CN104138733A - 一种表面具有贯穿大孔的二氧化硅空心微球及其制备方法 - Google Patents

一种表面具有贯穿大孔的二氧化硅空心微球及其制备方法 Download PDF

Info

Publication number
CN104138733A
CN104138733A CN201310166142.0A CN201310166142A CN104138733A CN 104138733 A CN104138733 A CN 104138733A CN 201310166142 A CN201310166142 A CN 201310166142A CN 104138733 A CN104138733 A CN 104138733A
Authority
CN
China
Prior art keywords
macropore
preparation
sio
water
runs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310166142.0A
Other languages
English (en)
Other versions
CN104138733B (zh
Inventor
袁珮
鲍晓军
潘登
石冈
龚光碧
刘志红
钱锦华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum Beijing
China Petroleum and Natural Gas Co Ltd
Original Assignee
China University of Petroleum Beijing
China Petroleum and Natural Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum Beijing, China Petroleum and Natural Gas Co Ltd filed Critical China University of Petroleum Beijing
Priority to CN201310166142.0A priority Critical patent/CN104138733B/zh
Publication of CN104138733A publication Critical patent/CN104138733A/zh
Application granted granted Critical
Publication of CN104138733B publication Critical patent/CN104138733B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明涉及一种表面具有贯穿大孔的二氧化硅空心微球及其制备方法。该制备方法包括:将水玻璃、去离子水及聚丙烯酸钠混合,得到内层水相,其相对粘度为2.5-5.5;将正己烷、Tween80、Span80混合,得到油相;将无机盐与去离子水混合得到外层水相;将内层水相与油相混合,搅拌乳化,形成W/O体系;将W/O体系与外层水相混合反应,得到所述表面具有贯穿大孔的二氧化硅空心微球。本发明还提供了上述方法得到的二氧化硅空心微球。本发明所提供的上述制备方法通过将控制内层水相的相对粘度,使聚丙烯酸钠能够冲破SiO2壳层而形成贯穿大孔结构,并通过选择聚丙烯酸钠分子量大小,合成出大孔孔径在250-600nm之间可调的TM-SHMs,其在聚合物扩散、吸附及催化反应上有良好的应用前景。

