CN104169221B - 制备核-壳结构化的锂化的氧化锰的方法 - Google Patents

制备核-壳结构化的锂化的氧化锰的方法 Download PDF

Info

Publication number
CN104169221B
CN104169221B CN201280067249.3A CN201280067249A CN104169221B CN 104169221 B CN104169221 B CN 104169221B CN 201280067249 A CN201280067249 A CN 201280067249A CN 104169221 B CN104169221 B CN 104169221B
Authority
CN
China
Prior art keywords
manganese
lithiumation
particle
lithium
spinelle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280067249.3A
Other languages
English (en)
Other versions
CN104169221A (zh
Inventor
夏永姚
崔王君
陈龙
王永刚
蒋蓉蓉
窦玉倩
周龙捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Robert Bosch GmbH
Original Assignee
Fudan University
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University, Robert Bosch GmbH filed Critical Fudan University
Publication of CN104169221A publication Critical patent/CN104169221A/zh
Application granted granted Critical
Publication of CN104169221B publication Critical patent/CN104169221B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及制备核‑壳结构化的锂化的氧化锰的方法,包括以下步骤:提供尖晶石LiMxMn2‑ xO4颗粒作为核颗粒,其中M是一种或多种选自以下组中的金属离子:Li、Mg、Cr、Al、Co、Ni、Zn、Cu和La,0≤x≤1,及利用液态或气态的反应性化学试剂对尖晶石颗粒实施热处理以在核颗粒的表面上形成壳层,还涉及所制备的核‑壳结构化的锂化的氧化锰,及其作为锂离子电池正极材料的用途。

