CN104272513B - 用于制氢的氧化还原液流电池 - Google Patents

用于制氢的氧化还原液流电池 Download PDF

Info

Publication number
CN104272513B
CN104272513B CN201380022949.5A CN201380022949A CN104272513B CN 104272513 B CN104272513 B CN 104272513B CN 201380022949 A CN201380022949 A CN 201380022949A CN 104272513 B CN104272513 B CN 104272513B
Authority
CN
China
Prior art keywords
electrolyte
positive
electrode
hydrogen
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380022949.5A
Other languages
English (en)
Other versions
CN104272513A (zh
Inventor
韦罗尼克·阿姆斯特茨
凯思琳·E·托格希尔
赫里斯托斯·康尼宁利斯
H·H·吉拉尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EOS Holding SA
Original Assignee
EOS Holding SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EOS Holding SA filed Critical EOS Holding SA
Publication of CN104272513A publication Critical patent/CN104272513A/zh
Application granted granted Critical
Publication of CN104272513B publication Critical patent/CN104272513B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8615Bifunctional electrodes for rechargeable cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • H01M4/8631Bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0693Treatment of the electrolyte residue, e.g. reconcentrating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明结合氧化还原液流电池的储存容量与氢和其它化学氧化还原反应产物的制造。各电解质的氧化还原电对在特定催化剂床11上化学再生,替代电池的放电过程,同时氧化或还原存在的其它物类。这能够在阴极侧产生氢,在阳极侧产生各种有用产物,如用于燃料电池用途的氧。提出的系统使用双回路布置,由此一旦处于其充电状态,可以将电解质8按需泵送穿过催化剂床11。