Description

一种表面具有贯穿大孔的二氧化硅空心微球及其制备方法
技术领域
本发明涉及一种表面具有贯穿大孔的二氧化硅空心微球及其制备方法,属于二氧化硅空心微球材料制备技术领域。
背景技术
二氧化硅空心微球(SHMs)由于具有低毒、低密度、大的比表面积、大的空腔体积以及良好的表面改性能力,被广泛应用于药物传输、催化、光学器件等诸多领域,尤其是在高分子的吸附分离以及催化反应等方面具有重要的应用。
SHMs的合成方法发展至今已非常成熟,如叠层自组装法(Liu X M,He J H.Hierarchically structured superhydrophilic coatings fabricated by self-assembling raspberry-like silica nanospheres[J].Journal of Colloid and Interface Science,2007;314(1):341-345)、模板法(Liu B,Yan E,Zhang X,Yang X,Bai F.A general method for the synthesis ofmonodisperse hollow inorganic–organic hybrid microspheres with interior functionalizedpoly(methacrylic acid)shells[J].Journal of Colloid and Interface Science,2012;369(1):144-153)等,但有关表面具有贯穿大孔的二氧化硅空心微球(TM-SHMs)的研究却鲜有报道。
TM-SHMs的主要合成方法仍然基于SHMs的合成,即通过改变SHMs合成的反应条件,在形成微球的同时在壳层中形成贯穿大孔结构。如在以聚苯乙烯(PS)微球为模板剂合成SHMs时,控制正硅酸乙酯(TEOS)在PS微球表面的水解-缩聚速率,在PS微球未被SiO2壳层完全包覆时停止反应,除去PS内核,即可制备出表面具有不规整大孔结构的SHMs。该方法合成的TM-SHMs具有粒径可控的优点,但因TEOS的水解速率难以精确调控导致大孔结构及孔径不可调(Li L,Ding J,Xue J.Macroporous Silica HollowMicrospheres as Nanoparticle Collectors[J].Chemistry of Materials,2009;21(15):3629-3637)。Shiomi等(Shiomi T,Tsunoda T,Kawai A,Mizukami F,Sakaguchi K.Formationof cage-like hollow spherical silica via a mesoporous structure by calcination oflysozyme-silica hybrid particles[J].Chemical Communications,2007;(42):4404-4406)采用乳液合成法,在超声波的乳化作用下,加入一定量的溶解酵素,待TEOS水解缩聚后形成壳层中含有溶解酵素的SHMs,然后通过焙烧处理除去溶解酵素,得到壳层中含有大孔结构的SHMs。但是,该法采用焙烧处理的方式除去溶解酵素,一方面高温焙烧导致能耗过高,另一方面焙烧残存的产物会影响材料的使用性能。Fujiwara等(Fujiwara M,Shiokawa K,Sakakura L.Silica hollow spheres with nano-macroholes like diatomaceousearth[J].Nano Letters,20066(12):2925-2928)采用W/O/W三相乳液合成的方法,在内层水相中添加一定的水溶性聚合物为扩孔剂,制备出具有硅藻土表面形貌的SHMs。该方法以廉价的水玻璃为硅源,成本低廉,不需要焙烧处理,采用洗涤的方法即可除去扩孔剂,对产品性能影响小,但该法所制备的SHMs不能保证大孔结构的贯穿性,且大孔孔径不可调,极大地限制了该方法的推广应用。
现有的TM-SHMs合成方法均不能有效调控表面大孔的结构与尺寸,难以同时保证大孔的贯穿性及大孔孔径的可调控性。鉴于这种孔径可调的TM-SHMs材料在不同尺寸大分子聚合物的吸附分离及催化反应方面具有的重要价值,有必要发展一种新型的制备方法以实现大孔的贯穿性及大孔孔径的可调控性。