Description

制备核-壳结构化的锂化的氧化锰的方法
技术领域
本发明涉及制备核-壳结构化的锂化的氧化锰的方法、所制备的核-壳结构化的锂化的氧化锰及其作为锂离子电池正极材料的用途。
背景技术
由于相对于可商购获得的LiCoO2在经济和环境方面的优势,尖晶石LiMn2O4是一种用于锂离子电池、尤其是用于大规模电池的、具有潜在吸引力的替代性正极材料。然而,尖晶石LiMn2O4在循环过程中,尤其是在提高的温度下,发生严重的容量衰减。尖晶石的循环稳定性通过两个主要类别的方法加以改善:离子掺杂以使其晶体结构稳定化以及表面涂覆以避免Mn溶解。已证明,Mn溶解情况随着尖晶石与电解质的接触面积增加。典型地,将溶胶-凝胶法和沉淀法用于金属氧化物表面涂覆。
Kenneth A.Walz等人在“Elevated temperature cycling stability andelectrochemical impedance of LiMn2O4cathodes with nanoporous ZrO2andTiO2coatings”,Journal of Power Sources,195(2010)4943-4951中描述了通过采用溶胶-凝胶技术用ZrO2和TiO2涂覆LiMn2O4正极。
Xifei Li等人在“Enhanced cycling performance of spinel LiMn2O4coated with ZnMn2O4shell”,Journal of Solid State Electrochem,(2008)12:851-855中描述了通过将LiMn2O4和ZnO在球磨中进行混合并煅烧所混合的粉末从而用ZnMn2O4壳涂覆尖晶石LiMn2O4
这些方法可以减小尖晶石与电解质的接触面积并改善所述材料的循环稳定性至一定程度。然而,所得的涂层并不是均匀且连续的。而是存在附着在尖晶石颗粒表面上的孤立的纳米金属氧化物颗粒。所得的尖晶石的循环性能的改善是不能令人满意的。
因此,仍然存在用于在尖晶石颗粒的表面上形成均匀且连续的层以获得在提高的温度下具有显著改善的循环稳定性的锂化的氧化锰材料的更加有效的方法的需求。
发明内容
根据本发明的一个方面,提供制备核-壳结构化的锂化的氧化锰的方法,包括以下步骤:提供尖晶石LiMxMn2-xO4颗粒作为核颗粒,其中M是一种或多种选自以下组中的金属离子:Li、Mg、Cr、Al、Co、Ni、Zn、Cu和La,0≤x≤1,及利用对尖晶石LiMxMn2-xO4颗粒具有反应性的液态或气态的化学试剂对尖晶石颗粒实施热处理以在核颗粒的表面上形成连续且均匀的壳层。
根据本发明的另一个方面,提供通过本发明方法获得的核-壳结构化的锂化的氧化锰。
根据本发明的再一个方面,提供包含所述核-壳结构化的锂化的氧化锰的锂离子电池正极材料。
根据本发明的再一个方面,提供包含作为正极材料的所述核-壳结构化的锂化的氧化锰的锂离子电池。
附图说明
图1所示为根据实施例1制备的核-壳结构化的锂化的氧化锰的SEM照片。
图2所示为根据实施例1制备的核-壳结构化的锂化的氧化锰的TEM照片。
图3为显示LiMn2O4在实施(根据实施例1)和不实施P2O5处理的情况下在60℃下的充放电曲线的比较的图。
图4为显示LiMn2O4正极材料在实施(根据实施例1)和不实施P2O5处理的情况下在60℃下的循环稳定性的比较的图。
具体实施方式
一方面,本发明提供制备核-壳结构化的锂化的氧化锰的方法。该方法包括以下步骤:
提供尖晶石LiMxMn2-xO4颗粒作为核颗粒,其中M是一种或多种选自以下组中的金属离子:Li、Mg、Cr、Al、Co、Ni、Zn、Cu和La,0≤x≤1,及
利用对尖晶石颗粒具有反应性的液态或气态的化学试剂对尖晶石颗粒实施热处理,以在核颗粒的表面上形成连续且均匀的壳层。
其中0≤x≤1的尖晶石LiMxMn2-xO4颗粒是可商购获得的产品,或者可以通过任何本领域技术人员已知的合适的方法制得,例如固态反应法和共沉淀法。在一个优选的实施方案中,尖晶石LiMxMn2-xO4颗粒是通过锂化合物、锰化合物及任选存在的M的化合物的化学计量混合物的固态反应通过热处理制备的。在固态反应法中,将用作锂、锰和M各种金属的前体的化合物通过球磨加以混合,并在优选650℃的温度下在空气中热处理5小时,然后冷却。将如此获得的产物在900℃的温度下在空气中进一步煅烧10小时,然后冷却至室温。
作为Li、Mn和M的各种前体,对于锂化合物、锰化合物和M的化合物没有特别的限制,其例子可以包括Li、Mn和M的碳酸盐、硝酸盐、氢氧化物、氧化物。优选使用碳酸锂、锰的氧化物和M的氧化物。
然后利用对尖晶石颗粒具有反应性的液态或气态的化学试剂对所述尖晶石LiMxMn2-xO4颗粒实施热处理。所述热处理可以在100至800℃的温度下实施0.5至5小时。
通过所述热处理,所述尖晶石LiMxMn2-xO4颗粒与液态或气态的反应性化学试剂反应,以在尖晶石颗粒的表面上形成连续且均匀的壳层。
如本领域技术人员所知,尖晶石LiMxMn2-xO4在充放电过程中会发生Jahn-Teller畸变,这会诱发不稳定的Mn3+与电解质中的酸的歧化反应,该反应在提高的温度下会进一步加强。本发明的发明人发现,在用可以与尖晶石LiMxMn2-xO4反应的化学试剂进行处理之后,在颗粒表面上形成均匀且连续的层,该保护层并非尖晶石结构,不会发生Jahn-Teller畸变。此外,可以显著减小核与电解质的接触面积,因此有效地减少了Mn溶解进入电解质溶液中的情况。
所述反应性化学试剂优选选自NH3、P2O5和三苯基膦。
在本发明的一个实施方案中,将NH3用作所述化学试剂。优选将流量为0.01至1L/min、优选0.01至0.05L/min的NH3气体流引导至尖晶石颗粒。在该实施方案中,所述热处理在650至750℃的温度下实施0.5至5小时。预期将锰的氮化物的壳层涂覆在尖晶石颗粒的表面上。
在本发明的另一个实施方案中,将P2O5用作所述化学试剂。优选将尖晶石颗粒和P2O5粉末以10:1至50:1的重量比加以混合。在该实施方案中,所述热处理在550至650℃的温度下实施0.5至2小时。预期将磷酸锂锰的壳层涂覆在尖晶石颗粒的表面上。
在本发明的再一个实施方案中,将三苯基膦用作所述化学试剂。优选将尖晶石颗粒和三苯基膦粉末以10:1至50:1的重量比加以混合。在该实施方案中,所述热处理在150至250℃的温度下实施0.5至5小时。预期将锰的磷酸盐的壳层涂覆在尖晶石颗粒的表面上。
如此获得的锂化的氧化锰具有核-壳结构。核由尖晶石LiMxMn2-xO4颗粒组成,其中M是一种或多种选自以下组中的金属离子:Li、Mg、Cr、Al、Co、Ni、Zn、Cu和La,0≤x≤1。并非尖晶石结构的壳具有含Mn的组成,并且是通过尖晶石LiMxMn2-xO4颗粒与反应性化学试剂之间的反应制备的。壳的厚度为5至20nm。
所述核-壳结构化的锂化的氧化锰具有在尖晶石锂化的氧化锰的表面上形成的均匀且连续的层。该保护层可以显著减小尖晶石与电解质的接触面积,因此有效地防止Mn溶解进入电解质溶液中,由此改善了锂化的氧化锰的循环性能。
根据本发明的核-壳结构化的锂化的氧化锰可以有利地用作锂离子电池正极材料。所述氧化物尤其是在提高的温度下显示出改善的循环稳定性。
以下实施例进一步阐述根据本发明的方法以及所制备的用作锂离子电池正极材料的化合物的特征。这些实施例仅以示例的方式给出,并不以任何方式限制本发明。
实施例1:
将LiMn2O4粉末与P2O5粉末以10:1的重量比加以混合,并将该混合物在密封的反应器中在600℃下热处理1小时。所得的化合物的SEM照片和TEM照片表明在锂化的氧化锰颗粒上连续且均匀地涂覆厚度为10至20nm的壳层(图1和图2)。
实施例2:
将LiMn2O4粉末在密封的反应器中用流量为0.02L/min的NH3在700℃下处理1小时。在锂化的氧化锰颗粒上连续且均匀地涂覆厚度为10至20nm的壳层。
实施例3:
将LiMn2O4粉末与三苯基膦粉末以10:1的重量比加以混合,并将该混合物在密封的反应器中在200℃下热处理1小时。在锂化的氧化锰颗粒上连续且均匀地涂覆厚度为10至20nm的壳层。
实施例4:
通过固态反应法制备尖晶石LiLi0.1Mn1.9O4
将化学计量的试剂级Li2CO3(商业电池级,微小尺寸)、MnO2(商业产品)通过球磨加以混合。将该混合物在650℃下在空气中热处理5小时,冷却,再次混合,然后在900℃下在空气中进一步煅烧10小时,缓慢冷却至600℃,并最终冷却至室温。
将所得的Li1.1Mn1.9O4粉末与P2O5以30:1的重量比加以混合。在600℃下在密封的反应器中实施热处理2小时。在尖晶石LiLi0.1Mn1.9O4颗粒上连续且均匀地涂覆厚度为10至20nm的壳层。
电池组装及电化学测试:
使用R2016型钮扣电池测试根据实施例1实施了P2O5处理的尖晶石LiMn2O4和作为对照没有实施P2O5处理的尖晶石LiMn2O4的电化学性能。工作电极是通过将90重量%活性材料、4重量%炭黑、1重量%的KS-6和5重量%的PVdF1在NMP溶剂中的浆料混合物涂覆在铝箔上制成的。在将该混合物涂覆在铝箔上之后,将该电极在120℃下在真空中干燥12小时。在H2O和O2小于1ppm的手套箱中组装R2016型钮扣电池,其中使用在EC-DMC-EMC3(1:1:1,体积比)中的1M LiPF6作为电解质,使用尖晶石氧化物电极作为正极,使用金属Li作为负极。通过使用LAND Cycler/Arbin电池测试系统评估循环性能,在3至4.3V的电势范围内对电池进行充/放电,充/放电测试和循环测试的电流密度为1/3C。测试结果如图3和图4中所示。
图3为显示LiMn2O4在实施(根据实施例1)和不实施P2O5处理(对照)的情况下在60℃下的充放电曲线的比较的图。图4为显示LiMn2O4正极材料在实施(根据实施例1)和不实施P2O5处理(对照)的情况下在60℃下的循环稳定性的比较的图。
如图4所示,经处理的尖晶石在60℃下在200次循环之后的容量保持率为约82%;而未经处理的尖晶石在200次循环之后的容量保持率则明显更低(约50%)。由图3和图4可以看出,相对于未经处理的尖晶石LiMn2O4,根据本发明经处理的尖晶石LiMn2O4颗粒在60℃的提高的温度下显示出显著改善的循环稳定性,并且容量仅减少8mAh/g。

Claims (12)

1.制备核-壳结构化的锂化的氧化锰的方法,该方法包括以下步骤:
提供尖晶石LiMxMn2-xO4颗粒作为核颗粒,其中M是一种或多种选自以下组中的金属离子:Li、Mg、Cr、Al、Co、Ni、Zn、Cu和La,0≤x≤1;
利用对尖晶石LiMxMn2-xO4颗粒具有反应性的液态或气态的选自NH3、P2O5和三苯基膦的化学试剂对尖晶石颗粒在100至800℃的温度下实施0.5至5小时的热处理,以在核颗粒的表面上形成连续且均匀的壳层,其中所述壳并非尖晶石结构。
2.根据权利要求1的方法,其中所述尖晶石LiMxMn2-xO4颗粒是通过锂化合物、锰化合物及任选存在的M的化合物的化学计量混合物的固态反应通过热处理制备的。
3.根据权利要求2的方法,其中所述锂化合物选自以下组中:碳酸锂、硝酸锂、氢氧化锂和氧化锂。
4.根据权利要求2的方法,其中所述锰化合物选自以下组中:锰的碳酸盐、锰的硝酸盐、锰的氢氧化物和锰的氧化物。
5.根据权利要求2的方法,其中所述M的化合物选自以下组中:M的碳酸盐、硝酸盐、氢氧化物和氧化物。
6.根据权利要求1的方法,其中将NH3用作所述化学试剂,所述热处理在650至750℃的温度下实施0.5至5小时。
7.根据权利要求1的方法,其中将P2O5用作所述化学试剂,所述热处理在550至650℃的温度下实施0.5至2小时。
8.根据权利要求1的方法,其中将三苯基膦用作所述化学试剂,所述热处理在150至250℃的温度下实施0.5至5小时。
9.通过根据权利要求1至8之一的方法制备的核-壳结构化的锂化的氧化锰。
10.根据权利要求9的核-壳结构化的锂化的氧化锰,其中所述壳的厚度为5至20nm。
11.锂离子电池正极材料,其包含根据权利要求9至10之一的或者通过根据权利要求1至8之一的方法制备的核-壳结构化的锂化的氧化锰。
12.锂离子电池,其包含根据权利要求9至10之一的或者通过根据权利要求1至8之一的方法制备的核-壳结构化的锂化的氧化锰作为正极材料。
CN201280067249.3A 2012-01-16 2012-01-16 制备核-壳结构化的锂化的氧化锰的方法 Active CN104169221B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/070408 WO2013106983A1 (en) 2012-01-16 2012-01-16 Process for preparing a core-shell structured lithtated manganese oxide

Publications (2)

Publication Number Publication Date
CN104169221A CN104169221A (zh) 2014-11-26
CN104169221B true CN104169221B (zh) 2016-08-24

Family

ID=48798474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280067249.3A Active CN104169221B (zh) 2012-01-16 2012-01-16 制备核-壳结构化的锂化的氧化锰的方法

Country Status (4)

Country Link
US (1) US20140356714A1 (zh)
EP (1) EP2804836B1 (zh)
CN (1) CN104169221B (zh)
WO (1) WO2013106983A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017106168A1 (en) * 2015-12-14 2017-06-22 Massachusetts Institute Of Technology Solid oxygen-redox nanocomposite materials
CN110120503B (zh) * 2018-02-05 2022-03-22 上海电气集团股份有限公司 一种复合正极材料及其制备方法和应用
CN110474017B (zh) * 2019-08-29 2022-02-11 瑞海泊有限公司 锰酸锌电极的制备方法及其应用
CN111613782B (zh) * 2020-04-21 2022-09-20 浙江锋锂新能源科技有限公司 一种壳核结构三元正极材料及其制备方法和全固态电池
CN116885156B (zh) * 2023-09-07 2024-02-20 宁德时代新能源科技股份有限公司 镍锰酸锂材料、制备方法、二次电池及用电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841060A (zh) * 2010-05-20 2010-09-22 复旦大学 一种以锰酸锂为正极材料的锂离子电池
CN101847714A (zh) * 2010-05-20 2010-09-29 复旦大学 锂离子电池用碳包覆核壳结构纳米合金负极材料的制备方法
CN101859887A (zh) * 2010-06-22 2010-10-13 华中科技大学 一种过渡金属磷酸盐包覆的锂离子电池复合正极材料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099960A (en) * 1996-05-15 2000-08-08 Hyperion Catalysis International High surface area nanofibers, methods of making, methods of using and products containing same
US6267943B1 (en) * 1998-10-15 2001-07-31 Fmc Corporation Lithium manganese oxide spinel compound and method of preparing same
TWI279019B (en) * 2003-01-08 2007-04-11 Nikko Materials Co Ltd Material for lithium secondary battery positive electrode and manufacturing method thereof
WO2007034823A1 (ja) * 2005-09-21 2007-03-29 Kanto Denka Kogyo Co., Ltd. 正極活物質の製造方法およびそれを用いた非水電解質電池
CN100547831C (zh) * 2006-03-14 2009-10-07 深圳市比克电池有限公司 改性尖晶石锰酸锂材料、制备方法及锂二次电池
EP2251926B1 (en) * 2008-03-13 2013-09-11 Ube Industries, Ltd. Non-aqueous electrolyte for a lithium battery, lithium battery using said electrolyte, and hydroxy-acid derivative for use in said electrolyte
CN101740752B (zh) * 2009-12-16 2012-01-18 深圳市德方纳米科技有限公司 具有核壳结构的锂离子电池用复合正极材料及其制备方法
US9559354B2 (en) * 2010-05-27 2017-01-31 Uchicago Argonne, Llc Electrode materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841060A (zh) * 2010-05-20 2010-09-22 复旦大学 一种以锰酸锂为正极材料的锂离子电池
CN101847714A (zh) * 2010-05-20 2010-09-29 复旦大学 锂离子电池用碳包覆核壳结构纳米合金负极材料的制备方法
CN101859887A (zh) * 2010-06-22 2010-10-13 华中科技大学 一种过渡金属磷酸盐包覆的锂离子电池复合正极材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"LiNixMn2-xO4 材料的合成和性能表征";张胜利等;《电池工业》;20090630;第14卷(第3期);155-157 *
"Nanoparticle–Nanorod Core–Shell LiNi0.5Mn1.5O4 Spinel Cathodes with High Energy Density for Li-Ion Batteries";Minki Jo et al.;《Journal of The Electrochemical Society》;20100525;第157卷(第7期);A841-A845 *
"尖晶石型LiNixMn2-xO4 锂离子正极材料的电化学性能";徐宁等;《中国有色金属学报》;20030228;第13卷(第1期);81-84 *

Also Published As

Publication number Publication date
US20140356714A1 (en) 2014-12-04
EP2804836B1 (en) 2022-11-23
CN104169221A (zh) 2014-11-26
EP2804836A1 (en) 2014-11-26
WO2013106983A1 (en) 2013-07-25
EP2804836A4 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
CN101855755B (zh) 非水电解液二次电池用Li-Ni类复合氧化物颗粒粉末及其制造方法,和非水电解质二次电池
CN103855380B (zh) 正极活性物质、用于制备其的方法和包含其的锂二次电池
US20160079594A1 (en) Manufacturing method of lithium-titanium composite oxide in which different metals are doped, and lithium-titanium composite oxide manufactured thereby in which different metals are doped
CN105745174B (zh) 尖晶石型锂金属复合氧化物
KR20130065694A (ko) 알루미나로 건식 코팅된 양극재 전구체
CN102694167A (zh) 改性锰酸锂正极材料及其制备方法
CN111564606B (zh) 一种锂离子电池用包覆型多元正极材料、其制备方法及用途
CN101855754A (zh) 非水电解液二次电池用锰酸锂颗粒粉末及其制造方法、和非水电解液二次电池
CN109713251B (zh) 锂离子电池正极材料及其制备方法和应用
CN107452948A (zh) 一种普鲁士蓝复合锂离子电池三元正极材料及其制备方法
CN104169221B (zh) 制备核-壳结构化的锂化的氧化锰的方法
CN110600698B (zh) 球形度高的二次结构锰酸锂正极材料及其制法
CN109461892A (zh) 一种锂离子电池用复合正极材料及其制备方法
JP2022161973A (ja) 遷移金属複合水酸化物の粒子、リチウムイオン二次電池用正極活物質、およびリチウムイオン二次電池
CN110863245A (zh) 三元正极材料及其制备方法、锂离子电池和电动汽车
JP2021051880A (ja) リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
CN114804235B (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
JP7194703B2 (ja) 全固体リチウムイオン電池用正極活物質、電極および全固体リチウムイオン電池
CN113845152A (zh) 镍锰酸锂正极材料、其制备方法和锂离子电池
CN110627128B (zh) 锰酸锂正极材料、制法及应用
CN110606509B (zh) 球形锰酸锂正极材料及其制备方法和应用
JPWO2018168470A1 (ja) スピネル型リチウムニッケルマンガン含有複合酸化物
JP7135354B2 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
CN113809280A (zh) 一种正极材料及其制备和应用
CN108511697A (zh) 铜镍酸锂正极材料及其制备方法和锂离子电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant