CN104247114A - 具有梯度催化剂结构的燃料电池电极 - Google Patents

具有梯度催化剂结构的燃料电池电极 Download PDF

Info

Publication number
CN104247114A
CN104247114A CN201280067704.XA CN201280067704A CN104247114A CN 104247114 A CN104247114 A CN 104247114A CN 201280067704 A CN201280067704 A CN 201280067704A CN 104247114 A CN104247114 A CN 104247114A
Authority
CN
China
Prior art keywords
particle size
fuel cell
cell electrode
average particle
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280067704.XA
Other languages
English (en)
Other versions
CN104247114B (zh
Inventor
L·V·普罗特塞罗
L·R·斯托拉
J·M·玛祖罗
M·古玛拉
S·F·伯拉特斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Siemens VDO Electric Drives Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens VDO Electric Drives Inc filed Critical Siemens VDO Electric Drives Inc
Publication of CN104247114A publication Critical patent/CN104247114A/zh
Application granted granted Critical
Publication of CN104247114B publication Critical patent/CN104247114B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • H01M4/8642Gradient in composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9058Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of noble metals or noble-metal based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/886Powder spraying, e.g. wet or dry powder spraying, plasma spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

稳定电极结构的一个示例为使用梯度电极,其在被承载于常规碳上的膜的紧邻区域中采用大铂颗粒催化剂,并在电极的更靠近被承载于稳定碳上的GDL的部段中采用小铂颗粒。有助于电极性能稳定以及降低ECA变化的一些电极参数为铂-碳比、电极的各个部分中的铂颗粒的尺寸、其它稳定催化剂而不是大颗粒尺寸铂(合金等)的使用、每个梯度子层的深度。稳定电极结构的另一示例为在碳载体上使用混合的铂颗粒尺寸,比如使用可以为6纳米和3纳米的铂颗粒。导电载体通常为一种或多种碳黑。

