CN107814567B - 一种具有较低矫顽场的非本征铁电陶瓷器件及其制备方法 - Google Patents

一种具有较低矫顽场的非本征铁电陶瓷器件及其制备方法 Download PDF

Info

Publication number
CN107814567B
CN107814567B CN201711067148.7A CN201711067148A CN107814567B CN 107814567 B CN107814567 B CN 107814567B CN 201711067148 A CN201711067148 A CN 201711067148A CN 107814567 B CN107814567 B CN 107814567B
Authority
CN
China
Prior art keywords
extrinsic
ferroelectric
ferroelectric ceramic
coercive field
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711067148.7A
Other languages
English (en)
Other versions
CN107814567A (zh
Inventor
王守宇
尚玉雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Normal University
Original Assignee
Tianjin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Normal University filed Critical Tianjin Normal University
Priority to CN201711067148.7A priority Critical patent/CN107814567B/zh
Publication of CN107814567A publication Critical patent/CN107814567A/zh
Application granted granted Critical
Publication of CN107814567B publication Critical patent/CN107814567B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5122Pd or Pt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本发明公开了一种具有较低矫顽场的非本征铁电陶瓷器件及其制备方法。所述的非本征铁电陶瓷器件是高纯度Ca3Ti2O7陶瓷。非本征铁电陶瓷器件采用溶胶—凝胶技术合成,以高纯度Ti(OC4H9)4和Ca(NO3)2·4H2O硝酸盐为原料,用适量乙二醇辅以酒石酸将硝酸盐原料溶解,经过干燥凝胶和高温烧结后得到Ca3Ti2O7非本征铁电陶瓷器件。本非本征铁电陶瓷器件具有晶粒尺寸小、成分均匀且矫顽场低的优点,非常有利于在未来铁电存储器件中使用,对提高铁电存储器件的潜在应用价值产生重要意义。

