CN104136393A - 由至少三种金属盐制备溶胶-凝胶的方法以及所述方法用于制备陶瓷膜的用途 - Google Patents

由至少三种金属盐制备溶胶-凝胶的方法以及所述方法用于制备陶瓷膜的用途 Download PDF

Info

Publication number
CN104136393A
CN104136393A CN201280061184.1A CN201280061184A CN104136393A CN 104136393 A CN104136393 A CN 104136393A CN 201280061184 A CN201280061184 A CN 201280061184A CN 104136393 A CN104136393 A CN 104136393A
Authority
CN
China
Prior art keywords
atom
sol
formula
defined method
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280061184.1A
Other languages
English (en)
Inventor
N·里歇
T·沙尔捷
F·罗西尼奥
A·维韦
P-M·热弗鲁瓦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Limoges
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Limoges
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Limoges, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Centre National de la Recherche Scientifique CNRS
Publication of CN104136393A publication Critical patent/CN104136393A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0048Inorganic membrane manufacture by sol-gel transition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/66Cobaltates containing alkaline earth metals, e.g. SrCoO3
    • C01G51/68Cobaltates containing alkaline earth metals, e.g. SrCoO3 containing rare earth, e.g. La0.3Sr0.7CoO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • C04B41/4537Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension by the sol-gel process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5036Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • C04B2111/00801Membranes; Diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

由适于且意欲用于制备对应于通式(I)A(1-x)A'xB(1-y-u)B'yB"uO3-δ(I)的钙钛矿型材料的至少四种金属M1、M2、M3和M4的盐制备溶胶-凝胶的方法:所述方法包括如下步骤:步骤a),以获得上文所定义材料所需的化学计量比制备所述元素A、A'、任选A″、B和B'的水溶性盐的水溶液;步骤b),制备至少一种非离子表面活性剂在选自甲醇、乙醇、丙醇、丙醇、异丙醇或丁醇的醇中的水醇溶液,与氨的水溶液以足以确保所述非离子表面活性剂在所述水醇溶液中完全溶解的比例混合,所述非离子表面活性剂在所述水醇溶液的浓度低于临界胶束浓度;步骤c),将在步骤a)中制备的所述水溶液与在步骤b)中制备的所述醇分散体混合以形成溶胶;步骤d),通过蒸发溶剂而干燥在步骤c)中获得的所述溶胶,从而获得溶胶-凝胶。所述方法用于制备陶瓷膜的用途。A(1-x)A'xB(1-y-u)B'yB"uO3-δ (I)。

Description

由至少三种金属盐制备溶胶-凝胶的方法以及所述方法用于制备陶瓷膜的用途
本发明涉及催化膜反应器或者CMR。其主要目的是改善用于催化膜反应器中的陶瓷膜的氧半渗透。
催化膜反应器由氧阴离子的混合导电致密膜(电子的和离子的)构成。在施加于膜两侧的氧分压梯度的作用下,来自于空气的氧阴离子O2-穿过所述膜的氧化表面,到达还原表面,从而与甲烷在后者上发生反应。图1描述了氧传输通过膜的数量为6个的基本步骤:
-氧吸收至所述膜的氧化表面上;
-氧离解并复合成O2-阴离子;
-氧扩散通过膜体积;
-氧复合;
-氧在所述膜的还原表面上脱附;
-纯氧与甲烷反应。
然而,前文描述的各步骤可为氧传输通过所述膜的有限步骤。
已经确定了钙钛矿膜的有限步骤和表面交换,以及更特别的所述膜的还原表面[P.M.Geffroy等,“Oxygen semi-permeation,oxygen diffusion andsurface exchange coefficient of La(1-x)SrxFe(1-y)GayO3-d perovskitemembranes”,Journal of Membrane Science,(2010)354(1-2),第6-13页;P.M.Geffroy等,“Influence of oxygen surface exchanges on oxygensemi-permeation through La(1-x)SrxFe(1-y)GayO3-δdense membrane”,Journalof Electrochemical Society,(2011),158(8),第B971-B979页]。因此,为了提高这些交换,必须改变气体间的交换表面。两个可能的选项是通过利用
膜表面的孔隙率,然后提高优先发生交换的活性位点数量而提高交换表面,或者提高晶粒间界的密度。为了达到该效果,必须形成具有多孔表面(交换表面积相对于形状因子最大化)且具有最小可能晶粒的结构。
用于CMR应用场合的膜的表面条件在实施该方法中起着重要的作用[P.M.Geffroy等,“Oxygen semi-permeation,oxygen diffusion and surfaceexchange coefficient of La(1-x)SrxFe(1-y)GayO3-d perovskite membranes”,Journal of Membrane Science,(2010)354(1-2),第6-13页;P.M.Geffroy等,“Influence of oxygen surface exchanges on oxygen semi-permeationthrough La(1-x)SrxFe(1-y)GayO3-δ dense membrane”,Journal ofElectrochemical Society,(2011),158(8)第B971-B979页;H.J.M.Bouwmeester等,“Importance of the surface exchange kinetics as ratelimiting step in oxygen permeation through mixed-conducting oxides”,SolidState Ionics,(1994)72(PART2),第185-194页;S.Kim等,“Oxygen surfaceexchange in mixed ionic electronic conductor membranes”,Solid StateIonics,(1999)121(1),第31-36页]。
为了优化甲烷的转化速率,必须提高试剂对反应性颗粒的可及性,或者必须提高氧气与甲烷颗粒之间的交换表面积。
然而,开发具有大比表面积的载体的两个主要障碍是烧结—一种在高温下出现的自然现象,以及多孔层的厚度。
在烧结以除去引入丝网印刷油墨中的起泡剂期间或者在共烧结期间,通过改变粉末晶粒而获得层整体的粘结性,这更特别地反映在其膨胀方面。因此,晶粒间界的密度降低。然而,目前的材料合成方法不能获得具有极小直径的晶粒。此外,如果所述层的厚度过大,则孔隙的扭曲增大;这因此降低了可发生表面交换的有用表面积。
因此,本发明的一个目的是提出一种可获得纳米结构的操作方案,所述结构在高温下(意指高于结晶温度的温度)为由10-100nm直径的微晶构成的超细钙钛矿。以此方式形成的材料层具有大比表面积且具有高晶粒间界密度。其还具有就高温(700-1000℃)和长时间(超过2000小时)下的晶粒尺寸和晶粒间界密度而言提高的微观结构稳定性。
目前通常所用的提高膜交换表面积的方法为通过丝网印刷沉积多孔层、使用多孔介质(其中孔隙率通过使用起泡剂产生)以及使用中孔材料。
丝网印刷包括如下步骤:首先制备由粉末材料、起泡剂如玉米淀粉、米淀粉或土豆淀粉以及介质形成的所谓“丝网印刷”油墨[Lee等,“Oxygen-permeating property of LaSrBFeO3-d(B=Co,Ga)perovskitemembrane surface-modified by LaSrCoO3”,Solid State Ionics,(2003)158(3-4),第287-296页]。然后,使用刮刀迫使丝网印刷油墨通过丝网印刷掩模以印刷所需的图案而将丝网印刷油墨沉积至膜上。沉积厚度为200-100μm。图2是通过扫描电子显微镜拍摄的通过印刷印刷沉积至介质上的多孔表面的照片(SEM照片)。
所述多孔介质通过共烧结结合有包含起泡剂的膜的致密膜而制备(A.Julian等,“Elaboration of La0.8Sr0.2Fe0.7Ga0.3O3-d/La0.8M0.2FeO3-d(M=Ca,Srand Ba)asymmetric membranes by tape-casting and co-firing”,Journal ofMembrane Science,(2009)333(1-2),第132-140页;G.Etchegoyen等,“Anarchitectural approach to the oxygen permeability of a La0.6Sr0.4Fe0.9Ga0.1O3-dperovskite membrane”,Journal of the European Ceramic Society,(2006)26(13),第2807-2815页]。在热处理期间除去所述起泡剂,从而留下残余的孔隙。该方法已广泛描述于文献中,但主要用于为膜提供机械支撑,而不是获得更大的交换表面积。图3A和3B为通过扫描电子显微镜拍摄的具有致密膜的多孔双层基材的照片(SEM照片)。
在过去大约十多年内,已开发了用于各种应用场合的中孔基材的制备。然而,这些方法不能获得在钙钛矿相结晶期间稳定的超细基材。
因此,本发明的目的是一种制备具有受控化学计量、具有至少4种阳离子且随时间稳定的钙钛矿相溶胶的方法。在浸涂后,在所述溶胶在其温度下结晶期间,将由直径为10-100nm的钙钛矿相颗粒形成的超细或纳米结构的层沉积至膜表面上。本发明的一个必要特征涉及膜表面上的晶粒间界的非常高的提高,以及交换表面和通过所述膜的氧流动的显著提高。
因此,根据第一方面,本发明的目的是一种制备适于且意欲用于制备对应于通式(I)的钙钛矿材料的至少三种金属盐M1、M2和M3的溶胶-凝胶的方法:
A(1-x)A'xB(1-y-u)B'yB"uO3-δ (I)
在式(I)中,
x、y、u和δ使得保持晶格的电中性;
0≤x≤0.9;
0≤u≤0.5;
(y+u)≤0.5;
0≤y≤0.5其0<δ;
且在式(I)中,
-A表示选自钪、钇,或者选自镧系元素、锕系元素或碱土金属族的原子;
-A'不同于A,其表示选自钪、钇、铝、镓、铟、铊或者选自镧系元素、锕系元素或碱土金属族的原子;
-B表示选自过渡金属的原子;
-B'不同于B,其表示选自过渡金属、碱土金属族中的金属、铝、铟、镓、锗、锑、铋、锡或铅的原子;
-B"不同于B和B',其表示选自过渡金属、碱土金属族中的金属、铝、铟、镓、锗、锑、铋、锡、铅或锆的原子;
所述方法包括如下步骤:
-步骤a),以获得上文所定义材料所需的化学计量比制备所述元素A、A'、B、B'和任选B"的水溶性盐的水溶液;
-步骤b),制备至少一种非离子表面活性剂在选自甲醇、乙醇、丙醇、异丙醇或丁醇的醇中水醇溶液,与氨的水溶液以足以确保所述非离子表面活性剂在所述水醇溶液中完全溶解的比例混合,所述非离子表面活性剂在所述水醇溶液的浓度低于临界胶束浓度;
-步骤c),将在步骤a)中制备的所述水溶液与在步骤b)中制备的所述醇分散体混合以形成溶胶;
-步骤d),通过蒸发溶剂而干燥在步骤c)中获得的所述溶胶,从而获得溶胶-凝胶。
术语“适于且意欲用于制备钙钛矿材料的至少三种金属盐M1、M2和M3的溶胶-凝胶”特别是指三种金属的溶胶、四种金属的溶胶-凝胶或五种金属的溶胶-凝胶。
为了实施上文所定义方法的步骤a),所述元素A、A'、B、B'和任选B"的水溶性盐的阴离子的价态低于相应阳离子的价态。
因此,对+2价的元素A、A'、B、B'或B"而言,负抗衡离子为-1价的阴离子;在该选项中,该阴离子更特别地选自卤离子或硝酸根离子,优选为硝酸根离子。
对+3价的元素A、A'、B、B'或B"而言,负抗衡离子为-1价或-2价的阴离子;在该选项中,该阴离子更特别地选自卤素离子、硝酸根离子或硫酸根离子;优选为硝酸根离子。
对+4价的元素A、A'、B、B'或B"而言,负抗衡离子为-1价、-2价或-3价的阴离子;在该选项中,该阴离子更特别地选自卤素离子、硝酸根离子、硫酸根离子或磷酸根离子;优选为硝酸根离子。
根据上文所定义方法的一个特定方面,在步骤a)中所用的所述元素A、A'、B、B'和任选B"的水溶性盐为所述元素的硝酸盐。
根据上文所定义方法的另一特定方面,在步骤a)制得的水溶液中,摩尔比:所述元素A、A'、B、B'和任选B"的水溶性盐的摩尔数(N)/水的摩尔数(NH2O)尤其大于或等于0.005且小于或等于0.05。
就上文所定义方法的步骤b)而言,术语“水醇溶液”意指包含至少70重量%醇和至多30重量%水的醇-水混合物。
根据上文所定义方法的一个特定方面,步骤b)中所用的醇为乙醇。
在上文所定义方法的步骤b)中,术语“足以确保所述非离子表面活性剂在所述水醇溶液中完全溶解的比例”意指摩尔比N(表面活性剂)/N(NH3)大于10-4且小于或等于10-2
根据上文所定义方法的另一特定方面,步骤b)中所用的非离子表面活性剂选自由聚亚烷氧基链形成的嵌段共聚物,更特别地是嵌段共聚物(EO)n-(PO)m-(EO)n
根据上文所定义方法的另一特定方面,步骤b)中所用的非离子表面活性剂为以商品名PLURONICTM F127销售的(EO)99-(PO)70-(EO)99嵌段共聚物。
在上文所定义的式(I)中,A和A'更特别地选自镧(La)、铈(Ce)、钇(Y)、钆(Gd)、镁(Mg)、钙(Ca)、锶(Sr)和钡(Ba)。
根据本发明的一个非常特别的方面,在式(I)中,A表示镧原子、钙原子或钡原子。
根据本发明的另一个非常特别的方面,在式(I)中,A'表示锶原子。
在上文所定义的式(I)中,B和B'更特别地选自铁(Fe)、铬(Cr)、锰(Mn)、镓(Ga)、钴(Co)、镍(Ni)和钛(Ti)。
根据本发明的另一个非常特别的方面,在式(I)中,B表示铁原子。
根据本发明的另一个非常特别的方面,在式(I)中,B'表示镓原子、钛原子或钴原子。
根据本发明的另一个非常特别的方面,在式(I)中,B″表示锆原子。
在前文所定义的式(I)中,u更特别地等于0。