Description

具有梯度催化剂结构的燃料电池电极
本公开的背景
本公开涉及稳定电极结构,并且更特别地涉及用于燃料电池的稳定高活性催化剂。
燃料电池是众所周知的,并且用于生成电力。例如,燃料电池通常包括阳极电极,其包括阳极催化剂。阳极催化剂通常被承载于载体材料比如碳上。阴极电极包括被承载的阴极催化剂。电解质被配置在阳极电极与阴极电极之间,用于在电化学反应中生成电流,所述电化学反应由通过气体扩散层(GDL)供给的氧化剂和燃料维持,所述气体扩散层(GDL)通常面对处于膜表面相反侧的电极表面。一种示例电解质是质子交换膜(PEM)。
与燃料电池相关联的一个问题是电极催化剂的电化学表面面积(ECA)的损失以及燃料电池性能的相应损失。该ECA损失关联于数个关键因素:奥斯特瓦尔德熟化(Ostwald Ripening)、铂溶解/沉积和关联于碳腐蚀的铂结团。另外,该ECA损失被在典型汽车和巴士驾驶周期中遇到的燃料电池电位(potential)循环的操作效果加剧。
迄今,对该问题的最有益解决方案是在操作以及启动和停机期间控制电池内的反应物环境和燃料电池电位极限(例如,见6,835,479“SYSTEM ANDMETHOD FOR SHUTTING DOWN A FUEL CELL POWER PLANT”)。所需的是一种稳定电极结构,并且更特别是用于燃料电池的稳定高活性催化剂。
发明内容
稳定电极结构的一个示例为使用梯度(gradient)电极,其在被承载于常规碳上的膜的紧邻区域中采用大铂颗粒催化剂,并在电极的更靠近被承载于稳定碳上的GDL的部段中采用小铂颗粒。有助于电极性能稳定以及降低ECA变化的一些电极参数为铂-碳比、电极的各个部分中的铂颗粒的尺寸、其它稳定催化剂而不是大颗粒尺寸铂(合金等)的使用、每个梯度子层的深度。
稳定电极结构的另一示例为在碳载体上使用混合的铂颗粒尺寸,比如使用可以为6纳米和3纳米的铂颗粒。可用于本公开的导电载体通常为一种或多种碳黑。它们可以是炉黑、灯黑、乙炔黑、槽法碳黑、热碳黑或类似物。碳载体可以是:常规碳,比如XC72(Cabot公司),其典型表面面积为~240m2/g(平方米每克);或稳定碳,比如石墨化 其表面面积为~80m2/g。
附图说明
可通过参考以下详细描述在结合附图考虑时来进一步理解本公开,附图中:
图1是一示例燃料电池的示意图。
图2A是一示例电极组件的一部分的示意图。
图2B是另一示例电极组件的一部分的示意图。
图3是曲线图,对于采用处于润湿状态的梯度催化剂的燃料电池示出了在150小时耐久性循环后的性能损失。
图4是曲线图,示出了在150小时耐久性循环后与具有均匀填充度的催化剂相比采用梯度催化剂的燃料电池的性能损失。
具体实施方式
图1示意性地示出了燃料电池10,其具有阳极板12和阴极板14,它们配置在组合式电极组件24的两侧。组合式电极组件24包括具有配置在阳极催化剂22与阴极催化剂23之间的质子交换膜20的膜电极组件18,并且还包括阳极气体扩散层26和阴极气体扩散层27。
反应物源30,其可以提供比如氢等燃料,将反应物供给至阳极板12。氧化剂源32,比如空气,被提供至阴极板14。膜电极组件18内的电化学反应提供穿过负载28的电流,如本领域公知的。
参考图2A,示出了一示例阳极催化剂22。应该明白的是:可以类似地构造阴极催化剂23。阳极催化剂22由一个层或多个层提供,其至少包括第一和第二层34、36。每个层包括混合物,所述混合物包括离聚物(ionomer)、导电性载体材料(support material)和催化剂颗粒。离聚物在一个示例中为催化剂颗粒尺寸在每个层中是不同的。在该示例中,第一层34配置为相邻于质子交换膜20,而第二层36配置为相邻于气体扩散层26。
在一个示例中,第一和第二层34、36分别包括第一和第二载体材料42、44。第一和第二载体材料42、44可以不同于彼此,并且可以由碳材料提供,比如碳黑,例如炉黑、灯黑、乙炔黑、槽法碳黑、或热碳黑。在一个示例中,第一载体材料42是稳定碳,比如石墨化碳(stabilized carbon),例如表面面积大约为例如80m2/g的第二载体材料44由常规碳构造,比如XC72(Cabot公司),其典型表面面积大约为例如240m2/g。在所示示例中,第一和第二载体材料42、44还可以区别在于:第一载体材料42具有的第一厚度38小于第二载体材料44的第二厚度40。
第一和第二催化剂颗粒46、48彼此不同之处在于:第一催化剂颗粒46具有的第一平均颗粒尺寸大于第二载体材料44上的催化剂颗粒,其具有第二平均颗粒尺寸。在一个示例中,第一和第二催化剂颗粒46、48是铂,比如铂黑。第一和第二催化剂颗粒46、48可以由其它过渡金属及其合金提供。在一个示例中,第一平均颗粒尺寸为4-10nm,并且在一个示例中为6nm。第二平均颗粒尺寸为例如2-5nm,并且在一个示例中为3nm。
第一和第二层34、36是通过将离聚物/载体材料催化剂颗粒混合物喷射到邻接结构上。在另一示例中,可使用膜转移(film transfer)方法,其中层被沉积到转移膜上,并且所述层然后从膜转移到结构。在一个示例中,第一层34被沉积到PEM 20上,而第二层36被沉积到第一层34上。在另一示例中,第二层36被沉积到GDL26上,而第一层36被沉积到第二层36或PEM20上。
较大的催化剂颗粒配置在溶解作用更强烈的区域中-邻近PEM。较小的催化剂颗粒,位于GDL处,提供性能优点。
在一个示例中,第一和第二层34、36具有大约50%的孔隙率。在一个示例中,第一层34包括大约60重量百分比的第一催化剂颗粒46,而第二层36包括大约50重量百分比的第二催化剂颗粒48。在一个示例中,第一和第二层34、36的催化剂颗粒填充度(loading)为大约0.1-0.2mg/cm2
另一示例的稳定电极结构在图2B中示出。阳极催化剂122设置在PEM 20与GDL 126之间。铂颗粒146、148的混合物被提供在碳载体142中(连同离聚物)。铂颗粒146、148可以分别为6纳米和3纳米,彼此混和,而不是图2A中示出的离散层,这可缓解空运(air transport)损失。
参考图3和4,示出了示例所公开的催化剂的150小时耐久性循环之后的性能损失的曲线图被示为与常规地填充的催化剂进行比较。曲线图中示出的结果涉及这样一种示例燃料电池,其具有0.2mg/cm2的铂,其中第一层对于大约1.8μm的深度具有大约250,000的每催化剂单位体积的电化学面积,而第二层对于2.4μm的深度为400,000。图3示出了150小时耐久性循环之后的性能损失对于处于润湿状态(100%RH)的梯度催化剂而言是可忽略的。图4示出了如在以下状态下测试的催化剂:包括37度干露点温度,具有60℃的冷却剂和4040kPa的操作压力。所测试的梯度催化剂呈现出可忽略的性能损失,在150小时后在1000mA/cm2处只有8%损失。
尽管已经公开了优选实施例,但是本领域的技术人员将意识到某些修改将落入权利要求书的范围内。因此,应该研究后附权利要求书来确定它们的真实范围和内容。

Claims (13)

1.一种燃料电池电极组件,包括:
第一层,其包括第一载体材料,所述第一载体材料具有第一平均颗粒尺寸的第一催化剂颗粒,邻接质子交换膜;
第二层,其邻接所述第一层,并包括第二载体材料,所述第二载体材料具有第二平均颗粒尺寸的第二催化剂颗粒,邻接气体扩散层,所述第一平均颗粒尺寸大于所述第二平均颗粒尺寸。
2.根据权利要求1所述的燃料电池电极组件,其中,所述第一催化剂颗粒和第二催化剂颗粒是过渡金属。
3.根据权利要求2所述的燃料电池电极组件,其中,所述过渡金属包括铂。
4.根据权利要求1所述的燃料电池电极组件,其中,所述第一平均颗粒尺寸和第二平均颗粒尺寸分别为大约4-10nm和2-5nm。
5.根据权利要求4所述的燃料电池电极组件,其中,所述第一平均颗粒尺寸和第二平均颗粒尺寸为大约6nm和3nm。
6.根据权利要求1所述的燃料电池电极组件,其中,所述第一载体材料和第二载体材料彼此不同。
7.根据权利要求6所述的燃料电池电极组件,其中,所述第一载体材料和第二载体材料分别为稳定碳和常规碳。
8.根据权利要求6所述的燃料电池电极组件,其中,所述第一载体材料和第二载体材料分别包括彼此不同的第一厚度和第二厚度。
9.根据权利要求6所述的燃料电池电极组件,其中,碳材料具有大约50%的孔隙率。
10.根据权利要求4所述的燃料电池电极组件,其中,所述第一层和第二层分别包括对应于大约60重量百分比和50重量百分比的第一催化剂颗粒和第二催化剂颗粒。
11.根据权利要求4所述的燃料电池电极组件,其中,填充在所述第一层和第二层上的铂为大约0.1-0.2mg/cm2
12.一种燃料电池电极组件,包括:
催化剂,其配置在质子交换膜与气体扩散层之间,其中所述催化剂包括载体材料,所述载体材料具有第一催化剂颗粒和第二催化剂颗粒,它们彼此混和并分别具有第一平均颗粒尺寸和第二平均颗粒尺寸,所述第一平均颗粒尺寸大于所述第二平均颗粒尺寸,所述第一平均颗粒尺寸和第二平均颗粒尺寸分别为大约4-10nm和2-5nm。
13.根据权利要求12所述的燃料电池电极组件,其中,所述第一催化剂颗粒和第二催化剂颗粒是铂。
CN201280067704.XA 2012-01-20 2012-01-20 具有梯度催化剂结构的燃料电池电极 Active CN104247114B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2012/021972 WO2013109283A1 (en) 2012-01-20 2012-01-20 Fuel cell electrode with gradient catalyst structure