Description

用于制氢的氧化还原液流电池
技术领域
本发明涉及一种用于电能储存和制氢的氧化还原液流电池系统。
背景技术
显然需要新的和可持续的电力生产技术,该技术产生绿色排放,可忽略不计的废弃物,成本低廉、高效且适于多种地理条件。诸如此类的已经广泛商业化的技术包括光伏板和风电场。广泛使用光伏和风力电源的一大挫折在于可变和不可预测的电力生产,这是由于直接依赖于阳光或风。间歇式能量生产阻碍供求常规,难以在高峰时间按需制造大电流。对于未来的“智能电网”,因此重要的是开发用于大规模储能的新技术,因为其有效地利用可再生能量以充分地整合间歇式和绿色能量生产。大规模储能系统也有益于“负荷均衡”——即生产但未立即消耗的能量(例如在能量需求最低的夜间生产的核能)的储存与高需求期间使用该能量的组合。
已经提出氧化还原液流电池(RFB)作为大规模能量储存系统。RFBs不需要特定的地理选址,或大规模维护,它们具有长的使用寿命,容易实现,并且它们耐受充放电微循环。RFBs的主要缺点在于储能容量由活性电解质的溶解度决定,并且由此通常需要庞大的罐。它们可以应用于负荷均衡、风电场和光伏板[Ponce de León,C.,Frías-Ferrer,A.,González-García,J.,Szánto,D.A.,and Walsh,F.C.(2006).Redox flow cells for energyconversion.Journal of Power Sources 160:716-732]。RFB是这样的系统——其中该电池的两个半电池各自连接到含有由氧化还原物类和支持电解质组成的溶液的储罐。离子交换膜分隔该半电池,同时允许在电池充放电过程中的离子传输和电力连续性。在充电过程中,负极化电极是阴极,并且其中氧化还原物类被还原的电解质被称为阴极电解质。相应地,正极半电池具有阳极和称为阳极电解质的电解质。泵用于将电解质由它们各自的储罐运送至电化学电池,并再次运送到储罐。该系统的关键是选择适当的氧化还原物类。通常,选择氧化还原电对和电极以实现接近可逆的动力学,使该电池具有更高的电压和能量效率。
自1973年首次研究RFB起,多种氧化还原物类已经用于阴极电解质和阳极电解质[Bartolozzi,M.(1989).Development of redox flow batteries.A historicalbibliography.Journal of Power Sources 27:219-234],并因此已经有多种RFBs获得专利[例如美国专利第4,882,241号、第4,469,760号]。钒氧化还原液流电池(VRFB)是一种特殊情况,因为它在两个半电池中均用钒物类运行:在阴极侧的氧化还原电对V(III)/V(II)和在阳极侧的氧化还原电对V(V)/V(IV)[美国专利第4,786,567号]。其优点是阳离子穿过该膜的交叉扩散不影响循环电流效率并允许更长的电池使用寿命。VRFB当连接到电源时充电,当连接到电负载时放电。电解质在一个方向上流动穿过半电池,而不考虑进行的过程,但是发生的电化学反应不同。相应的反应是:
在阴极处:
V3++e-→V2+(充电) (la)
V2+→V3++e-(放电) (lb)
在阳极处:
V4+→V5++e-(充电) (2a)
V5++e-→V4+(放电) (2b)
由于他们的发明,RFBs,尤其是全钒RFBs,已经应用于各种系统。例如,它们已经成功地连接到风轮机、耦合到太阳能板[美国专利第6,005,183号]、进入生物燃料驱动的燃料电池[美国专利第5,660,940号]、组装成用于负荷均衡用途的堆[美国专利第7,820,321号]以及连接到电化学再生两种降解电解质的系统[美国专利第4,956,244号]。
氢气在能量生产与消耗管理中变得越来越重要,并被视为是能量储存的潜在手段,因为氢气可以用作电力生产的清洁燃料。事实上,在燃料电池中,H2和O2气体反应产生电能和作为唯一产物的水。获得氢气的主要方法是蒸汽甲烷或煤炭重整、气化、和在镍电极上的碱性水电解[http://www.hydrogen.energy.gov/pdfs/doe_h2_production.pdf]。前两种方法的缺点是释放CO2,而电解法不能间歇式应用,因为镍电极因开路腐蚀而迅速退化。因此,具有更长使用寿命的更可持续的系统需要H2生产,某些替代品已经在开发[http://www.hydrogen.energy.gov/pdfs/roadmap_manufacturing_hydrogen_economy.pdf]。
析氢研究中的一个主要方面在于催化该反应,但是迄今已知最有效的催化剂是铂。铂是稀有且昂贵的,并因此推动制造商和研究人员寻找可替代的、低成本的、丰富、稳定和同样有效的催化剂。一种此类催化剂是硫化钼,已经报道硫化钼是一种有效的释放H2的催化剂。这种催化剂主要用于精炼工业中的加氢脱硫反应,但是现在在催化制氢反应方面吸引了人们的注意[Merki,D.,Fierro,S.,Vrubel,H.和Hu,X.L.(2011)Amorphousmolybdenum sulphide films as catalysts for electrochemical hydrogenproduction in water.Chemical Science 2(7)1262-1267;Li,Y.,Wang,H.,Xie L.,Liang,Y.,Hong,G.和Dai,H.(2011)MoS2 nanoparticles grown on graphene:anadvanced catalyst for hydrogen evolution reaction.Journal of AmericanChemical Society 133(19)7296-7299]。这种非均相催化剂可以沉积在二氧化硅上[Rivera-E.,Alonso,G.,Siadati,M.H.和Chianelli,R.R.(2004).Silica gel-supported,metal-promoted MoS2 catalysts for HDS reactions.Catalysis Letters94(3-4):199-204;An,G.,Xiong,C,Lu,C和Chen,Z.(2011).Direct synthesis of porousmolybdenum disulfide materials using silica sol as template.Journal of PorousMaterials 18:673-676],其必须从产品中分离出来,如在使用固定或流化催化床时。
发明内容
本发明试图利用储存在RFB的充电电解质中的大量化学能。RFB与用于通过产生还原和氧化产物(包括H2和O2)的化学反应使氧化还原物类再生的催化床结合,由此在最大能量储存(即低能量需求)的过程中产生代用燃料源,但仍保持RFB的常规属性。
本发明由此将RFB的优点与阴极储器中的氢气生产和阳极储器中的氧气或氧化产物(例如对于废水处理)生产结合在一起。此外,该系统提供了一种规避RFB的最大缺点之一的方法,即其与目前可用的存储装置相比较低的能量密度。该对偶电路RFB由此提供了用于在放电过程中输送低成本的或可再生来源的能量的存储平台,并还在最大充电过程中生产代用燃料。该系统导致两种由此可以节约过量能量的手段,第一种通过在RFB中储存化学能,第二种通过氢的生成和随后的储存。在氢和氧生产的情况下,本发明通过氧化还原介质和催化反应实施间接的水电解。
本发明提供如权利要求1所述的RFB系统。本发明的任选特征记载在从属权利要求中。
本发明能够将化学能储存在RFB的电解质中,并使用装入该系统中的催化床将来自电网或可再生能源的溢流能量转化为氢、以及可能的氧。众所周知的是,氢气被视为有前途的清洁化学能载体,并因此是一种与常规RFB互补的能量储存手段。向RFB中加入催化床因此能够获得更高的储存容量,这出于两点原因是有利的:首先,在非高峰时段(在恒定能量生产率的情况下)可以在单个装置中储存更多电力,其次,当电力消耗速率高于其生产速率时,可以在高峰时段将更多电力注入到电网中。
该系统还可以设想为主要制造氢气的方法,其中由于增加储氢罐,RFB储罐的尺寸降低。此外,如果需要的话,该系统可以通过使用至少两个用于RFB的各电解质的储罐而转变为连续系统。
RFB在两种循环液体电解质的基础上运行,每一电解质含有氧化还原电对,并且每一电解质在储罐与电化学电池之间循环。除了外部电路之外,在两种液体之间唯一的电连接是离子交换膜,其分隔该电化学电池的两个室。氧化还原物类的主要功能是在充电过程中接受(还原,阴极)和给予(氧化,阳极)电子,并且相反地,在放电过程中给予(氧化,阴极)或接受(还原,阳极)电子。更具体而言,对于全钒氧化还原液流电池(VRFB),参见反应1a、1b、2a和2b。
在本发明中,氧化还原电对的功能延伸到电子载体的作用。对于VRFB的特殊情况,根据反应3和4,在充电过程中形成的两种物类能够给予另一化学物类一个电子(阴极电解质)或从另一化学物类接受一个电子(阳极电解质),特别是在特定催化剂的存在下。
在阴极电解质中:
V2+→V3++e-(放电或催化床中的化学再生) (3)
在阳极电解质中:
V5++e-→V4+(放电或催化床中的化学再生) (4)
这些单电子交换过程使初始电化学物类再生(放电状态),这些物类被引导回到电化学电池中并重复充电过程。作为反应3和4的结果,介质氧化还原电对与将要接受电子(例如在阴极电解质中的H+)或给予电子(例如在阳极电解质中的H2O)的化学物类密切相关。事实上,某些化学物类与其它物类相比可以更容易地接受或给予电子。这种给予或接受电子的能力通过该化学物类的标准还原电势E0 red来定量。在表1中给出了不同物类——阴极或阳极介质和化学给体和受体——的标准还原电势。
阴极介质 E0 red/V 阳极介质 E0 red/V 化学物类 E0 red/V
Ti3+/Ti2+ -0.37 VO2+/VO2 + 1.00 H+/H2 0
V3+/V2+ -0.255 MnO4 -/Mn2+ 1.51 O2/H2O 1.23
Cr3+/Cr2+ -0.41 Mn3+/Mn2+ 1.54 甘油 大约0.8
Zn2+/Zn -0.76 Ce4+/Ce3+ 1.61* Cl2/Cl- 1.36
Co3+/Co2+ 1.83 SO4 2-/SO2 -0.17
BrO3 -/Br- 1.42
*HNO3中的电位,E0高度依赖于酸性介质与浓度
表1:某些阴极和阳极介质以及某些化学物类的标准还原电位
取决于所选择的阴极和阳极氧化还原物类,可以选择各种化学反应用于使电解质再生。如上所述,本发明的目的之一是产生氢气。该化学物类由此是强酸,其中在电解质中离解的质子可以被还原为H2气。适于形成氢气的被视为阴极侧的电子给体的某些氧化还原电对显示在表1中。在阳极侧的反应不那么特定,可以是使用表1中列举的阳极氧化还原介质之一的水的氧化反应至有机或无机化合物如水污染物的氧化反应。氧气的生产可能是合意的,因为除氢之外这也是氢燃料电池所需的。水氧化为氧还提供了可重新引入RFB中的质子,以防止制氢造成的损耗。氯化物氧化为氯也是令人感兴趣的,因为氯是许多有机和无机化合物的合成中需要的化合物,并且其水解产物可用于水消毒。废水处理框架中有机化合物的氧化是另一种可能性。事实上,与废水处理中使用的其它氧化剂相比,已知KMnO4 -是一种有机污染物的良好氧化剂,价格低廉,并且不会产生有毒的副产物[Guan,X.H.,He,D.,Ma,J.和Chen,G.H.(2010).Application of permanganate in the oxidation of micropollutants:a mini-review.Frontiers of Environmental Science&Engineering inChina 4(4):405-413.]。最后,有毒SO2气体在外部反应器中氧化为良性的SO4 2-,并且质子是能够使用外部回路中的阳极电解质潜在地氧化的另一种化学物类。这尤其引人注意,因为仅-0.17V的低氧化还原电位和质子再生以对抗阴极电解质反应。
附图说明
现在将参照附图更详细地描述本发明,附图仅用于示例,其中:
图1示意性示出根据本发明的一个实施方式的氧化还原液流电池系统;
图2是示出图1的系统中由阴极电解质析氢的气相色谱(GC)测量结果;
图3是由图1中的阴极电解质催化析氢之前和之后获自100mM V(II)和V(III)的UV/可见光谱的重叠图;
图4是使用与图3中所示那些相应的UV/可见光谱获得的监控经时损耗的V(II)浓度的曲线图;
图5是获自GC分析vs溶液中V(II)量的显示生成的氢的催化转化曲线图;
图6是示出由图1的系统中的阳极电解质析氧的GC测量结果;
图7是均在甲磺酸的存在下,在硫酸和硝酸中的Ce(III)/(IV)氧化还原电对的两个循环伏安图的覆盖图;
图8是示出产生的氧摩尔数(通过气相色谱法测定)vs溶液中Ce(IV)量的催化转化曲线图。
具体实施方式
对于这种RFB氢发生器可以考虑不同的布置,但是,在下面的说明书中仅具体讨论一种。其仅涉及制造氢和氧。
图1显示与催化床结合的RFB的布置。中心部分是电化学电池1,其包含离子膜2和两个碳毡电极3。该电极可以填充两个半电池腔。在连接到集电器的位置6处显示连接到外部电源4或电负载5,毡电极3压制在该集电器上。泵7将两种电解质8由它们各自的储罐(或储器)9输送至电化学电池1,在那里它们与电极接触。电解质随后经气密管道10流回到它们各自的储罐中。惰性气体如氮气或氩气可以由罐20经由入口19提供。为了确保压力不会累积,惰性气体可以经由出口21离开该罐。这里我们称其为“内部回路”。
当两种氧化还原物类完全转化时,例如通过UV/可见光谱法测定,一部分可以从储器或电池转向催化塔11,导致形成氢气12和氧气13,氢气和氧气可以收集在适当的气体储罐14、15中。在经过催化床后,各电解质经过过滤器,如烧结玻璃16,以分离催化粒子,并随后以放电形式返回到它们各自的储罐。阀17用于引导电解质流。我们称此为“外部回路”。
第一步骤是在充电过程中完全转化电解质8中的两种介质。实现这一目的所需的能量可以源于非高峰时间的常规电网,或通过使用太阳能或风能理想地源于可再生能源。在完全转化后,使用者有两个选择:通过能量消耗系统的电负载5(经由电网)的RFB的经典放电,或通过催化塔11输送两种介质,生成H2和O2。在催化化学还原(阴极侧)和催化化学氧化(阳极侧)的反应过程中,该电化学介质再生,并且可以重复充电的过程。
根据图1的实验室规模系统中所使用的电极是5毫米厚的碳毡片(SGL Group,Germany),其首先在空气中在400℃处理4小时。根据Li,L.,Kim,S.等人(2011),A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scaleEnergy Storage.Advanced Energy Materials1:394-400所述,该预处理意在提高电极的亲水性和电化学活性。高疏水性可能是一个问题,因为空气气泡可能被捕获在电极内部,并显著降低电极的效率。电极活性表面积与电池的规模密切相关,并需要根据预期的电流和功率范围确定大小。这里,对两种电极使用2.5cm2几何面积的碳毡片。集电器在阳极处是铂丝,在阴极处是石墨棒,或两块掺杂硼的金刚石板作为阴极集电器和阳极集电器。仅测试了一个单极电化学电池,但是,双极电极堆也可用于大规模氧化还原液流电池,此外,可以使用替代的集电系统。在本设置中,电化学电池由聚乙烯(PE)的两个大约1.5cm3的室组成,两个电极仅由膜分隔,并略微压向集电器以改善导电性。在欧姆损耗(例如由于阴极与阳极之间大的距离)或旁路电流(在双极电极的情况下)会提高将电池充电所需的电压并由此降低其总效率的意义上,电化学电池的设计对RFB效率而言是重要的。
各种类型的离子选择性膜(或离子交换膜)用于RFBs,如离子交换填充孔隙膜、全氟化膜和阴离子交换膜[Li,X.,Zhang,H.,Mai,Z.,Zhang,H.和Vankelecom I.(2011).Ionexchange membranes for vanadium redox flow battery(VRB)applications.Energyand Environmental Science 4(4),1147-1160]。根据该参考文献,三个标准与膜的选择相关:膜的离子电导率、离子选择性和化学稳定性。在本发明中,使用Nation N117(Ion PowerInc.,New Castle,DE,US)膜,尽管并不具有最佳的离子电导率和选择性。在第一次使用前,将膜在3%(重量)的H2O2中处理1小时,随后于80℃在1M HNO3中处理2小时,并用去离子水洗涤至少三次。对于电池的效率和运行来说,膜的选择是中心问题。如果氧化还原介质阳离子可以穿过该膜(串扰电流),则可能长期严重降低效率,并缩短电解质的寿命。此外,更高的膜电阻率提高了充电过程所必须施加的电压,并在常规RFB放电过程中获得较低的电压。此外,在阴离子或阳离子膜之间的选择是重要的,因为这决定了离子行进的方向。这对系统的运行是至关重要的,因为这些离子的一部分转化为气体,该气体随后离开系统。这使得必须定期补充电解质。最后,取决于所用膜的类型,可以在各侧使用各种电解质组合物。在本系统中,仅需要加入纯水以补充电解质。
电解质的组成是本发明的另一关键方面:其影响RFB电化学电池的运行和容量,以及催化床效率和中毒。主要参数是介质氧化还原电对以及它们各自的浓度、支持电解质及其浓度、pH值、以及两种电解质的体积。此外,尤其对于阴极侧,必须考虑系统的脱氧。如之前所述,介质氧化还原电对的选择基于催化床中将发生的反应,并基于它们的电极反应的可逆性。例如为了生成氧和氢,我们使用铈-钒氧化还原液流电池(Ce-V RFB),并由反应5a和6a给出充电反应,由反应5b和6b给出放电或化学再生半反应。
在阳极电解质中:
Ce3+→Ce4++e-(充电) (5a)
Ce4++e-→Ce3+(放电或催化床中的化学再生) (5b)
在阴极电解质中:
V3++e-→V2+(充电) (6a)
V2+→V3++e-(放电或催化床中的化学再生)(6b)
这种特定的RFB布置自2002年起已经由多位作者进行了研究[例如Paulenova,A.,Creager,S.E.,Navratil,J.D.和Wei,Y.(2002).Redox potentials and kinetics of theCe(IV)/Ce(III)redox reaction and solubility of cerium sulfates in sulfuricacid solutions.Journal of Power Sources 109:431-438;Leung,P.K.,Ponce de León,C,Low,C.T.J.和Walsh,F.C.(2011).Ce(III)/Ce(IV)in methanesulfonic acid as thepositive half cell of a redox flow battery.Electrochimica Acta 56:2145-2153]。铈(IV)/(III)电对对酸介质的性质与浓度高度敏感,并且氧化还原电位在1M酸中以下列次序由+1.28V递增至+1.70V:HCl<H2SO4<HNO3<HClO4[Binnemans K,Application ofTetravalent Cerium Compounds in Handbook on the Physics and Chemistry of RareEarth,Vol 36,2006]。铈电对的可逆性也高度取决于酸,硫酸根配体显著降低可逆性,并稳定Ce(IV)态。
在本系统中,使用的初始盐是VCl3和Ce2(SO4)3或Ce(NO3)6(NH4)2,并且它们的浓度分别为0.5M至3M[Li,X.(2011),supra]和0.5M至2M[Leung,P.K.(2011)supra]。浓度越高,RFB的能量密度越高。高浓度溶液中铈物类的溶解度可能会有问题[Paulenova等人.(2002),supra],但是例如,可以向电解质中添加提高溶解度的添加剂,如甲磺酸[Leung(2011),supra,美国专利第7,270,911 B2号]。支持电解质通常是酸,在大多数出版物中是H2SO4,浓度为0.1至2 M[Li,X.(2011),supra,Rychcik,M.和Skyllas-Kazacos,M.(1988)Characteristics of a new all-vanadium redox flow battery.Journal of PowerSources 22:59-67]。由于Ce(IV)在不同酸中还原电位的变化,硝酸也是本文中所用的Ce-VRFB中的一种电解质。但是,由于NO3 -在0.96V(相对于SHE)还原为NO,该酸仅用在阳极电解质中。由于电化学物类在两个电极所产生的电场中的迁移,支持电解质具有降低欧姆损耗的功能,并且其还可以将氧化还原物类保持在它们所需的氧化态下,并获得不同介质的更好溶解度。用N2或Ar将该系统脱氧对于阴极电解质中V(II)离子的稳定性而言是必需的。位于电解质罐上的惰性气体入口能够对内部和外部回路进行脱氧。
考虑到相对于电解质8的催化床11的要求,酸浓度强烈影响制氢反应的效率,但是也影响水的化学氧化的效率。此外,在苛刻的酸性或碱性条件下,两种催化剂的稳定性必须予以考虑。此外,高效的系统需要确保在电极处不生成毒害催化剂的副产物,反之在催化床中也不会产生毒害电极的化合物。两种氧化还原介质的浓度是设计电化学电池时考虑的另一个因素;如果它们的浓度高,则催化剂的量应当作出调整。
在本说明书中,对于各电解质8仅显示一个储罐9,尽管存在各种布置,如例如在Lepp等人的美国专利第7,740,977 B2号中提及的那样。它们的尺寸取决于对电池的储存容量的要求。它们通过紧密接合到电化学电池和储罐的基于Teflon的管道连接到电化学电池。使用泵将电解质由储罐泵送至电化学电池,并返回至储罐。泵的主要特性是其可以驱动的流速,这与其功率消耗相关。泵的流速应根据电极的预期电流密度和通过催化床的适当流量(取决于反应的动力学)来设计。供给泵的能量应当尽可能低以提高系统的整体效率。在预备系统中,使用蠕动泵,在穿过电化学电池1为10毫升/分钟的流速和穿过催化室11为0.1毫升/分钟的流速下运行。
如下组装催化床11:在玻璃柱中(例如色谱柱),在底部放置玻璃料以便将掺杂催化剂的二氧化硅或碳粒子与电解质分离。氢或氧的收集器存在于该柱的上部开口处,气体随后储存在氢14或氧15储罐中。催化剂的选择决定了介质的化学转化的效率和生成的气体。催化剂的选择性和催化活性是在可能应用于双回路RFB之前必须检查的两个重要方面。
在文献中找到的用于制H2的各种催化剂中,在本系统中评价和测试了钼基催化剂。更具体而言,研究了MoS2、MOS3和Mo2C。气相色谱法(GC)结果已经表明,钼基催化剂产生显著量的H2(峰21,图2),其中V(II)是电子给体,硫酸质子是电子受体。制氢的总化学反应是:
2V2++2H+→2V3++H2(在Mo基催化剂的存在下) (7)
该反应可以使用UV/可见光谱法定量监测,其中在V(II)32的可见光谱(图3)中观察到的较低的第二能量峰,在采用该Mo催化剂的反应过程中经时量化。关于反应速率的动力学信息可以采用分光数据来确定,因为V(II)浓度可以相对于时间绘图(图4)。图4中的曲线图给出了V(II)与质子之间的催化反应的表观速率常数,该催化反应相对于V(II)浓度为准一级。该表观速率常数kapp确定为kapp=5.88×103s-1,尽管反应速率也随质子浓度和催化剂量而改变。
