,烧结温度为1500~1600℃和1200~1300℃,保温时间分别为4~6 h和10~20 h。
有益效果
与现有技术相比本发明具有以下优点。
1.本发明中的钒酸钇纳米粉末晶粒近似球形、粒径为20~30 nm,原料粉体粒径小有利于晶界的扩散和迁移,提高烧结活性,降低陶瓷烧结温度,减弱钒酸钇陶瓷样品的双折射,透光性会更好;
2.陶瓷坯体先在1500~1600℃烧结4~6 h,使陶瓷坯体获得足够晶界扩散的热力学驱动力,致密度迅速提高而晶粒长大不明显,再在1200~1300℃烧结10~20 h,促进晶界扩散的同时抑制晶界迁移,推动致密化过程的继续进行,而晶粒不长大,故有利于钒酸钇陶瓷的致密度和透光率的显著提高;
3.本发明的制备方法具有烧结温度低、制备工艺简单、生产周期短、成本低等优点,适于钒酸钇透明陶瓷材料的工业化生产。
附图说明
以下结合附图对本发明作进一步详述。
图1为本发明实施例1所得钒酸钇透明陶瓷实物图;
图2为本发明实施例2所得钒酸钇透明陶瓷实物图;
图3为本发明实施例3所得钒酸钇透明陶瓷实物图。
具体实施方式
下面结合附图,对本发明作进一步的说明。
一种钒酸钇透明陶瓷的制备方法,该方法包括以下步骤:
(1)将六水硝酸钇溶于去离子水,磁力搅拌得到硝酸钇水溶液;
(2)在步骤(1)得到的溶液中加入适量柠檬酸,进行磁力搅拌;
(3)在步骤(2)得到的混合溶液中加入适量偏钒酸铵,进行磁力搅拌,得到混合溶液;
(4)将步骤(3)得到的混合溶液置于电热烘箱内蒸发掉水分,得到褐色固体产物;
(5)将步骤(4)得到的产物粉碎后,于马弗炉内退火,用稀硝酸和去离子水洗涤、干燥,得到钒酸钇纳米粉末;
(6)将步骤(5)得到的钒酸钇纳米粉末干压成型,在空气气氛下无压烧结,得到钒酸钇透明陶瓷。
所述硝酸钇、柠檬酸和偏钒酸铵的摩尔比为1:0.7~0.9:1。
所述步骤(1)(2)(3)中的磁力搅拌时间为10~30 min。
所述步骤(4)中的烘箱内蒸发水分时,需先在70~80℃蒸发2~3天,再在100~120℃蒸发12~24 h。
所述步骤(5)中的退火温度为900~1000℃,时间为40~60 min。
所述步骤(6)中的成型压力为50~60 MPa,成型时间为5~10 min;所述高温烧结为两步烧结,烧结温度为1500~1600℃和1200~1300℃,保温时间分别为4~6 h和10~20 h。
实施例1
(1)将3.83 g六水硝酸钇溶于40 mL去离子水中,磁力搅拌15 min,得到硝酸钇水溶液;加入1.68g一水柠檬酸,进行磁力搅拌10 min;再加入1.17 g偏钒酸铵,进行磁力搅拌30min,得到混合溶液;将混合溶液置于70℃电热烘箱内蒸发3得到溶胶,再于110℃电热烘箱内蒸发24 h得到褐色固体产物;将得到的产物于玛瑙研钵中粉碎后,于900℃马弗炉内退火60 min,用稀硝酸和去离子水洗涤多次、干燥,得到钒酸钇纳米粉末;
(2)将步骤(1)得到的钒酸钇纳米粉末置于模具中,60 MPa单向干压10 min,得钒酸钇陶瓷坯体,将坯体在空气气氛下1500℃无压烧结5 h,再在空气气氛下1200℃无压烧结15h,得到钒酸钇透明陶瓷,如图1所示。
实施例2
(1)将3.83 g六水硝酸钇溶于40 mL去离子水中,磁力搅拌15 min,得到硝酸钇水溶液;加入1.68g一水柠檬酸,进行磁力搅拌10 min;再加入1.17 g偏钒酸铵,进行磁力搅拌30min,得到混合溶液;将混合溶液置于70℃电热烘箱内蒸发3得到溶胶,再于110℃电热烘箱内蒸发24 h得到褐色固体产物;将得到的产物于玛瑙研钵中粉碎后,于900℃马弗炉内退火60 min,用稀硝酸和去离子水洗涤多次、干燥,得到钒酸钇纳米粉末;
(2)将步骤(1)得到的钒酸钇纳米粉末置于模具中,60 MPa单向干压10 min,得钒酸钇陶瓷坯体,将坯体在空气气氛下1550℃无压烧结5 h,再在空气气氛下1200℃无压烧结15h,得到钒酸钇透明陶瓷,如图2所示。
实施例3
(1)将3.83 g六水硝酸钇溶于40 mL去离子水中,磁力搅拌15 min,得到硝酸钇水溶液;加入1.68g一水柠檬酸,进行磁力搅拌10 min;再加入1.17 g偏钒酸铵,进行磁力搅拌30min,得到混合溶液;将混合溶液置于70℃电热烘箱内蒸发3得到溶胶,再于110℃电热烘箱内蒸发24 h得到褐色固体产物;将得到的产物于玛瑙研钵中粉碎后,于900℃马弗炉内退火60 min,用稀硝酸和去离子水洗涤多次、干燥,得到钒酸钇纳米粉末;
(2)将步骤(1)得到的钒酸钇纳米粉末置于模具中,60 MPa单向干压10 min,得钒酸钇陶瓷坯体,将坯体在空气气氛下1600℃无压烧结5 h,再在空气气氛下1200℃无压烧结15h,得到钒酸钇透明陶瓷,如图3所示。

Claims (6)

1.一种钒酸钇透明陶瓷的制备方法,其特征在于,该方法包括以下步骤:
将六水硝酸钇溶于去离子水,磁力搅拌得到硝酸钇水溶液;
在步骤(1)得到的溶液中加入适量柠檬酸,进行磁力搅拌;
在步骤(2)得到的混合溶液中加入适量偏钒酸铵,进行磁力搅拌,得到混合溶液;
将步骤(3)得到的混合溶液置于电热烘箱内蒸发掉水分,得到褐色固体产物;
将步骤(4)得到的产物粉碎后,于马弗炉内退火,用稀硝酸和去离子水洗涤、干燥,得到钒酸钇纳米粉末;
将步骤(5)得到的钒酸钇纳米粉末干压成型,在空气气氛下无压烧结,得到钒酸钇透明陶瓷。
2.根据权利要求1所述的钒酸钇透明陶瓷的制备方法,其特征在于,所述硝酸钇、柠檬酸和偏钒酸铵的摩尔比为1:0.7~0.9:1。
3.根据权利要求1所述的一种钒酸钇透明陶瓷的制备方法,其特征在于,所述步骤(1)(2)(3)中的磁力搅拌时间为10~30 min。
4.根据权利要求1所述的一种钒酸钇透明陶瓷的制备方法,其特征在于,所述步骤(4)中的烘箱内蒸发水分时,需先在70~80℃蒸发2~3天,再在100~120℃蒸发12~24 h。
5.根据权利要求1所述的一种钒酸钇透明陶瓷的制备方法,其特征在于,所述步骤(5)中的退火温度为900~1000℃,时间为40~60 min。
6.根据权利要求1所述的一种钒酸钇透明陶瓷的制备方法,其特征在于,所述步骤(6)中的成型压力为50~60 MPa,成型时间为5~10 min;所述高温烧结为两步烧结,烧结温度为1500~1600℃和1200~1300℃,保温时间分别为4~6 h和10~20 h。
CN201811214466.6A 2018-10-18 2018-10-18 一种钒酸钇透明陶瓷的制备方法 Expired - Fee Related CN109354496B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811214466.6A CN109354496B (zh) 2018-10-18 2018-10-18 一种钒酸钇透明陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811214466.6A CN109354496B (zh) 2018-10-18 2018-10-18 一种钒酸钇透明陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN109354496A true CN109354496A (zh) 2019-02-19
CN109354496B CN109354496B (zh) 2021-06-11