Description

一种具有较低矫顽场的非本征铁电陶瓷器件及其制备方法
技术领域
本发明属于信息存储器件的技术领域,涉及非挥发性信息存储器件重要组成部分的开发研究工作,更具体言之,是一种具有较低矫顽场的非本征铁电陶瓷及其制备方法与应用。
背景技术
非本征铁电体材料(Improper ferroelectricity)由于其丰富的物理性能和广泛的应用前景而受到科研人员的关注。它可以在室温下通过磁电耦合而产生多铁性,并且在新一代数据库及其自旋电子学中有巨大的应用前景。Ca3Ti2O7作为新兴的非本征铁电体更是备受关注。
Ca3Ti2O7单晶是由美国罗格斯大学于2015年通过光学浮区法(optical floatingzone method)首次制作出来,其剩余极化8μC/cm2,矫顽场大约为120 KV/cm。同年的5月19日,浙江大学通过固相反应法(以CaCO3,TiO3原料)制作出Ca3Ti2O7陶瓷,其剩余极化0.6μC/cm2,矫顽场也约为120 KV/cm。
两种不同晶态的Ca3Ti2O7的矫顽场的大小几乎一致,都是比较高的数值。矫顽场是指,对经过极化过的铁电体施加电场的过程中,能使铁电极化反转的电场。在实际的生产应用中,所选用的铁电体的矫顽场越低越有利于降低器件的操作电压,同时使器件的极化翻转的矫顽电压越低,且越有利于降低器件的功耗。此外,固相反应法制备的样品往往具有成分不均匀的缺点,而且固体反应过程中需要的合成温度通常较高,不利于能源的节约;光学浮区法制备晶体的过程中同样也存在消耗能量高的弊端,同时该方法制备出的样品尺寸小,不利于大规模的样品生产。因此,探寻出制备成本低,成分均匀、颗粒尺度均匀,并且矫顽场低的Ca3Ti2O7是非常必要的。
针对上述需求,本发明的目的在于设计一种比较完善的制备Ca3Ti2O7非本征铁电陶瓷的工艺。本发明与现有产品相比具备三方面优点:(1)矫顽场低,更加利于器件的使用;(2)本发明公开的多铁材料是一种具有1-10μm尺度的陶瓷材料,其颗粒尺寸更小;(3)本发明公开的非本征铁电材料的前驱物成分为硝酸盐Ti(OC4H9)4 和Ca(NO3)2·4H2O,所以最终获得的材料成分更加均匀。
发明内容
为实现上述目的,本发明公开了如下技术内容:
一种具有较低矫顽场和层状钙钛矿结构的非本征铁电陶瓷器件的制备方法,其特征在于按如下的步骤进行:
(1)以纯度99.99%的Ti(OC4H9)4和硝酸盐Ca(NO3)2·4H2O为原料,用乙二醇和酒石酸作为溶剂,将硝酸盐原料以60-80℃恒温水浴搅拌溶解得到无色透明的溶胶;其中Ti(OC4H9)4:硝酸盐Ca(NO3)2·4H2O:酒石酸的摩尔比为2:3:5;乙二醇溶剂的用量需要满足Ti(OC4H9)4和硝酸盐Ca(NO3)2·4H2O的浓度为0.6mol/L;
(2)将步骤A所获得的无色透明溶胶在80-90℃下干燥约20h直至由水状变为胶状,得到无色透明的凝胶;将无色透明的凝胶于120-180℃下彻底干燥,随后再于300-600℃下预烧结处理6h;将预烧处理后所获得的中间产物充分研磨和压片,再于1400-1450℃下烧结25-50h,从而得到高纯度Ca3Ti2O7陶瓷;
(3)将步骤B中制成的Ca3Ti2O7颗粒压片烧结,得到非本征铁电陶瓷层;随后将非本征铁电陶瓷层放置到真空腔室中,在300-600℃温度下沉积特定厚度的上、下电极层,即获得具有较低矫顽场和层状钙钛矿结构的非本征铁电陶瓷半导体器件;所述的特定厚度的上、下电极层指的是Pt、Au或Ag导电薄膜中的一种,所述导电下电极层厚度为500-2000nm;Ca3Ti2O7半导体层厚度为0.7-1mm;导电上电极层厚度为500-2000nm。
本发明的步骤(3)中,导电下电极和导电上电极薄膜层的沉积采用真空环境,气压低于3×10-3Pa,沉积温度为300~500℃。
