CN104350172B - 具有增强涂层性能的电弧沉积Al-Cr-O涂层 - Google Patents

具有增强涂层性能的电弧沉积Al-Cr-O涂层 Download PDF

Info

Publication number
CN104350172B
CN104350172B CN201380021348.2A CN201380021348A CN104350172B CN 104350172 B CN104350172 B CN 104350172B CN 201380021348 A CN201380021348 A CN 201380021348A CN 104350172 B CN104350172 B CN 104350172B
Authority
CN
China
Prior art keywords
coating
target
layer
oxygen
pvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380021348.2A
Other languages
English (en)
Other versions
CN104350172A (zh
Inventor
R·拉赫鲍尔
J·拉姆
J·波利奇
P·H·迈尔霍费尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ou Ruikang Surface Solutions Inc
Original Assignee
Ou Ruikang Surface Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ou Ruikang Surface Solutions Inc filed Critical Ou Ruikang Surface Solutions Inc
Publication of CN104350172A publication Critical patent/CN104350172A/zh
Application granted granted Critical
Publication of CN104350172B publication Critical patent/CN104350172B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/06Metal compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/086Chromium oxides, acids or salts
    • C10M2201/0863Chromium oxides, acids or salts used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/1006Compounds containing silicon used as base material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种借助于PVD涂覆工艺涂覆Al‑Cr‑O涂层的方法。借助于掺杂Si的含Al和Cr的靶进行PVD涂覆工艺。Si的掺杂防止反应性涂覆工艺过程中在靶上形成氧化物岛。