Family

ID=65345740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811214466.6A Expired - Fee Related CN109354496B (zh) 2018-10-18 2018-10-18 一种钒酸钇透明陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN109354496B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114334216A (zh) * 2022-03-07 2022-04-12 西安宏星电子浆料科技股份有限公司 一种厚膜导体浆料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2241232B (en) * 1990-02-22 1994-09-14 Mitsubishi Materials Corp Electro-optical ceramic materials
CN101381603A (zh) * 2008-10-21 2009-03-11 上海师范大学 一种钒酸钇掺杂铟的白色荧光粉及其制备方法和应用
CN101580393A (zh) * 2009-05-21 2009-11-18 中国科学院上海硅酸盐研究所 一种铪酸钇透明陶瓷的制备方法
CN101659551A (zh) * 2009-09-11 2010-03-03 昆明理工大学 含镧系稀土和钪的yvo4透明激光陶瓷的制备方法
CN102272070A (zh) * 2008-12-25 2011-12-07 株式会社根本研究所 透光性多晶材料及其制造方法
CN102584238A (zh) * 2012-02-14 2012-07-18 中国科学院福建物质结构研究所 半透明钒酸钇陶瓷的制备方法
US20130187126A1 (en) * 2012-01-25 2013-07-25 General Hydroponics, Inc. Compositions, Devices and Methods for Optimizing Photosynthetically Active Radiation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2241232B (en) * 1990-02-22 1994-09-14 Mitsubishi Materials Corp Electro-optical ceramic materials
CN101381603A (zh) * 2008-10-21 2009-03-11 上海师范大学 一种钒酸钇掺杂铟的白色荧光粉及其制备方法和应用
CN102272070A (zh) * 2008-12-25 2011-12-07 株式会社根本研究所 透光性多晶材料及其制造方法
CN101580393A (zh) * 2009-05-21 2009-11-18 中国科学院上海硅酸盐研究所 一种铪酸钇透明陶瓷的制备方法
CN101659551A (zh) * 2009-09-11 2010-03-03 昆明理工大学 含镧系稀土和钪的yvo4透明激光陶瓷的制备方法
US20130187126A1 (en) * 2012-01-25 2013-07-25 General Hydroponics, Inc. Compositions, Devices and Methods for Optimizing Photosynthetically Active Radiation
CN102584238A (zh) * 2012-02-14 2012-07-18 中国科学院福建物质结构研究所 半透明钒酸钇陶瓷的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘军芳: "放电等离子烧结法制备氮化铝透明陶瓷", 《中国学术期刊(光盘版)工程科技Ⅰ辑》 *
奚同庚: "《科学发现之旅 奇妙的纤维》", 31 August 2018, 上海科学技术文献出版社 *
沈继耀: "《电子陶瓷》", 31 December 1979, 国防工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114334216A (zh) * 2022-03-07 2022-04-12 西安宏星电子浆料科技股份有限公司 一种厚膜导体浆料
CN114334216B (zh) * 2022-03-07 2022-07-08 西安宏星电子浆料科技股份有限公司 一种厚膜导体浆料

Also Published As

Publication number Publication date
CN109354496B (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
CN104557041B (zh) 一种氧化钇基透明陶瓷的制备方法
CN102020470B (zh) 高光学质量的氧化钇透明陶瓷的制备方法
CN102126857B (zh) 透明氟化钙陶瓷的制备方法
CN102787357B (zh) 一种2.7-3微米激光晶体及其制备方法
CN103058644A (zh) 一种通过合成稀土掺杂y2o3纳米粉体制备稀土掺杂钇铝石榴石透明陶瓷的方法
Guo et al. Fabrication, microstructure, and temperature sensing behavior based on upconversion luminescence of novel Er3+, Yb3+ co-doped YOF ceramic
CN107285770A (zh) 一种纯度高形貌均匀的锆酸镧钆粉体及透明陶瓷制备方法
CN102815941B (zh) 稀土离子掺杂锆酸镧钆透明陶瓷材料及其制备方法
CN104364223B (zh) 透光性稀土类镓石榴石陶瓷及其制造方法以及法拉第旋光器
Sales et al. Power dependent upconversion in Er3+/Yb3+ co-doped BiNbO4 phosphors
CN104609849B (zh) Si/Ti掺杂的铽铝石榴石法拉第磁旋光透明陶瓷及其制备方法
CN103319093B (zh) 掺镱氟磷酸锶微晶掺镱氟磷酸盐玻璃复合材料及制备方法
CN101798181A (zh) Eu掺杂高硅氧玻璃及其制备方法
CN109354496A (zh) 一种钒酸钇透明陶瓷的制备方法
CN107324805A (zh) 一种多组分石榴石基激光透明陶瓷材料及其制备方法
CN105565810A (zh) 稀土离子掺杂的氧化钇激光陶瓷光纤的制备方法
CN101665503A (zh) 稀土配合物、稀土氧化物及其制备方法
CN102815945B (zh) 锆酸镧钆透明陶瓷材料及其制备方法
CN115557787B (zh) 一种倍半氧化物透明陶瓷及其制备方法
CN103073295B (zh) Er3+和Tm3+共掺的氧化镧钇闪烁透明陶瓷材料的制备方法
CN107573071B (zh) 一种单分散球形Y2O3和Al2O3粉制备(Y1-xYbx)AG透明陶瓷的方法
CN103833348A (zh) 一种自激辐射吸收材料及其制备方法
Liu et al. Optical thermometry and heating based on the upconversion fluorescence from Yb3+/Er3+ co-doped NaLa (MoO4) 2 phosphor
CN102503139A (zh) 一种上转换发光透明玻璃陶瓷及其制备方法
CN102351235A (zh) 稀土配合物、稀土氧化物及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210611

Termination date: 20211018