本发明公开的制备方法中的关键在于原料的配比和样品高温烧结的温度和时间。原料的配比必须为Ti(OC4H9)4:硝酸盐Ca(NO3)2·4H2O:酒石酸的摩尔比为2:3:5;乙二醇溶剂的用量需要满足Ti(OC4H9)4和硝酸盐Ca(NO3)2·4H2O的浓度为0.6mol/L。对于样品高温烧结的温度和时间也是关键,如在1440℃下烧结40h所得到的Ca3Ti2O7为极高纯度样品,无任何杂项。
本发明更进一步公开了采用所述方法制备的具有较低矫顽场和层状钙钛矿结构的非本征铁电陶瓷器件在调控铁电存储器件的矫顽电压,提高铁电存储器件性能方面的应用。实验结果显示:本发明制备的非本征铁电陶瓷有很低的矫顽场为23KV/cm,并且材料的晶粒尺寸小且成分均匀,非常有利于器件的使用。
本发明公开的具有较低矫顽场的非本征铁电陶瓷与现有技术相比所具有的积极效果在于:
(1)矫顽场低,更利于产业化器件的应用。
(2)本发明公开的多铁材料是一种具有1-10μm尺度的陶瓷材料,其颗粒尺寸小、成分均匀。
(3)本发明所公开的具有较低矫顽场的非本征铁电陶瓷具有矫顽场低的优点,利于器件的使用,在调控铁电存储器件的矫顽电压,提高铁电存储器件性能方面的应用价值产生重要意义
附图说明
图1为本发明公开的一种具有较低矫顽场的非本征铁电陶瓷半导体器件的结构示意图,其中(1)为导电下电极、(2)为铁电半导体层、(3)为导电上电极薄膜层;
图2为本发明实施例1中为Ca3Ti2O7陶瓷的XRD精修(Rietveld精修)图;图2显示了Ca3Ti2O7陶瓷的X射线衍射(XRD)图谱,结果表明Ca3Ti2O7陶瓷的衍射峰与PDF:14-0151号标准卡片的衍射峰相符,可见样品属于空间群为Ccm21的Ruddlesden-Popper结构;
图3为本发明实施例1中Ca3Ti2O7非本征铁电陶瓷的SEM测试图,图中分别展示了标尺为10μm和100μm下的表面形貌;图3显示了Ca3Ti2O7陶瓷在不同标尺的SEM测试图,标尺为100μm的形貌图展示出样品均匀致密的特点,表明样品无缺陷、无孔洞且颗粒尺寸均匀;从标尺为10μm的形貌图中可以看到,样品的晶粒尺寸大约为1-2μm;
图4为本发明实施例1中Ca3Ti2O7样品的电滞回线与电流回线图,图中的测试过程中施加的最大电压分别为800V、1000V、1300V、1600V;图4显示了Ca3Ti2O7陶瓷的电滞回线图和电流回线图,图中展示了在室温下,不同控制电场下的P-E与I-E回线。我们可以清晰地看到此样品的铁电极化反转特征。通过电滞回线,我们可以看到当最大施加电压为1600V时,剩余极化值为0.58μC/cm2。通过电流回线可以看出,当施加电压为1600V时,矫顽场的测量值为23KV/cm。前人所制作的Ca3Ti2O7单晶与Ca3Ti2O7陶瓷的矫顽场都为120KV/cm。通过对比我们发现,本申请的样品的矫顽场仅为前人所做样品的矫顽场的19%。如此小的矫顽场即可实现非本征铁电材料中的极化翻转的调控,将极大地有利于应用器件的使用;
图5为本发明实施例1中Ca3Ti2O7样品的漏电流图,图中的测试中施加的最大电压分别是800V和1300V;图5显示了Ca3Ti2O7样品的在控制电压为800V与1300V作用下的Ca3Ti2O7漏电流图。J-V图展示出十分明显的回线现象,表明Ca3Ti2O7陶瓷中有电致阻变效应。随着电压的增强,样品的漏电流也逐渐增强。当偏置电压为800V时,J-V曲线没有明显的电致阻变现象。当偏置电压上升到1300V时,J-V曲线有十分明显的电致阻变效应。这些现象表明,在高的外加电场作用下,电流的回线特征和阻变行为可以被激发。
具体实施方式
下面通过具体的实施方案叙述本发明。除非特别说明,本发明中所用的技术手段均为本领域技术人员所公知的方法。另外,实施方案应理解为说明性的,而非限制本发明的范围,本发明的实质和范围仅由权利要求书所限定。对于本领域技术人员而言,在不背离本发明实质和范围的前提下,对这些实施方案中的物料成分和用量进行的各种改变或改动也属于本发明的保护范围。本发明所用原料及试剂均有市售。
需要说明的是:实施例1-3的制备中,样品所需的原料用量为:Ti(OC4H9)4:硝酸盐Ca(NO3)2·4H2O:酒石酸的摩尔比为2:3:5;乙二醇溶剂的用量需要满足Ti(OC4H9)4和硝酸盐Ca(NO3)2·4H2O的浓度为0.6mol/L。
实施例1
具有较低矫顽场的非本征铁电陶瓷半导体器件的结构为:导电下电极Ag层,厚度为500nm;Ca3Ti2O7半导体层,厚度为0.3mm;上电极Ag层,厚度为500nm。
Ca3Ti2O7陶瓷的制备:
以高纯度的Ti(OC4H9)4和Ca(NO3)2·4H2O为原料,用适量的乙二醇辅以酒石酸(作为一种络合剂)将原料以60℃恒温水浴搅拌溶解,再经过干燥凝胶和高温烧结(400℃预烧2h、700℃预烧4h,1420℃下烧结40h)后即获得Ca3Ti2O7陶瓷。将陶瓷于20MPa的压强下压片成型,再以400℃的沉积温度来沉积上、下电极薄膜层。
实施例2
具有较低矫顽场的非本征铁电陶瓷半导体器件的结构为:导电下电极Ag层,厚度为2000nm;Ca3Ti2O7半导体层,厚度为0.5mm;上电极Au层,厚度为2000nm。Ca3Ti2O7陶瓷以高纯度的Ti(OC4H9)4和Ca(NO3)2·4H2O为原料,用适量的乙二醇辅以酒石酸(作为一种络合剂)将硝酸盐原料以75℃恒温水浴搅拌溶解,再经过干燥凝胶和高温烧结(350℃预烧2h、650℃预烧4h,1435℃下烧结35h)后即获得Ca3Ti2O7陶瓷。将陶瓷于30MPa的压强下压片成型,再以300℃的沉积温度来沉积上、下电极薄膜层。
实施例3
具有较低矫顽场的非本征铁电陶瓷半导体器件的结构为:导电下电极Pt层,厚度为1500nm;Ca3Ti2O7半导体层,厚度为0.8mm;上电极Pt层,厚度为1500nm。Ca3Ti2O7陶瓷以高纯度的Ti(OC4H9)4和Ca(NO3)2·4H2O为原料,用适量的乙二醇辅以酒石酸(作为一种络合剂)将硝酸盐原料以80℃恒温水浴搅拌溶解,再经过干燥凝胶和高温烧结(300℃预烧2h、600℃预烧4h,1440℃下烧结40h)后即获得Ca3Ti2O7陶瓷。将陶瓷于25MPa的压强下压片成型,再以500℃的沉积温度来沉积上、下电极薄膜层。
下面以实施例3来说明本发明的制备方法和具体分析。
采用溶胶—凝胶技术制备Ca3Ti2O7陶瓷半导体:
以高纯度(99.99%)的Ti(OC4H9)4和Ca(NO3)2·4H2O为原料,用适量的乙二醇辅以酒石酸(作为一种络合剂)将硝酸盐原料以75℃恒温水浴搅拌溶解,得到无色透明的溶胶。其中Ti(OC4H9)4:硝酸盐Ca(NO3)2·4H2O:酒石酸的摩尔比为2:3:5;乙二醇溶剂的用量需要满足Ti(OC4H9)4和硝酸盐Ca(NO3)2·4H2O的浓度为0.6mol/L。
将无色透明溶胶在90℃下干燥20h,得到无色透明的凝胶;将无色透明的凝胶于140℃下彻底干燥,随后再于300℃预烧2h,600℃预烧6h;将预烧处理后所获得的中间产物充分研磨,再于1440℃下烧结40h,从而得到高纯度Ca3Ti2O7陶瓷。
将制成的Ca3Ti2O7陶瓷压片烧结,得到非本征铁电陶瓷半导体层;随后半导体层放置到真空腔室中,在500℃下沉积厚度为500nm的上、下电极层,即获得具有较低矫顽场的非本征铁电陶瓷半导体器件。
综上,本发明采用溶胶—凝胶工艺制备出了Ca3Ti2O7非本征铁电陶瓷材料,获得了较低的铁电矫顽电场,并且可以在一定范围内调控非本征铁电陶瓷的矫顽电场和剩余极化。本发明将对提高铁电存储器件的潜在应用价值产生重要意义。

Claims (3)

1.一种具有较低矫顽场和层状钙钛矿结构的非本征铁电陶瓷器件的制备方法,其特征在于按如下的步骤进行:
(1)以纯度99.99%的Ti(OC4H9)4和硝酸盐Ca(NO3)2·4H2O为原料,用乙二醇和酒石酸作为溶剂,将硝酸盐原料以60-80℃恒温水浴搅拌溶解得到无色透明的溶胶;其中Ti(OC4H9)4:硝酸盐Ca(NO3)2·4H2O:酒石酸的摩尔比为2:3:5;乙二醇溶剂的用量满足Ti(OC4H9)4和硝酸盐Ca(NO3)2·4H2O的浓度为0.6mol/L;
(2)将步骤(1)所获得的无色透明溶胶在80-90℃下干燥约20h直至由水状变为胶状,得到无色透明的凝胶;将无色透明的凝胶于120-180℃下彻底干燥,随后再于300-600℃下预烧结处理6h;将预烧处理后所获得的中间产物充分研磨和压片,再于1400-1450℃下烧结25-50h,从而得到高纯度Ca3Ti2O7陶瓷;
(3)将步骤(2)中制成的Ca3Ti2O7颗粒压片烧结,得到非本征铁电陶瓷层;随后将非本征铁电陶瓷层放置到真空腔室中,在300-600℃温度下沉积特定厚度的上、下电极层,即获得具有较低矫顽场和层状钙钛矿结构的非本征铁电陶瓷器件;所述的特定厚度的上、下电极层指的是Pt、Au或Ag导电薄膜中的一种,所述导电下电极层厚度为500-2000nm;Ca3Ti2O7半导体层厚度为0.2-1mm;导电上电极层厚度为500-2000nm。
2.权利要求1所述的制备方法,其特征在于:步骤(3)中,导电下电极(1)和导电上电极薄膜层(3)的沉积采用真空环境,气压低于3×10-3Pa,沉积温度为300~500℃。
3.采用权利要求1所述方法制备的具有较低矫顽场和层状钙钛矿结构的非本征铁电陶瓷器件在调控铁电存储器件的矫顽电压,提高铁电存储器件性能方面的应用。
CN201711067148.7A 2017-11-03 2017-11-03 一种具有较低矫顽场的非本征铁电陶瓷器件及其制备方法 Expired - Fee Related CN107814567B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711067148.7A CN107814567B (zh) 2017-11-03 2017-11-03 一种具有较低矫顽场的非本征铁电陶瓷器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711067148.7A CN107814567B (zh) 2017-11-03 2017-11-03 一种具有较低矫顽场的非本征铁电陶瓷器件及其制备方法

Publications (2)

Publication Number Publication Date
CN107814567A CN107814567A (zh) 2018-03-20
CN107814567B true CN107814567B (zh) 2020-10-02

Family

ID=61603075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711067148.7A Expired - Fee Related CN107814567B (zh) 2017-11-03 2017-11-03 一种具有较低矫顽场的非本征铁电陶瓷器件及其制备方法

Country Status (1)

Country Link
CN (1) CN107814567B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112663142B (zh) * 2020-12-04 2022-06-07 广东省科学院半导体研究所 Ruddlesden-Popper型锰氧化物单晶及其制备方法
CN115724660A (zh) * 2022-12-14 2023-03-03 天津师范大学 一种钛酸钡/正二钛酸钙复合陶瓷及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104659080A (zh) * 2015-02-04 2015-05-27 天津师范大学 一种具有阈开关效应的多铁纳米颗粒及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1160806C (zh) * 2001-12-20 2004-08-04 华中科技大学 Si基Bi4Ti3O12铁电薄膜的制备方法
CN100559595C (zh) * 2008-10-31 2009-11-11 济南大学 用于铁电存储器的BiFeO3-基三明治结构薄膜及其制备方法
FR2984305B1 (fr) * 2011-12-15 2015-01-30 Air Liquide Procede de preparation d'un sol-gel d'au moins trois sels de metaux et mise en œuvre du procede pour preparer une membrane ceramique

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104659080A (zh) * 2015-02-04 2015-05-27 天津师范大学 一种具有阈开关效应的多铁纳米颗粒及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Preparation structure and ferroelectric properties of Ba(Fe0.5Nb0.5)O3 powders by sol-gel method;Chao-YuChung;《Journal of Crystal Growth》;20051015;第284卷(第1-2期);全文 *
Sol–Gel Synthesis of CaTiO3:Pr3+ Red Phosphors: Tailoring the Synthetic Parameters for Luminescent and Afterglow Applications;Daniela Meroni;《ACS Omega》;20170831;第2卷(第8期);全文 *

Also Published As

Publication number Publication date
CN107814567A (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
Machado et al. Band Gap Tuning of Solution-Processed Ferroelectric Perovskite BiFe1–x Co x O3 Thin Films
Wang et al. Synthesis, structure, dielectric, piezoelectric, and energy storage performance of (Ba 0.85 Ca 0.15)(Ti 0.9 Zr 0.1) O 3 ceramics prepared by different methods
Chen et al. High recoverable energy storage density in (1-x) Bi0. 5 (Na0. 8K0. 2) 0.5 TiO3-xSrZrO3 thin films prepared by a sol-gel method
Kong et al. Solvothermal Soft Chemical Synthesis and Characterization of Nanostructured Ba1–x (Bi0. 5K0. 5) x TiO3 Platelike Particles with Crystal-Axis Orientation
CN100587910C (zh) 石英/镍酸镧/铁酸铋-钛酸铅三层结构铁电材料的制备方法
Wang et al. In situ reversible tuning of photoluminescence of an epitaxial thin film via piezoelectric strain induced by a Pb (Mg 1/3 Nb 2/3) O 3–PbTiO 3 single crystal
CN103553589B (zh) 一种制备CaCu3Ti4O12陶瓷材料的方法
CN107814567B (zh) 一种具有较低矫顽场的非本征铁电陶瓷器件及其制备方法
CN110128134B (zh) 一种以掺铌钛酸锶为基底的钛酸铅薄膜的制备方法
CN110498681B (zh) 室温下高电卡效应的弛豫铁电陶瓷及制备方法和应用
CN102071399B (zh) 全钙钛矿多铁性磁电复合薄膜
Abbas et al. High energy storage efficiency and thermal stability of A‐site‐deficient and 110‐textured BaTiO3–BiScO3 thin films
CN102898147A (zh) 一种制备钛酸盐压电陶瓷粉体的环境协调型方法
CN103469156B (zh) 一种对较厚铁电薄膜实施应力工程用于材料改性的方法
CN100424878C (zh) 铁电存储器用铁电薄膜电容及其制备方法
Liu et al. Novel ferroelectric capacitor for non-volatile memory storage and biomedical tactile sensor applications
CN103938156A (zh) 一种铕掺杂的铁酸铋薄膜及其制备方法和应用
CN102060325A (zh) 一种四方相钛酸钡纳米棒阵列及其制备方法
CN101697354B (zh) 透明外延p-n异质结薄膜及其制备方法
CN101386426B (zh) 一种无铅压电铌酸钾钠薄膜的制备方法
CN106892450B (zh) 一种通过La离子掺杂合成PbTiO3圆片的方法
Chen et al. Microstructural characterization of sol–gel derived Pb1− xLaxTiO3 ferroelectrics
CN107253859B (zh) 高发光热稳定性的Eu-Bi共掺杂钨青铜结构发光铁电陶瓷材料及其制备方法
CN100558939C (zh) 醇热辅助铁电薄膜的低温制备方法
CN109400153B (zh) 一种应用于压电能量收集具有高换能系数的四元系陶瓷材料及制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201002

Termination date: 20211103

CF01 Termination of patent right due to non-payment of annual fee