根据本发明的更特别的方面,本发明的一个目的是一种前文所定义的方法,对此式(I)的钙钛矿材料选自如下化合物:La(1-x)SrxFe(1-y)CoyO3-δ、La(1-x)SrxFe(1-y)GayO3-δ、La(1-x)SrxFe(1-y)TiyO3-δ、Ba(1-x)SrxFe(1-y)CoyO3-δ、CaFe(1-y)TiyO3-δ和La(1-x)SrxFeO3-δ;更特别地选自如下化合物:La0.6Sr0.4Fe0.9Ga0.1O3-δ、La0.5Sr0.5Fe0.9Ti0.1O3-δ、La0.6Sr0.4Fe0.9Ga0.1O3-δ、La0.5Sr0.5Fe0.9Ti0.1O3-δ、La0.5Sr0.5Fe0.9Ti0.1O3-δ、La0.6Sr0.4Fe0.9Ga0.1O3-δ和La0.8Sr0.2Fe0.7Ga0.3O3-δ
本发明的另一目的是一种制备在其至少一侧上涂覆有钙钛矿材料的溶胶-凝胶膜的基材的方法,其特征在于其包括:
-步骤e),将由密度大于90%,优选95%的烧结钙钛矿材料形成的基材浸入获自前文所定义方法的步骤c)的溶胶中,从而获得经浸渍的基材;
-步骤f),以恒定的速率拉出获自步骤e)的所述经浸渍的基材,从而获得涂覆有所述溶胶的膜的基材;
-步骤g),通过蒸发溶剂干燥在步骤f)中获得的涂覆有所述溶胶的膜的所述基材,从而获得涂覆有溶胶-凝胶的所述基材。
在上文所定义的方法中,步骤e)的浸渍包括将基材浸入事先合成的溶胶中,并以受控的恒定速率取出。
在上文所定义的方法中,在步骤f)的拉出中,基材的运动拖曳所述液体,从而形成表面涂层。该涂层分成两部分;内层部分随基材运动,而内层部分滴回至容器中。溶剂的逐步蒸发导致在基材表面上形成膜。
可作为溶胶粘度和拉伸速率的函数估计所得沉积物的厚度:
e=ακv2/3
其中e为沉积物的厚度,κ为沉积常数,其依赖于溶胶的粘度和密度以及液体-蒸气表面张力,且v为拉伸速率。
以此方式,拉伸速率越高,则沉积物越厚。
在上文所定义的方法中,步骤g)的干燥通常在开放式空气中或者在受控气氛中进行数小时。
术语“密度大于90%,优选95%的烧结钙钛矿材料”更特别地是指陶瓷组合物(CC)基于其100%体积包含至少75体积%且至多100体积%选自式(II)的掺杂陶瓷氧化物的混合电子传导性化合物和氧阴离子O2-(C1),和任选至多25体积%的化合物(C2):
C(1-x-u)C'xD(1-y-u)D'yD"uO3-δ (II)
在式(II)中,
x、y、u和δ使得保持晶格的电中性;
0≤x≤0.9;
0≤u≤0.5;
(y+u)≤0.5;
0≤y≤0.5且0<δ;
在式(II)中,
-C表示选自钪、钇,或者选自镧系元素、锕系元素或碱土金属族的原子;
-C'不同于C,其表示选自钪、钇、铝、镓、铟、铊或者选自镧系元素、锕系元素或碱土金属族的原子;
-D表示选自过渡金属的原子;
-D'不同于D,其表示选自过渡金属、碱土金属族中的金属、铝、铟、镓、锗、锑、铋、锡或铅的原子;
-D"不同于D和D',其表示选自过渡金属、碱土金属族中的金属、铝、铟、镓、锗、锑、铋、锡、铅或锆的原子;
其中化合物(C2)不同于化合物(C1),其选自氧化镁、氧化钙、氧化铝、氧化锆、氧化钛、锶和铝的混合氧化物、或者钡和钛的混合氧化物,或者钙和钛的混合氧化物;所述陶瓷组合物(CC)在用于e)中之前经历烧结步骤。
根据本发明的一个特别的方面,所述陶瓷组合物(CC)包含100体积%,至少90体积%,更特别地至少95体积%且至多100体积%的化合物(C1)和任选的至多10体积%,更特别地至多5体积%的化合物(C2)。
根据上文所定义方法的一个特别的方面,式(II)材料在其用于步骤e)之前所经历的烧结在空气中在高于1000℃,或者甚至高于1200℃的温度下进行约10小时,从而获得所需的相对密度。
根据本发明的另一个特别的方面,前文所定义的式(I)和(II)相同。
根据另一方面,本发明的一个目的是一种制备陶瓷膜(CM)的方法,其特征在于通过前文所定义方法获得的涂覆有溶胶-凝胶的所述基材经历 骤h),在空气中煅烧。
在上文所定义的方法中,步骤h)的煅烧通常在空气中在1000℃的温度下实施至少1小时,升温速率为约1℃/分钟。基材在空气中的煅烧由此可除去硝酸根,而且还使所述表面活性剂分解,由此提供孔隙率。
根据另一方面,本发明的一个目的是一种制备对应于通式(I)的钙钛矿材料的超细粉末,其特征在于使获自前文所定义方法的步骤c)的溶胶经历步骤i)的喷雾,从而形成溶胶-凝胶粉末;然后使所述溶胶-凝胶粉末经历步骤h)—在空气中煅烧,从而形成所述超细或纳米结构的粉末(意指10-100nm的纳米级晶粒尺寸)。
最后,本发明的一个目的是前文所定义的膜用于通过电化学由空气生产氧气的用途。
下文的试验描述示意了本发明,而不是限制它。
将钙钛矿前体的硝酸镧、硝酸锶、硝酸铁和硝酸镓以形成结构La0.8Sr0.2Fe0.7Ga0.3O3-δ的钙钛矿所需的化学计量比与非离子表面活性剂在氨/乙醇溶液中混合。溶剂(乙醇和水)的蒸发使得溶胶通过在一种盐的羟基和另一种盐的金属之间形成键而围绕在表面活性剂胶束周围。由所述无机前体与表面活性剂分子之间的静电相互作用所导致的水解/缩合反应的控制允许所述有机和无机相协作地组装,这在无机基体中形成具有受控尺寸的表面活性剂胶束聚集体。所述自组装现象是由于胶束浓度达到临界时试剂溶液的溶剂的逐步蒸发所导致的。
这导致形成具有受控微观结构的膜(在对基材浸涂时),或者在溶胶喷雾干燥之后形成具有受控微观结构的粉末。
自组装过程的起始点是无机前体(La、Sr、Fe和Ga)和非离子表面活性剂的水醇溶液。
用于所述方法中的非离子表面活性剂属于嵌段共聚物族,其为具有两部分的共聚物,所述两部分具有不同极性:疏水性本体和亲水性末端。这些共聚物由聚氧化烯链形成,例如通过将末端的亲水性聚氧化乙烯(EO)与位于其中心部分的疏水性聚氧化丙烯(PO)排列在一起而形成的通式(EO)n-(PO)m-(EO)n的共聚物。如果其浓度低于临界胶束浓度(CMC),则聚合物的链保持分散在溶液中。
CMC定义为极限浓度,高于该极限浓度,则发生表面活性剂分子自身排列在溶液中的现象。高于该浓度,则表面活性剂链往往通过亲水/疏水亲和性而重组。当发生该现象时,疏水性本体重组并形成球状胶束。聚合物链的末端被推至朝向胶束的外部,且在挥发性溶剂(乙醇)的蒸发过程中与溶液中的也具有亲水亲和性的离子物种结合。