Publications (2)

Publication Number Publication Date
CN104247114A true CN104247114A (zh) 2014-12-24
CN104247114B CN104247114B (zh) 2017-09-29

Family

ID=48799553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280067704.XA Active CN104247114B (zh) 2012-01-20 2012-01-20 具有梯度催化剂结构的燃料电池电极

Country Status (7)

Country Link
US (1) US9761899B2 (zh)
EP (1) EP2805368B1 (zh)
JP (1) JP5900995B2 (zh)
KR (1) KR101867132B1 (zh)
CN (1) CN104247114B (zh)
CA (1) CA2862291C (zh)
WO (1) WO2013109283A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993960A (zh) * 2019-11-11 2020-04-10 上海交通大学 一种强化催化剂耐久性的阴极催化层结构及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9484583B2 (en) * 2013-10-14 2016-11-01 Nissan North America, Inc. Fuel cell electrode catalyst having graduated layers
US10205173B2 (en) 2014-07-08 2019-02-12 Bdf Ip Holdings Ltd. Cathode design for electrochemical cells
US20180198146A1 (en) * 2015-07-10 2018-07-12 Daimler Ag Multi-layer fuel cell electrodes with different loadings on the supported catalysts
US11909083B2 (en) 2018-12-28 2024-02-20 Xerox Corporation Apparatus and method for forming a multilayer extrusion comprising component layers of an electrochemical cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192535A1 (en) * 2001-06-13 2002-12-19 Kaoru Fukuda Electrode for solid polymer type fuel cell and manufacturing method therefor
JP2004111191A (ja) * 2002-09-18 2004-04-08 Toyota Motor Corp 燃料電池用の膜・電極触媒構造体
JP2005141920A (ja) * 2003-11-04 2005-06-02 Nissan Motor Co Ltd 触媒担持電極
JP2006079917A (ja) * 2004-09-09 2006-03-23 Nissan Motor Co Ltd 燃料電池用mea、および、これを用いた燃料電池
JP2007305427A (ja) * 2006-05-11 2007-11-22 Matsushita Electric Ind Co Ltd 高分子電解質形燃料電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2233575A1 (en) 1995-10-06 1997-04-10 The Dow Chemical Company Flow field structures for membrane electrode assemblies of fuel cells
US7098163B2 (en) * 1998-08-27 2006-08-29 Cabot Corporation Method of producing membrane electrode assemblies for use in proton exchange membrane and direct methanol fuel cells
US6277513B1 (en) 1999-04-12 2001-08-21 General Motors Corporation Layered electrode for electrochemical cells
CN1321474C (zh) 2001-11-30 2007-06-13 本田技研工业株式会社 燃料电池用电极的制备方法和燃料电池用电极
US6835479B2 (en) 2002-06-26 2004-12-28 Utc Fuel Cells, Llc System and method for shutting down a fuel cell power plant
EP1701790B1 (en) * 2003-10-29 2009-09-16 Umicore AG & Co. KG Precious metal oxide catalyst for water electrolysis
JP5044920B2 (ja) 2004-11-25 2012-10-10 日産自動車株式会社 固体高分子型燃料電池
US7691780B2 (en) 2004-12-22 2010-04-06 Brookhaven Science Associates, Llc Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof
KR100658688B1 (ko) 2005-12-19 2006-12-15 삼성에스디아이 주식회사 연료 전지용 막-전극 어셈블리 및 이를 포함하는 연료 전지시스템
KR101319377B1 (ko) * 2006-06-14 2013-10-17 삼성에스디아이 주식회사 연료 전지용 촉매, 이를 포함하는 막-전극 어셈블리 및이를 포함하는 연료 전지 시스템
TWI347702B (en) * 2007-05-23 2011-08-21 Univ Yuan Ze A fuel cell membrane electrode assembly thereof
EP2228857A1 (de) * 2009-03-06 2010-09-15 Basf Se Verbesserte Membran-Elektrodeneinheiten
US8735023B2 (en) 2009-12-14 2014-05-27 GM Global Technology Operations LLC Fuel cell with layered electrode
US20110159403A1 (en) 2010-03-02 2011-06-30 Ford Global Technologies, Llc Layered Catalyst Assembly and Electrode Assembly Employing the Same
JP5660603B2 (ja) 2010-03-19 2015-01-28 学校法人同志社 白金コアシェル触媒の製造方法
US8524405B2 (en) * 2010-05-20 2013-09-03 GM Global Technology Operations LLC Detection of small anode leaks in fuel cell systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192535A1 (en) * 2001-06-13 2002-12-19 Kaoru Fukuda Electrode for solid polymer type fuel cell and manufacturing method therefor
JP2004111191A (ja) * 2002-09-18 2004-04-08 Toyota Motor Corp 燃料電池用の膜・電極触媒構造体
JP2005141920A (ja) * 2003-11-04 2005-06-02 Nissan Motor Co Ltd 触媒担持電極
JP2006079917A (ja) * 2004-09-09 2006-03-23 Nissan Motor Co Ltd 燃料電池用mea、および、これを用いた燃料電池
JP2007305427A (ja) * 2006-05-11 2007-11-22 Matsushita Electric Ind Co Ltd 高分子電解質形燃料電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993960A (zh) * 2019-11-11 2020-04-10 上海交通大学 一种强化催化剂耐久性的阴极催化层结构及其制备方法
WO2021093466A1 (zh) * 2019-11-11 2021-05-20 上海交通大学 一种强化催化剂耐久性的阴极催化层结构及其制备方法