也可以使用气相色谱法监测将各种浓度的V(II)转化为V(III)和H2的反应效率。结果显示在图5中,并在实验误差范围内显示V(II)至H2气体的100%转化效率。
已经选择IrO2纳米粒子用于水氧化,因为它们对该反应众所周知的催化性质,以及IrO2纳米粒子在酸性pH中的稳定性。一些初步测试在Ce(IV)存在于1M H2SO4中作为电子受体的情况下,在中性溶液(即纯水)中取得了一定的成功。在含有硝酸铈(IV)铵(CAN)的1MHNO3中,催化水氧化明显更好,目测释放大量氧并从黄色的Ce(IV)快速转化为无色的Ce(III)。图6显示了Ce(IV)与IrO2在密封玻璃瓶中的反应过程中析出氧的GC结果。制氧的总催化化学反应是:
4Ce4++2H2O→4Ce3++O2+4H+ (7)
尽管在硫酸中,Ce(IV)/(III)氧化还原电对在热力学上能够氧化水,水氧化固有的动力学限制倾向于高于热力学建议的1.23 V的实际氧化电位[Koper,M.T.M.(2011)Thermodynamic theory of multi-electron transfer reactions:Implications forelectrocatalysis Journal of Electroanalytical Chemistry 660:254-260]。因此,在1M H2SO4中的Ce(IV)还原电位过低(相对于SHE为1.44V)以致于无法氧化水,但是在1M HNO3中,还原电位相对于SHE为1.61V。在硫酸71和硝酸72中,在石墨聚合物电极处获得铈溶液的循环伏安曲线,在图7中,氧化还原电位的偏移显而易见。当还使用甲磺酸时,在硫酸和硝酸中均获得了铈电对的明显更好的可逆性。因此,当使用本文中所述的IrO2催化剂与Ce(IV)/(III)氧化还原电对时,使用硝酸作为阳极电解质和使用硫酸作为阴极电解质对运行该双催化体系以致析出氢和氧是必需的。
采用不同浓度的介质进行水的催化氧化后,在图8中显示Ce(IV)向Ce(III)和O2的转化效率。GC样品取自含有充电的阳极电解质和催化剂的玻璃瓶的密封顶部空间。曲线图显示O2析出的转化效率为86%。
对本申请而言,在化学反应完成后,催化剂必须与电解质分离。因此,可以采用各种策略:通过纳米过滤器过滤纳米粒子催化剂,或将催化剂沉积在廉价基底上,如二氧化硅粒子,并通过简单的微孔玻璃料进行分离,或者最后,催化剂牢固地附着在细管的壁上,电解质流经该管。
当使用MoS2时,其通过催化剂前体(MoS3)与二氧化硅粒子在碱性条件中(MoS3:SiO2摩尔比为1:10)共同合成以沉积在二氧化硅粒子上[Rivera-E.,Alonso,G.,Siadati,M.H.和Chianelli,R.R.(2004).Silica gel-supported,metal-promoted MoS2catalysts for HDS reactions.Catalysis Letters 94(3-4):199-204]。
IrO2纳米粒子也沉积在二氧化硅上以制造紫色粉末。这可以通过如下方法实现:首先,通过在室温下在NaCl和聚(二烯丙基二甲基氯化铵)(PDDA)溶液中搅拌二氧化硅1小时,用PDDA的阳离子层涂布二氧化硅粒子。随后将二氧化硅溶液离心并用去离子水洗涤3次,随后在空气中在80℃干燥10分钟。随后在室温下将PDDA-二氧化硅添加到根据Hara等人所述合成的IrO2纳米粒子的悬浮液中[Hara,M.,Lean,J.T.,Mallouk,T.E.(2001):Photocatalytic oxidation of water by silica-supported tris(4,4'-dialkyl-2,2'-bipyridyl)ruthernium polymeric sensitizers and colloidal iridiumoxide.Chem.Mater.13(12):4668-4675]一小时。各二氧化硅负载的催化剂随后过滤或离心,并在使用前在80℃干燥10分钟。但是,可以原样使用Mo2C(碳化钼,-325目,99.5%,Aldrich,Switzerland),因为其已经为粉末形式,其高度不溶,并且主要为微米级及以上。
如已经提到的那样,可以研究替代的设置,如在电化学电池中更有效转化的双极电极,或用于各电解质的第二罐以改善氢和氧生产的效率(在并非所有介质均在电化学电池的第一通道中转化的情况下)。同样,根据使介质再生的化学反应的类型,装置可以稍作调整以适应化学化合物的要求(即,膜、氧化还原电对、催化剂、储存系统的选择)。
图2是在还原的阴极电解质与Mo2C之间的反应后测定氢的GC测量结果。该瓶含有在1M H2SO4中的催化量的Mo2C(1毫克)和2毫升20mM V(II),在反应1小时后(即反应完成)取样。第一峰21表示产生的氢,而第二峰22是样品中的氮气。进行各种“空白”试验(不含催化剂和/或电子给体)以验证该结果。
图3是在Mo2C存在下V(II)经时转化为V(III)的UV/可见光谱的覆盖图。在RFB中还原后取还原的阴极电解质,并且在初始条件中包含在1M H2SO4中的100mM V(II)。在向2毫升样品中加入5毫克Mo2C后,每30秒取UV/可见光谱,直到完成(即在600nm处的V(III)单峰)。在动力学分析过程中监测V(II)的能量较低的第二峰32的消失,能够确定相对于V(II)浓度的准一级反应。
图5是氢总生成量对V(II)浓度的曲线图。基于方程6中给出的摩尔比,质子化学还原为氢以100%的效率发生(即100毫摩尔V(II)产生50毫摩尔氢)。
图6代表在搅拌下列溶液1小时后测定氧的GC测量结果:在5毫克IrO2-二氧化硅的存在下,2毫升在1M HNO3中的100mM硝酸铈(IV)铵。峰61显示O2的存在,峰62显示N2的存在。将这些峰与其中仅观察到峰62的“空白”样品进行比较。
图8显示随2毫升1M HNO3中的Ce(IV)中Ce(IV)的量而改变的产生氧的量,其由GC在顶部空间中测得。平均转化率为86%,表明存在某些较小的副反应。
实施例1:氢的产生
在厌氧条件下用磁力搅拌1小时,由含有1M H2SO4、20mM V(II)和3毫克二氧化硅负载的MOS2或购置原样的Mo2C粉末(SiO2:MoS2摩尔比为10:1)的2毫升溶液成功地生成氢气。通过气密注射器对液体上方的气氛(顶部空间)取样,并注入GC。Mo2C的结果(图2)显示与初始存在的N2(峰22)相比明显存在H2(峰21)。
实施例2:氧的产生
在下列试验条件中已经清楚地观察到水的化学氧化以形成氧:在隔膜密封的玻璃瓶中,在厌氧条件下并在搅拌1小时下,将在RFB中生成的100mM硝酸铈铵(Ce(IV))在1MHNO3中的2毫升溶液,在3毫克IrO2/SiO2的存在下反应。使用气密注射器对气氛取样,并注入GC。结果(图6)显示存在O2(峰61)、以及试验的背景气体N2(峰62)。
实施例3:电解质的量化(Dimensioning)
为了在标准条件下产生1升H2和0.5升O2(即44.6毫摩尔H2和22.3毫摩尔O2),需要89.3毫摩尔的V(II)和Ce(IV)。对于2M的任意浓度,阴极电解质和阳极电解质具有89.3毫升的体积。各电解质还可含有1M浓度的酸性支持电解质(例如H2SO4)以及用于提高氧化还原物类的溶解度和稳定性的添加剂。在更大的规模,在Skyllas-Kazacos全钒氧化还原液流电池中[Rychcik(1988),supra],80升各电解质用于1kW电池。开路电势接近25V(17个电池),获得的电流在充电过程中为65A,在放电过程中为大约40.5A。

Claims (13)

1.一种氧化还原液流电池系统,包括:
a.氧化还原液流电池,包括:
i.电化学电池,具有含有正电解质和至少部分浸没在所述正电解质中的电极的第一隔室、含有负电解质和至少部分浸没在所述负电解质中的电极的第二隔室、以及将所述第一和第二隔室相互分隔的膜,其中所述正电解质包括选自Ce4+/Ce3+、V5+/V4+、MnO4 -/Mn2+、Mn3+/Mn2+、Co3+/Co2+和Br-/BrO3 -的氧化还原电对,所述负电解质包括选自V(III)/V(II)、Ti3+/Ti2 +、Cr3+/Cr2+和Zn2+/Zn的氧化还原电对,
ii.在不同充电状态下分别用于储存所述正和负电解质的第一和第二储罐,
iii.用于将所述正和负电解质分别从所述第一和第二隔室泵送至所述第一和第二储罐和分别从所述第一和第二储罐泵送至所述第一和第二隔室的泵;
iv.用于将所述系统脱氧并稳定充电电解质的惰性气体的源和入口;
b.第一催化床,用于由所述正电解质氧化形成化学物类,并使所述正电解质再生以便在所述氧化还原液流电池中重新使用;
c.第二催化床,用于将来自所述负电解质的质子还原为分子氢气,并使所述负电解质再生以便在所述氧化还原液流电池中重新使用;和
d.用于在所述系统的不同部分之间引导所述正和负电解质的阀。
2.根据权利要求1所述的系统,其中所述正电解质包括用于提高所述氧化还原电对的溶解度的添加剂。
3.根据权利要求2所述的系统,其中当所述氧化还原电对是Ce4+/Ce3+时,所述添加剂是甲磺酸。
4.根据权利要求1、2或3所述的系统,其中所述膜是离子交换膜、纳滤膜或石棉。
5.根据权利要求1、2或3所述的系统,其中所述膜是全氟磺酸和聚四氟乙烯的共聚物。
6.根据权利要求1、2或3所述的系统,其中该至少部分浸没在所述正和负电解质中的电极选自金属电极和碳电极。
7.根据权利要求6 所述的系统,其中所述至少部分浸没在所述正和负电解质中的电极是纳米粒子催化剂修饰的碳电极。
8.根据权利要求1、2或3所述的系统,其中所述化学物类是O2
9.根据权利要求1、2或3所述的系统,其中在通入所述第一催化床之前将附加化合物与所述正电解质混合。
10.根据权利要求9 所述的系统,其中所述附加化合物是氯化物以产生氯,是SO2以产生H2SO4,或是任何产生CO2的有机化合物。
11.根据权利要求1、2或3所述的系统,其中所述第一催化床包括IrO2、RuO2、Mn和Co的氧化物中的至少之一用以将水氧化为氧。
12.根据权利要求1、2或3所述的系统,其中所述第二催化床包括钯或铂、MoS2或Mo2C,用以将质子还原为氢。
13.根据权利要求1、2或3所述的系统,其中所述电化学电池包括电极的双极堆。
CN201380022949.5A 2012-03-05 2013-03-04 用于制氢的氧化还原液流电池 Active CN104272513B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261606712P 2012-03-05 2012-03-05
US61/606,712 2012-03-05
PCT/EP2013/054238 WO2013131838A1 (en) 2012-03-05 2013-03-04 Redox flow battery for hydrogen generation

Publications (2)

Publication Number Publication Date
CN104272513A CN104272513A (zh) 2015-01-07
CN104272513B true CN104272513B (zh) 2017-07-18

Family

ID=47757630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380022949.5A Active CN104272513B (zh) 2012-03-05 2013-03-04 用于制氢的氧化还原液流电池

Country Status (6)

Country Link
US (1) US9543609B2 (zh)
EP (1) EP2823528B1 (zh)
JP (1) JP6204382B2 (zh)
CN (1) CN104272513B (zh)
ES (1) ES2568759T3 (zh)
WO (1) WO2013131838A1 (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201308178D0 (en) * 2013-05-07 2013-06-12 Acal Energy Ltd Redox systems
KR102364280B1 (ko) 2013-09-25 2022-02-16 록히드 마틴 에너지, 엘엘씨 플로우 배터리를 위한 전해질 평형화 방법
CN104716373A (zh) * 2013-12-13 2015-06-17 中国人民解放军63971部队 一种负极为钛电对的液流电池
JP2015232960A (ja) * 2014-06-10 2015-12-24 住友電気工業株式会社 電池システム
JP5850094B2 (ja) * 2014-06-24 2016-02-03 トヨタ自動車株式会社 レドックス型燃料電池
WO2016043692A1 (en) * 2014-09-15 2016-03-24 United Technologies Corporation Regeneration of flow battery electrode
DE102014225612A1 (de) * 2014-12-11 2016-06-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Regeneration der Elektrolytlösung eines Redox-Flow-Akkumulators
US11050078B2 (en) 2015-01-22 2021-06-29 Battelle Memorial Institute Systems and methods of decoupled hydrogen generation using energy-bearing redox pairs
US11050076B1 (en) 2015-01-22 2021-06-29 Battelle Memorial Institute Flow cell systems, flow cell batteries, and hydrogen production processes
US11043686B2 (en) 2015-01-22 2021-06-22 Battelle Memorial Institute Systems and methods of long-duration energy storage and regeneration of energy-bearing redox pairs
CN107431224B (zh) 2015-04-14 2021-01-05 洛克希德马丁能量有限公司 用于同时调节负极电解质溶液和正极电解质溶液的具有双极膜的液流电池平衡电池
CA2981806C (en) 2015-04-14 2023-02-28 Lockheed Martin Advanced Energy Storage, Llc Flow battery balancing cells having a bipolar membrane and methods for use thereof
CA2989245A1 (en) 2015-06-16 2016-12-22 David Alan FINKELSTEIN High-power redox flow battery based on the criii/crvi redox couple and its mediated regeneration
JP6726868B2 (ja) * 2015-06-23 2020-07-22 パナソニックIpマネジメント株式会社 レドックスフロー電池
ES2552127B2 (es) * 2015-07-30 2016-10-19 Universitat D'alacant / Universidad De Alicante Acumulador electroquímico ácido-base de flujo (AEABF)
EP3360193B1 (en) * 2015-10-09 2020-04-22 Case Western Reserve University Sealed aqueous flow battery systems with in-tank electrolyte rebalancing
US10347925B2 (en) 2016-04-29 2019-07-09 Lockheed Martin Energy, Llc Three-chamber electrochemical balancing cells for simultaneous modification of state of charge and acidity within a flow battery
JP2019521497A (ja) 2016-07-22 2019-07-25 ナントエナジー,インク. 電気化学セル内の水分及び二酸化炭素管理システム
JP6719728B2 (ja) * 2016-07-26 2020-07-08 住友電気工業株式会社 電解液、電解槽用電解液、及び電解槽システム
JP6702170B2 (ja) * 2016-12-20 2020-05-27 トヨタ自動車株式会社 燃料電池システム
US10461352B2 (en) 2017-03-21 2019-10-29 Lockheed Martin Energy, Llc Concentration management in flow battery systems using an electrochemical balancing cell
US11394035B2 (en) 2017-04-06 2022-07-19 Form Energy, Inc. Refuelable battery for the electric grid and method of using thereof
JP2019003933A (ja) * 2017-06-16 2019-01-10 パナソニックIpマネジメント株式会社 フロー電池
US11611115B2 (en) 2017-12-29 2023-03-21 Form Energy, Inc. Long life sealed alkaline secondary batteries
GB201801170D0 (en) 2018-01-24 2018-03-07 Univ Court Univ Of Glasgow Use of polyoxometalate mediators
GB2570672A (en) * 2018-02-01 2019-08-07 Ac Chemical Systems Ltd Reversible cell
US11177497B2 (en) * 2018-03-12 2021-11-16 Washington University Redox flow battery
IL258252A (en) * 2018-03-20 2018-06-28 Technion Res & Development Found Ltd System and method for producing gases
FR3079530B1 (fr) 2018-04-03 2024-04-26 Ergosup Procede electrochimique de production d'hydrogene gazeux sous pression par electrolyse puis par conversion electrochimique
WO2020006436A1 (en) 2018-06-29 2020-01-02 Form Energy Inc. Aqueous polysulfide-based electrochemical cell
CN108808030B (zh) * 2018-07-03 2023-08-08 重庆大学 基于b-z振荡反应的脉冲电池设计
CN112805851A (zh) 2018-07-27 2021-05-14 福恩能源公司 用于电化学电池的负电极
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
CN110835764B (zh) * 2018-08-17 2021-05-25 中国科学院大连化学物理研究所 一种耦联太阳光催化分解水与液流电池产氢发电的方法
CN109461955A (zh) * 2018-11-02 2019-03-12 浙江晨阳新材料有限公司 一种燃料电池系统
CN113169361B (zh) 2018-11-20 2024-02-27 Ess技术有限公司 氧化还原液流电池的电解质健康管理
DE102019104401A1 (de) * 2019-01-22 2020-07-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Elektrolyseur und Verfahren zum Aufspalten von Wasser
US11203812B2 (en) * 2019-02-22 2021-12-21 New York University Methods and electrochemical cells for redox mediated hydrogen production
US11313044B2 (en) * 2019-08-20 2022-04-26 Deutsches Zentrum fuer Loft- und Raumfahrt e.V. Electrolyzer and method for splitting water
US11949129B2 (en) 2019-10-04 2024-04-02 Form Energy, Inc. Refuelable battery for the electric grid and method of using thereof
CN111962091A (zh) * 2020-08-20 2020-11-20 上海电气集团股份有限公司 一种电解水方法及装置
WO2022098301A1 (en) * 2020-11-04 2022-05-12 National University Of Singapore A water electrolyzer system
US20230411662A1 (en) * 2020-11-30 2023-12-21 Cmblu Energy Ag Electrolyte Regeneration for Organic Redox Flow Batteries Based on Water-Soluble Phenzaine-Based Compounds
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency
US20220275520A1 (en) * 2021-03-01 2022-09-01 Verdagy, Inc. Systems and methods to make hydrogen gas using metal salt
CN113416972A (zh) * 2021-05-31 2021-09-21 复旦大学 基于全钒液流氧化还原媒介分步电解水制氢的装置和方法
FR3127234A1 (fr) 2021-09-21 2023-03-24 Totalenergies Se Procédé de génération continue d’hydrogène par électrolyse de l’eau via une approche découplée
WO2023219648A1 (en) 2022-05-09 2023-11-16 Lockheed Martin Energy, Llc Flow battery with a dynamic fluidic network
US20240218526A1 (en) * 2022-12-15 2024-07-04 California Institute Of Technology Systems for Direct Generation of High-Pressure Hydrogen Gas and Methods Thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4159366A (en) * 1978-06-09 1979-06-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrochemical cell for rebalancing redox flow system
US5660940A (en) * 1993-12-20 1997-08-26 Sufucell Ab Method for producing electric energy in a biofuel-powered fuel cell
CN101901937A (zh) * 2010-08-17 2010-12-01 天津久聚能源科技发展有限公司 银离子作为正极催化剂的铈离子电解液及其制备方法
CN102089918A (zh) * 2008-07-07 2011-06-08 伊奈沃特公司 分布式储能用的氧化还原液流电池系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469760A (en) 1981-09-08 1984-09-04 Electric Power Research, Institute Redox battery including a bromine positive electrode and a chromium ion negative electrode, and method
US4576878A (en) * 1985-06-25 1986-03-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for rebalancing a redox flow cell system
US4786567A (en) 1986-02-11 1988-11-22 Unisearch Limited All-vanadium redox battery
JPH0815093B2 (ja) * 1986-05-24 1996-02-14 住友電気工業株式会社 電解液循環型2次電池
DE3869547D1 (en) 1987-10-23 1992-04-30 Siemens Ag Redoxbatterie.
JP2649700B2 (ja) 1988-06-03 1997-09-03 関西電力株式会社 レドックスフロー電池の電解液再生装置
DE3843312A1 (de) 1988-12-22 1990-06-28 Siemens Ag Ausgleichszelle fuer einen cr/fe-redoxionenspeicher
JPH06260204A (ja) * 1993-03-01 1994-09-16 Sumitomo Electric Ind Ltd 電解液再調整装置付電解液流通型電池
JPH09172195A (ja) 1995-12-20 1997-06-30 Ebara Corp 蓄電池内蔵型太陽電池
JP3098961B2 (ja) * 1996-07-24 2000-10-16 住友電気工業株式会社 レドックスフロー電池およびその運転方法
JP2001093560A (ja) * 1999-09-27 2001-04-06 Kashimakita Kyodo Hatsuden Kk レドックスフロー電池
US20060063065A1 (en) * 2001-08-10 2006-03-23 Clarke Robert L Battery with bifunctional electrolyte
US7270911B2 (en) 2001-08-10 2007-09-18 Plurion Limited Load leveling battery and methods therefor
US7740977B2 (en) 2007-03-26 2010-06-22 Jd Holding Inc. Vanadium redox battery incorporating multiple electrolyte reservoirs
US8877365B2 (en) * 2009-05-28 2014-11-04 Deeya Energy, Inc. Redox flow cell rebalancing
KR101523187B1 (ko) * 2010-03-02 2015-05-27 애칼 에너지 리미티드 기포 발생 장치 및 방법
GB201200250D0 (en) * 2012-01-09 2012-02-22 Imp Innovations Ltd Regenerative fuel cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4159366A (en) * 1978-06-09 1979-06-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrochemical cell for rebalancing redox flow system
US5660940A (en) * 1993-12-20 1997-08-26 Sufucell Ab Method for producing electric energy in a biofuel-powered fuel cell
CN102089918A (zh) * 2008-07-07 2011-06-08 伊奈沃特公司 分布式储能用的氧化还原液流电池系统
CN101901937A (zh) * 2010-08-17 2010-12-01 天津久聚能源科技发展有限公司 银离子作为正极催化剂的铈离子电解液及其制备方法

Also Published As

Publication number Publication date
JP2015509650A (ja) 2015-03-30
JP6204382B2 (ja) 2017-09-27
EP2823528B1 (en) 2016-03-02
CN104272513A (zh) 2015-01-07
EP2823528A1 (en) 2015-01-14
US20150017494A1 (en) 2015-01-15
US9543609B2 (en) 2017-01-10
ES2568759T3 (es) 2016-05-04
WO2013131838A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
CN104272513B (zh) 用于制氢的氧化还原液流电池
Huang et al. The rapid self-reconstruction of Fe-modified Ni hydroxysulfide for efficient and stable large-current-density water/seawater oxidation
Chen et al. Highly reduced and protonated aqueous solutions of [P2W18O62] 6− for on-demand hydrogen generation and energy storage
Chen et al. Advances in electrocatalytic N2 reduction—strategies to tackle the selectivity challenge
Yao et al. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces
Pasquini et al. H/D isotope effects reveal factors controlling catalytic activity in Co-based oxides for water oxidation
Chakrabartty et al. An electrocatalytically active nanoflake-like Co9S8-CoSe2 heterostructure for overall water splitting
Ekspong et al. Hydrogen evolution reaction activity of heterogeneous materials: a theoretical model
US11050078B2 (en) Systems and methods of decoupled hydrogen generation using energy-bearing redox pairs
JP5913364B2 (ja) ポリオキソメタレートおよびバナジウム(iv)化合物を含むカソード液を持つ再生可能な燃料電池
CN109321936B (zh) 一种基于液流氧化还原媒介分步电解水制氢的装置和方法
Bellani et al. Graphene-based electrodes in a vanadium redox flow battery produced by rapid low-pressure combined gas plasma treatments
US11050076B1 (en) Flow cell systems, flow cell batteries, and hydrogen production processes
Dai Carbon-based metal-free catalysts: design and applications
Vinco et al. Unfolding the Vanadium Redox Flow Batteries: An indeep perspective on its components and current operation challenges
Reynard et al. Combined hydrogen production and electricity storage using a vanadium-manganese redox dual-flow battery
Li et al. Recent progress in ammonia synthesis based on photoelectrocatalysis
Cheng et al. Comprehensive understanding and rational regulation of microenvironment for gas‐involving electrochemical reactions
Choueiri et al. Favorable electrocatalytic ammonia oxidation reaction thermodynamics on the β-NiOOH (0001) surface computed by density functional theory
Li et al. Direct hydrogen peroxide synthesis on a Sn-doped CuWO4/Sn anode and an air-breathing cathode
Mundaray et al. New insights into the performance of an acid-base electrochemical flow battery
Pichugov et al. Restoring capacity and efficiency of vanadium redox flow battery via controlled adjustment of electrolyte composition by electrolysis cell
Shin et al. Spectroscopic and electrochemical analyses elucidating capacity degradation mechanism of iron-ligand complex and air in all iron aqueous redox flow batteries
Park et al. Rapid preparation of desirable vanadium electrolyte using ascorbic acid as a reducing agent in vanadium redox flow batteries
Lv et al. Gold-Modified Mo2C Nanoparticles Supported on Nitrogen-Doped Carbon Nanotubes for Electrochemical Nitrogen Fixation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant