CN104238617A - 一种电流型带隙基准源 - Google Patents

一种电流型带隙基准源 Download PDF

Info

Publication number
CN104238617A
CN104238617A CN201310248011.7A CN201310248011A CN104238617A CN 104238617 A CN104238617 A CN 104238617A CN 201310248011 A CN201310248011 A CN 201310248011A CN 104238617 A CN104238617 A CN 104238617A
Authority
CN
China
Prior art keywords
circuit
type
current
current mirror
gap reference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310248011.7A
Other languages
English (en)
Inventor
孙泉
齐敏
乔东海
汤亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Acoustics CAS
Original Assignee
Institute of Acoustics CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Acoustics CAS filed Critical Institute of Acoustics CAS
Priority to CN201310248011.7A priority Critical patent/CN104238617A/zh
Publication of CN104238617A publication Critical patent/CN104238617A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Abstract

本发明提出了一种集成电路带隙基准源,所述集成电路带隙基准源包含:第一电流产生电路、第二电流产生电路、电流求和电路和电压重建电路;第一电流产生电路,用于产生负温度系数电流;第二电流产生电路,用于产生正温度系数电流;第一电流产生电路的输出端与电流求和电路的一个输入端相连,第二电流产生电路的输出端与电流求和电路的另一个输入端相连,该电流求和电路用于将第一电流产生电路和第二电流产生电路各自输出的电流按某一设定比例叠加;电流求和电路的输出端与电压重建电路的输入端相连且该电压重建电路的输出端作为集成电路带隙基准源的输出端。