胶束的尺寸由疏水性链的长度决定。因此,使用以PluronicTM F127市售的(EO)99-(PO)70-(EO)99嵌段共聚物,可制得直径为6-10nm的胶束。这是一个实例,然而也可使用其他表面活性剂以涵盖3-10nm的胶束直径范围。
将在溶剂蒸发之后获得的凝胶在空气中煅烧。在热处理期间的表面活性剂的除去可产生具有均匀和结构孔隙的粘结基体。
图4显示了在基材于溶胶中浸涂之后自组装的原理,所述自组装是由于蒸发所导致的,其导致形成溶胶-凝胶,在煅烧后导致具有受控微观结构的超细钙钛矿相介质。
将0.9g PluronicTM F127溶于由23cm3无水乙醇和4.5cm3氨溶液(28质量%氨)形成的混合物中。然后将该混合物在回流下加热1小时。
将20cm3包含硝酸镧、硝酸锶、硝酸铁和硝酸镓(全部为钙钛矿的前体)的水溶液以形成结构La0.8Sr0.2Fe0.7Ga0.3O3-δ的钙钛矿所需的化学计量比在通过反渗透处理的水(20mL)中混合。然后将该溶液逐滴添加至表面活性剂溶液中。
所用的摩尔比例记录在下表1中:
表1
nH2O/n硝酸盐 111
nEtOH/n硝酸盐 38
nF127/n硝酸盐 6.7×10-3
nF127/nH2O 6.0×10-6
将合并的溶液在回流下加热1小时,然后冷却至环境温度。获得预期的溶胶,其随时间变化保持稳定。
使用下文试验部分所述的程序合成溶胶。制备该溶胶以获得化学计量比La0.8Sr0.2Fe0.7Ga0.3O3-δ。所述化学计量比通过电感耦合等离子体原子发射光谱分析证实(参见下表2)La0.8Sr0.2Fe0.7Ga0.3O3-δ
表2
元素 测得的Ppm(mg/cm3) 测得的n
La 125.60 0.81
Sr 19.63 0.20
Fe 43.27 0.70
Ga 21.57 0.28
在将所述溶胶在通风烘箱中陈化48小时后,用其浸涂致密钙钛矿的膜。
在我们的研究中所用的基材为在1350℃下在空气中烧结10小时的钙钛矿的膜(相对于所述膜的密度≥97%,使用浮力法获得的测量值)。这些膜具有与先前制得的溶胶相同的La、Sr、Fe和Ga化学计量比。
所述膜具有化学计量比La0.8Sr0.2Fe0.7Ga0.3O3-δ。然后将试样在开放空气中干燥6小时以在空气中经历热处理,从而除去硝酸根和表面活性剂。
将涂覆有薄膜的膜在空气中在1000℃下煅烧1小时,温升为1℃/分钟。
图6为在1000℃下煅烧的溶胶-凝胶粉末的衍射图谱。其显示钙钛矿完全结晶(结构ABO3)。
SEM/FEG显微照片(图7和8)显示在膜表面上形成了超细沉积物。然而,所述沉积物根据在陈化后暴露于还原性气体(图7)和氧化性气体(图8)而不同。
在与还原性气氛的接触表面(如图7A-7C的SEM/FEG显微照片所示)上,溶胶沉积物的干燥和煅烧导致所述膜的表面被由尺寸为50-100nm级的颗粒构成的超细沉积物所涂覆。所述膜表面上的晶粒间界密度非常显著地提高。呈平均直径为200-500nm的销钉形式的晶粒团显著提高了气体交换表面。
在氧化性表面(如图8A-8C的SEM/FEG显微照片所示)上,钙钛矿相的结晶导致超细的、高度多孔性沉积物,其中结晶颗粒具有彼此接触的晶面。这些颗粒的尺寸为数百纳米级,且其粒度分布更为紧凑。
测量在溶胶中浸涂的膜的氧半渗透性能。
图9以空气/氩气梯度显示了作为温度函数[JO2(摩尔/m/s)=f(t℃)]的下述五种材料的氧半渗透曲线:
材料1:La0.8Sr0.2Fe0.7Ga0.3O3-δ(称为LSFG8273),其通过本发明的方法涂覆(浸涂速率=10mm/s)有LSFG8273的多孔涂层;
材料2:LSFG8273,其通过本发明的方法涂覆有(浸涂速率=5mm/s)有LSFG8273的多孔涂层;
材料3:LSFG8273,其通过丝网印刷涂覆有LSFN8273的多孔涂层;
材料4:LSFG8273,其通过丝网印刷涂覆有LSFG8273的多孔涂层;
材料5:单独的LSFG8273。
钙钛矿溶胶在膜表面上的沉积远远超出了先前通过用沉积丝网印刷涂层沉积而获得的最佳性能。浸渍速率影响了沉积涂层的厚度。较快的速率(10mm/s)提高了沉积涂层的厚度,且提高了交换表面以及表面上的晶粒间界的密度。性能得以进一步提高。下表显示了在900℃下获得的结果。
JO2(摩尔·m-1·s-1)
(材料5) 4.14 10-8
(材料4) 7.11 10-8
(材料3) 9.35 10-8
(材料2) 15.3 10-8
(材料1) 19.5 10-8
沉积通过本发明方法制得的钙钛矿溶胶的主要益处是其提供了大的比表面积和高晶粒间界密度。此外,该沉积在氧分压梯度下稳定,这是将CMR用于甲烷蒸汽重整以及通过穿过所述陶瓷膜分离空气而生产氧气的必要条件。
所述第二优点来自于沉积物的厚度和沉积方法。这是因为沉积物比用丝网印刷获得的薄100倍(节约材料)以及因为浸涂,可使用任何几何形状的致密膜基材(管、平板)。
喷雾技术能通过使用热媒介将溶胶转化成干燥固体形式(粉末)。
在我们的研究中所用的装置为获自品牌Buchi的市售型号,已知为“190Mini Spray Dryer”,如图5所示。
所述方法依赖于将溶胶(3)喷雾成细液滴,在垂直圆柱腔(4)中与热空气流(2)接触,从而以受控方式蒸发溶剂。所得粉末被热流(5)驱至旋风分离器(6)中,所述旋风分离器(6)将空气(7)与粉末(8)分离。
将由于喷雾而获得的粉末在与通过浸涂制备的基材相同的条件下煅烧。
喷雾溶胶,随后在900℃下煅烧所述粉末,这制得了直径小于5μm的球状颗粒(图10)。该粉末的微观结构与在沉积物上所获得的相同,即具有10-100nm级微晶尺寸的超细多孔微观结构。
此外,所述球状颗粒是中空的,且所述颗粒自身的阻隔具有高孔隙率。该粉末在制备多孔涂层中的应用能获得具有两种水平的孔隙率且具有高晶粒间界密度的基体。

Claims (16)

1.制备适于且意欲用于制备对应于通式(I)的钙钛矿材料的至少三种金属盐M1、M2和M3的溶胶-凝胶的方法:
A(1-x)A'xB(1-y-u)B'yB"uO3-δ (I)
在式(I)中,
x、y、u和δ使得保持晶格的电中性;
0≤x≤0.9;
0≤u≤0.5;
(y+u)≤0.5;
0≤y≤0.5其0<δ;
且在式(I)中,
-A表示选自钪、钇,或者选自镧系元素、锕系元素或碱土金属族的原子;
-A'不同于A,其表示选自钪、钇、铝、镓、铟、铊或者选自镧系元素、锕系元素或碱土金属族的原子;
-B表示选自过渡金属的原子;
-B'不同于B,其表示选自过渡金属、碱土金属族中的金属、铝、铟、镓、锗、锑、铋、锡或铅的原子;
-B"不同于B和B',其表示选自过渡金属、碱土金属族中的金属、铝、铟、镓、锗、锑、铋、锡、铅或锆的原子;
所述方法包括如下步骤:
-步骤a),以获得上文所定义材料所需的化学计量比制备所述元素A、A'、B、B'和任选B"的水溶性盐的水溶液;
-步骤b),制备至少一种非离子表面活性剂在选自甲醇、乙醇、丙醇、异丙醇或丁醇的醇中的水醇溶液,与氨的水溶液以足以确保所述非离子表面活性剂在所述水醇溶液中完全溶解的比例混合,所述非离子表面活性剂在所述水醇溶液的浓度低于临界胶束浓度;
-步骤c),将在步骤a)中制备的所述水溶液与在步骤b)中制备的所述醇分散体混合以形成溶胶;
-步骤d),通过蒸发溶剂而干燥在步骤c)中获得的所述溶胶,从而获得溶胶-凝胶。
2.根据权利要求1所定义的方法,其中步骤b)中所用的非离子表面活性剂为嵌段共聚物(EO)99-(PO)70-(EO)99
3.根据权利要求1或2所定义的方法,其中在式(I)中,A表示镧原子、钙原子或钡原子。
4.根据权利要求1-3中任一项所定义的方法,其中在式(I)中,A'表示锶原子。
5.根据权利要求1-4中任一项所定义的方法,其中在式(I)中,B表示铁原子。
6.根据权利要求1-5中任一项所定义的方法,其中在式(I)中,B'表示镓原子、钛原子或钴原子。
7.根据权利要求1-6中任一项所定义的方法,其中在式(I)中,B″表示锆原子。
8.根据权利要求1或7所定义的方法,其中在式(I)中,u等于0。
9.根据权利要求8所定义的方法,其中式(I)的钙钛矿材料选自下述化合物:La(1-x)SrxFe(1-y)CoyO3-δ、La(1-x)SrxFe(1-y)GayO3-δ、La(1-x)SrxFe(1-y)TiyO3-δ、Ba(1-x)SrxFe(1-y)CoyO3-δ、CaFe(1-y)TiyO3-δ或La(1-x)SrxFeO3-δ
10.根据权利要求9所定义的方法,其中式(I)的钙钛矿材料选自下述化合物:La0.6Sr0.4Fe0.9Ga0.1O3-δ,La0.5Sr0.5Fe0.9Ti0.1O3-δ,La0.6Sr0.4Fe0.9Ga0.1O3-δ,La0.5Sr0.5Fe0.9Ti0.1O3-δ,La0.5Sr0.5Fe0.9Ti0.1O3-δ,La0.6Sr0.4Fe0.9Ga0.1O3-δ和La0.8Sr0.2Fe0.7Ga0.3O3-δ
11.制备在其至少一个表面上涂覆有钙钛矿材料的溶胶-凝胶膜的基材的方法,其特征在于其包括:
-步骤e),将由密度大于90%,优选95%的烧结钙钛矿材料形成的基材浸入获自根据权利要求1-10中任一项所定义的方法的步骤c)的溶胶中,从而获得经浸渍的基材;
-步骤f),以恒定的速率拉出获自步骤e)的所述经浸渍的基材,从而获得涂覆有所述溶胶的膜的基材;
-步骤g),通过蒸发溶剂干燥在步骤f)中获得的涂覆有所述溶胶的膜的所述基材,从而获得涂覆有溶胶-凝胶的所述基材。
12.根据权利要求11所定义的方法,其中密度大于90%,优选95%的所述烧结钙钛矿材料为基于其100%体积包含至少75体积%且至多100体积%选自式(II)的掺杂陶瓷氧化物的混合电子传导性化合物和氧阴离子O2-(C1),和任选至多25体积%的化合物(C2)的陶瓷组合物(CC):
C(1-x-u)C'xD(1-y-u)D'yD"uO3-δ (II)
在式(II)中,
x、y、u和δ使得保持晶格的电中性;
0≤x≤0.9;
0≤u≤0.5;
(y+u)≤0.5;
0≤y≤0.5且0<δ;
在式(II)中,
-C表示选自钪、钇,或者选自镧系元素、锕系元素或碱土金属族的原子;
-C'不同于C,其表示选自钪、钇、铝、镓、铟、铊或者选自镧系元素、锕系元素或碱土金属族的原子;
-D表示选自过渡金属的原子;
-D'不同于D,其表示选自过渡金属、碱土金属族中的金属、铝、铟、镓、锗、锑、铋、锡或铅的原子;
-D"不同于D和D',其表示选自过渡金属、碱土金属族中的金属、铝、铟、镓、锗、锑、铋、锡、铅或锆的原子;
其中化合物(C2)不同于化合物(C1),其选自氧化镁、氧化钙、氧化铝、氧化锆、氧化钛、锶和铝的混合氧化物、或者钡和钛的混合氧化物,或者钙和钛的混合氧化物;所述陶瓷组合物(CC)在用于e)中之前经历烧结步骤。
13.根据权利要求12所定义的方法,其中所述陶瓷组合物(CC)包含100体积%,至少90重量%,更特别地至少95体积%且至多100体积%的化合物(C1)和任选的至多10体积%,更特别地至多5体积%的化合物(C2)。
14.根据权利要求12或13所定义的方法,其中式(I)和(II)相同。
15.制备陶瓷膜(CM)的方法,其特征在于使通过根据权利要求11-14中任一项所定义的方法获得的涂覆有溶胶-凝胶的所述基材经历步骤h),在空气中煅烧。
16.制备对应于通式(I)的钙钛矿材料且具有10-100nm尺寸的超细或纳米结构粉末的方法,其特征在于使获自根据权利要求1-9中任一项所定义的方法的步骤c)的溶胶经历步骤i)的喷雾,从而形成溶胶-凝胶粉末;然后使所述溶胶-凝胶粉末经历步骤h)—在空气中煅烧,从而形成所述超细或纳米结构的粉末。
CN201280061184.1A 2011-12-15 2012-09-26 由至少三种金属盐制备溶胶-凝胶的方法以及所述方法用于制备陶瓷膜的用途 Pending CN104136393A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1161690A FR2984305B1 (fr) 2011-12-15 2011-12-15 Procede de preparation d'un sol-gel d'au moins trois sels de metaux et mise en œuvre du procede pour preparer une membrane ceramique
FR1161690 2011-12-15
PCT/EP2012/068923 WO2013087241A1 (fr) 2011-12-15 2012-09-26 Procédé de préparation d'un sol-gel d'au moins trois sels de métaux et mise en œuvre du procédé pour préparer une membrane céramique

Publications (1)

Publication Number Publication Date
CN104136393A true CN104136393A (zh) 2014-11-05

Family

ID=46934579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280061184.1A Pending CN104136393A (zh) 2011-12-15 2012-09-26 由至少三种金属盐制备溶胶-凝胶的方法以及所述方法用于制备陶瓷膜的用途

Country Status (9)

Country Link
US (1) US20140335266A1 (zh)
EP (1) EP2791078A1 (zh)
JP (1) JP2015504836A (zh)
KR (1) KR20140104019A (zh)
CN (1) CN104136393A (zh)
BR (1) BR112014014370A2 (zh)
FR (1) FR2984305B1 (zh)
RU (1) RU2608383C2 (zh)
WO (1) WO2013087241A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105642131A (zh) * 2014-11-13 2016-06-08 中国科学院大连化学物理研究所 一种纳米粒子稳定钙钛矿结构透氧膜的方法
CN107710478A (zh) * 2015-07-07 2018-02-16 日本碍子株式会社 燃料电池
CN108114688A (zh) * 2016-11-26 2018-06-05 中国科学院大连化学物理研究所 一种用于氧富集的氧吸附剂
CN108117086A (zh) * 2016-11-26 2018-06-05 中国科学院大连化学物理研究所 一种氧吸附剂的制备方法
CN109876667A (zh) * 2019-04-04 2019-06-14 江苏海发新材料科技有限公司 一种多孔不锈钢膜的制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106976915B (zh) * 2016-01-15 2018-11-23 南京工业大学 一种钙掺杂铝酸钴蓝色纳米色料及其制备方法
KR101802067B1 (ko) * 2016-05-02 2017-11-27 부산대학교 산학협력단 페로브스카이트 구조를 갖는 산화물 분말의 제조 방법 및 이에 의해 제조된 산화물 분말
RU2651009C1 (ru) * 2017-05-15 2018-04-18 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ синтеза наноразмерного порошкообразного материала на основе скандата лантана
CN107814567B (zh) * 2017-11-03 2020-10-02 天津师范大学 一种具有较低矫顽场的非本征铁电陶瓷器件及其制备方法
CN107935590B (zh) * 2017-12-08 2021-02-05 安阳工学院 微波烧结制备Aurivillius相SrBiFeCoTiO材料的方法及制备的产品
WO2019136272A1 (en) 2018-01-04 2019-07-11 University Of Washington Nanoporous selective sol-gel ceramic membranes, selective -membrane structures, and related methods
CN114044540B (zh) * 2021-09-07 2022-12-30 南京航空航天大学 一种a位、b位共掺杂的钙钛矿型电磁吸波材料及其制法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061682A (en) * 1990-01-17 1991-10-29 The Washington Technology Center Ceramic precursor mixture and technique for converting the same to ceramic
JP4153132B2 (ja) * 1999-09-27 2008-09-17 達己 石原 LaGaO3系電子−酸素イオン混合伝導体及びそれを用いた酸素透過膜
US6878487B2 (en) * 2001-09-05 2005-04-12 Samsung Sdi, Co., Ltd. Active material for battery and method of preparing same
JP4311918B2 (ja) * 2002-07-09 2009-08-12 ダイハツ工業株式会社 ペロブスカイト型複合酸化物の製造方法
JP2006032132A (ja) * 2004-07-16 2006-02-02 Hosokawa Funtai Gijutsu Kenkyusho:Kk 固体電解質型燃料電池の空気極原料粉体、空気極及び固体電解質型燃料電池
JP2006082039A (ja) * 2004-09-17 2006-03-30 Noritake Co Ltd 酸素分離膜エレメント、その製造方法、酸素製造方法、および反応器
EP1785408A1 (fr) * 2005-11-15 2007-05-16 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé d'élaboration de supports poreux céramiques de microstructure contrôlée
RU2383495C2 (ru) * 2007-12-12 2010-03-10 ГОУ ВПО Уральский государственный университет им. А.М. Горького Способ получения сложных оксидов металлов
CN101306842B (zh) * 2008-07-04 2010-12-08 华中科技大学 一种固体氧化物燃料电池陶瓷阴极纳米粉体的制备方法
JP2010110671A (ja) * 2008-11-04 2010-05-20 National Institute Of Advanced Industrial Science & Technology 改質用ペロブスカイト担持Ni触媒材料及びこれを用いる合成ガス製造方法
US8124037B2 (en) * 2009-12-11 2012-02-28 Delphi Technologies, Inc. Perovskite materials for solid oxide fuel cell cathodes
EP2374526A1 (en) * 2010-03-29 2011-10-12 Centre National de la Recherche Scientifique (C.N.R.S) Solid composite membrane exhibiting both oxygen conductivity and a substrate catalyst interface

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.JULIAN ET AL.: "Elaboration of La0.8Sr0.2Fe0.7Ga0.3O3-δ/La0.8M0.2FeO3-δ(M=Ca,Sr and Ba) asymmetric membranes by tape-casting and co-firing", 《JOURNAL OF MEMBRANE SCIENCE》 *
J.M.SERRA ET AL: "Nano-structing of solid oxide fuel cells cathodes", 《TOPICS IN CATALYSIS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105642131A (zh) * 2014-11-13 2016-06-08 中国科学院大连化学物理研究所 一种纳米粒子稳定钙钛矿结构透氧膜的方法
CN107710478A (zh) * 2015-07-07 2018-02-16 日本碍子株式会社 燃料电池
CN107710478B (zh) * 2015-07-07 2020-08-25 日本碍子株式会社 燃料电池
CN108114688A (zh) * 2016-11-26 2018-06-05 中国科学院大连化学物理研究所 一种用于氧富集的氧吸附剂
CN108117086A (zh) * 2016-11-26 2018-06-05 中国科学院大连化学物理研究所 一种氧吸附剂的制备方法
CN109876667A (zh) * 2019-04-04 2019-06-14 江苏海发新材料科技有限公司 一种多孔不锈钢膜的制备方法

Also Published As

Publication number Publication date
RU2014128820A (ru) 2016-02-10
BR112014014370A2 (pt) 2017-07-04
FR2984305A1 (fr) 2013-06-21
FR2984305B1 (fr) 2015-01-30
KR20140104019A (ko) 2014-08-27
US20140335266A1 (en) 2014-11-13
JP2015504836A (ja) 2015-02-16
EP2791078A1 (fr) 2014-10-22
WO2013087241A1 (fr) 2013-06-20
RU2608383C2 (ru) 2017-01-18

Similar Documents

Publication Publication Date Title
CN104136393A (zh) 由至少三种金属盐制备溶胶-凝胶的方法以及所述方法用于制备陶瓷膜的用途
US7670679B2 (en) Core-shell ceramic particulate and method of making
CN101484241B (zh) 废气净化催化剂
JP3691693B2 (ja) セラミック膜を作製する方法
Xia et al. Preparation of yttria stabilized zirconia membranes on porous substrates by a dip-coating process
JP5538527B2 (ja) 薄い自己支持型金属酸化物系セラミックの製造方法、金属酸化物系セラミック、燃料電池、高温電解セル、測定装置および/または検出装置、並びに、使用方法
Benel et al. Synthesis and characterization of nanoparticulate La0. 6Sr0. 4CoO3− δ cathodes for thin-film solid oxide fuel cells
US20090061285A1 (en) Composite electrodes
US20090297923A1 (en) Sol-gel derived high performance catalyst thin films for sensors, oxygen separation devices, and solid oxide fuel cells
CN101659555A (zh) 聚合无机-有机前体溶液和烧结膜
Chen et al. Preparation of a porous ceria coating for a resistive oxygen sensor
Darbandi et al. Nanoparticulate cathode thin films with high electrochemical activity for low temperature SOFC applications
Çoban Özkan et al. Synthesis and characterizations of sol–gel derived LaFeO 3 perovskite powders
Xu et al. Continuous hydrothermal flow synthesis of Gd‐doped CeO2 (GDC) nanoparticles for inkjet printing of SOFC electrolytes
Sobolev et al. Synthesis and characterization of NiO colloidal ink solution for printing components of solid oxide fuel cells anodes
CN103602105A (zh) 一种用于透氧膜表面改性的萤石型涂层材料及其制备方法
Tagliazucchi et al. Synthesis of lanthanum nickelate perovskite nanotubes by using a template-inorganic precursor
KR101394273B1 (ko) 스펀지 구조를 갖는 다공성 박막, 이의 제조방법 및 이를 양극으로 포함하는 고체산화물 연료전지
Nakamura et al. Sealing of porous YSZ samples with Gd-doped CeO2 film produced using aqueous metal-EDTA complex solution
Hagiwara et al. Preparation of LSM/ScSZ composite powder materials by spray pyrolysis for the pre-fabrication of SOFC cathodes
CN115055067A (zh) 基于火焰合成的质子传导中温燃料电池电解质及制备方法
Ohno et al. Coating on a primary particle by wet process to obtain core–shell structure and their application
Kozhukharov et al. Sol-gel route and characterization of supported perovskites for membrane application
KR102025440B1 (ko) 메조 기공 구조의 복합분말 제조 방법 및 이를 이용한 고체산화물 연료전지 제조 방법
CN103328096A (zh) 具有控制的微观结构的陶瓷催化剂载体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20141105