Also Published As

Publication number Publication date
KR20140143358A (ko) 2014-12-16
EP2805368B1 (en) 2020-03-11
JP2015508216A (ja) 2015-03-16
JP5900995B2 (ja) 2016-04-06
CA2862291C (en) 2017-09-05
CN104247114B (zh) 2017-09-29
CA2862291A1 (en) 2013-07-25
WO2013109283A1 (en) 2013-07-25
EP2805368A1 (en) 2014-11-26
EP2805368A4 (en) 2016-02-10
US20140356757A1 (en) 2014-12-04
US9761899B2 (en) 2017-09-12
KR101867132B1 (ko) 2018-06-12

Similar Documents

Publication Publication Date Title
Yu et al. PtCo/C cathode catalyst for improved durability in PEMFCs
US7745037B2 (en) Membrane electrode assembly for solid polymer electrolyte fuel cell
US6875537B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell
JP2006054165A (ja) 固体高分子型燃料電池及び固体高分子型燃料電池の製造方法
CN101208820B (zh) 电压循环耐久的催化剂
EP1489677A2 (en) Method of making a membrane electrode assembly for electrochemical fuel cells
Babu et al. Spatially resolved degradation during startup and shutdown in polymer electrolyte membrane fuel cell operation
EP1773488A2 (en) Catalyst support for an electrochemical fuel cell
CN101127406A (zh) 利用牺牲材料以减轻燃料电池电极中催化剂载体的腐蚀
CN104247114A (zh) 具有梯度催化剂结构的燃料电池电极
JP5101564B2 (ja) 固体高分子型燃料電池用膜電極構造体
JP2006318707A (ja) 固体高分子型燃料電池の電極構造体
JP2004158387A (ja) 固体高分子型燃料電池用の電極構造体
EP1575106A2 (en) Catalyst supporting method for polymer electrolyte fuel cell
JP2011187423A (ja) 燃料電池用触媒層及びその用途
CN101794894A (zh) 用于pem燃料电池的阳极材料
JP2005135671A (ja) 燃料電池用電極
JP2006339125A (ja) 固体高分子型燃料電池
JP2006140107A (ja) 固体高分子型燃料電池の電極構造体
JP2005302527A (ja) 燃料電池用電極触媒
JP2004185830A (ja) 固体高分子型燃料電池用電極構造体
JP2008108495A (ja) 燃料電池用触媒担体の製造方法、燃料電池用膜電極接合体、燃料電池、燃料電池用触媒担体の処理装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20160223

Address after: Germany Ingolstadt

Applicant after: Audi AG

Address before: Canadian British Columbia

Applicant before: Ballard Power Systems

GR01 Patent grant
GR01 Patent grant