发明内容
为解决上述技术问题,本发明的目的在于提供一种表面具有贯穿大孔的二氧化硅空心微球(TM-SHMs)的制备方法,采用W/O/W三相乳液合成法,以不同分子量的聚丙烯酸钠为扩孔剂、控制内层水相的相对粘度,所制备的TM-SHMs表面具有贯穿的大孔并且其孔径可以调控。
为达到上述目的,本发明提供了一种表面具有贯穿大孔的二氧化硅空心微球的制备方法,其包括以下步骤:
内层水相(IWP)的配制:将7-21g水玻璃、11-33g去离子水及0.6-1.8g聚丙烯酸钠混合,得到内层水相,其中,所述内层水相的相对粘度(相对于水)为4.0-5.0,所述水玻璃中SiO2的含量为26wt.%;
油相(OP)的配制:将72mL正己烷、1.5g Tween80、1.5g Span80混合,得到油相;
外层水相(OWP)的配制:将无机盐与250mL去离子水混合,得到浓度为0.3-3mol/L的外层水相;
将内层水相与油相混合,以6000-14000rpm的转速搅拌乳化1min(可以采用高速搅拌器),形成水/油(W/O)体系;
将W/O体系与外层水相混合,在搅拌条件下于常温反应2h,然后经过过滤、去离子水及乙醇洗涤、充分干燥后,制备得到所述表面具有贯穿大孔的二氧化硅空心微球。
在上述表面具有贯穿大孔的二氧化硅空心微球的制备方法中,优选地,所采用的聚丙烯酸钠的分子量为4000-30000。
在上述表面具有贯穿大孔的二氧化硅空心微球的制备方法中,优选地,所采用的无机盐为NH4HCO3、NH4Cl、NH4NO3或(NH4)2SO4等。
在上述表面具有贯穿大孔的二氧化硅空心微球的制备方法中,优选地,表面具有贯穿大孔的二氧化硅空心微球的大孔孔径为250-600nm,该空心微球的大孔孔径可以在该范围内调整,该调整可以通过采用不同分子量的聚丙烯酸钠实现。
在上述表面具有贯穿大孔的二氧化硅空心微球的制备方法中,对于内层水相的粘度的控制可以通过调节去离子水、水玻璃、聚丙烯酸钠的添加量来控制。
本发明所提供的上述方法以水玻璃溶液及一定量的水溶性聚合物(聚丙烯酸钠)为内层水相,以正己烷、Tween80和Span80为油相(OP),以无机盐溶液为外层水相;首先将IWP与OP在高速搅拌下乳化形成W/O体系,然后将上述体系加入到OWP中,IWP中的硅酸钠扩散至OP界面发生水解缩聚反应生成SiO2壳层;与此同时,IWP中的聚丙烯酸钠向外扩散,在二氧化硅壳层中形成贯穿大孔;通过调节IWP的相对粘度,可以控制大孔结构的贯穿性;通过改变聚丙烯酸钠的分子量,可以调节大孔孔径。
本发明还提供了一种表面具有贯穿大孔的二氧化硅空心微球,其是通过上述制备方法制备的。优选地,该表面具有贯穿大孔的二氧化硅空心微球的大孔孔径为250-600nm。
本发明所提供的上述TM-SHMs的制备方法通过将IWP的相对粘度控制在合适的范围内,在保证界面反应完成的同时,使聚丙烯酸钠能够冲破SiO2壳层而形成贯穿大孔结构,并通过控制IWP中聚丙烯酸钠分子量的大小,以合成出大孔孔径在250-600nm之间可调的TM-SHMs。制备得到的TM-SHMs在聚合物扩散、吸附及催化反应上有良好的应用前景。
附图说明
图1为实施例1所制备的TM-SHMs的扫描电镜照片;
图2为实施例2所制备的TM-SHMs的扫描电镜照片;
图3为实施例3所制备的TM-SHMs的扫描电镜照片;
图4为对比例1所制备的表面由纳米颗粒堆积的SHMs的SEM照片;
图5为对比例2所制备的具有非贯穿大孔结构的SHMs的SEM照片。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
在实施例中,所用的原料均为试剂级。
在实施例中,SEM照片由荷兰FEI Quanta200F场发射扫描电子显微镜获得。
实施例1
本实施例提供了一种TM-SHMs的制备方法,其包括以下步骤:
将14g水玻璃(SiO2,26wt.%)、22g去离子水及0.8g分子量为4000的聚丙烯酸钠配制为IWP,IWP相对粘度为4.2;
将72mL正己烷、1.5g Tween80、1.5g Span80混合配制为OP;
将40g NH4HCO3溶解到250mL去离子水中得到OWP;
将IWP与OP混合,在高速搅拌器中以8000rpm的搅拌速率进行搅拌乳化1min,形成W/O体系;
将乳化后的W/O体系与OWP混合,在磁力搅拌作用下于常温反应2h,反应产物经过过滤和用去离子水及乙醇洗涤数次,于120oC烘干至恒重得到TM-SHMs。
制备得到的TM-SHMs的大孔平均孔径在250nm,其SEM照片如图1(10000倍)所示。
实施例2
本实施例提供了一种TM-SHMs的制备方法,其包括以下步骤:
将10g水玻璃(SiO2,26wt.%)、16g去离子水及1.4g分子量为9600的聚丙烯酸钠混合配制为IWP,IWP相对粘度为4.5;
将72mL正己烷、1.5g Tween80、1.5g Span80混合配制为OP;
将30g NH4Cl溶解到250mL去离子水中得到OWP;
将IWP与OP混合,在高速搅拌器中以10000rpm的搅拌速率搅拌乳化1min,形成W/O体系;
将乳化后的W/O体系与OWP混合,在磁力搅拌作用下于常温反应2h,反应产物经过滤和用去离子水及乙醇洗涤数次,在120oC烘干至恒重得到TM-SHMs。
制备的TM-SHMs的大孔平均孔径在480nm,其SEM照片如图2(10000倍)所示。
实施例3
本实施例提供了一种TM-SHMs的制备方法,其包括以下步骤:
将15g水玻璃(SiO2,26wt.%)、25g去离子水及1.1g分子量为30000的聚丙烯酸钠混合配制为IWP,IWP相对粘度为4.8;
将72mL正己烷、1.5g Tween80、1.5g Span80混合配制为OP;
将20g(NH4)2SO4溶解到250mL去离子水中得到OWP;
将IWP与OP混合,在高速搅拌器中以12000rpm的搅拌速率搅拌乳化1min,形成W/O体系;
将乳化后的W/O体系与OWP混合,在磁力搅拌作用下于常温反应2h,反应产物经过滤和用去离子水及乙醇洗涤数次,于120℃烘干至恒重得到TM-SHMs。
制备的TM-SHMs的大孔平均孔径在600nm,其SEM照片如图3(25000倍)所示。
对比例1
本对比例提供了一种TM-SHMs的制备方法,其是采用相对粘度较低的内层水相制备得到一种由纳米颗粒堆积而成的二氧化硅空心微球,其包括以下步骤:
将7g水玻璃(SiO2,26wt.%)、22g去离子水及0.6g分子量为4000的聚丙烯酸钠混合配制为IWP,IWP相对粘度为3.1;
将72mL正己烷、1.5g Tween80、1.5g Span80混合配制为OP;
将40g NH4NO3溶解到250mL去离子水中得到OWP;
将IWP与OP混合,在高速搅拌器中以10000rpm的搅拌速率搅拌乳化1min,形成W/O体系;
将乳化后的W/O体系与OWP混合,在磁力搅拌作用下于常温反应2h,反应产物经过滤和用去离子水及乙醇洗涤数次,于120°C烘干至恒重得到SHMs。
所制备的SHMs的SEM照片如图4(8000倍)所示。
对比例2
本对比例提供了一种TM-SHMs的制备方法,其是采用相对粘度较高的内层水相制备得到一种表面具有非贯穿大孔的二氧化硅空心微球,其包括以下步骤:
将21g水玻璃(SiO2,26wt.%)、11g去离子水及1.6g分子量为30000的聚丙烯酸钠混合配制为IWP,IWP相对粘度为6.5;
将72mL正己烷、1.5g Tween80、1.5g Span80混合配制为OP;
将20g NH4HCO3溶解到250mL去离子水中得到OWP;
将IWP与OP混合,在高速搅拌器中以10000rpm的搅拌速率搅拌乳化1min,形成W/O体系;
将乳化后的W/O体系与OWP混合,在磁力搅拌作用下于常温反应2h,反应产物经过滤和用去离子水及乙醇洗涤数次,于120℃烘干至恒重得到SHMs。
所制备的SHMs的SEM照片如图5(8000倍)所示。
由图1-5可以看出:实施例1-3中,IWP的相对粘度在4.0-5.0之间,所制得的微球表面具有丰富的贯穿大孔结构。随着聚丙烯酸钠分子量的增加,微球大孔孔径逐渐增加。统计微球表面大孔孔径大小,计算得出平均孔径分别为250nm(图1)、400nm(图2)及600nm(图3)。在对比例1中,IWP的相对粘度下降至3.1,所制得的微球表面由粒径为300nm左右的纳米二氧化硅颗粒堆积而成(如图4所示)。在对比例2中,IWP的相对粘度增加至6.5,微球表面呈现不贯穿的大孔结构,孔径在500-700nm(如图5所示)。通过上述的对比可以看出,本发明所提供的表面具有贯穿大孔的二氧化硅空心微球的制备方法能够方便地调控空心微球表面大孔的孔径,并且,所制备的表面具有贯穿大孔的二氧化硅空心微球具有丰富的贯穿大孔结构。

Claims (5)

1.一种表面具有贯穿大孔的二氧化硅空心微球的制备方法,其包括以下步骤:
内层水相的配制:将7-21g水玻璃、11-33g去离子水及0.6-1.8g聚丙烯酸钠混合,得到内层水相,其中,所述内层水相的相对粘度为4.0-5.0,所述水玻璃中SiO2的含量为26wt.%;
油相的配制:将72mL正己烷、1.5g Tween80、1.5g Span80混合,得到油相;
外层水相的配制:将无机盐与250mL去离子水混合,得到浓度为0.3-3mol/L的外层水相;
将内层水相与油相混合,以6000-14000rpm的转速搅拌乳化1min,形成水/油体系;
将水/油体系与外层水相混合,在搅拌条件下于常温反应2h,然后经过过滤、去离子水及乙醇洗涤、充分干燥后,制备得到所述表面具有贯穿大孔的二氧化硅空心微球。
2.根据权利要求1所述的表面具有贯穿大孔的二氧化硅空心微球的制备方法,其中,所述聚丙烯酸钠的分子量为4000-30000。
3.根据权利要求1所述的表面具有贯穿大孔的二氧化硅空心微球的制备方法,其中,所述无机盐为NH4HCO3、NH4Cl、NH4NO3或(NH4)2SO4
4.根据权利要求1所述的表面具有贯穿大孔的二氧化硅空心微球的制备方法,其中,所述表面具有贯穿大孔的二氧化硅空心微球的大孔孔径为250-600nm。
5.一种表面具有贯穿大孔的二氧化硅空心微球,其是通过权利要求1-4任一项所述的表面具有贯穿大孔的二氧化硅空心微球的制备方法制备的。
CN201310166142.0A 2013-05-08 2013-05-08 一种表面具有贯穿大孔的二氧化硅空心微球及其制备方法 Active CN104138733B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310166142.0A CN104138733B (zh) 2013-05-08 2013-05-08 一种表面具有贯穿大孔的二氧化硅空心微球及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310166142.0A CN104138733B (zh) 2013-05-08 2013-05-08 一种表面具有贯穿大孔的二氧化硅空心微球及其制备方法

Publications (2)

Publication Number Publication Date
CN104138733A true CN104138733A (zh) 2014-11-12
CN104138733B CN104138733B (zh) 2016-02-03

Family

ID=51848173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310166142.0A Active CN104138733B (zh) 2013-05-08 2013-05-08 一种表面具有贯穿大孔的二氧化硅空心微球及其制备方法

Country Status (1)

Country Link
CN (1) CN104138733B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105883829A (zh) * 2016-03-31 2016-08-24 武汉工程大学 一种洋葱状介孔二氧化硅纳米材料的合成方法
CN112938992A (zh) * 2021-03-11 2021-06-11 浙江理工大学 一种二氧化硅纳米碗的制备方法
CN116262157A (zh) * 2022-12-29 2023-06-16 高颜苑科技(深圳)有限责任公司 一种基于生发的多肽缓释微针制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1923354A (zh) * 2005-08-31 2007-03-07 上海杰事杰新材料股份有限公司 一种制备纳米中空无机微球的方法
CN101007634A (zh) * 2007-01-16 2007-08-01 浙江大学 一种中空硅凝胶纳米球粉体材料及其制备方法
CN101214965A (zh) * 2008-01-11 2008-07-09 北京化工大学 一种大孔-介孔二氧化硅空心微球制备方法和应用
JP4997395B2 (ja) * 2006-02-28 2012-08-08 独立行政法人産業技術総合研究所 特異な殻を持つ中空粒子およびその製造方法
JP2013141664A (ja) * 2012-01-12 2013-07-22 San Nopco Ltd 消泡剤
JP5464573B2 (ja) * 2009-03-31 2014-04-09 独立行政法人産業技術総合研究所 中空粒子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1923354A (zh) * 2005-08-31 2007-03-07 上海杰事杰新材料股份有限公司 一种制备纳米中空无机微球的方法
JP4997395B2 (ja) * 2006-02-28 2012-08-08 独立行政法人産業技術総合研究所 特異な殻を持つ中空粒子およびその製造方法
CN101007634A (zh) * 2007-01-16 2007-08-01 浙江大学 一种中空硅凝胶纳米球粉体材料及其制备方法
CN101214965A (zh) * 2008-01-11 2008-07-09 北京化工大学 一种大孔-介孔二氧化硅空心微球制备方法和应用
JP5464573B2 (ja) * 2009-03-31 2014-04-09 独立行政法人産業技術総合研究所 中空粒子の製造方法
JP2013141664A (ja) * 2012-01-12 2013-07-22 San Nopco Ltd 消泡剤

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105883829A (zh) * 2016-03-31 2016-08-24 武汉工程大学 一种洋葱状介孔二氧化硅纳米材料的合成方法
CN112938992A (zh) * 2021-03-11 2021-06-11 浙江理工大学 一种二氧化硅纳米碗的制备方法
CN116262157A (zh) * 2022-12-29 2023-06-16 高颜苑科技(深圳)有限责任公司 一种基于生发的多肽缓释微针制备方法
CN116262157B (zh) * 2022-12-29 2024-05-10 高颜苑科技(深圳)有限责任公司 一种基于生发的多肽缓释微针制备方法

Also Published As

Publication number Publication date
CN104138733B (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
Hu et al. A facile and general fabrication method for organic silica hollow spheres and their excellent adsorption properties for heavy metal ions
CN104556057B (zh) 一种纳米多孔轻质二氧化硅微球的制备方法
CN106082243B (zh) 一种疏水二氧化硅气凝胶粉体的常压快速制备方法
CN101679657B (zh) 气凝胶颗粒及其制造方法
TWI516447B (zh) 氣凝膠及其製造方法
Xu et al. A facile route for rapid synthesis of hollow mesoporous silica nanoparticles as pH-responsive delivery carrier
CN103738969B (zh) 介孔二氧化硅及其制备方法
CN104370289B (zh) 一种微通道制备粒径均一的纳米二氧化硅的方法
CN106044788A (zh) 一种粒径可控的二氧化硅空心球纳米材料及其制备方法
JP2020504070A (ja) ミクロン径の球状シリカエアロゲルを製造する方法
Wang et al. Hollow polymer microspheres containing a gold nanocolloid core adsorbed on the inner surface as a catalytic microreactor
CN103342991A (zh) 复合纳米胶囊相变材料及其制备方法
CN109279640A (zh) 一种硫酸钡材料及其制备方法
CN109607554A (zh) 大孔二氧化硅纳米粒子的制备方法
CN104138733A (zh) 一种表面具有贯穿大孔的二氧化硅空心微球及其制备方法
CN103896284B (zh) 一种单分散二氧化硅纳米颗粒及其制备方法
CN104746178B (zh) 一种具有多级结构的硅酸盐双层空心纳米纤维的制备方法
Li et al. Hollow organosilica nanospheres prepared through surface hydrophobic layer protected selective etching
CN104439276A (zh) 一种快速制备中空多孔二氧化硅/银纳米复合材料的方法及产品
CN104386699A (zh) 双模板法制备多壳层介孔氧化硅纳米材料的方法
Han et al. Synthesis of mesoporous silica microspheres by a spray-assisted carbonation microreaction method
CN102701226A (zh) 一种单分散二氧化硅纳米微球的制备方法
JP2013237593A (ja) シリカナノ中空粒子の製造方法
CN107399740B (zh) 一种氟化两亲纳米颗粒及其应用
CN110104654A (zh) 一种Janus型多孔二氧化硅复合纳米粒子及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant