WO2021093466A1 - 一种强化催化剂耐久性的阴极催化层结构及其制备方法 - Google Patents

一种强化催化剂耐久性的阴极催化层结构及其制备方法 Download PDF

Info

Publication number
WO2021093466A1
WO2021093466A1 PCT/CN2020/117323 CN2020117323W WO2021093466A1 WO 2021093466 A1 WO2021093466 A1 WO 2021093466A1 CN 2020117323 W CN2020117323 W CN 2020117323W WO 2021093466 A1 WO2021093466 A1 WO 2021093466A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
catalytic
catalytic part
pure
cathode
Prior art date
Application number
PCT/CN2020/117323
Other languages
English (en)
French (fr)
Inventor
章俊良
郑志峰
朱凤鹃
程晓静
魏光华
杨帆
夏国锋
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to US17/607,025 priority Critical patent/US20220216484A1/en
Publication of WO2021093466A1 publication Critical patent/WO2021093466A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of fuel cells, in particular to a cathode catalytic layer structure for enhancing the durability of a catalyst and a preparation method thereof.
  • a fuel cell is a chemical device that directly converts the chemical energy of the fuel into electrical energy, also known as an electrochemical generator. It is the fourth power generation technology after hydropower, thermal power generation and nuclear power generation. Because the fuel cell converts the Gibbs free energy in the chemical energy of the fuel into electric energy through an electrochemical reaction, it is not limited by the Carnot cycle effect, so it has high efficiency; in addition, the fuel cell uses fuel and oxygen as raw materials; at the same time; There are no mechanical transmission parts, so there is no noise pollution and very few harmful gases are emitted. This shows that from the perspective of energy conservation and ecological environment protection, fuel cells are the most promising power generation technology.
  • the Chinese invention with bulletin number 109904469A proposes a method for preparing a membrane electrode that optimizes the structure of the cathode catalyst layer. It includes the following steps: (1) Dispose of the catalyst layer ink and add PS microspheres with a particle size of 50 to 800 nm at the same time, by adjusting the Pt /C and PS microsphere ratio to prepare the catalytic layer; (2) After the catalytic layer is put in an organic solvent to remove the PS microspheres, it is transferred to the proton exchange membrane by heat and pressure, and then the diffusion layer is heat-pressed to make an optimized The membrane electrode of a proton exchange membrane fuel cell with a cathode catalytic layer structure.
  • the method of the invention optimizes the internal pore size and porosity of the cathode catalytic layer, improves the gas mass transfer of the catalytic layer, especially at high current density, significantly improves the diffusion polarization of the membrane electrode, and the performance of the membrane electrode is significantly improved.
  • the process operation is simple, the pore former is easy to remove, and it is suitable for mass production and laboratory operations.
  • the oxygen reduction reaction is the decisive step in the entire electrochemical reaction process, and the cathode catalytic layer is the site of the oxygen reduction reaction.
  • the structure of the catalytic layer and the stability of the catalyst will directly affect the service life of the fuel cell. .
  • Research has found that fuel cell catalysts will experience significant performance degradation during vehicle-mounted operation, with reduced catalytic activity and increased resistance to oxygen and proton mass transfer in the electrode.
  • the output voltage of the fuel cell will also fluctuate.
  • the platinum catalyst will undergo Oswald ripening.
  • the average particle size of the catalyst will eventually increase and the effective specific surface area of the catalyst will decrease, that is, the number of active sites in the catalytic reaction will be reduced.
  • the first objective of the present invention is to provide a cathode catalyst layer structure that enhances the durability of the catalyst.
  • the active specific surface area of the catalyst during the potential scanning process is reduced ( ECSA) loss, while optimizing the ECSA distribution and platinum mass distribution during the attenuation process, help to reduce the oxygen and proton mass transfer loss during the attenuation process, and improve the durability of the fuel cell.
  • a cathode catalytic layer structure with enhanced catalyst durability comprising a first catalytic part, a second catalytic part, and a third catalytic part; the first catalytic part , The second catalytic part and the third catalytic part are arranged in sequence from the area near the diffusion layer to the area near the proton exchange membrane; the first catalytic part, the second catalytic part, and the third catalytic part are built with pure Pt catalyst and/ Or a Pt-based alloy catalyst; the platinum loading of the pure Pt catalyst and/or Pt-based alloy catalyst inside the first catalytic part is greater than or equal to the pure Pt catalyst and/or the platinum loading of the Pt-based alloy catalyst inside the second catalytic part The platinum loading of the pure Pt catalyst and/or Pt-based alloy catalyst inside the second catalytic part is greater than or equal to the platinum loading of the third catalytic part of the pure Pt
  • the platinum loading of the pure Pt catalyst and/or the Pt-based alloy catalyst inside the first catalytic part is 1.0 to 1.4 times that of the second catalytic part.
  • the platinum loading of the pure Pt catalyst and/or the Pt-based alloy catalyst inside the third catalytic part is 0.6 to 1.0 times that of the second catalytic part.
  • the average particle diameter of the catalyst particles in the first catalytic part is about 2.5-3.4 nm; the average particle diameter of the catalyst particles in the second catalytic part is about 3.5-4.4 nm; the average particle diameter of the catalyst particles in the third catalytic part is about The average particle size is about 4.5 to 5.5 nm.
  • the Pt-based alloy includes Pt-Co alloy and Pt-Ni alloy.
  • the total thickness of the first catalytic part, the second catalytic part, and the third catalytic part is between 10-18 ⁇ m.
  • the volume of the first catalytic part, the second catalytic part, and the third catalytic part are the same; the pure Pt catalyst and/or Pt-based alloy catalyst are evenly distributed inside the first catalytic part, and the pure Pt catalyst and/or Pt-based catalyst The alloy catalyst is evenly distributed in the second catalytic part. The pure Pt catalyst and/or the Pt-based alloy catalyst is evenly distributed in the third catalytic part.
  • the total platinum loading of the first catalytic part, the second catalytic part and the third catalytic part is 0.1-0.4 mg Pt /cm 2 .
  • the second objective of the present invention is to provide a method for preparing a cathode catalytic layer structure that enhances the durability of the catalyst.
  • the present invention provides the following technical solution: a cathode catalytic layer structure that enhances the durability of the catalyst
  • the preparation method includes the following steps:
  • the present invention has the following beneficial effects:
  • the present invention relates to a cathode catalyst layer structure with enhanced catalyst durability and a preparation method thereof.
  • the cathode catalyst layer structure with a gradient platinum loading and a gradient catalyst particle size can greatly reduce the ECSA and platinum mass loss of the catalyst. Help strengthen the durability of the catalyst;
  • the initial ECSA of the catalytic layer with 3/4/5nm platinum catalyst is indeed higher than that of the 3/3/3nm and 3/3/5nm platinum catalysts. It is smaller, but it can be found with the attenuation that after a period of attenuation, the ECSA of the catalytic layer using 3/4/5nm platinum catalyst will be larger (see Figure 2), and at the same time, it will have a more uniform ECSA and platinum mass distribution (see Figure 3). And Figure 4).
  • Figure 1 is a schematic diagram of the structure of the novel cathode catalyst layer designed in Example 1;
  • Example 2 is a comparison diagram of ECSA attenuation of the three catalytic layer structures of Example 1 and Comparative Examples 1, 2;
  • Fig. 3 is a comparison diagram of ECSA distributions of the three catalytic layer structures of Example 1 and Comparative Examples 1, 2 after attenuation;
  • Example 4 is a comparison diagram of residual platinum mass distribution after the attenuation of the three catalytic layer structures of Example 1 and Comparative Examples 1, 2;
  • Figure 5 is a comparison diagram of ECSA attenuation of the three catalytic layer structures of Examples 1, 2, and 3;
  • Fig. 7 is a comparison diagram of the remaining platinum mass distribution after the attenuation of the three catalytic layer structures of Examples 1, 2, and 3.
  • a cathode catalytic layer structure for enhancing the durability of a catalyst comprising a first catalytic part, a second catalytic part, and a third catalytic part; the first catalytic part, the second catalytic part, and the third catalytic part
  • the parts are arranged in sequence from the area near the diffusion layer to the area near the proton exchange membrane; the first catalytic part, the second catalytic part, and the third catalytic part are built with pure Pt catalyst and/or Pt-based alloy catalyst;
  • the platinum loading of the pure Pt catalyst and/or the Pt-based alloy catalyst inside a catalytic part is greater than or equal to the platinum loading of the pure Pt catalyst and/or the Pt-based alloy catalyst inside the second catalytic part, and the inside of the second catalytic part
  • the platinum loading of the pure Pt catalyst and/or Pt-based alloy catalyst is greater than or equal to the platinum loading of the third catalytic part of the internal pure Pt catalyst and/or Pt
  • the platinum loading of the pure Pt catalyst and/or Pt-based alloy catalyst inside the first catalytic part is 1.0 to 1.4 times that of the second catalytic part.
  • the platinum loading of the pure Pt catalyst and/or Pt-based alloy catalyst inside the third catalytic part is 0.6 to 1.0 times that of the second catalytic part.
  • the average particle diameter of the catalyst particles in the first catalytic part is about 2.5-3.4 nm; the average particle diameter of the catalyst particles in the second catalytic part is about 3.5-4.4 nm; the average particle diameter of the catalyst particles in the third catalytic part About 4.5 ⁇ 5.5nm.
  • the Pt-based alloy includes Pt-Co alloy and Pt-Ni alloy.
  • the total thickness of the first catalytic part, the second catalytic part, and the third catalytic part is between 10 and 18 ⁇ m.
  • the first catalytic part, the second catalytic part, and the third catalytic part have the same volume; the pure Pt catalyst and/or Pt-based alloy catalyst are evenly distributed inside the first catalytic part, and the pure Pt catalyst and/or Pt-based alloy catalyst are The pure Pt catalyst and/or the Pt-based alloy catalyst are evenly distributed inside the second catalytic part and are evenly distributed inside the third catalytic part.
  • the total platinum loading of the first catalytic part, the second catalytic part and the third catalytic part is 0.1-0.4 mg Pt /cm 2 .
  • the present invention provides the following technical solution: a method for preparing a cathode catalytic layer structure with enhanced catalyst durability, including the following steps: A. configuring slurry containing different catalyst particle sizes; B. stepwise electrospray drying containing different particle sizes The slurry of the supported catalyst is applied to the proton membrane or the diffusion layer, or it is first electrosprayed onto the polytetrafluoroethylene PTFE and then transferred for many times.
  • Example 1-3 Comparative Example 1-2
  • a cathode catalyst layer structure with enhanced catalyst durability includes the following steps: A. Disposing slurry containing different catalyst particle diameters; B. Gradually electrospray drying the slurry containing catalysts with different particle diameters and different loadings. On the proton membrane or diffusion layer, or first electrospray it on PTFE and then transfer it multiple times to obtain a cathode catalyst layer structure with enhanced catalyst durability, including a first catalyst part, a second catalyst part, and a second catalyst part.
  • the first catalytic part, the second catalytic part, and the third catalytic part are arranged in sequence from the area near the diffusion layer to the area near the proton exchange membrane; the first catalytic part, the second catalytic part, and the third catalytic part are built-in There are pure Pt catalysts, and a gradient cathode catalyst layer with a larger average particle size of catalyst particles but a uniform platinum loading is used on the side close to the proton exchange membrane.
  • the average particle size of the catalyst particles in the third catalytic part near the proton exchange membrane is 5.0 nm; the average particle diameter of the catalyst particles in the second catalytic part is 4.0 nm; the first catalytic part near the diffusion layer
  • the average particle size of the catalyst particles in the part is 3.0nm; the total thickness of the cathode catalyst layer structure for enhancing the durability of the catalyst is 12 ⁇ m, and the thickness of the first catalyst part, the second catalyst part, and the third catalyst part are all 4 ⁇ m; the strengthened catalyst
  • the total platinum loading of the durable cathode catalytic layer structure is 0.4mg Pt /cm 2 ; the catalyst particle size in each catalytic part is evenly distributed, and the catalytic layer code is 3nm(4um)+4nm(4um)+5nm(4um) or Uniform Pt loading.
  • this embodiment proposes a cathode catalyst layer structure that enhances the durability of the catalyst. It includes a first catalytic part, a second catalytic part, and a third catalytic part.
  • the first catalytic part, the second catalytic part, and the third catalytic part are arranged in sequence from the area near the diffusion layer to the area near the proton exchange membrane;
  • the pure Pt catalyst is built in the second catalytic part, the third catalytic part, and the gradient cathode catalytic layer with larger average particle diameter and lower platinum loading is used on the side close to the proton exchange membrane.
  • the average particle size of the catalyst particles in the third catalytic section near the proton exchange membrane is 5.0 nm, and the platinum loading is 0.8 times that of the third catalytic section;
  • the average particle size of the catalyst particles in the second catalytic section is The diameter is 4.0nm;
  • the average particle size of the catalyst particles in the first catalytic part on the side of the diffusion layer is 3.0nm, and the platinum loading is 1.2 times the average platinum loading in the catalyst layer;
  • the structure of the cathode catalyst layer with enhanced catalyst durability The total thickness of the first catalytic part, the second catalytic part, and the third catalytic part are all 4 ⁇ m;
  • the total platinum loading of the cathode catalytic layer with enhanced catalyst durability is 0.4mg Pt /cm 2 ;
  • the catalyst particle size and platinum loading in each catalytic section are uniformly distributed, and the catalytic layer code is Pt loading-1.2+1.0+0.8.
  • this embodiment proposes a cathode catalyst layer structure that enhances the durability of the catalyst. It includes a first catalytic part, a second catalytic part, and a third catalytic part.
  • the first catalytic part, the second catalytic part, and the third catalytic part are arranged in sequence from the area near the diffusion layer to the area near the proton exchange membrane;
  • the pure Pt catalyst is built in the second catalytic part, the third catalytic part, and the gradient cathode catalytic layer with larger average particle diameter and lower platinum loading is used on the side close to the proton exchange membrane.
  • the average particle size of the catalyst particles in the third catalytic part near the proton exchange membrane is 5.0nm, and the platinum loading is 0.6 times the platinum loading of the third catalytic part;
  • the average particle size of the catalyst particles in the second catalytic part is The diameter is 4.0nm;
  • the average particle diameter of the catalyst particles in the first catalytic part on the side of the diffusion layer is 3.0nm, and the platinum loading is 1.4 times the average platinum loading in the catalyst layer;
  • the structure of the cathode catalyst layer with enhanced catalyst durability The total thickness of the first catalytic part, the second catalytic part, and the third catalytic part are all 4 ⁇ m;
  • the total platinum loading of the cathode catalytic layer structure with enhanced catalyst durability is 0.4mg Pt /cm 2 ;
  • the catalyst particle size and platinum loading in each catalytic section are uniformly distributed, and the catalytic layer code is Pt loading-1.4+1.0+0.6.
  • a cathode catalytic layer structure which is different from Example 1 only in that: its thickness is 12 ⁇ m, including a first catalytic part, a second catalytic part, and a third catalytic part; the first catalytic part, the second catalytic part, and the third catalytic part;
  • the three catalytic parts have built-in pure Pt catalysts.
  • the average particle size of the pure Pt catalysts in the first catalytic part, the second catalytic part, and the third catalytic part are all 3.0nm, and the total platinum loading is 0.4mg Pt /cm 2 .
  • the platinum loading and the catalyst particle size are uniformly distributed, and the rest of the operations are the same as in Example 1.
  • the code name of the catalyst layer is Uniform-3.0nm.
  • a cathode catalytic layer structure which is different from Example 1 only in that: its thickness is 12 ⁇ m, including a first catalytic part, a second catalytic part, and a third catalytic part; the first catalytic part, the second catalytic part, and the third catalytic part;
  • the three catalytic parts have built-in pure Pt catalysts, the average particle size of the pure Pt catalysts in the first catalytic part and the second catalytic part are both 3.0nm, and the average particle diameter of the pure Pt catalysts in the third catalytic part are both 5.0nm, and its total platinum loading It is 0.4 mg Pt /cm 2 , the platinum loading in the cathode catalytic layer structure is uniformly distributed, and the rest of the operation is the same as in Example 1.
  • the catalytic layer code is 3nm(8um)+5nm(4um).
  • the durability test was carried out at 80°C in a fully humid H 2 /N 2 atmosphere with a potential range of 0.6-1.0V and a sweep rate of 20mV/s for 10,000 cycles.
  • Figure 2 compares the effect of the number of layers of the catalytic layer on its ECSA attenuation.
  • the single-layer uniform catalytic layer is a traditional catalytic layer. It can be seen from Figure 2 that although the use of a large particle size catalyst will reduce some of the initial ECSA, the use of larger particle size catalyst particles on the membrane side obviously helps to improve the durability of the catalyst, and it can still maintain a higher ECSA after decay. And the effect of setting multi-layer gradient catalyst particle size will be better. It can be seen from Fig. 3 and Fig.
  • the present invention proposes to adopt a larger Pt loading on the GDL side.
  • Figures 5-7 compare the results of changing the Pt loading of different catalytic parts on the three-layer gradient catalytic layer structure. It can be seen from Figure 5 that reducing the platinum loading in the large-diameter region on the membrane side and increasing the Pt loading in the small-diameter region on the GDL side will increase the attenuation of ECSA in the entire catalytic layer, which is predictable because the surface of the small particles The higher the surface tension, the faster the dissolution rate of Pt atoms; but it has little effect on the final ECSA.
  • the best platinum loading distribution should be to keep the platinum loading of the first catalytic part 1.0 to 1.4 times that of the second catalytic part, while the platinum loading of the third catalytic part is 1.0 to 0.6 times that of the second catalytic part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种强化催化剂耐久性的燃料电池阴极催化层结构,涉及燃料电池技术领域,包括从靠近扩散层侧区域到靠近质子交换膜侧区域方向依次排列的第一催化部、第二催化部、第三催化部;第一催化部、第二催化部、第三催化部内置有纯铂催化剂;第一催化部、第二催化部、第三催化部内部的纯铂催化剂的铂载量依次递减;第一催化部、第二催化部、第三催化部内部的纯铂催化剂颗粒的平均粒径依次递增;大粒径的纯铂催化剂更耐腐蚀,小粒径的纯铂催化剂提高燃料电池的初始性能,便于减小电势扫描下催化剂比表面积损失;衰减后的阴极催化剂铂比表面积和铂质量分布更均匀,便于减小衰减后的氧气和质子传质损失,提高衰减后的燃料电池性能,提高耐久性。

Description

一种强化催化剂耐久性的阴极催化层结构及其制备方法 技术领域
本发明涉及燃料电池技术领域,尤其涉及一种强化催化剂耐久性的阴极催化层结构及其制备方法。
背景技术
燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。由于燃料电池是通过电化学反应把燃料的化学能中的吉布斯自由能部分转换成电能,不受卡诺循环效应的限制,因此效率高;另外,燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术。
公告号为109904469A的中国发明提出了一种优化阴极催化层结构的膜电极制备方法,包括以下步骤:(1)配置催化层墨水,同时加入粒径为50~800nm的PS微球,通过调节Pt/C与PS微球的比例制备催化层;(2)把催化层放入有机溶剂中去除PS微球后,热压转印到质子交换膜上,再与扩散层进行热压后制成优化阴极催化层结构的质子交换膜燃料电池膜电极。该发明所述方法优化阴极催化层内部孔径大小和孔隙率,提高催化层的气体传质,特别在高电流密度下,对改善膜电极的扩散极化明显,膜电极性能得到显著提高,同时该工艺操作简单,造孔剂易去除,适合批量生产和实验室操作。
但是目前,燃料电池在汽车上的商业化要求其使用寿命达到至少5000小时以上,但是绝大多数包括上述发明提供的催化剂都还达不到目标,因此中国燃料电池电堆的寿命几乎都低于5000小时。
在燃料电池中,氧气还原反应在整个电化学反应过程中是决速步,而阴极催化层作为氧还原反应的场所,其催化层的结构和催化剂的稳定性将直接影响到燃料电池的使用寿命。研究发现,燃料电池催化剂在车载操作过程中会发生非常明显的性能衰减,出现催化活性降低、电极内氧气和质子传质阻力增加等情况。
由于车载工况如爬坡、启停等对运行功率要求存在很大波动,所以燃料电池的输出电压也会随之波动。在电势循环过程中,铂催化剂就会发生奥斯瓦尔德熟化作 用,在长期操作中最终会导致催化剂平均粒径增大而催化剂有效比表面积减小,即减小了催化反应活性位点数,降低了阴极催化反应速率而导致催化剂失效;同时,在高电势下溶解的铂离子在浓差扩散和电迁移作用下会向质子交换膜方向迁移,然后在质子交换膜中被氢渗还原,会导致铂质量的损失以及靠近膜侧催化剂衰减显著增大,进而导致在长期运行中阴极催化层内氧气和质子传质损失增大。
发明内容
针对现有技术存在的不足,本发明的目的一是提供一种强化催化剂耐久性的阴极催化层结构,通过优化了初始阴极催化层的结构,减小了电势扫描过程中催化剂的活性比表面积(ECSA)损失,同时优化了衰减过程中的ECSA分布和铂质量分布,有助于减小衰减过程中的氧气和质子传质损失,提高燃料电池的耐久性。
为实现本发明的上述发明目的,本发明提供如下技术方案:一种强化催化剂耐久性的阴极催化层结构,包括第一催化部、第二催化部、第三催化部;所述第一催化部、第二催化部、第三催化部从靠近扩散层侧区域到靠近质子交换膜侧区域方向依次排列;所述第一催化部、第二催化部、第三催化部内置有纯Pt催化剂和/或Pt基合金催化剂;所述第一催化部内部的纯Pt催化剂和/或Pt基合金催化剂的铂载量大于或等于第二催化部内部的纯Pt催化剂和/或Pt基合金催化剂的铂载量,所述第二催化部内部的纯Pt催化剂和/或Pt基合金催化剂的铂载量大于或等于内部的纯Pt催化剂和/或Pt基合金催化剂第三催化部的的铂载量;所述第一催化部、第二催化部、第三催化部内部的纯Pt催化剂和/或Pt基合金催化剂的平均粒径依次递增。
优选的,所述第一催化部内部的纯Pt催化剂和/或Pt基合金催化剂的铂载量为第二催化部的1.0~1.4倍。
优选的,所述第三催化部内部的纯Pt催化剂和/或Pt基合金催化剂的铂载量是第二催化部的0.6~1.0倍。
优选的,所述第一催化部内催化剂颗粒的平均粒径约为2.5~3.4nm;所述第二催化部内催化剂颗粒的平均粒径约为3.5~4.4nm;所述第三催化部内催化剂颗粒的平均粒径约为4.5~5.5nm。
优选的,所述Pt基合金包括Pt-Co合金、Pt-Ni合金。
优选的,所述第一催化部、第二催化部、第三催化部的总厚度在10~18μm之间。
优选的,所述第一催化部、第二催化部、第三催化部的体积相同;纯Pt催化剂和/或Pt基合金催化剂在第一催化部内部均匀分布,纯Pt催化剂和/或Pt基合金催化剂在 第二催化部内部均匀分布纯Pt催化剂和/或Pt基合金催化剂在第三催化部内部均匀分布。
优选的,所述第一催化部、第二催化部和第三催化部总的铂载量为0.1~0.4mg Pt/cm 2
本发明的目的二是提供一种强化催化剂耐久性的阴极催化层结构的制备方法,为实现本发明的上述发明目的,本发明提供如下技术方案:一种强化催化剂耐久性的阴极催化层结构的制备方法,包括如下步骤:
A、配置含有不同催化剂粒径的浆料;
B、逐步电喷涂烘干含有不同粒径不同载量催化剂的浆料到质子膜或扩散层上,或者先将其电喷涂到聚四氟乙烯PTFE上然后多次转印得到。
与现有技术相比,本发明具有如下的有益效果:
(1)本发明涉及一种强化催化剂耐久性的阴极催化层结构及其制备方法,具有梯度铂载量和梯度催化剂粒径的阴极催化层结构可以极大地减小催化剂的ECSA和铂质量损失,有助于强化催化剂的耐久性;
(2)当总的铂载量一致且Pt载量均匀分布时,采用3/4/5nm铂催化剂的催化层初始ECSA确实比粒径为3/3/3nm和3/3/5nm铂催化剂的要小,但是随着衰减就可以发现,衰减一段时间后采用3/4/5nm铂催化剂的催化层ECSA会更大(见图2),同时具有更加均匀的ECSA和铂质量分布(见图3和图4)。
(3)通过对比变化催化层厚度方向上的铂载量发现,适当减小膜侧铂载量可以使得在衰减过程中仍然保持较为均匀的ECSA和铂质量分布(见图7),因此可以降低衰减后的催化层内的物质传质损失,也即提高了衰减后阴极催化层的性能;
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为实施例1设计的新型阴极催化层结构示意图;
图2为实施例1与对比例1,2的三种催化层结构的ECSA衰减对比图;
图3为实施例1与对比例1,2的三种催化层结构衰减后的ECSA分布对比图;
图4为实施例1与对比例1,2的三种催化层结构衰减后的剩余铂质量分布对比图;
图5为实施例1,2,3的三种催化层结构的ECSA衰减对比图;
图6为实施例1,2,3的三种催化层结构衰减后的ECSA分布对比图;
图7为实施例1,2,3的三种催化层结构衰减后的剩余铂质量分布对比图。
具体实施方式
以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进,这些都属于本发明的保护范围。
本发明提供如下技术方案:一种强化催化剂耐久性的阴极催化层结构,包括第一催化部、第二催化部、第三催化部;所述第一催化部、第二催化部、第三催化部从靠近扩散层侧区域到靠近质子交换膜侧区域方向依次排列;所述第一催化部、第二催化部、第三催化部内置有纯Pt催化剂和/或Pt基合金催化剂;所述第一催化部内部的纯Pt催化剂和/或Pt基合金催化剂的铂载量大于或等于第二催化部内部的纯Pt催化剂和/或Pt基合金催化剂的铂载量,所述第二催化部内部的纯Pt催化剂和/或Pt基合金催化剂的铂载量大于或等于内部的纯Pt催化剂和/或Pt基合金催化剂第三催化部的的铂载量;所述第一催化部、第二催化部、第三催化部内部的纯Pt催化剂和/或Pt基合金催化剂的平均粒径依次递增;
所述第一催化部内部的纯Pt催化剂和/或Pt基合金催化剂的铂载量为第二催化部的1.0~1.4倍。
所述第三催化部内部的纯Pt催化剂和/或Pt基合金催化剂的铂载量是第二催化部的0.6~1.0倍。
所述第一催化部内催化剂颗粒的平均粒径约为2.5~3.4nm;所述第二催化部内催化剂颗粒的平均粒径约为3.5~4.4nm;所述第三催化部内催化剂颗粒的平均粒径约为4.5~5.5nm。
所述Pt基合金包括Pt-Co合金、Pt-Ni合金。
所述第一催化部、第二催化部、第三催化部的总厚度在10~18μm之间。
所述第一催化部、第二催化部、第三催化部的体积相同;纯Pt催化剂和/或Pt基合金催化剂在第一催化部内部均匀分布,纯Pt催化剂和/或Pt基合金催化剂在第二催化部内部均匀分布纯Pt催化剂和/或Pt基合金催化剂在第三催化部内部均匀分布。
所述第一催化部、第二催化部和第三催化部总的铂载量为0.1~0.4mg Pt/cm 2
本发明提供如下技术方案:一种强化催化剂耐久性的阴极催化层结构的制备方法,包括如下步骤:A、配置含有不同催化剂粒径的浆料;B、逐步电喷涂烘干含有不同粒径不同载量催化剂的浆料到质子膜或扩散层上,或者先将其电喷涂到聚四氟乙烯PTFE上 然后多次转印得到。
需要指出的是,催化剂平均粒径的测试具有人为误差(±1nm),所以以下实施例仅采用了以下三种颗粒粒径:3nm、4nm和5nm进行了催化层梯度设计;同时由于本发明的实用性并不受限于催化层的总厚度和总的Pt载量,所以以下实施例中也都只采用了12μm催化层和Pt载量为0.4mg Pt/cm 2的情况进行了说明同时上述范围内的所有实验方案都能够制得本发明所述一种强化催化剂耐久性的阴极催化层结构。下面结合具体实施例对本发明进行详细说明:
一、实施例1-3,对比例1-2
实施例1:
一种强化催化剂耐久性的阴极催化层结构,其制备方法包括如下步骤:A、配置含有不同催化剂粒径的浆料;B、逐步电喷涂烘干含有不同粒径不同载量催化剂的浆料到质子膜或扩散层上,或者先将其电喷涂到聚四氟乙烯PTFE上然后多次转印得到一种强化催化剂耐久性的阴极催化层结构,包括第一催化部、第二催化部、第三催化部,第一催化部、第二催化部、第三催化部从靠近扩散层侧区域到靠近质子交换膜侧区域方向依次排列;第一催化部、第二催化部、第三催化部内置有纯Pt催化剂,在靠近质子交换膜的一侧采用平均粒径较大的催化剂颗粒但铂载量均匀的梯度阴极催化层。
如图1所示,在靠近质子交换膜一侧的第三催化部内催化剂颗粒平均粒径为5.0nm;第二催化部内催化剂颗粒平均粒径为4.0nm;在靠近扩散层一侧的第一催化部内催化剂颗粒平均粒径为3.0nm;该强化催化剂耐久性的阴极催化层结构的总厚度为12μm,第一催化部、第二催化部、第三催化部的厚度一致均为4μm;该强化催化剂耐久性的阴极催化层结构总的铂载量为0.4mg Pt/cm 2;每个催化部内催化剂粒径均匀分布,该催化层代号为3nm(4um)+4nm(4um)+5nm(4um)或Uniform Pt loading。
实施例2:
基于传统阴极催化层在燃料电池长期运行过程中会存在明显的活性损失,尤其是在靠近质子交换膜一侧所存在的问题,本实施例提出了一种强化催化剂耐久性的阴极催化层结构,包括第一催化部、第二催化部、第三催化部,第一催化部、第二催化部、第三催化部从靠近扩散层侧区域到靠近质子交换膜侧区域方向依次排列;第一催化部、第二催化部、第三催化部内置有纯Pt催化剂,在靠近质子交换膜的一侧采用平均粒径较大的催化剂颗粒而铂载量更低的梯度阴极催化层。
如图1所示,在靠近质子交换膜一侧的第三催化部内催化剂颗粒平均粒径为 5.0nm,铂载量为第三催化部铂载量的0.8倍;第二催化部内催化剂颗粒平均粒径为4.0nm;在靠近扩散层一侧的第一催化部内催化剂颗粒平均粒径为3.0nm,铂载量为催化层内平均铂载量的1.2倍;该强化催化剂耐久性的阴极催化层结构的总厚度为12μm,第一催化部、第二催化部、第三催化部的厚度一致均为4μm;该强化催化剂耐久性的阴极催化层总的铂载量为0.4mg Pt/cm 2;每个催化部内催化剂粒径和铂载量都均匀分布,该催化层代号为Pt loading-1.2+1.0+0.8。
实施例3:
基于传统阴极催化层在燃料电池长期运行过程中会存在明显的活性损失,尤其是在靠近质子交换膜一侧所存在的问题,本实施例提出了一种强化催化剂耐久性的阴极催化层结构,包括第一催化部、第二催化部、第三催化部,第一催化部、第二催化部、第三催化部从靠近扩散层侧区域到靠近质子交换膜侧区域方向依次排列;第一催化部、第二催化部、第三催化部内置有纯Pt催化剂,在靠近质子交换膜的一侧采用平均粒径较大的催化剂颗粒而铂载量更低的梯度阴极催化层。
如图1所示,在靠近质子交换膜一侧的第三催化部内催化剂颗粒平均粒径为5.0nm,铂载量为第三催化部铂载量的0.6倍;第二催化部内催化剂颗粒平均粒径为4.0nm;在靠近扩散层一侧的第一催化部内催化剂颗粒平均粒径为3.0nm,铂载量为催化层内平均铂载量的1.4倍;该强化催化剂耐久性的阴极催化层结构的总厚度为12μm,第一催化部、第二催化部、第三催化部的厚度一致均为4μm;该强化催化剂耐久性的阴极催化层结构总的铂载量为0.4mg Pt/cm 2;每个催化部内催化剂粒径和铂载量都均匀分布,该催化层代号为Pt loading-1.4+1.0+0.6。
对比例1:
一种阴极催化层结构,与实施例1的不同之处仅在于:其厚度为12μm,包括第一催化部、第二催化部、第三催化部;第一催化部、第二催化部、第三催化部内置有纯Pt催化剂,第一催化部、第二催化部、第三催化部内纯Pt催化剂平均粒径均为3.0nm,其总的铂载量为0.4mg Pt/cm 2,阴极催化层结构中铂载量和催化剂粒径都均匀分布,其余操作与实施例1均相同,该催化层代号为Uniform-3.0nm。
对比例2:
一种阴极催化层结构,与实施例1的不同之处仅在于:其厚度为12μm,包括第一催化部、第二催化部、第三催化部;第一催化部、第二催化部、第三催化部内置有纯Pt催化剂,第一催化部、第二催化部内纯Pt催化剂平均粒径均为3.0nm,第三催化部 内纯Pt催化剂平均粒径均为5.0nm,其总的铂载量为0.4mg Pt/cm 2,阴极催化层结构中铂载量均匀分布,其余操作与实施例1均相同,该催化层代号为3nm(8um)+5nm(4um)。
二、耐久性实验
实验条件:
耐久性实验在80℃下,全湿的H 2/N 2气氛,0.6-1.0V电势区间以20mV/s的扫速循环进行10000圈下进行。
测试指标:
总的ECSA损失、活性比表面积分布、剩余铂质量分布。
三、实验结果
图2对比了催化层分层层数对其ECSA衰减的影响,单层均匀催化层为传统的催化层。由图2可知,虽然采用大粒径催化剂会减小一些初始ECSA,但在膜侧采用较大粒径催化剂颗粒明显有助于提高催化剂的耐久性,在衰减后也仍然能保持较高的ECSA,并且设置多层梯度催化剂粒径分的效果会更好。由图3和图4可知,采用三层催化剂粒径结构极大地改善了膜侧催化剂的衰减,并提高了整个催化层内各处ECSA的保留率,但是会相对加重扩散层(GDL)一侧的催化层衰减。
为了进一步优化该梯度催化层结构,本发明提出在GDL一侧采用更大的Pt载量。图5-7对比了在三层梯度催化层结构上改变不同催化部Pt载量所带来的结果。由图5可知,减小膜侧大粒径区铂载量且增大GDL侧小粒径区的Pt载量会加大整个催化层中的ECSA衰减,这是可以预知的,因为小颗粒表面表面张力更大,Pt原子溶解速率更快;但是对最终的ECSA影响很小。而由图6和图7可知,适当的加大GDL侧小粒径区的铂载量可以极大的改善衰减后的铂活性表面积和铂质量的分布均匀性,从而有利于减小衰减过程中带来的传质损失,进而进一步提高燃料电池的使用寿命。对比实施例3的催化层结构可知,过度减小膜侧的催化剂铂载量可能无法保证膜侧催化剂衰减过程中充足的催化活性位点,从而并不利于整个过程的使用性能,所以本发明认为,最佳的铂载量分布应该是保持第一催化部的铂载量为第二催化部的1.0~1.4倍,而第三催化部的铂载量是第二催化部的1.0~0.6倍。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的 特征可以任意相互组合。

Claims (9)

  1. 一种强化催化剂耐久性的阴极催化层结构,其特征在于,包括第一催化部、第二催化部、第三催化部;所述第一催化部、第二催化部、第三催化部从靠近扩散层侧区域到靠近质子交换膜侧区域方向依次排列;
    所述第一催化部、第二催化部、第三催化部内置有纯Pt催化剂和/或Pt基合金催化剂;所述第一催化部内部的纯Pt催化剂和/或Pt基合金催化剂的铂载量大于或等于第二催化部内部的纯Pt催化剂和/或Pt基合金催化剂的铂载量,所述第二催化部内部的纯Pt催化剂和/或Pt基合金催化剂的铂载量大于或等于内部的纯Pt催化剂和/或Pt基合金催化剂第三催化部的的铂载量;
    所述第一催化部、第二催化部、第三催化部内部的纯Pt催化剂和/或Pt基合金催化剂的平均粒径依次递增。
  2. 根据权利要求1所述的强化催化剂耐久性的阴极催化层结构,其特征在于,所述第一催化部内部的纯Pt催化剂和/或Pt基合金催化剂的铂载量为第二催化部的1.0~1.4倍。
  3. 根据权利要求1所述的强化催化剂耐久性的阴极催化层结构,其特征在于,所述第三催化部内部的纯Pt催化剂和/或Pt基合金催化剂的铂载量是第二催化部的0.6~1.0倍。
  4. 根据权利要求1所述的强化催化剂耐久性的阴极催化层结构,其特征在于,所述第一催化部内催化剂颗粒的平均粒径约为2.5~3.4nm;所述第二催化部内催化剂颗粒的平均粒径约为3.5~4.4nm;所述第三催化部内催化剂颗粒的平均粒径约为4.5~5.5nm。
  5. 根据权利要求1所述的强化催化剂耐久性的阴极催化层结构,其特征在于,所述Pt基合金包括Pt-Co合金、Pt-Ni合金。
  6. 根据权利要求1所述的强化催化剂耐久性的阴极催化层结构,其特征在于,所述第一催化部、第二催化部、第三催化部的总厚度在10~18μm之间。
  7. 根据权利要求5所述的强化催化剂耐久性的阴极催化层结构,其特征在于,所述第一催化部、第二催化部、第三催化部的体积相同;纯Pt催化剂和/或Pt基合金催化剂在第一催化部内部均匀分布,纯Pt催化剂和/或Pt基合金催化剂在第二催化部内部均匀分布纯Pt催化剂和/或Pt基合金催化剂在第三催化部内部均匀分布。
  8. 根据权利要求5所述的强化催化剂耐久性的阴极催化层结构,其特征在于,所述第一催化部、第二催化部和第三催化部总的铂载量为0.1~0.4mg Pt/cm 2
  9. 一种根据权利要求1-8所述的强化催化剂耐久性的阴极催化层结构的制备方法,其特征在于,包括如下步骤:
    A、配置含有不同催化剂粒径的浆料;
    B、逐步电喷涂烘干含有不同粒径不同载量催化剂的浆料到质子膜或扩散层上,或者先将其电喷涂到聚四氟乙烯PTFE上然后多次转印得到。
PCT/CN2020/117323 2019-11-11 2020-09-24 一种强化催化剂耐久性的阴极催化层结构及其制备方法 WO2021093466A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/607,025 US20220216484A1 (en) 2019-11-11 2020-09-24 Cathode catalyst layer structure for enhancing durability of catalyst and fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911096005.8 2019-11-11
CN201911096005.8A CN110993960A (zh) 2019-11-11 2019-11-11 一种强化催化剂耐久性的阴极催化层结构及其制备方法

Publications (1)

Publication Number Publication Date
WO2021093466A1 true WO2021093466A1 (zh) 2021-05-20

Family

ID=70083644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117323 WO2021093466A1 (zh) 2019-11-11 2020-09-24 一种强化催化剂耐久性的阴极催化层结构及其制备方法

Country Status (3)

Country Link
US (1) US20220216484A1 (zh)
CN (1) CN110993960A (zh)
WO (1) WO2021093466A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993960A (zh) * 2019-11-11 2020-04-10 上海交通大学 一种强化催化剂耐久性的阴极催化层结构及其制备方法
CN113839050B (zh) * 2021-09-22 2022-06-07 爱德曼氢能源装备有限公司 一种燃料电池高性能阴极催化层及其制造工艺
CN114708925A (zh) * 2022-04-02 2022-07-05 大连海事大学 一种燃料电池催化层梯度化设计方法
CN115275225A (zh) * 2022-08-30 2022-11-01 中汽创智科技有限公司 一种膜电极催化剂涂层的制备方法
CN115275235B (zh) * 2022-09-30 2023-01-24 国家电投集团氢能科技发展有限公司 质子交换膜燃料电池阴极催化层浆料及制备方法和膜电极

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060135138A (ko) * 2005-06-24 2006-12-29 현대자동차주식회사 불균일 조성의 연료전지용 막-전극 접합체 및 이를포함하는 고분자 전해질 연료전지
CN103165915A (zh) * 2011-12-16 2013-06-19 中国科学院大连化学物理研究所 一种有效降低燃料电池Pt担量的催化层结构
CN104247114A (zh) * 2012-01-20 2014-12-24 百拉得动力系统公司 具有梯度催化剂结构的燃料电池电极
CN107146891A (zh) * 2017-05-10 2017-09-08 上海亮仓能源科技有限公司 一种贵金属催化剂颗粒呈梯度分布的mea制备方法
CN110289423A (zh) * 2019-05-17 2019-09-27 同济大学 一种具有催化剂梯度的膜电极
CN110993960A (zh) * 2019-11-11 2020-04-10 上海交通大学 一种强化催化剂耐久性的阴极催化层结构及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101295671B1 (ko) * 2009-12-14 2013-08-14 한국전자통신연구원 고분자-금속나노복합체 및 그 제조방법, 고분자-금속나노복합체를 이용한 고분자 구동기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060135138A (ko) * 2005-06-24 2006-12-29 현대자동차주식회사 불균일 조성의 연료전지용 막-전극 접합체 및 이를포함하는 고분자 전해질 연료전지
CN103165915A (zh) * 2011-12-16 2013-06-19 中国科学院大连化学物理研究所 一种有效降低燃料电池Pt担量的催化层结构
CN104247114A (zh) * 2012-01-20 2014-12-24 百拉得动力系统公司 具有梯度催化剂结构的燃料电池电极
CN107146891A (zh) * 2017-05-10 2017-09-08 上海亮仓能源科技有限公司 一种贵金属催化剂颗粒呈梯度分布的mea制备方法
CN110289423A (zh) * 2019-05-17 2019-09-27 同济大学 一种具有催化剂梯度的膜电极
CN110993960A (zh) * 2019-11-11 2020-04-10 上海交通大学 一种强化催化剂耐久性的阴极催化层结构及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BARICCI ANDREA, MATTEO BONANOMI, HAORAN YU, LAURE GUETAZ, RADENKA MARIC, ANDREA CASALEGNO: "Modelling analysis of low platinum polymer fuel cell degradation under voltage cycling: Gradient catalyst layers with improved durability", JOURNAL OF POWER SOURCES, vol. 405, 14 October 2018 (2018-10-14), pages 89 - 100, XP055812791, DOI: 10.1016/j.jpowsour.2018.09.092 *
SHAHGALDI SAMANEH; OZDEN ADNAN; LI XIANGUO; HAMDULLAHPUR FERIDUN: "Cathode catalyst layer design with gradients of ionomer distribution for proton exchange membrane fuel cells", ENERGY CONVERSION AND MANAGEMENT, ELSEVIER SCIENCE PUBLISHERS, OXFORD., GB, vol. 171, 28 June 2018 (2018-06-28), GB, pages 1476 - 1486, XP085420194, ISSN: 0196-8904, DOI: 10.1016/j.enconman.2018.06.078 *
YU HAORAN; BARICCI ANDREA; BISELLO ANDREA; CASALEGNO ANDREA; GUETAZ LAURE; BONVILLE LEONARD; MARIC RADENKA: "Strategies to mitigate Pt dissolution in low Pt loading proton exchange membrane fuel cell: I. A gradient Pt particle size design", ELECTROCHIMICA ACTA, ELSEVIER, AMSTERDAM, NL, vol. 247, 20 July 2017 (2017-07-20), AMSTERDAM, NL, pages 1155 - 1168, XP085183443, ISSN: 0013-4686, DOI: 10.1016/j.electacta.2017.07.093 *

Also Published As

Publication number Publication date
US20220216484A1 (en) 2022-07-07
CN110993960A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2021093466A1 (zh) 一种强化催化剂耐久性的阴极催化层结构及其制备方法
Chi et al. Tuning hydrophobic-hydrophilic balance of cathode catalyst layer to improve cell performance of proton exchange membrane fuel cell (PEMFC) by mixing polytetrafluoroethylene (PTFE)
CN110504472B (zh) 一种提高催化剂利用率的直接甲醇燃料电池膜电极及其制备方法
WO2018113485A1 (zh) 一种高功率密度的质子交换膜燃料电池膜电极及其制备方法
Zhiani et al. Comparative Study of on‐Line Membrane Electrode Assembly Activation Procedures in Proton Exchange Membrane Fuel Cell
CN114142042B (zh) 一种具有梯度孔径的膜电极催化层及其制备方法
CN111146482A (zh) 一种自增湿质子交换膜及其制备方法和应用
CN114221001A (zh) 一种燃料电池用膜电极的制备及加速评估其耐久性的方法
CN114171748A (zh) 一种形成离聚物网络的燃料电池催化剂浆料及其制备方法
Pei et al. Activation of polymer electrolyte membrane fuel cells: Mechanisms, procedures, and evaluation
CN108448128A (zh) 一种用钌基碲化物作为阴极的燃料电池膜电极及制备方法
CN111244480B (zh) 一种碳载钯基合金燃料电池膜电极及其制备方法
CN108448138A (zh) 一种催化层全有序结构燃料电池电极和膜电极的制备方法
CN112615033A (zh) 一种直接甲醇燃料电池催化层梯度化膜电极及其制备方法
CN115064710B (zh) 膜电极ccm及其制备方法、以及膜电极组件mea、燃料电池
Chai et al. Fabrication of nano-network structure anode by zinc oxide nanorods template for passive direct methanol fuel cells
CN117691124A (zh) 一种质子交换膜燃料电池低铂膜电极及其制备方法
Li et al. Chemicals and energy co-generation from direct hydrocarbons/oxygen proton exchange membrane fuel cell
CN108123143B (zh) 一种直接抗坏血酸燃料电池单电池性能提升的方法
CN116799233A (zh) 一种复合催化层、催化膜电极、燃料电池及应用
CN114171750A (zh) 一种用于燃料电池膜电极的阳极催化剂及其制备方法
Guan et al. Effect of graphene aerogel as a catalyst layer additive on performance of direct methanol fuel cell
CN110165241B (zh) 一种基于石墨化碳的燃料电池耐腐蚀微孔层及其制备方法
CN114830388A (zh) 能够改善燃料电池的反向电压耐久性的膜-电极组件、其制造方法和包括其的燃料电池
Ornelas et al. Accelerated degradation tests for Pt/C catalysts in sulfuric acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888109

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20888109

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20888109

Country of ref document: EP

Kind code of ref document: A1