Description

具有增强涂层性能的电弧沉积Al-Cr-O涂层
本发明涉及三元铝铬氧化物涂层(Al-Cr-O),其可额外地含有Al-O相。该涂层根据本发明由包含铝和铬的复合靶材沉积,优选,但不限于,通过反应性阴极电弧PVD技术。根据本发明的涂层显示出增强的涂层性能,特别是关于耐腐蚀性,耐氧化性,机械性能和化学稳定性。此外,本发明涉及一种工业制造Al-Cr-O涂层的方法,其允许通过添加少量其它元素至用作涂层材料源的Al-Cr靶调整涂层性能。
现有技术
结晶Al-Cr-O涂层由于它们的优异性能非常有前途。特别期望产生具有以刚玉结构为主或含有刚玉结构的固溶体晶态(Al,Cr)2O3涂层,因为与这种晶体结构相关联的较好的化学,机械和摩擦学性能。在US20070000772A1中Ramm等提出了一种由Al-Cr合金靶制备(Al,Cr)2O3层的沉积方法,其在含氧环境中通过反应性阴极电弧蒸发蒸发。
此外,Ramm等在Surface&Coatings Technology 202(2007)876-883“Pulseenhanced electron emission(P3eTM)arc evaporation and the synthesis of wearresistant Al-Cr-O coatings in corundum structure”中报道了通过反应性电弧蒸发将复合靶用于三元或更高级氧化物的合成是非常有效的。因此,氧化物的金属组成由靶组成在宽的工艺窗口内控制。它也提到氧化物合成在纯氧环境中进行。
现有技术中由Al-Cr合金靶通过反应阴极电弧PVD工艺沉积Al-Cr-O层的局限性
然而,Ramm等在Surface&Coatings Technology 205(2010)1356-1361“Correlation between target surface and layer nucleation in the synthesis ofAl-Cr-0coatings deposited by reactive cathodic arc evaporation”中报道了在纯氧环境中含Al复合靶的操作可能具有在蒸发过程中含氧化物材料能够在靶表面生长的缺点。暴露在氧气气氛中的靶表面上观察到的这种氧化物材料通常称为“氧化物岛”。Ramm等将观察到的“氧化物岛”生长归因于过量铝氧化,其在蒸发过程中在靶表面发生的熔融淬火工艺过程中产生。
Ramm等给出的靶表面上氧化物岛外观的一种可能解释为在给定Al-Cr组成的复合靶中包含的至少一部分铝未通过形成高熔点金属间化合物消耗。这些过量铝,如果它被释放在高于1000℃的温度下会与可用氧气反应,并在此高温下形成氧化物岛,其展现出至少部分刚玉结构。
为防止或避免在靶表面形成氧化物岛,可以讨论两种解决方案:
1)一种可能性是选择含铝复合靶的组成,这样在熔融淬火工艺过程中(在阴极电弧的蒸发过程中)在靶表面上的金属铝相的析出分离在低于1000℃的温度发生。这是例如使用以原子百分比计的元素组成Al85Cr15靶时的情况。
2)其他可能性是选择含铝复合靶的组成,这样仅形成选定组成的金属间化合物成为可能。
然而,如果期望合成具有刚玉结构的三元氧化物,这两种方法都不能用于Al-Cr材料体系。Ramm等的公开(上面提到的2007公开的)中提到只有层或靶中Al含量分别小于70at.%,Al-Cr-O刚玉结构才能通过XRD分析确定。因此,提高Al含量超过85at.%的策略的确会防止氧化物岛的生长,但是它将防止刚玉结构的Al-Cr-O固溶体的形成。
发明目的
本发明的一个目的是提供一种用于工业合成Al-Cr-O涂层的电弧蒸发PVD方法,其不具有上述缺点。
特别地,本发明的一个目的是防止在氧气气氛下的阴极电弧蒸发过程中Al-Cr靶表面生长氧化物岛。
本发明的另一个目的是通过包括在高氧气流量下的电弧蒸发沉积制备具有致密形态的涂层。
本发明的一个附加目的是在Al-Cr-O涂层中另外形成结晶相或在Al-Cr-O涂层中形成替换刚玉结构Al-Cr-O固溶体的结晶相。
发明描述
为了克服上述缺点,发明人决定使用包含附加元素的含Al-Cr复合靶,意图研究它对氧化物岛生长的影响并且目的是防止或影响该氧化物岛在靶表面的生长。
令人惊讶的是,采用少量硅(Si)掺杂含Al-Cr靶,制备例如具有原子百分比元素组成Al70Cr25Si5的Al-Cr-Si靶,通过包括在非常高的氧气流量(约800sccm及更高)下的反应性阴极电弧蒸发工艺运行靶和延长电弧操作时间后,未检测到更多氧化物岛的生长。
为了更好的理解本发明,更进一步的一些细节将使用图1-4描述:
●图1:对应通过反应性阴极电弧蒸发运行的两个不同靶的两个表面的照片。
οa)在800sccm氧气流量下在纯氧气氛中运行1.5小时的Al70Cr30靶的表面的照片。
οb)在800sccm氧气流量下在纯氧气氛中运行1.5小时的Al70Cr25Si5靶的表面的照片。
οc)图1a中显示的靶表面的放大图像。
οd)图1b中显示的靶表面的放大图像。
●图2:图1中显示的两个靶的表面的XRD光谱
οa)Al70Cr30
οb)Al70Cr25Si5
●图3:在纯氧气氛中通过反应性阴极电弧蒸发沉积的两个涂层的裂纹形态(fracturemorphology)的SEM显微图
οa)源自800sccm氧气流量下的Al70Cr30
οb)源自800sccm氧气流量下的Al70Cr25Si5
●图4:在800sccm氧气流量下由Al70Cr25Si5靶沉积的涂层的XRD光谱,其裂纹形态已在图3b中示出。
在图1a中,可观察到Al70Cr30靶的表面存在许多黑点,这些黑点是含有一定量刚玉结构Al2O3(通过XRD识别)的氧化物岛。同时在图1b中,可观察到Al70Cr25Si5靶的表面无黑点。靶Al70Cr30和Al70Cr25Si5的表面均采用X射线衍射分析进行分析,以识别两种靶材料的靶表面上存在的相。从靶表面获得的XRD光谱在图2中示出。Al70Cr30靶表面的分析(图2a)与以前的研究一致,并且表明除了Al和Cr相的形成,还有Al8Cr5和Al4Cr相的形成。与图2a中类似,Al70Cr25Si5靶的分析(图2b)表明形成了Al和Cr相及Al8Cr5和Al4Cr相,但在这种情况下,Al8Cr5和Al4Cr峰移至更高的衍射角。这可通过在这些相中掺入Si来解释并且此外可观察到可能存在CrSi相。
本发明的一个实施例涉及一种使用掺杂硅的Al-Cr靶(作为涂层材料源)制备Al-Cr-O的反应性阴极电弧蒸发涂覆方法。Al-Cr-Si靶优选地具有下列原子百分比的元素组成:
AlaCr1-a-bSic,其中90>=a>=60,40>=1-a-b>=10,20>=c>=1。
因此可以减少或防止在纯氧气氛中或含氧气体混合物中,包括使用高的氧气流量的由靶蒸发产生的氧化物岛的生长。
本发明的描述中流动流量和压力将视为低,中或高流量:
低氧气流量:约100-250sccm(涂覆腔室中200sccm~0.3Pa)
中氧气流量:约250-500sccm
高氧气流量:约800-1000sccm(涂覆腔室中~>=2.3Pa)。
掺杂例如5at.%Si的靶与Al70Cr30靶相比将Al/Cr比从2.3变为2.8,其反而与未掺杂靶Al(74)Cr(26)的靶组成相当。基于先前的研究(Ramm等2007),期望金属靶组成会在合成的三元氧化物的金属组成中重现(reproduced)。事实并非如此。对于两个靶组成,合成涂层中Al/Cr比均移至更高的铝比。在表1中,显示了合成Al-Cr-O涂层的组成Al/Cr比。
表1:由EDX和ERDA通过反应性阴极电弧蒸发分别从Al70Cr30和Al70Cr25Si5靶制备的两种不同涂层的元素组成
由两个独立的分析方法测量该组成:能量色散X射线光谱(EDX)和弹性反冲探测分析(ERDA)。然而掺杂Si导致的Al/Cr比的改变一定程度上体现在涂层组成中。但是完全出乎意料的,在由具有组成Al70Cr25Si5的靶合成的涂层中未检测出硅。该结果可以通过Si与氧气结合挥发来解释。在shyklaev等公开的“Initial reactive sticking coefficient of O2 on Si(111)-7 x 7 at elevated temperatures”,Surface Science 351(1996)64-74中,描述了表明这种结果的反应。但是,在此公开中描述的条件与用于本发明进行氧化物合成的条件有点不同。因此,在氧化物涂层中未发现Si的事实的解释仅仅是一种假设。令人惊讶地的是没有或几乎没有Si结合在涂层中的事实。
本发明允许使用掺杂硅的Al-Cr靶,具有在靶表面上不形成氧化物岛和合成基本上没有掺杂Si的纯Al-Cr氧化物涂层的优势。
在图3a和b中,通过横截面扫描电子显微镜(X-SEM)比较由不同靶组成获得的合成氧化物涂层的形态。由Al70Cr30靶获得的氧化物层的形态(a)显示出独特的柱状结构。基于已有的知识,这是由反应性电弧蒸发制备的Al-Cr-O涂层材料的典型表现:增加的氧气流量导致形态从致密结构(通过使用低氧气流量获得)到柱状生长(通过使用较高氧气流量获得)的显著改变。图3b源自采用同样高的氧气流量(800sccm)和除了使用Al70Cr25Si5靶外,相同的工艺条件下获得的涂层。该显微图显示了一个以非常致密的结构为特征的完全不同的形态。面对涂层中不含Si的事实,这完全是未意料到的结果。但是该致密层的生长使电弧蒸发的Al-Cr氧化物适用于耐氧化和耐腐蚀涂层,其中必须抑制扩散过程并且其中柱状结构将会过于泄漏。硅掺杂Al-Cr靶的附加实验表明添加1-20at.%的Si导致Al-Cr氧化物涂层的相似致密化,优选Si掺杂范围2-10at.%。
尽管在合成的氧化物涂层中发现没有或可忽略不计(与靶组成相比)的Si,但是Si掺杂靶导致氧化物涂层形态的彻底改变,其特征为尽管高氧气流量用于合成,致密结构不具有柱状生长。
由Al70Cr25Si5靶在800sccm氧气流量下合成的层的XRD分析(图4)表明接近2θ=46°的独特的峰。根据Khatibi等公开的“Phase transformations in facecentered cubic(Al0.23Cr0.68)2O3 thin films”Surface&Coating technology 206(2012)3216-3222,该峰归因于立方相Al-Cr-O。尽管电子衍射同样表明了额外的刚玉结构Al-Cr-O固溶体,但对于高氧气流量,立方结构更为明显。然而可调节氧气流量和Al/Cr比以平衡(leverage)Al-Cr-O中立方相对刚玉相的量。XRD分析显示额外的峰。接近69°具有最高强度的峰归因于硅基材。接近67°具有高强度的额外峰为刚玉结构的Al2O3或α-氧化铝的特征。因此,Si掺杂的靶支持涂层中立方Al-Cr-O相的生长并且同样可能附加地制备纯刚玉相。
依据本发明制备的涂层的推荐应用为:
耐腐蚀涂层
氧化屏障
化学屏障
在用于高温摩擦学应用的层中使用
燃料电池应用
用于高温摩擦学的固体润滑剂。
本发明的一个进一步的非常有趣的方面是,在含氧环境中通过反应性阴极电弧蒸发PVD工艺,使用Si掺杂Al-Cr靶作为沉积Al-Cr-O涂层的涂层材料源,当Si在AlCrSi靶中的浓度约为5at.%时,通过X射线检查不能检测到如图5中示出的涂层中Al-Cr-O立方相的形成。
此外,当Si在AlCrSi靶中的浓度约为5at.%时同样观察到靶表面上氧化物岛形成的相当大的减小。
本发明的详细细节在下列实施方案1-14中提及:
实施方案1、制备具有至少一个基本上由Al,Cr,Si和O组成的层的PVD氧化物涂层的方法,该方法至少包括下列步骤:
a)提供PVD涂覆腔室
b)在该PVD涂覆腔室中装入具有至少一个待涂覆表面的基材
c)进行反应性PVD涂覆工艺,其中工艺气体包含与由一个或多个靶产生的金属离子反应的反应性气体,以在基材表面上沉积至少一个基本上由Al,Cr,Si和O组成的层,
其特征在于:用于进行步骤c)中反应性PVD涂覆工艺的一个或多个靶具有下式给出的原子百分比的元素组成:Al1-x-yCrxSiy,其中0.05≤y≤0.10,且0.20≤x≤0.25及反应性气体为氧气,由此制备具有至少一个基本上由Al,Cr,Si和O组成的层的涂层,其中,如果不考虑氧气,在至少一个层中硅浓度小于一个或多个靶中的硅浓度。
实施方案2、根据实施方案1所述的方法,其特征在于PVD涂覆工艺为电弧蒸发工艺。
实施方案3、根据实施方案2所述的方法,其特征在于工艺气体基本上仅包括氧气。
实施方案4、根据实施方案1-3任一项所述的方法,其特征在于y=0.05和x=0.25。
实施方案5、根据实施方案1-3任一项所述的方法,其特征在于其中如果不考虑氧气,在至少一个层中硅浓度等于或小于一个或多个靶中硅浓度的一半。
实施方案6、根据实施方案1-5任一项的方法制备的涂层体系。
实施方案7、采用根据实施方案6的涂层体系涂覆的基材。
实施方案8、根据实施方案6的涂层体系,其用于提高耐腐蚀性。
实施方案9、根据实施方案6的涂层体系,其用作氧化屏障。
实施方案10、根据实施方案6的涂层体系,其用作化学屏障。
实施方案11、根据实施方案6的涂层体系,其在用于高温摩擦学应用的层中使用。
实施方案12、根据实施方案6的涂层体系,其用于制备燃料电池。
实施方案13、根据实施方案6的涂层体系,其用作在高于200℃温度下运行的摩擦学应用的固体润滑剂。
实施方案14、采用根据实施方案8-13任一项的涂层体系涂覆的基材。
本发明公开了一种制备具有至少一个基本上由Al、Cr、Si和O组成的层的PVD氧化物涂层的方法,该方法至少包括下列步骤:
a)提供PVD涂覆腔室
b)在该PVD涂覆腔室装入具有至少一个待涂覆表面的基材
c)进行反应性PVD涂覆工艺,其中工艺气体包含与一个或多个靶产生的金属离子反应的反应性气体,以在基材表面沉积至少一个基本上由Al、Cr、Si和O组成的层,其特征在于:用于进行步骤c)中反应性PVD涂覆工艺的一个或多个靶具有下式给出的原子百分比的元素组成:Al1-x-yCrxSiy,其中0.05≤y≤0.10,且0.20≤x≤0.25及反应性气体为氧气,由此制备具有至少一个基本上由Al、Cr、Si和O组成的层的涂层,其中,如果不考虑氧气,在至少一个层中硅浓度小于一个或多个靶中的硅浓度。
PVD涂覆工艺例如为电弧蒸发工艺。
根据一个实施例,工艺气体基本上仅包括氧气。可以及优选选择y=0.05和x=0.25。
硅浓度可等于或小于一个或多个靶中硅浓度的一半。
该方法可用于制造涂层体系。可采用该涂层体系涂覆基材。
该涂层体系可用于提高耐腐蚀性。
该涂层体系可用作
-氧化屏障,和/或
-化学屏障,和/或
-在用于高温摩擦学应用的层中使用,例如高于200℃,和/或
-燃料电池,和/或
-在高于200℃温度下运行的摩擦学应用的固体润滑剂
上述描述的涂层体系可施加至基材上,该基材待用于需要一个或多个上述特性的应用中。