Description

一种电流型带隙基准源
技术领域
本发明涉模拟集成电路设计领域,更具体地涉及一种采用电流叠加技术实现的集成带隙基准电压产生电路。
背景技术
带隙基准源是模拟集成电路中一个常用的模块,广泛用于各种模拟集成电路和模拟/混合信号集成电路中,包括数据转换器、开关电容电路、单片图像传感器、微机电系统(MEMS)接口电路等。
传统的带隙基准源电路采用电压求和的方式产生带隙基准电压,图1是一种传统的带隙基准源电路。该电路通过一个负温度系数电压VBE与一个正温度系数电压NVT求和,获得独立于温度的输出电压VOUT=VBE+NVT。由于三极管发射结电压VBE和热电压NVT都是相对独立于电源和工艺的电压,因此输出电压VOUT有独立于工艺、电压和温度的特性,这个特性被很多高精度模拟系统所需要。这种电压求和技术的一个问题是输出电压VOUT的额定值基本都固定在1.2V左右,这是因为硅工艺中三极管发射结电压VBE为0.75V左右,其温度系数为-1.5mV/K,而与之相对应的热电压NVT大概是0.45V。中国专利CN101799699A采用了这种电压求和技术,这种电压求和技术的另外一个问题在于输出驱动能力很弱,它几乎不能提供负载电流,导致需要使用附加的缓冲器。
在一些应用例如MEMS接口电路中,需要高于3V的基准电压,而一些低电压应用中需要低于1V的基准电压,传统的采用电压求和技术的基准电压电路并不能满足需求,而大多数电路中要求基准电压有一定负载的驱动能力,给负载提供一定的电流,传统带隙基准源也不能直接使用。
发明内容
本发明的目的在于,为解决上述技术问题,采用电流求和技术产生带隙基准电压,该带隙基准电压可以为电源范围内的任意值,并且具有输出驱动能力。
为实现上述目的,本发明提供了一种集成电路带隙基准源,其特征在于,所述集成电路带隙基准源包含:
第一电流产生电路301、第二电流产生电路302、电流求和电路303和电压重建电路304;
第一电流产生电路301,用于产生随温度升高而降低的电流,即用于产生负温度系数电流;
第二电流产生电路302,用于产生随温度升高而升高的电流,即用于产生正温度系数电流;
第一电流产生电路301的输出端与电流求和电路303的一个输入端相连,第二电流产生电路302的输出端与电流求和电路303的另一个输入端相连,该电流求和电路303用于将第一电流产生电路301和第二电流产生电路302各自输出的电流按某一设定比例叠加;
电流求和电路303的输出端与电压重建电路304的输入端相连且该电压重建电路304的输出端作为集成电路带隙基准源的输出端。
上述第一电流产生电路301包含:P型电流镜、N型电流镜、电阻R1和PNP型三极管;
所述P型电流镜为所述N型电流镜互为负载,从而形成自偏置结构;
所述电阻R1连接在所述N型电流镜的输出管的源级和负电源之间;
所述PNP型三极管的发射极连接在所述N型电流镜的输入管的源级,且该PNP型三极管的基极和集电极接所述负电源;
其中,所述PNP型三极管采用NPN型三极管或者二极管代替。
上述第二电流产生电路302包含:P型电流镜、N型电流镜、电阻R2和两个PNP型三极管;
所述P型电流镜和N型电流镜互为负载,从而形成自偏置结构;
所述电阻R2连接在所述N型电流镜的输出管的源级和其中一个PNP型三极管的发射极之间,该PNP型三极管的基极和集电极接负电源;另一个PNP型三极管的发射级连接在所述N型电流镜的输入管的源级,该PNP型三极管的集电极和基极连接到负电源;
其中,所述两个PNP型三极管全部或其中之一采用NPN型三极管或者二极管代替。
上述P型电流镜和N型电流镜采用共源共栅结构。
上述电流求和电路303包含两个P型MOS管,所述两个P型MOS管的栅极分别与第一电流产生电路301和第二电流产生电路302包含的P型电流镜相连,且所述两个P型MOS管的漏极短接形成电流求和电路输出。
上述P型电流镜包含:第一PMOS型晶体管和第二PMOS型晶体管;所述N型电流镜包含:第一NMOS型晶体管和第二NMOS型晶体管;
第一PMOS晶体管的源级连接正电源vdd,该第一PMOS晶体管的栅极与漏极相连于A节点;
第二PMOS晶体管的栅极与所述节点A相连,该第二PMOS晶体管的源级连接到所述正电源vdd;
第一NMOS晶体管的漏极连接所述第一PMOS晶体管的漏极,该第一NMOS晶体管的栅极连接第二NMOS晶体管的栅极,第一NMOS晶体管的源级连接所述电阻R1或所述电阻R2的一端;
第二NMOS晶体管的栅极与漏极相连于节点B,所述第二PMOS晶体管的漏极与所述节点B相连,该第二NMOS晶体管的源级连接PNP型三极管Q2的发射极,该PNP型三极管Q2的基极和集电极接负电源vss。
上述电流求和电路303的输出端与电压重建电路304的输入端之间增加一级N型电流镜进行反向。
上述电压重建电路304为连续时间电路或开关电容电路。
上述电压重建电路304包含电阻R3和运算放大器,所述电阻连接在所述运算放大器的输出端和反相输入端之间,所述运算放大器的同相输入端接地。
调整所述电阻R3阻值的大小能够调整集成电路带隙基准源输出的电压值。与现有技术相比,本发明的技术优势在于:
本发明通过将负温度系数电流和正温度系数电流按一定比例叠加,把叠加后的电流重建为电压,可以获得任意大小的带隙基准电压。且本发明可以采用主流的CMOS集成电路工艺和双极型集成电路工艺获得独立于工艺、电压和温度的带隙基准电压。
附图说明
图1为现有技术的带隙基准源电路原理图;
图2为本发明的电流型带隙基准源结构示意图;
图3为基于电流型带隙基准源结构示意图给出的具体实施例的电路图;
图4-a为本发明实施例所采用的一种负温度系数电流产生电路(即,第一电流产生电路)的电路图;
图4-b为本发明实施例所采用的一种正温度系数电流产生电路(即,第二电流产生电路)的电路图。
具体实施方式
下面通过附图实施例,对本发明的技术方案作进一步的详细描述。
在以下实施例中将第一电流产生电路命名为负温度系数电流产生电路,将第二电流产生电路命名为正温度系数电流产生电路。
本发明提供的电流型带隙基准源如图2所示,包括:负温度系数电流产生电路Intc、正温度系数电流产生电路Iptc、电流求和电路Isum、电压重建电路,且各电路的连接关系如图2。
如图3所示,本实施例中电流型带隙基准源电路包括:负温度系数电流产生电路301、正温度系数电流产生电路302、电流求和电路303以及电压重建电路304。
如图4-a所示负温度系数电流产生电路301进一步包括:两个PMOS管MP1和MP2(组成P型电流镜401),两个NMOS管MN1和MN2(组成N型电流镜402),一个电阻R1和一个PNP型三极管Q1。各个器件的连接关系如下:PMOS管MP1的源级连接到正电源vdd,栅极连接到其漏极并和PMOS管MP2的栅极相连,MP2的源级连接到vdd,MP1和MP2形成了P型电流镜,NMOS管MN1的漏极连接PMOS管MP1的漏极,MN1的栅极连接MN2的栅极,MN1的源级连接电阻R1的一端,R1的另一端接负电源vss,NMOS管MN2的栅极连接其漏极并和PMOS管MP2的漏极相连,MN2的源级连接PNP型三极管Q2的发射极,Q2的基极和集电极接vss,MN1和MN2形成了N型电流镜,N型电流镜和P型电流镜连接成自偏置结构。MP1和MP2构成的P型电流镜电流比是1:1,MN1和MN2构成的N型电流镜电流比是1:1。
如图4-b所示的正温度系数电流产生电路302进一步包括:两个PMOS管MP4和MP5(组成P型电流镜401),两个NMOS管MN3和MN4(组成N型电流镜402),一个电阻R2和两个PNP型三极管Q2、Q3。各个器件的连接关系如下:PMOS管MP4的源级连接到vdd,栅极连接其漏极并和PMOS管MP5的栅极相连,MP5的源级连接到vdd,MP4和MP5形成了P型电流镜,NMOS管MN3的漏极连接MP4的漏极,MN3的栅极连接NMOS管MN4的栅极,MN3的源级连接电阻R2的一端,R2的另一端连接PNP型三极管Q2的发射极,Q2的基极和集电极接vss,NMOS管MN4的栅极连接其漏极并和MP5的漏极相连,MN4的源级连接PNP型三极管Q3的发射极,Q3的基极和集电极接vss,MN3和MN4形成了N型电流镜,N型电流镜和P型电流镜连接成自偏置结构。MP4和MP5构成的P型电流镜电流比是1:1,MN3和MN4构成的N型电流镜电流比是1:1。Q2的发射结面积设计为Q3发射结面积的n倍,n的取值范围为:大于1的正整数。上述技术方案中的,P型电流镜401还可以采用P型共源共栅结构电流镜或采用PNP型三极管构成的电流镜;N型电流镜402还可以采用N型共源共栅结构电流镜或采用NPN型三极管构成的电流镜。
上述负温度系数电流产生电路301和正温度系数电流产生电路302的具体结构还可以采用利用运算放大器虚短路特性的负温度系数电流产生电路和利用运算放大器虚短路特性的正温度系数电流产生电路。
电流求和电路303进一步包括:两个PMOS管MP3、MP6和两个NMOS管MN5、MN6。各个器件的连接关系如下:PMOS管MP3的栅极连接负温度系数电流产生电路中PMOS管MP1的栅极,MP3的源级接vdd,PMOS管MP6的栅极连接正温度系数电流产生电路中PMOS管MP4的栅极,MP6的源级接vdd,MP3和MP6的漏极相连,NMOS管MN5的漏极连接到MP3和MP6的漏极,MN5的漏极同时也和其栅极连接,MN5的源级接vss,NMOS管MN6的栅极连接MN5的栅极,MN6的源级接vss,MN6的漏极是电流求和电路的输出。正温度系数电流和负温度系数电流通过MP3和MP6求和,MN5和MN6构成的N型电流镜的作用是将求和电流反向。
电压重建电路304进一步包括:一个电阻R3和一个运算放大器A1,电阻的两端分别连接到运算放大器A1的输出端和反向输入端,A1的输出是电压重建电路的输出,也是电流型带隙基准源电路的输出,A1的同相输入端接地,A1的反向输入端同时连接到电流求和电路的输出。
本实施例的电流型带隙基准源工作原理如下:负温度系数电流产生电路中的P型电流镜和N型电流镜形成自偏置结构,由于两个电流镜电流比为1:1,NMOS管MN1和MN2的源级电压基本相等,则电阻R1两端的电压降为PNP型三极管Q1的发射结电压,负温度系数电流如式(1)所示:
I RTAT = V BE 1 R 1 - - - ( 1 )
正温度系数电流产生电路中的P型电流镜和N型电流镜形成自偏置结构,由于两个电流镜电流比为1:1,NMOS管MN3和MN4的源级电压基本相等,则电阻R2两端的电压降为PNP型三极管Q3和Q2的的发射结电压差,正温度系数电流如式(2)所示:
I PTAT = V BE 3 - V BE 2 R 2 - - - ( 2 )
电流求和电路中,PMOS管MP3和MP6的宽长比之比为L:K(此处L与K的比值根据两路输入电流温度系数绝对值的比例来设定,以使总电流温度系数为0),则求和后的电流为:
ITOTAL=L·IRTAT+K·IPTAT     (3)
式(3)中的电流流过电压重建电路中的电阻R3,产生输出电压如式(4)所示:
V OUT = R 3 ( L V BE 1 R 1 + K V BE 3 - V BE 2 R 2 ) - - - ( 4 )
合理选择L与K的比例,R1和R2的比例,可以将输出电压VOUT调整为零温度系数,调整电阻R3的大小可以调整输出电压大小。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种集成电路带隙基准源,其特征在于,所述集成电路带隙基准源包含:
第一电流产生电路(301)、第二电流产生电路(302)、电流求和电路(303)和电压重建电路(304);
第一电流产生电路(301),用于产生随温度升高而降低的电流,即用于产生负温度系数电流;
第二电流产生电路(302),用于产生随温度升高而升高的电流,即用于产生正温度系数电流;
第一电流产生电路(301)的输出端与电流求和电路(303)的一个输入端相连,第二电流产生电路(302)的输出端与电流求和电路(303)的另一个输入端相连,该电流求和电路(303)用于将第一电流产生电路(301)和第二电流产生电路(302)各自输出的电流按某一设定比例叠加;
电流求和电路(303)的输出端与电压重建电路(304)的输入端相连且该电压重建电路(304)的输出端作为集成电路带隙基准源的输出端。
2.根据权利要求1所述的集成电路带隙基准源,其特征在于,所述第一电流产生电路(301)包含:P型电流镜、N型电流镜、电阻R1和PNP型三极管;
所述P型电流镜与所述N型电流镜互为负载,从而形成自偏置结构;
所述电阻R1连接在所述N型电流镜的输出管的源级和负电源之间;
所述PNP型三极管的发射极连接在所述N型电流镜的输入管的源级,且该PNP型三极管的基极和集电极接所述负电源;
其中,所述PNP型三极管采用NPN型三极管或者二极管代替。
3.根据权利要求1所述的集成电路带隙基准源,其特征在于,所述第二电流产生电路(302)包含:P型电流镜、N型电流镜、电阻R2和两个PNP型三极管;
所述P型电流镜和N型电流镜互为负载,从而形成自偏置结构;
所述电阻R2连接在所述N型电流镜的输出管的源级和其中一个PNP型三极管的发射极之间,该PNP型三极管的基极和集电极接负电源;另一个PNP型三极管的发射级连接在所述N型电流镜的输入管的源级,该PNP型三极管的集电极和基极连接到负电源;
其中,所述两个PNP型三极管全部或其中之一采用NPN型三极管或者二极管代替。
4.根据权利要求2或3所述的集成电路带隙基准源,其特征在于,所述P型电流镜和N型电流镜采用共源共栅结构。
5.根据权利要求2或3所述的集成电路带隙基准源,其特征在于,所述电流求和电路(303)包含两个P型MOS管,所述两个P型MOS管的栅极分别与第一电流产生电路(301)和第二电流产生电路(302)包含的P型电流镜相连,且所述两个P型MOS管的漏极短接形成电流求和电路输出。
6.根据权利要求2或3所述的集成电路带隙基准源,其特征在于,
所述P型电流镜包含:第一PMOS型晶体管和第二PMOS型晶体管;所述N型电流镜包含:第一NMOS型晶体管和第二NMOS型晶体管;
第一PMOS晶体管的源级连接正电源vdd,该第一PMOS晶体管的栅极与漏极相连于A节点;
第二PMOS晶体管的栅极与所述节点A相连,该第二PMOS晶体管的源级连接到所述正电源vdd;
第一NMOS晶体管的漏极连接所述第一PMOS晶体管的漏极,该第一NMOS晶体管的栅极连接第二NMOS晶体管的栅极,第一NMOS晶体管的源级连接所述电阻R1或所述电阻R2的一端;
第二NMOS晶体管的栅极与漏极相连于节点B,所述第二PMOS晶体管的漏极与所述节点B相连,该第二NMOS晶体管的源级连接PNP型三极管Q2的发射极,该PNP型三极管Q2的基极和集电极接负电源vss。
7.根据权利要求1所述的集成电路带隙基准源,其特征在于,所述电流求和电路(303)的输出端与电压重建电路(304)的输入端之间增加一级N型电流镜进行反向。
8.根据权利要求1所述的集成电路带隙基准源,其特征在于,所述电压重建电路(304)为连续时间电路或开关电容电路。
9.根据权利要求1所述的集成电路带隙基准源,其特征在于,所述电压重建电路(304)包含电阻R3和运算放大器,所述电阻连接在所述运算放大器的输出端和反相输入端之间,所述运算放大器的同相输入端接地。
10.根据权利要求9所述的集成电路带隙基准源,其特征在于,调整所述电阻R3阻值的大小能够调整集成电路带隙基准源输出的电压值。
CN201310248011.7A 2013-06-20 2013-06-20 一种电流型带隙基准源 Pending CN104238617A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310248011.7A CN104238617A (zh) 2013-06-20 2013-06-20 一种电流型带隙基准源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310248011.7A CN104238617A (zh) 2013-06-20 2013-06-20 一种电流型带隙基准源

Publications (1)

Publication Number Publication Date
CN104238617A true CN104238617A (zh) 2014-12-24

Family

ID=52226903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310248011.7A Pending CN104238617A (zh) 2013-06-20 2013-06-20 一种电流型带隙基准源

Country Status (1)

Country Link
CN (1) CN104238617A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242738A (zh) * 2015-11-25 2016-01-13 成都信息工程大学 一种无电阻基准电压源
CN109491433A (zh) * 2018-11-19 2019-03-19 成都微光集电科技有限公司 一种适用于图像传感器的基准电压源电路结构
WO2020019805A1 (zh) * 2018-07-24 2020-01-30 广州金升阳科技有限公司 一种电流源电路及其实现方法
CN112731998A (zh) * 2020-12-01 2021-04-30 江苏信息职业技术学院 基于mosfet的ztc工作点的电压基准电路
CN113791661A (zh) * 2021-09-17 2021-12-14 苏州聚元微电子股份有限公司 一种低压带隙基准电压产生电路
CN115016592A (zh) * 2022-06-29 2022-09-06 北京领创医谷科技发展有限责任公司 带隙基准源电路
CN115407821A (zh) * 2022-11-01 2022-11-29 苏州贝克微电子股份有限公司 一种抗干扰能力强的电路
WO2023115883A1 (zh) * 2021-12-21 2023-06-29 上海集成电路装备材料产业创新中心有限公司 Rram阵列求和运算电路及方法
CN116795165A (zh) * 2023-07-25 2023-09-22 南京米乐为微电子科技有限公司 一种ptat的输出调节电路
CN116931642A (zh) * 2023-09-13 2023-10-24 浙江地芯引力科技有限公司 带隙基准电压源及带隙基准电路

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10143265A (ja) * 1996-11-14 1998-05-29 Nec Corp 始動回路を有するバンドギャップリファレンス回路
KR100328452B1 (ko) * 1999-04-20 2002-03-16 박종섭 밴드-갭 레퍼런스 회로 및 그의 레퍼런스 전압 최적화 방법
CN1340750A (zh) * 2000-08-31 2002-03-20 凌阳科技股份有限公司 低温度系数参考电流源产生电路
US6366071B1 (en) * 2001-07-12 2002-04-02 Taiwan Semiconductor Manufacturing Company Low voltage supply bandgap reference circuit using PTAT and PTVBE current source
CN1508643A (zh) * 2002-12-20 2004-06-30 上海贝岭股份有限公司 采用二阶温度补偿能隙基准电压的电压源及其方法
US20070075699A1 (en) * 2005-10-05 2007-04-05 Taiwan Semiconductor Manufacturing Co., Ltd. Sub-1V bandgap reference circuit
US20100301832A1 (en) * 2009-05-29 2010-12-02 Broadcom Corporation Curvature Compensated Bandgap Voltage Reference
CN101950191A (zh) * 2010-09-16 2011-01-19 电子科技大学 一种具有高阶温度补偿电路的电压基准源
CN102122191A (zh) * 2011-01-14 2011-07-13 钜泉光电科技(上海)股份有限公司 电流基准源电路及电流基准源生成方法
CN102253684A (zh) * 2010-06-30 2011-11-23 中国科学院电子学研究所 一种采用电流相减技术的带隙基准电路
US20120183016A1 (en) * 2011-01-17 2012-07-19 Seiko Epson Corporation Temperature detection circuit and sensor device
CN102681587A (zh) * 2012-05-23 2012-09-19 天津大学 低温漂移基准电压和基准电流产生电路
CN103092251A (zh) * 2011-11-01 2013-05-08 慧荣科技股份有限公司 带隙参考电压产生电路

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10143265A (ja) * 1996-11-14 1998-05-29 Nec Corp 始動回路を有するバンドギャップリファレンス回路
KR100328452B1 (ko) * 1999-04-20 2002-03-16 박종섭 밴드-갭 레퍼런스 회로 및 그의 레퍼런스 전압 최적화 방법
CN1340750A (zh) * 2000-08-31 2002-03-20 凌阳科技股份有限公司 低温度系数参考电流源产生电路
US6366071B1 (en) * 2001-07-12 2002-04-02 Taiwan Semiconductor Manufacturing Company Low voltage supply bandgap reference circuit using PTAT and PTVBE current source
CN1508643A (zh) * 2002-12-20 2004-06-30 上海贝岭股份有限公司 采用二阶温度补偿能隙基准电压的电压源及其方法
US20070075699A1 (en) * 2005-10-05 2007-04-05 Taiwan Semiconductor Manufacturing Co., Ltd. Sub-1V bandgap reference circuit
US20100301832A1 (en) * 2009-05-29 2010-12-02 Broadcom Corporation Curvature Compensated Bandgap Voltage Reference
CN102253684A (zh) * 2010-06-30 2011-11-23 中国科学院电子学研究所 一种采用电流相减技术的带隙基准电路
CN101950191A (zh) * 2010-09-16 2011-01-19 电子科技大学 一种具有高阶温度补偿电路的电压基准源
CN102122191A (zh) * 2011-01-14 2011-07-13 钜泉光电科技(上海)股份有限公司 电流基准源电路及电流基准源生成方法
US20120183016A1 (en) * 2011-01-17 2012-07-19 Seiko Epson Corporation Temperature detection circuit and sensor device
CN103092251A (zh) * 2011-11-01 2013-05-08 慧荣科技股份有限公司 带隙参考电压产生电路
CN102681587A (zh) * 2012-05-23 2012-09-19 天津大学 低温漂移基准电压和基准电流产生电路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
于继洲: "《集成A/D和D/A转换器应用技术》", 28 February 1989 *
叶淬: "《电工电子技术》", 31 July 2009 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242738B (zh) * 2015-11-25 2017-01-25 成都信息工程大学 一种无电阻基准电压源
CN105242738A (zh) * 2015-11-25 2016-01-13 成都信息工程大学 一种无电阻基准电压源
WO2020019805A1 (zh) * 2018-07-24 2020-01-30 广州金升阳科技有限公司 一种电流源电路及其实现方法
CN109491433A (zh) * 2018-11-19 2019-03-19 成都微光集电科技有限公司 一种适用于图像传感器的基准电压源电路结构
CN112731998A (zh) * 2020-12-01 2021-04-30 江苏信息职业技术学院 基于mosfet的ztc工作点的电压基准电路
CN113791661A (zh) * 2021-09-17 2021-12-14 苏州聚元微电子股份有限公司 一种低压带隙基准电压产生电路
WO2023115883A1 (zh) * 2021-12-21 2023-06-29 上海集成电路装备材料产业创新中心有限公司 Rram阵列求和运算电路及方法
CN115016592A (zh) * 2022-06-29 2022-09-06 北京领创医谷科技发展有限责任公司 带隙基准源电路
CN115016592B (zh) * 2022-06-29 2023-08-11 北京领创医谷科技发展有限责任公司 带隙基准源电路
CN115407821A (zh) * 2022-11-01 2022-11-29 苏州贝克微电子股份有限公司 一种抗干扰能力强的电路
CN116795165A (zh) * 2023-07-25 2023-09-22 南京米乐为微电子科技有限公司 一种ptat的输出调节电路
CN116795165B (zh) * 2023-07-25 2024-04-05 南京米乐为微电子科技股份有限公司 一种ptat电流源的输出调节电路
CN116931642A (zh) * 2023-09-13 2023-10-24 浙江地芯引力科技有限公司 带隙基准电压源及带隙基准电路
CN116931642B (zh) * 2023-09-13 2023-12-19 浙江地芯引力科技有限公司 带隙基准电压源及带隙基准电路

Similar Documents

Publication Publication Date Title
CN104238617A (zh) 一种电流型带隙基准源
CN105022441B (zh) 一种与温度无关的集成电路电流基准源
CN100514249C (zh) 一种带隙基准源产生装置
CN102622031B (zh) 一种低压高精度带隙基准电压源
CN103412605B (zh) 高阶温度补偿无电阻带隙基准电压源
CN105320199B (zh) 一种具有高阶补偿的基准电压源
CN104204986B (zh) 基准电压电路
CN103218001A (zh) 一种软启动的电压调整电路
CN103309392A (zh) 一种二阶温度补偿的无运放全cmos基准电压源
CN105955391A (zh) 一种带隙基准电压产生方法及电路
CN104133519A (zh) 一种应用于三维存储领域的低压带隙基准产生电路
TW201530285A (zh) 低偏移帶隙電路和校正器
CN107894803A (zh) 一种物联网中的偏置电压产生电路
CN103399612B (zh) 无电阻的带隙基准源
CN103324232B (zh) 基准电压电路
CN203870501U (zh) 一种与温度无关的集成电路电流基准源
CN102129264A (zh) 一种完全兼容标准cmos工艺的低温度系数电流源
CN102385413A (zh) 低压带隙基准电压产生电路
CN103529889A (zh) 低噪声cmos集成参考电压产生电路
CN102541146B (zh) 抗高压mos管漏电流增大的带隙基准源的电路
CN103246311B (zh) 带有高阶曲率补偿的无电阻带隙基准电压源
CN102809979B (zh) 一种三阶补偿带隙基准电压源
CN102006022B (zh) 基于cmos工艺的低压运算放大器
CN103824855A (zh) 具有电源反接保护功能的cmos调整集成电路结构
CN101414197B (zh) 宽输入cmos带隙基准电路结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20141224