Claims (5)

1.制备具有至少一个基本上由Al、Cr、Si和O组成的层的PVD氧化物涂层的方法,该方法至少包括下列步骤:
a)提供PVD涂覆腔室
b)在该PVD涂覆腔室中装入具有至少一个待涂覆表面的基材
c)进行反应性PVD涂覆工艺,其中工艺气体包含与由一个或多个靶产生的金属离子反应的反应性气体,以在基材表面上沉积至少一个基本上由Al、Cr、Si和O组成的层,
其特征在于:用于进行步骤c)中反应性PVD涂覆工艺的一个或多个靶具有下式给出的原子百分比的元素组成:Al1-x-yCrxSiy,其中0.05≤y≤0.10,且0.20≤x≤0.25及反应性气体为氧气,由此制备具有至少一个基本上由Al、Cr、Si和O组成的层的涂层,其中,如果不考虑氧气,在至少一个层中硅浓度小于一个或多个靶中的硅浓度。
2.根据权利要求1所述的方法,其特征在于PVD涂覆工艺为电弧蒸发工艺。
3.根据权利要求2所述的方法,其特征在于工艺气体基本上仅包括氧气。
4.根据权利要求1-3任一项所述的方法,其特征在于y=0.05和x=0.25。
5.根据权利要求1-3任一项所述的方法,其特征在于其中如果不考虑氧气,在至少一个层中硅浓度等于或小于一个或多个靶中硅浓度的一半。
CN201380021348.2A 2012-04-22 2013-04-22 具有增强涂层性能的电弧沉积Al-Cr-O涂层 Active CN104350172B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12002815 2012-04-22
EP12002815.4 2012-04-22
PCT/EP2013/001188 WO2013159893A1 (en) 2012-04-22 2013-04-22 Arc-deposited al-cr-o coatings having enhanced coating properties

Publications (2)

Publication Number Publication Date
CN104350172A CN104350172A (zh) 2015-02-11
CN104350172B true CN104350172B (zh) 2016-10-12

Family

ID=48236844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380021348.2A Active CN104350172B (zh) 2012-04-22 2013-04-22 具有增强涂层性能的电弧沉积Al-Cr-O涂层

Country Status (10)

Country Link
US (1) US9677169B2 (zh)
EP (1) EP2841618B1 (zh)
JP (1) JP6200488B2 (zh)
KR (1) KR102219393B1 (zh)
CN (1) CN104350172B (zh)
AR (1) AR090735A1 (zh)
BR (1) BR112014026231A2 (zh)
CA (1) CA2871067C (zh)
RU (1) RU2632348C2 (zh)
WO (2) WO2013159870A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652589B2 (en) * 2008-01-25 2014-02-18 Oerlikon Trading Ag, Truebbach Permeation barrier layer
CA2929460C (en) 2013-11-03 2023-03-28 Oerlikon Surface Solutions Ag, Pfaffikon Oxidation barrier layer
DE102016125042A1 (de) * 2015-12-28 2017-06-29 Oerlikon Surface Solutions Ag, Pfäffikon Infrarotspiegel mit einer thermisch stabilen Schicht
US20200263290A1 (en) * 2017-09-15 2020-08-20 Oerlikon Surface Solutions Ag, Pfäffikon Al-Cr-O-BASED COATINGS WITH HIGHER THERMAL STABILITY AND PRODUCING METHOD THEREOF
WO2019136261A1 (en) * 2018-01-04 2019-07-11 Ih Ip Holdings Limited Gas phase co-deposition of hydrogen/deuterium loaded metallic structures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504589A (zh) * 2002-11-19 2004-06-16 �����ɷ� 硬质被膜及硬质被膜被覆工具
CN101426947A (zh) * 2006-04-21 2009-05-06 塞美康股份公司 涂覆体
CN101456272A (zh) * 2007-12-14 2009-06-17 山高刀具公司 涂覆切削刀片
JP2011152627A (ja) * 2010-01-28 2011-08-11 Mitsubishi Materials Corp 高速重切削加工で硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH688863A5 (de) * 1994-06-24 1998-04-30 Balzers Hochvakuum Verfahren zum Beschichten mindestens eines Werkstueckes und Anlage hierfuer.
RU2264480C2 (ru) * 2000-04-10 2005-11-20 Падеров Анатолий Николаевич Способ нанесения защитных покрытий на детали из жаропрочных сплавов
JP4616213B2 (ja) * 2001-06-19 2011-01-19 株式会社神戸製鋼所 切削工具用硬質皮膜
RU2213807C2 (ru) * 2001-09-28 2003-10-10 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" Состав сплава для нанесения покрытий
JP3640310B2 (ja) * 2002-11-25 2005-04-20 日立ツール株式会社 硬質皮膜
JP2008013852A (ja) * 2003-01-17 2008-01-24 Hitachi Tool Engineering Ltd 硬質皮膜及び硬質皮膜被覆工具
JP2004238736A (ja) * 2003-01-17 2004-08-26 Hitachi Tool Engineering Ltd 硬質皮膜及び硬質皮膜被覆工具
US9997338B2 (en) 2005-03-24 2018-06-12 Oerlikon Surface Solutions Ag, Pfäffikon Method for operating a pulsed arc source
US7939181B2 (en) * 2006-10-11 2011-05-10 Oerlikon Trading Ag, Trubbach Layer system with at least one mixed crystal layer of a multi-oxide
RU2348739C2 (ru) * 2007-04-16 2009-03-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения алюминидного покрытия на поверхности изделия из жаропрочного сплава
JP4850189B2 (ja) * 2008-01-08 2012-01-11 日立ツール株式会社 被覆工具
JP4850204B2 (ja) * 2008-04-14 2012-01-11 日立ツール株式会社 被覆工具
JP4975682B2 (ja) * 2008-05-21 2012-07-11 日立ツール株式会社 被覆切削工具の製造方法
JP5061394B2 (ja) * 2008-10-31 2012-10-31 住友電工ハードメタル株式会社 表面被覆切削工具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504589A (zh) * 2002-11-19 2004-06-16 �����ɷ� 硬质被膜及硬质被膜被覆工具
CN101426947A (zh) * 2006-04-21 2009-05-06 塞美康股份公司 涂覆体
CN101456272A (zh) * 2007-12-14 2009-06-17 山高刀具公司 涂覆切削刀片
JP2011152627A (ja) * 2010-01-28 2011-08-11 Mitsubishi Materials Corp 高速重切削加工で硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具

Also Published As

Publication number Publication date
WO2013159870A1 (en) 2013-10-31
BR112014026231A2 (pt) 2017-06-27
JP6200488B2 (ja) 2017-09-20
RU2632348C2 (ru) 2017-10-04
US20150111795A1 (en) 2015-04-23
AR090735A1 (es) 2014-12-03
US9677169B2 (en) 2017-06-13
WO2013159893A1 (en) 2013-10-31
KR20140147127A (ko) 2014-12-29
EP2841618A1 (en) 2015-03-04
KR102219393B1 (ko) 2021-02-24
EP2841618B1 (en) 2018-08-08
RU2014146776A (ru) 2016-06-10
CN104350172A (zh) 2015-02-11
JP2015518522A (ja) 2015-07-02
CA2871067A1 (en) 2013-10-31
CA2871067C (en) 2020-07-21

Similar Documents

Publication Publication Date Title
Greczynski et al. X-ray photoelectron spectroscopy studies of Ti1-xAlxN (0≤ x≤ 0.83) high-temperature oxidation: the crucial role of Al concentration
US11485543B2 (en) Permeation barrier layer
CN104350172B (zh) 具有增强涂层性能的电弧沉积Al-Cr-O涂层
Polcar et al. High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings–Structure and oxidation
Mayrhofer et al. Oxidation kinetics of sputtered Cr–N hard coatings
Mayrhofer et al. Influence of Nb on the phase stability of Ti–Al–N
Levchuk et al. Al–Cr–O thin films as an efficient hydrogen barrier
KR102633691B1 (ko) 초합금 스퍼터링 타겟
Glechner et al. Influence of the non-metal species on the oxidation kinetics of Hf, HfN, HfC, and HfB2 coatings
Prikhna et al. A new MAX phases-based electroconductive coating for high-temperature oxidizing environment
Jiang et al. Electronic-structure, corrosion and mechanical properties of nc-CrC/aC: H films deposited by multi-arc ion plating
Wang et al. A study of atomic layer deposited LiAlxOy films on Mg–Li alloys
CN111757948A (zh) 具有增强热稳定性的Al-Cr基陶瓷涂层
Ding et al. Influence of Si addition on structure and properties of TiB2-Si nanocomposite coatings deposited by high-power impulse magnetron sputtering
Guzman et al. Vapour deposited Zn–Cr Alloy coatings for enhanced manufacturing and corrosion resistance of steel sheets
Aschauer et al. Atomic scale investigations of thermally treated nano-structured Ti-Al-N/Mo-Si-B multilayers
Caicedo et al. Evidence of electrochemical resistance on ternary VCN layers
Baggetto et al. Amorphous alumina thin films deposited on titanium: Interfacial chemistry and thermal oxidation barrier properties
Xu et al. Ti0· 33Al0. 67 cathode surface modifications and the effect on the mechanical and electrochemical properties of AlTiN coating
Haug et al. Stoichiometry dependence of hardness, elastic properties, and oxidation resistance in TiN/SiN x nanocomposites deposited by a hybrid process
Mayrhofer et al. Influence of different atmospheres on the thermal decomposition of Al-Cr-N coatings
Lin et al. Input power effect on microstructure and mechanical properties of MoSiN multilayer coatings
Lackner et al. Growth phenomena in room temperature pulsed laser deposited chromium and chromium nitride coatings
Malik et al. Enhanced electrochemical corrosion resistance of SS (304L) alloy with nano-pyramids c-TiN layer for saline media application
Novinrooz et al. Microhardness study of Ti (C, N) films deposited on S-316 by the Hallow Cathode Discharge Gun

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Swiss Te Lui Bach

Applicant after: OERLIKON TRADING AG, TRUBBACH

Address before: Swiss Te Lui Bach

Applicant before: Oerlikon Trading AG, Trubbach

COR Change of bibliographic data
CB02 Change of applicant information

Address after: Swiss hole

Applicant after: Ou Ruikang surface solutions Inc.

Address before: Swiss Te Lui Bach

Applicant before: OERLIKON TRADING AG, TRUBBACH

COR Change of bibliographic data
C14 Grant of patent or utility model
GR01 Patent grant