CN104115296B - 有机电子器件 - Google Patents

有机电子器件 Download PDF

Info

Publication number
CN104115296B
CN104115296B CN201280067205.0A CN201280067205A CN104115296B CN 104115296 B CN104115296 B CN 104115296B CN 201280067205 A CN201280067205 A CN 201280067205A CN 104115296 B CN104115296 B CN 104115296B
Authority
CN
China
Prior art keywords
layer
electronic device
aryl
organic electronic
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280067205.0A
Other languages
English (en)
Other versions
CN104115296A (zh
Inventor
萨沙·多罗克
卡斯滕·罗特
欧姆莱恩·法德尔
弗朗索瓦·卡尔迪纳利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOVALD CO Ltd
Original Assignee
NOVALD CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOVALD CO Ltd filed Critical NOVALD CO Ltd
Publication of CN104115296A publication Critical patent/CN104115296A/zh
Application granted granted Critical
Publication of CN104115296B publication Critical patent/CN104115296B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5325Aromatic phosphine oxides or thioxides (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/5765Six-membered rings condensed with carbocyclic rings or carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/181Metal complexes of the alkali metals and alkaline earth metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明涉及有机电子器件,其包括第一电极、第二电极和在所述第一电极和所述第二电极之间的包含式(I)化合物的基本上有机的层:其中A1为C6‑C20亚芳基,且A2~A3各自独立地选自C6‑C20芳基,其中所述芳基或亚芳基可以未被取代或被包含C和H的基团取代或被另一LiO基团取代,条件是在芳基或亚芳基基团中给定的C数还包括在所述基团上存在的所有取代基。

Description

有机电子器件
技术领域
本发明涉及有机电子器件和特定化合物在这种有机电子器件中的用途。
背景技术
可以使用诸如有机半导体的有机电子器件来制造简单的电子组件,例如电阻器、二极管、场效应晶体管,以及光电组件,如有机发光器件(例如,有机发光二极管(OLED)),等。有机半导体及它们的器件的工业和经济意义反映在使用有机半导体活性层的器件的数目增加上,且日益增加的工业集中在该主题。
OLED基于电致发光的原理,其中电子-空穴对,所谓的激子,在发光下复合。为此,以夹层结构的形式构造该OLED,其中至少一个有机薄膜作为活性材料配置在两个电极之间,正载流子和负载流子注入有机材料中且发生从空穴或电子到在有机层中的复合区(发光层)的电荷传输,其中载流子在发光下复合成单线态和/或三线态激子。激子随后的辐射复合引起由发光二极管发射的可见有用光的发射。为了使该光可以离开该组件,这些电极中的至少一个必须透明。通常,透明电极由命名为TCO(透明导电氧化物)的导电氧化物或非常薄的金属电极组成;然而,可以使用其它材料。OLED制造的起始点为基底,将该OLED的相应层施用在该基底上。如果最接近该基底的电极是透明的,则将该组件命名为“底部发光OLED”,且如果另一电极设计为透明的,则将该组件命名为“顶部发光OLED”。OLED的层可以包含小分子、聚合物,或为混合型的。
正在不断地改进OLED的多个操作参数以增强总体功率效率。一个重要的参数是操作电压,其可以通过改进载流子的传输和/或降低能量势垒例如自电极的注入势垒来进行调节,另一重要指标为量子效率,并且还非常相关的是该器件的寿命。诸如有机太阳能电池的其它有机器件还需要改进效率,目前其最大为约9%。
类似于OLED,有机太阳能电池具有在两个电极之间的有机层堆叠。在太阳能电池中,必须存在至少一个负责光吸收的有机层和分离由该吸收(光活化)产生的激子的界面。该界面可以为双层异质结、体异质结或者可以包含更多的层,例如在逐级界面中。还可以提供敏化层等。对于增加的效率,需要良好的载流子传输,在一些器件结构中,传输区域不能吸收光,因此传输层和光活化层可能包含不同的材料。也可以使用载流子和/或激子阻挡层。现今效率最高的太阳能电池是多层太阳能电池,一些器件结构堆叠(多结太阳能电池)且由连接单元(也称作复合层)连接;尽管如此,如果发现恰当的材料,则单结太阳能电池也可能具有高性能。器件的实例在US2009217980中或在US2009235971中给出。
与OLED和有机太阳能电池不同,晶体管不需要整体半导体(通道)层的掺杂,因为有效载流子的浓度通过由第三电极(栅极)供应的电场决定。然而,常规有机薄膜晶体管(OTFT)需要很高的电压来操作。需要降低该操作电压;可以例如用适当的注入层完成这种优化。
有机晶体管也称作有机场效应晶体管。可以预期,例如在用于无触点识别标签(RFID)以及用于屏幕控制的廉价集成电路中可以使用许多OTFT。为了实现廉价应用,通常需要薄层工艺来制造晶体管。近年来,性能特征已经改进到可以预见到有机晶体管的商业化的程度。例如,在OTFT中,已经报道了基于并五苯的空穴的最高达5.5cm2/Vs的高场效迁移率(Lee等,Appl.Lett.88,162109(2006))。典型的有机场效应晶体管包括有机半导体材料的活性层(半导体层)材料,该材料在操作期间形成导电通道、与该半导体层交换电荷的漏极和源极和通过介电层与该半导体层电绝缘的栅极。
存在改进在有机电子器件中的载流子注入和/或传导性的明确需要。降低或消除对于在电极和电子传输材料(ETM)之间的电荷注入的势垒强烈地促进器件效率增强。现今,存在两种主要的降低有机电子器件的电压并增强其效率的方法:改进载流子注入和改进传输层的传导性。两种方法可以组合使用。
例如,US7,074,500公开了用于OLED的组件结构,其引起从电极到有机层的极大改进的载流子注入。该效果基于在与电极的界面处在有机层中能级的相当大的能带弯曲,由此基于通道机制的载流子注入是可能的。掺杂层的高导电性也妨碍在OLED操作期间在那里出现的压降。可在电极和载流子传输层之间的OLED中出现的注入势垒,为操作电压相较于热力学证实最小的操作电压而增加的主因之一。由于这个原因,已经例如通过使用具有低逸出功的阴极材料,例如金属如钙或钡,进行了许多尝试来降低注入势垒。然而,这些材料具有高反应性,难以加工且仅在有限的程度上适合作为电极材料。此外,通过使用这种阴极达到的操作电压的任何降低都仅是局部的。
常将具有低逸出功的金属,特别是碱金属例如Li和Cs,用作阴极材料或注入层以促进电子注入。它们也已经广泛用作掺杂剂以增加ETM的传导性,US6013384、US6589673。金属例如Li或Cs在基质中提供高传导性,另外这些基质难以掺杂(例如,BPhen、Alq3)。
然而,低逸出功金属的使用具有多个缺点。公知的是这些金属可容易地通过半导体扩散,最后到达光学活性层,使激子淬灭,由此降低器件的效率和寿命。另一缺点是它们在暴露于空气时对氧化高度敏感。因此,使用这类金属作为掺杂剂、注入或阴极材料的器件在制造期间需要严格的排除空气和此后严格的封装。另一公知的缺点是,掺杂剂的超过10摩尔%的较高掺杂摩尔浓度可能增加在传输层中不想要的光吸收。又一问题在于,许多简单的氧化还原掺杂剂如Cs的高挥发性导致在器件装配过程中的交叉污染,使得它们在器件制造工具中的使用不太具有吸引力。
替换作为用于ETM的n-掺杂剂和/或注入材料的金属的另一方法是使用具有强供体性质的化合物,诸如四(1,3,4,6,7,8-六氢-2H-嘧啶并[1,2-a]嘧啶)二钨(II)(W2(hpp)4)或Co(Cp*)2(US2009/0212280、WO2003/088271),与碱土金属相比,它们具有类似或稍低的掺杂/注入能力。由于它们仍然足够高的供电子性能,它们在暴露于空气时也经历快速衰减,使得它们在器件制造中的操作困难。
还已知将金属有机络合物例如喹啉锂(LiQ)混合到电子传输层中以改进器件,然而,改进的确切机制尚不清楚。研究已经显示使用LiQ仍然产生具有高操作电压的OLED。
发明内容
因此,非常需要提供如下的材料,其具有高掺杂/电荷注入能力,允许高效率的有机电子器件,基本上保持器件的长期稳定性,且在空气中无限稳定。
因此,本发明的一个目的在于提供有机电子器件,其克服了现有技术的上述限制,且与现有技术的电子器件相比具有改进的性能。本发明的目的特别是提供如下的有机电子器件,其具有降低的操作电压和反映成较高功率效率的较久的寿命。
该目的通过如下有机电子器件来实现,所述有机电子器件包括第一电极、第二电极和在所述第一电极和所述第二电极之间的包含式(I)化合物的基本上有机的层:
其中A1为C6-C20亚芳基,且A2~A3各自独立地选自C6-C20芳基,其中所述芳基或亚芳基可以未被取代或被包含C和H的基团取代或被另一LiO基团取代,条件是在芳基或亚芳基基团中给定的C数还包括在所述基团上存在的所有取代基。
应理解术语被取代或未被取代的亚芳基代表衍生自被取代或未被取代的芳烃的二价基团,其中两个邻近的结构部分(在式(I)中,OLi基团和二芳基氧化膦基团)直接连接到所述亚芳基基团的芳族环。简单亚芳基的实例为邻亚苯基、间亚苯基和对亚苯基;多环亚芳基可具有在同一芳族环上或在两个不同芳族环上连接的邻近基团。
在衍生自多环芳烃的亚芳基的情况下,如下概括邻、间和对位取代的定义。邻亚芳基理解为仅仅是其中在式(I)中的邻近取代基连接到在同一芳族环中直接连接的两个碳原子的那些亚芳基。对亚芳基概括为具有连接到刚性芳烃结构的相对侧以使得这些取代基的键平行的邻近取代基的所有亚芳基,而在间亚芳基中,在连接邻近OLi和二芳基氧化膦部分的键之间的角度不同于180°(在刚性芳烃结构中)或是可变的,例如在由通过单键键结在一起的两个或更多个刚性亚芳基亚结构组成的亚芳基中。
概括的对亚芳基的实例为萘-1,4-二基、萘-1,5-二基、萘-2,6-二基、1,1'-联苯-4,4'-二基。概括的间亚芳基的实例为萘-1,3-二基、萘-1,6-二基、萘-1,7-二基、萘-1,8-二基、萘-2,7-二基、1,1'-联苯-3,4'-二基、1,1'-联苯-2,4'-二基、1,1'-联苯-2,4'-二基、1,1'-联苯-2,3'-二基、1,1'-联苯-3,3'-二基、1,1'-联苯-2,2'-二基。
优选地,A1为C6-C12亚芳基。甚至优选地,A2~A3各自独立地选自C6-C10芳基。更优选A2和A3皆为苯基。最优选地,A1为邻亚苯基或对亚苯基。
优选地,A1为C6-C12亚芳基。甚至优选地,A2~A3各自独立地选自C6-C10芳基。更优选地,A2和A3皆为苯基。最优选地,A1为邻亚苯基或对亚苯基。
在一个优选的实施方式中,所述基本上有机的层包含电子传输基质化合物。
在另一优选的实施方式中,所述电子传输基质包含咪唑或P=O官能团。
此外,所述根据式(I)的化合物和所述电子传输基质化合物优选以均匀混合物形式存在于所述基本上有机的层中。
此外,所述有机电子器件可选自有机发光二极管、有机太阳能电池和有机场效应晶体管。
优选如下的有机电子器件,其中所述器件为具有作为阳极的所述第一电极、作为阴极的所述第二电极的有机发光二极管,且所述器件还包括在所述阳极和所述阴极之间的发光层,且其中所述基本上有机的层包括在所述阴极和所述发光层之间。可选地或另外,所述有机电子器件的发光层包含发光聚合物。
最后,优选在有机电子器件中使用根据式(I)的材料,特别是作为在所述器件的电子传输层中的和/或邻近所述电子传输层的掺杂剂。
本发明的目的还通过根据式(I)的化合物实现:
其中A1为间亚芳基或对亚芳基,且A2~A3各自独立地选自C6-C20芳基,其中所述芳基或亚芳基可以未被取代或被包含C和H的基团取代或被另一LiO基团取代,条件是在芳基或亚芳基基团中给定的C数还包括在所述基团上存在的所有取代基。
优选A2~A3各自独立地选自C6-C10芳基。更优选所述亚芳基为间亚苯基或对亚苯基。还优选A2和A3皆为苯基。最优选所述亚芳基为间亚苯基。
在从属权利要求项中公开了其它实施方式。
优选用途
优选所述根据式(I)的化合物用于传输和/或注入层中,更优选用于电子传输层和/或电子注入层中。
所述根据式(I)的化合物为空气稳定的且能够在不分解的情况下蒸发。它们还可溶解于多种溶剂中。这使得根据式(I)的化合物特别易于在制造过程中使用。
本发明的有机电子器件优选包括层状结构,所述层状结构包括基底、阳极和阴极、布置在所述层状结构内在所述阳极和所述阴极之间的至少一个基本上有机的层。
所述基本上有机的层还可包含电子传输基质化合物。所述电子传输材料优选构成所述基本上有机的层的10重量%或更高。这允许经过所述层的电荷传输。更优选40重量%或更高。对于电子传输层,更优选所述电子传输基质为所述层的主要组分。
作为电子传输层用基质材料,可使用例如富勒烯,诸如C60,二唑衍生物,诸如2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-二唑,基于喹啉的化合物,诸如双(苯基喹喔啉),或低聚噻吩,苝衍生物,诸如苝四羧酸二酐,萘衍生物,诸如萘四羧酸二酐,或称为在电子传输材料中的基质的其它类似化合物。
优选所述电子传输材料包含氧化膦或咪唑官能团。
非常适合作为电子传输材料的化合物为来自以下的化合物:
-US2007/0138950,优选在第22页上的化合物(1)和(2),在第23页上的化合物(3)、(4)、(5)、(6)、和(7),在第25页上的化合物(8)、(9)和(10),和在第26页上的化合物(11)、(12)、(13)和(14),这些化合物通过引用并入到本文中来;
-US2009/0278115A1,优选在第18页上的化合物(1)和(2),这些化合物通过引用并入到本文中来;
-来自US2007/0018154的化合物,优选根据权利要求10所述的化合物,在第19页上的式1-1、1-2、1-3、1-4、1-5、1-6,在第20~26页上的1-7~1-146。来自US2008/0284325A1的化合物,优选在第4页上的化合物:2-(4-(9,10-二苯基蒽-2-基)苯基)-1苯基-1H-苯并[d]咪唑、2-(4-(9,10-二([1,1'-联苯]-2-基)蒽-2-基)苯基)-1-苯基-1H-苯并[d]咪唑、2-(4-(9,10-二(萘-1-基)蒽-2-基)苯基)-1-苯基-1H-苯并[d]咪唑、2-(4-(9,10-二(萘-2-基)蒽-2-基)苯基)-1-苯基-1H-苯并[d]咪唑、2-(4-(9,10-二([1,1':3',1"-三联苯]-5'-基)蒽-2-基)苯基)-1-苯基-1H-苯并[d]咪唑,和在第5页上的化合物,这些化合物通过引用并入到本文中来;
-来自US2007/0222373的并四苯衍生物,优选第17页的化合物(A-1)和(A-2)、第18页的化合物(A-3)和第19页的化合物(A-4),这些化合物通过引用并入到本文中来;
-来自US2008/0111473的化合物,优选在第61页上的化合物1、在第62页上的化合物2、在第63页上的化合物3和4、在第64页上的化合物5和在第65页上的化合物6,这些化合物通过引用并入到本文中来;
-US2010/0157131,第20页的化合物H-4,和第12页的化合物(1)和(2),这些化合物通过引用并入到本文中来;
-来自US2010/0123390的根据通式(1)的化合物,优选化合物H4、H5,第21页,H7,第22页,H11、H12、H13,第23页,H16和H18,第24页,这些化合物通过引用并入到本文中来;
-US2007/0267970,优选2-([1,1'-联苯]-4-基)-1-(4-(10-(萘-2-基)蒽-9-基)苯基)-2,7a-二氢-1H-苯并[d]咪唑(化合物1)、2-([1,1'-联苯]-2-基)-1-(4-(10-(萘-2-基)蒽-9-基)苯基)-2,7a-二氢-1H-苯并[d]咪唑(化合物2)。来自US2007/0196688第18页的化合物(C-1),其通过引用并入到本文中来;
其它合适的化合物有7-(4'-(1-苯基-1H-苯并[d]咪唑-2-基)-[1,1'-联苯]-4-基)二苯并[c,h]吖啶(ETM1)、(4-(二苯并[c,h]吖啶-7-基)苯基)二苯基氧化膦(ETM2)、7-(4-(1-苯基-1H-苯并[d]咪唑-2-基)苯基)二苯并[c,h]吖啶(ETM5)。
合适的空穴传输材料(HTM)例如可为来自二胺类的HTM,其中至少在这两个二胺氮之间提供共轭体系。实例有N4,N4'-二(萘-1-基)-N4,N4'-二苯基-[1,1'-联苯基]-4,4'-二胺(HTM1)、N4,N4,N4″,N4″-四([1,1'-联苯]-4-基)-[1,1':4',1″-三联苯基]-二胺(HTM2)。二胺的合成在文献中充分描述;许多二胺HTM是易于购得的。
应当理解的是,在本发明的情况下,上述基质材料也可以以彼此的混合物或与其它材料的混合物使用。应当理解的是,还可使用具有半导体性质的其它合适的有机基质材料。
在另一优选的实施方式中,所述基本上有机的层存在于pn结中,所述pn结具有至少双层,即p-层和n-层和任选在中间的中间层i,其中所述中间层i和/或所述n-层为基本上有机的半导体层。
所述有机电子器件另外可包括聚合物半导体层。
最优选所述有机电子器件为太阳能电池或发光二极管。
所述有机电子器件还可为场效应晶体管,其包括半导体通道、源极和漏极、设置在所述半导体通道与所述源极和所述漏极中的至少一个之间的基本上有机的层。
在另一最优选的实施方式中,包含根据式(I)的化合物的所述基本上有机的层为电子注入层和/或电子传输层。
本发明有机电子器件的任何层,特别是基本上有机的层,可通过已知技术例如真空热蒸发(VTE)、有机气相沉积、激光诱发的热转印、旋涂、刮刀或狭缝涂布、喷墨印刷等进行沉积。制备根据本发明的有机电子器件的优选方法为真空热蒸发。
惊奇地发现本发明的有机电子器件克服了现有技术器件的缺点且与现有技术的电子器件相比较,例如在效率方面,特别具有改进的性能。
注入层
在一个优选的实施方式中,具有根据式(I)的化合物作为其主要组分的所述基本上有机的层邻近于阴极,优选在阴极与ETL(电子传输层)或HBL(空穴阻挡层)之一之间。本发明的优势在于,特别对于非反向结构,最简单的形式也是与不使用注入层的结构相比具有显著改进的性能的形式。所述根据式(I)的化合物可作为纯粹的层使用且随后优选为在电子传输层(ETL或HBL)和阴极之间的唯一层。在这方面,对于OLED,如果发光区远离阴极,则EML(发射层)和ETL基质可相同。在另一实施方式中,所述ETL和所述EML为不同组成的层,优选为不同基质的层。
作为在有机电子器件中的注入层,所述纯粹的层具有0.5nm~5nm的优选厚度。
包含所述根据式(I)的化合物的层的厚度为标称厚度,所述厚度通常根据材料密度的知识由在特定区域上沉积的质量计算。例如,在真空热蒸发VTE的情况下,所述标称厚度为由厚度监测设备指示的值。实际上,因为该层不是均匀的且至少在一个界面处不平坦,所以难以测量其最后厚度,在这种情况下,可使用平均值。在这方面,所述阴极为任选具有任何表面改性以改进其电子性质,例如以改进其逸出功或传导性的导电层。优选所述阴极为双层,更优选其为单层以避免复杂性。
半导体层
甚至优选所述有机层为邻近于所述阴极且包含所述根据式(I)的化合物的电子传输层。如果所述ETL直接邻近于所述阴极,则该简化具有不需要另外注入层的优势。可选地,另外的注入层可提供在所述ETL和所述阴极之间。该另外层可为具有所述根据式(I)的化合物作为其主要组分的层,如已经在上文中说明的。在一个甚至优选的实施方式中,所述ETL在所述阴极下面(在中间没有其它层),其中所述阴极为顶部电极,其在形成所述ETL之后形成(非反向结构)。
对于OLED,如果发光区远离阴极,则EML(发光层)和ETL基质可相同。在另一实施方式中,所述ETL和所述EML为不同组成的层,优选为不同基质的层。
本发明的优势
惊奇地观察到OLED寿命的改进和操作电压的降低。
聚合物混合型OLED或太阳能电池
在另一优选的实施方式中,包含所述根据式(I)的化合物的所述基本上有机的层与聚合物半导体组合使用,其优选在阴极和聚合物层之间,其中所述聚合物层优选包括所述器件的光电有源区(OLED的发光区域或太阳能电池的吸收区域)。包含所述根据式(I)的化合物或由其构成的所有可选层可与所述聚合物层组合使用。例示性可选层可为由所述根据式(I)的化合物构成的注入层、包含所述化合物和金属的注入层、具有所述化合物而有或没有金属的电子传输层。然后强烈地改进所述阴极的电子界面,给出所述化合物(I)的高电子注入能力。
电子掺杂
可作为有机半导体层的常规掺杂的可选方案使用本发明。通过使用该术语掺杂,其是指如上文解释的电子掺杂。该掺杂也可称作氧化还原掺杂或电荷转移掺杂。已知该掺杂针对未掺杂基质的载流子密度而增加半导体基质的载流子密度。与未掺杂的半导体基质相比较,电子掺杂半导体层也具有增加的有效迁移率。
US2008227979详细地公开了用无机掺杂剂和用有机掺杂剂掺杂也称作基质的有机传输材料。基本上,发生从掺杂剂到基质的有效电子转移,这增加所述基质的费米能级。对于在p-掺杂情况下的有效转移,所述掺杂剂的LUMO能级优选比所述基质的HOMO能级更负或比所述基质的HOMO能级至少稍正不超过0.5eV。对于n-掺杂情况,所述掺杂剂的HOMO能级优选比所述基质的LUMO能级更正或比所述基质的LUMO能级至少稍负不低于0.5eV。此外还希望从掺杂剂到基质的能量转移的能级差小于+0.3eV。
掺杂的空穴传输材料的典型实例有:铜酞菁(CuPc),其HOMO能级为约-5.2eV,掺杂有四氟四氰基醌二甲烷(F4TCNQ),其LUMO能级为约-5.2eV;用F4TCNQ掺杂的锌酞菁(ZnPc)(HOMO=-5.2eV);用F4TCNQ掺杂的a-NPD(N,N'-双(萘-1-基)-N,N'-双(苯基)-联苯胺)。
本发明的优选模式之一为如下的OLED,其具有包含p-掺杂剂的OLED的空穴传输侧和包含所述根据式(I)的材料的电子传输侧。例如如下的OLED,其具有p-掺杂的HTL和具有ETM和所述根据式(I)的材料的ETL。
附图说明
图1图示本发明有机电子器件的第一实施方式;
图2图示本发明有机电子器件的第二实施方式;
图3显示本发明有机电子器件的第三实施方式。
具体实施方式
有机电子器件
图1图示以形成OLED或太阳能电池的层堆叠形式的本发明有机电子器件的第一实施方式。在图1中,10为基底,11为阳极,12为EML或吸收层,13为EIL(电子注入层),14为阴极。
层13可为根据式(I)的化合物的纯粹的层。所述阳极和所述阴极中的至少一个至少为半透明的。还预知反向结构(未图示),其中所述阴极在所述基底上(阴极比所述阳极更靠近所述基底且层11~14的顺序反转)。所述堆叠可包括另外层,诸如ETL、HTL等。
图2代表以形成OLED或太阳能电池的层堆叠形式的本发明有机电子器件的第二实施方式。在此,20为基底,21为阳极,22为EML或吸收层,23为ETL,24为阴极。层23包含电子传输基质材料和根据式(I)的化合物。
图3图示以OTFT形式的本发明器件的第三实施方式,其具有半导体层32、源极34和漏极35。未图案化(在源极和漏极之间未图案化)的注入层33提供在源极-漏极和半导体层之间的载流子注入和提取。OTFT还包括栅绝缘体31(其可在与源漏极相同的侧上)和栅极30,栅极30在层31的不与层32接触的侧上。显而易见,整体堆叠可反向。还可提供基底。可选地,绝缘层31可为基底。
实施例
作为用于测试本发明化合物的效果的电子传输基质使用的化合物
ETM1和ETM2描述在专利申请WO2011/154131(实施例4和6)中,ETM3(CAS号561064-11-7)为市售的。由在WO2011/154131的实施例3中描述的中间体(10)根据以下步骤合成ETM4:
在氩气下将(10)(4.06g,9.35mmol)溶解于60mL无水THF中。将该溶液冷却到-78℃,在25分钟内逐滴加入正丁基锂(2.5mol/L,5.6mL,14.0mmol),且将反应混合物在该温度下搅拌半小时。随后将该温度升到-50℃,且加入二苯基氯化膦(2.17g,9.82mmol)。在室温下搅拌混合物过夜。随后将反应用甲醇(MeOH,30mL)淬灭,且蒸发溶剂。将固体残留物溶解于50mL二氯甲烷(DCM)中,随后加入8mL水性H2O2(30重量%)且将混合物搅拌24小时。随后将反应混合物用50mL盐水和2×50mL水洗涤,将有机相干燥并蒸发。粗产物经由柱色谱(SiO2,DCM,随后DCM/MeOH99:1)纯化。随后将所获得的泡沫状产物用40mL乙腈洗涤两次。
产率:3.1g(60%)。浅黄色固体。
NMR:31P-NMR(CDCl3,121.5MHz):δ(ppm):27(m)1H-NMR(500MHz,CD2Cl2)δ(ppm):9.78(d,8.03Hz,2H),7.95(m,3H),7.85(m,2H),7.76(m,11H),7.57(ddd,1.39Hz,9.84Hz,7.24Hz,2H),7.50(m,6H)。
熔点:250℃(来自差示扫描量热(DSC)峰)。
制备式(I)的化合物的合成步骤
所有反应都在惰性气氛下进行。在未进一步纯化的情况下使用商业反应物和试剂。反应溶剂四氢呋喃(THF)、乙腈(AcN)和二氯甲烷(DCM)通过溶剂纯化系统(SPS)进行干燥。
1)合成2-(二苯基磷酰基)苯酚锂(1)的合成方案
1.1)(2-甲氧基苯基)二苯基氧化膦
在存在催化量的元素碘的情况下,将3.36mL(5.0g,26.7mmol,1.05当量)邻溴苯甲醚在20mL来自SPS的无水THF中的溶液缓慢加到镁屑(0.98g,40.1mmol,1.57当量)在20mL THF中的悬浮液中。在初始温度升高结束之后,将反应混合物回流2小时,随后使其恢复到室温并惰性过滤。将滤液在-50℃下冷却,且逐滴添加6g(25.4mmol,1当量)的二苯基磷酰氯在20mL THF中的溶液。允许该悬浮液缓慢升温至室温并搅拌过夜。随后将混合物回流3小时,且随后冷却到室温。通过加入10mL甲醇淬灭该反应。将溶剂在真空下蒸发,将残留物在50mL氯仿中悬浮并过滤。将滤液蒸发以定量地提供(2-甲氧基苯基)二苯基氧化膦(7.8g,25.4mmol)。在未进一步纯化的情况下使用粗产物。
GC-MS:m/z=308(96%纯度)。
1.2)(2-羟基苯基)二苯基氧化膦
将7.8g(25.4mmol,1当量)(2-甲氧基苯基)二苯基氧化膦在20mL无水DCM中的溶液冷却到-5℃。向该反应混合物中缓慢加入28mL(1.1当量)的在DCM中1M的三溴化硼溶液。除去冷却浴且将反应物在室温下搅拌过夜。在用10mL甲醇淬灭之后,将混合物用饱和水性碳酸氢钠溶液中和。用50mL氯仿从该混合物中萃取,接着蒸发并用己烷从氯仿中沉淀,提供4.1g(13.9mmol,55%产率)(2-羟基苯基)二苯基氧化膦。
HPLC纯度:97%(UV检测器,在300nm下)。
1.3)2-(二苯基磷酰基)苯酚锂(1)
在氩气流中向悬浮在80mL无水AcN中的4.0g(13.6mmol,1当量)(2-羟基苯基)二苯基氧化膦中加入109mg(13.6mmol,1当量)氢化锂。将悬浮液在室温下搅拌过夜,随后过滤并用AcN洗涤以提供3.40g(83%产率)灰色粉末。通过梯度升华实现进一步的纯化。
HPLC:97%(250nm),98%(300nm)。
DSC:熔点:436℃(起始)。
1H-NMR(CD3OD,500.13MHz):δ[ppm]=6.38(宽单峰,1H),6.65(m,1H),6.77(宽单峰,1H),7.18(t,J=8Hz,1H),7.42(td,J=3Hz和8Hz,4H),7.50(m,2H),7.65(m,4H)。
13C-NMR(CD3OD,125.76MHz,具有P-C偶合):δ[ppm]=114.01(d,J=11Hz),115.80(d,J=3Hz),122.19(d,J=10Hz),129.35(d,J=12Hz),132.69(d,J=15Hz),133.34(d,J=105Hz),134.34(s),134.64(d,J=10Hz),135.19(s),135.73(d,J=3Hz)。
31P-NMR(CD3OD,125.76MHz,没有P-C偶合):δ[ppm]=37.28。
2)合成3-(二苯基磷酰基)苯酚锂(2)的合成方案
2.1)(3-甲氧基苯基)二苯基氧化膦
在存在催化量的元素碘的情况下,将3.36mL(5.0g,26.7mmol,1.05当量)3-溴苯甲醚在20mL来自SPS的无水THF中的溶液缓慢加到镁屑(0.98g,40.1mmol,1.57当量)在20mL THF中的悬浮液中。在初始温度升高结束之后,将反应混合物回流2小时,随后使其恢复到室温并惰性过滤。将滤液在-50℃下冷却,并逐滴添加6g(25.4mmol,1当量)二苯基磷酰氯在20mL THF中的溶液。允许该悬浮液缓慢升温至室温并搅拌过夜。随后将混合物回流3小时,且随后冷却到室温。通过加入10mL甲醇淬灭该反应。将溶剂在真空下蒸发,且将残留物在50mL氯仿中悬浮并过滤。将滤液蒸发以定量地提供(3-甲氧基苯基)二苯基氧化膦(7.8g,25.4mol)。粗产物在未进一步纯化的情况下使用。
GC-MS:m/z=308(96%)。
2.2)(3-羟基苯基)二苯基氧化膦
将7.8g(25.4mmol,1当量)(3-甲氧基苯基)二苯基氧化膦在20mL无水DCM中的溶液冷却到-5℃。向反应混合物中缓慢加入28mL(1.1当量)三溴化硼在DCM中的1M溶液。除去冷却浴且将反应物在室温下搅拌过夜。在用10mL甲醇淬灭之后,将混合物用饱和水性碳酸氢钠溶液中和。用50mL氯仿从该混合物中萃取,接着蒸发并用己烷从氯仿中沉淀,提供4.1g(13.9mmol,55%产率)(3-羟基苯基)二苯基氧化膦。
HPLC:96%(300nm)。
2.3)3-(二苯基磷酰基)苯酚锂(2)
在氩气流下向4.0g(13.6mmol,1当量)(3-羟基苯基)二苯基氧化膦在80mL无水AcN中的悬浮液中加入109mg(13.6mmol,1当量)氢化锂。将悬浮液在室温下搅拌过夜,随后过滤并用AcN洗涤固态产物以提供3.40g(83%产率)灰色粉末。通过梯度升华实现进一步的纯化。
HPLC:97%(250nm),98%(300nm)
DSC:熔点:177℃(起始)
1H-NMR(CD3OD,500.13MHz):δ[ppm]=7.02-7.07(m,3H,Ar-H,来自酚环),7.34-7.38(m,1H,Ar-H来自酚环),7.54-7.56(m,4H,Ar-H苯基环),7.61-7.65(m,6H,Ar-H来自苯基环)。
13C-NMR(CD3OD,125.76MHz,具有P-C偶合):δ[ppm]=119.69(d,J=11Hz),121.02(d,J=3Hz),124.15(d,J=10Hz),130.13(d,J=12Hz),131.48(d,J=15Hz),132.93(d,J=105Hz),133.27(d,J=10Hz),133.89(d,J=105Hz),133.91(d,J=3Hz),159.33(d,J=15Hz)。
31P-NMR(CD3OD,125.76MHz,没有P-C偶合):δ[ppm]=32.83。
3)2,2'-(苯基磷酰基)二苯酚锂(3)
向3.58g(38mmol,2.1当量)苯酚在80mL无水THF中的溶液中,逐滴加入5.4mL(2.1当量)二异丙胺,且将整体混合物冷却到0℃。在该温度下用注射器逐滴加入3.53g(18mmol,1当量)二氯苯基氧化膦,导致形成白色沉淀物。将反应混合物在室温下剧烈地搅拌过夜。惰性过滤该混合物提供澄清滤液,将该澄清滤液加到在-78℃下冷却的新鲜制备的二异丙基酰胺锂(43mmol,2.4当量)在100mL无水THF中的溶液中。使该反应混合物恢复到室温过夜。在蒸发溶剂之后,将棕色残留物溶解于200mL氯仿中,且通过加入300mL正己烷使其沉淀。通过过滤分离灰褐色固体,其通过在150mL AcN中浆洗来进一步纯化,以在过滤并干燥之后提供3.6g(62%产率)作为浅灰褐色固体的(3)。
HPLC:97%(300nm)
1H-NMR(CD3OD,500.13MHz):δ[ppm]=6.50(t,J=7Hz,2H),6.65(dd,J=6Hz和8Hz,2H),7.16(dd,J=8Hz和14Hz,2H),7.22(t,J=8Hz,2H),7.40(td,J=2Hz和8Hz,2H),7.48(td,J=1Hz和8Hz,1H),7.56(dd,J=8Hz和13Hz,2H)。
4)3-(二苯基磷酰基)-[1,1'-联苯基]-4-酚锂(4)的合成方案
4.1)合成二苯基亚膦酸[1,1'-联苯]-4-基酯
向1.0g(5.9mmol,1.1当量)对苯基苯酚在30mL无水THF中的溶液中,逐滴加入0.8mL(2.1当量)二异丙胺,且将整体混合物冷却到0℃。在该温度下用注射器逐滴加入1.26g(5.3mmol,1当量)氯二苯基氧化膦,导致形成白色沉淀物。将反应混合物在室温下剧烈地搅拌过夜。过滤该混合物,接着蒸发溶剂,得到灰褐色粉末。获得960mg(49%产率)二苯基亚膦酸[1,1'-联苯]-4-基酯。
HPLC:98.6%(250nm)。
4.2)合成3-(二苯基磷酰基)-[1,1'-联苯基]-4-酚锂(4)
将0.96g(2.6mmol,1.0当量)二苯基亚膦酸[1,1'-联苯]-4-基酯在20mL无水THF中的溶液加到在-78℃下冷却的新鲜制备的二异丙基酰胺锂(2.8mmol,1.1当量)在20mL THF中的溶液中。使该反应混合物恢复到室温过夜。在过滤盐并蒸发溶剂之后,将棕色残留物在几毫升THF中洗涤以在过滤并干燥之后提供560mg(58%产率)的浅灰褐色固体。
HPLC:94.8%(250nm)
1H-NMR(CD3OD,500.13MHz):δ[ppm]=6.69(dd,J=6Hz和9Hz,1H),7.12(t,J=7Hz,1H),7.26(m,2H),7.34(m,4H),7.48(td,J=2Hz和8Hz,3H),7.56(m,2H),7.74(m,5H)。
5)4-(二苯基磷酰基)苯酚锂(5)的合成方案
4.1)合成(4-甲氧基苯基)二苯基氧化膦
将3.34mL(26.7mmol,1.0当量)4-溴苯甲醚在20mL无水THF中的溶液逐滴加入在0℃下冷却的具有催化量的碘的960mg(40mmol,1.5当量)镁屑在20mL无水THF中的悬浮液中。在放热加成完全之后,将反应混合物进一步回流2小时,且随后在惰性条件下滤出残留的镁。向冷却的滤液(在-50℃下)中加入5.1mL(26.7mmol,1当量)氯化二苯基氧化膦。使该反应混合物恢复到室温过夜。凝胶过滤(SiO2,DCM/MeOH99:1)得到5.66g(67%产率)黄色玻璃状固体。
GCMS:100%m/z308[M]+
4.2)合成(4-羟基苯基)二苯基氧化膦
将40.9mL(2.1当量)在二氯甲烷中1.6M的三溴化硼溶液逐滴加入在0℃下冷却的5.6g(18.2mmol,1.0当量)(4-甲氧基苯基)-二苯基氧化膦在50mL无水DCM中的溶液中。将反应混合物在40℃下加热过夜,且随后通过几滴MeOH淬灭。在1小时之后,将混合物用水性1M碳酸氢钠溶液洗涤且用氯仿萃取。将有机层用水充分洗涤,直至水层的pH为中性,且随后蒸干。将残留物用30mL DCM进一步浆洗以提供1.23g(23%产率)灰褐色固体。
GCMS:100%m/z294[M]+
4.3)合成4-(二苯基磷酰基)苯酚锂(5)
在40℃下将1.23g(42mmol,1当量)(4-羟基苯基)二苯基氧化膦溶解于45mL无水DCM中,随后使其恢复到室温。将29mg(42mmol,1当量)氢化锂加到混合物中,将其再次加热到40℃历时15分钟,随后使其恢复到室温过夜。在蒸发溶剂之后,将残留物用20mL己烷浆洗以提供1.16g(93%)浅灰褐色固体。
HPLC:100%(300nm)。
1H-NMR(THF-d8,500.13MHz):δ[ppm]=6.82(dd,J=2Hz和9Hz,2H),7.40-7.51(m,8H),7.63-7.67(m,4H)。
化合物(1)的可选步骤
(2-羟基苯基)二苯基膦的氧化:
将32.25g(116mmol)(2-羟基苯基)二苯基膦溶解于480ml二氯甲烷中,且逐滴加入17.8ml30%过氧化氢水溶液。将所得悬浮液在室温下搅拌1.5天。将沉淀物过滤并用30ml二氯甲烷洗涤。
在干燥之后,获得27.82g(82%产率)的HPLC-纯(2-羟基苯基)二苯基氧化膦。
(2-羟基苯基)二苯基氧化膦的去质子化:
将27.82g(94.6mmol)(2-羟基苯基)二苯基氧化膦悬浮在1.4l二氯甲烷中。加入0.833g(104.1mmol)氢化锂且将悬浮液搅拌1.5天,之后在减压下除去溶剂。将粗产物用300ml氯仿搅拌过夜且将固体过滤,用氯仿洗涤且在真空中干燥。将26.46g(93%产率)在高真空下升华以便进一步纯化。
器件实施例
对比实施例1
通过在玻璃基底上沉积100nm厚的Ag的阳极来制造第一蓝色发光器件。然后沉积40nm HTM2的掺杂层(基质与掺杂剂的重量比为97:3)作为空穴注入和传输层,之后沉积92nm HTM2的未掺杂层。随后,沉积厚度为20nm的用NUBD370(太阳精细化学品(Sun FineChemicals))掺杂的ABH113(太阳精细化学品)的蓝色荧光发光层(基质与掺杂剂的比率为97:3重量%)。将36nm的根据ETM1的化合物的层作为ETL沉积在发光层上。随后沉积1nm厚的喹啉锂(LiQ)层,接着是ETM1层。随后,沉积厚度为12nm的Mg:Ag(90:10重量%)层作为透明阴极,接着沉积60nm的HTM2作为覆盖层。
该器件显示,在10mA/cm2的电流密度下4.2V的电压,在10mA/cm2的电流密度下122cd/m2的亮度,在相同电流密度下1.2cd/A的电流效率。
在整个堆叠中,可用HTM1替代HTM2,产生类似结果。
对比实施例2
如在对比实施例1中的,制造类似的器件,不同之处在于将ETL沉积为36nm厚的以1:1重量比的ETM1和LiQ的混合物的层。
该器件显示,在10mA/cm2的电流密度下4.0V的电压,在10mA/cm2的电流密度下260cd/m2的亮度,在相同电流密度下2.6cd/A的电流效率。
本发明实施例1
如在对比实施例1中的,制造类似的器件,不同之处在于将ETL沉积为36nm厚的以1:1重量比的式(I)化合物和ETM1的混合物的层。
该器件显示,在10mA/cm2的电流密度下4.3V的略微增加的电压,在10mA/cm2的电流密度下532cd/m2的极度增强的亮度,在相同电流密度下5.3cd/A的电流效率。这些值对于发蓝光的OLED显著有益。考虑到该高性能,可以在较低电压下操作OLED,其与对比实施例的OLED相比具有相同或比其更高的光强度。
具有其它ETM和式(I)化合物的OLED显示类似的性能改进,具有其它ETM和式(I)化合物的OLED显示类似的性能改进,如在表1中所示:
这些结果显示包含式(I)化合物的本发明器件不仅是使用已知LiQ作为电子注入添加剂的器件的有用可选方案。式(I)化合物的使用显著拓宽了电子传输改进添加剂的供应,允许改进和优化器件性能以超出本领域已知的极限。
在以上说明书、权利要求书和附图中公开的特征可以单独地和以其任何组合的方式成为用于以其变体形式实现本发明的材料。

Claims (16)

1.一种有机电子器件,其包括第一电极、第二电极和在所述第一电极和所述第二电极之间的包含式(I)化合物的基本上有机的层:
其中A1为C6-C20亚芳基,且A2~A3各自独立地选自C6-C20芳基,其中所述芳基或亚芳基可以未被取代或被包含C和H的基团取代或被另一LiO基团取代,条件是在芳基或亚芳基基团中给定的C数还包括在所述基团上存在的所有取代基。
2.根据权利要求1所述的有机电子器件,其中A1为C6-C12亚芳基。
3.根据权利要求1或2所述的有机电子器件,其中A2~A3各自独立地选自C6-C10芳基。
4.根据权利要求1或2所述的有机电子器件,其中A2和A3为苯基。
5.根据权利要求1或2所述的有机电子器件,其中A1为邻亚苯基或对亚苯基。
6.根据权利要求1所述的有机电子器件,其中所述基本上有机的层包含电子传输基质化合物。
7.根据权利要求6所述的有机电子器件,其中所述电子传输基质化合物包含咪唑或P=O官能团。
8.根据权利要求6或7所述的有机电子器件,其中所述式(I)化合物和所述电子传输基质化合物以均匀混合物形式存在于所述基本上有机的层中。
9.根据权利要求1所述的有机电子器件,其中所述器件选自有机发光二极管、有机太阳能电池和有机场效应晶体管。
10.根据权利要求9所述的有机电子器件,其中所述器件为具有作为阳极的所述第一电极、作为阴极的所述第二电极的有机发光二极管,且所述器件还包括在所述阳极和所述阴极之间的发光层,且其中所述基本上有机的层包括在所述阴极和所述发光层之间。
11.根据权利要求10所述的有机电子器件,其中所述发光层包含发光聚合物。
12.一种根据式(I)的化合物,
其中A1为间亚芳基或对亚芳基,且A2~A3各自独立地选自C6-C20芳基,其中所述芳基或亚芳基可以未被取代或被包含C和H的基团取代或被另一LiO基团取代,条件是在芳基或亚芳基基团中给定的C数还包括在所述基团上存在的所有取代基。
13.根据权利要求12所述的化合物,其中A2~A3各自独立地选自C6-C10芳基。
14.根据权利要求12或13所述的化合物,其中所述亚芳基为间亚苯基。
15.一种根据式(I)的化合物在有机电子器件中的用途,
其中A1为C6-C20亚芳基,且A2~A3各自独立地选自C6-C20芳基,其中所述芳基或亚芳基可以未被取代或被包含C和H的基团取代或被另一LiO基团取代,条件是在芳基或亚芳基基团中给定的C数还包括在所述基团上存在的所有取代基。
16.根据权利要求15所述的用途,其中所述化合物用于改进在所述器件的电子传输层中的和/或邻近所述电子传输层的载流子传输和/或电子注入。
CN201280067205.0A 2011-11-30 2012-11-30 有机电子器件 Active CN104115296B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11191351.3 2011-11-30
EP11191351 2011-11-30
PCT/EP2012/074127 WO2013079678A1 (en) 2011-11-30 2012-11-30 Organic electronic device

Publications (2)

Publication Number Publication Date
CN104115296A CN104115296A (zh) 2014-10-22
CN104115296B true CN104115296B (zh) 2016-09-14

Family

ID=47358133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280067205.0A Active CN104115296B (zh) 2011-11-30 2012-11-30 有机电子器件

Country Status (7)

Country Link
US (2) US10374165B2 (zh)
EP (1) EP2786434B1 (zh)
JP (1) JP6165760B2 (zh)
KR (1) KR101995047B1 (zh)
CN (1) CN104115296B (zh)
TW (1) TWI558711B (zh)
WO (1) WO2013079678A1 (zh)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140203254A1 (en) * 2011-06-22 2014-07-24 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Organic Electronic Component
CN107434813B (zh) * 2011-11-30 2021-02-02 诺瓦尔德股份有限公司 显示器
EP3249714B1 (en) 2013-04-10 2021-03-17 Novaled GmbH Semiconducting material comprising aza-substituted phosphine oxide matrix and metal salt
EP2811000B1 (en) * 2013-06-06 2017-12-13 Novaled GmbH Organic electronic device
EP2860782B1 (en) * 2013-10-09 2019-04-17 Novaled GmbH Semiconducting material comprising a phosphine oxide matrix and metal salt
EP2887412B1 (en) * 2013-12-23 2016-07-27 Novaled GmbH Semiconducting material
EP2887416B1 (en) * 2013-12-23 2018-02-21 Novaled GmbH N-doped semiconducting material comprising phosphine oxide matrix and metal dopant
EP2963697B1 (en) * 2014-06-30 2020-09-23 Novaled GmbH Electrically doped organic semiconducting material and organic light emitting device comprising it
EP2963696A1 (en) 2014-07-04 2016-01-06 Novaled GmbH Organic light-emitting diode (OLED) including an electron transport layer stack comprising different lithium compounds
TWI690534B (zh) 2014-08-08 2020-04-11 愛爾蘭商Udc愛爾蘭責任有限公司 電致發光咪唑并喹噁啉碳烯金屬錯合物
KR101611213B1 (ko) 2014-09-17 2016-04-11 주식회사 엘엠에스 발광소자 및 이를 포함하는 전자장치
EP2999019B1 (en) * 2014-09-19 2019-06-12 Novaled GmbH Organic light-emitting diode including an electron transport layer stack comprising different lithium compounds and elemental metal
EP3002801B1 (en) * 2014-09-30 2018-07-18 Novaled GmbH Organic electronic device
EP3002796A1 (en) * 2014-10-01 2016-04-06 Novaled GmbH Organic light-emitting diode including an electron transport layer comprising a three component blend of a matrix compound and two lithium compounds
EP3035400B1 (en) 2014-12-17 2019-10-23 Novaled GmbH Organic light-emitting diode comprising electron transport layers with different matrix compounds
EP3093288A1 (en) 2015-05-12 2016-11-16 Novaled GmbH Organic light-emitting diode comprising different matrix compounds in the first and second electron transport layer
TWI723007B (zh) * 2015-02-18 2021-04-01 德商諾瓦發光二極體有限公司 半導體材料及其萘并呋喃基質化合物
EP3059776B1 (en) 2015-02-18 2021-03-31 Novaled GmbH Semiconducting material and naphtofuran matrix compound
CN107851736B (zh) * 2015-06-23 2020-06-05 诺瓦尔德股份有限公司 包含极性基质和金属掺杂剂的n型掺杂半导体材料
DE102015110091B4 (de) 2015-06-23 2019-06-06 Novaled Gmbh Phosphepinmatrixverbindung für ein Halbleitermaterial
EP3109915B1 (en) 2015-06-23 2021-07-21 Novaled GmbH Organic light emitting device comprising polar matrix and metal dopant
EP3109919B1 (en) 2015-06-23 2021-06-23 Novaled GmbH N-doped semiconducting material comprising polar matrix and metal dopant
EP3109916B1 (en) 2015-06-23 2021-08-25 Novaled GmbH Organic light emitting device comprising polar matrix, metal dopant and silver cathode
EP3147961A1 (en) 2015-09-28 2017-03-29 Novaled GmbH Organic electroluminescent device
KR102494453B1 (ko) * 2015-10-05 2023-02-02 삼성디스플레이 주식회사 유기 전계 발광 소자 및 이를 포함하는 표시 장치
EP3168324A1 (en) 2015-11-10 2017-05-17 Novaled GmbH Process for making a metal containing layer
EP3168886B8 (en) 2015-11-10 2023-07-26 Novaled GmbH Metallic layer comprising alkali metal and second metal
EP3168894B8 (en) 2015-11-10 2023-07-26 Novaled GmbH N-doped semiconducting material comprising two metal dopants
EP3374538B1 (en) 2015-11-10 2024-02-21 Novaled GmbH Process for making a metal containing layer
KR101673864B1 (ko) 2015-11-18 2016-11-09 부산대학교 산학협력단 신규한 포스핀 옥사이드 기능화된 트리아진 유도체를 포함하는 전자 소자 및 포스핀 옥사이드 기능화된 트리아진 유도체
KR20170074170A (ko) 2015-12-21 2017-06-29 유디씨 아일랜드 리미티드 삼각형 리간드를 갖는 전이 금속 착체 및 oled에서의 이의 용도
EP3208861A1 (en) 2016-02-19 2017-08-23 Novaled GmbH Electron transport layer comprising a matrix compound mixture for an organic light-emitting diode (oled)
EP3232490B1 (en) * 2016-04-12 2021-03-17 Novaled GmbH Organic light emitting diode comprising an organic semiconductor layer
EP3312899B1 (en) 2016-10-24 2021-04-07 Novaled GmbH Electron transport layer stack for an organic light-emitting diode
EP3312896B1 (en) 2016-10-24 2021-03-31 Novaled GmbH Organic electroluminescent device comprising a redox-doped electron transport layer and an auxiliary electron transport layer
EP3369729B1 (en) 2017-03-02 2022-01-12 Novaled GmbH Fused 9-phenyl-acridine derivatives for use in an electronic device and display device
EP3406599B1 (en) 2017-05-23 2023-02-22 Novaled GmbH Organic electronic device comprising an organic semiconductor layer
EP3407401A1 (en) 2017-05-23 2018-11-28 Novaled GmbH Organic electronic device comprising an organic semiconductor layer and a device
EP3425692B1 (en) 2017-07-07 2023-04-05 Novaled GmbH Organic electroluminescent device comprising an electron injection layer with zero-valent metal
EP3470398B1 (en) 2017-10-13 2022-05-04 Novaled GmbH Organic electronic device comprising an organic semiconductor layer
EP3470412B1 (en) 2017-10-13 2020-07-22 Novaled GmbH Organic electronic device comprising an organic semiconductor layer
EP3483153A1 (en) 2017-11-09 2019-05-15 Novaled GmbH Compounds comprising triazine group, fluorene-group and aryl group and their use in organic electronic devices
EP3483157A1 (en) 2017-11-09 2019-05-15 Novaled GmbH Compounds comprising triazine group, fluorene-group and hetero-fluorene group
EP3483154A1 (en) 2017-11-09 2019-05-15 Novaled GmbH Compounds comprising triazine, fluorene and aryl groups and their use in organic electronic devices
EP3502106B1 (en) 2017-12-21 2020-09-02 Novaled GmbH Triazine compounds substituted with bulky groups
EP3503240A1 (en) 2017-12-21 2019-06-26 Novaled GmbH Organic semiconductor layer
EP3527557A1 (en) 2018-02-16 2019-08-21 Novaled GmbH N-heteroarylene compounds
EP3527558A1 (en) 2018-02-16 2019-08-21 Novaled GmbH N-heteroarylene compounds
KR102204963B1 (ko) * 2018-04-23 2021-01-19 주식회사 엘지화학 유기 발광 소자
EP3567039B1 (en) 2018-05-08 2024-05-08 Novaled GmbH N-heteroarylene compounds with low lumo energies
KR102229001B1 (ko) * 2018-05-31 2021-03-17 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
EP3598515A1 (en) 2018-07-18 2020-01-22 Novaled GmbH Compound and organic semiconducting layer, organic electronic device, display device and lighting device comprising the same
US11258041B2 (en) * 2019-01-04 2022-02-22 Samsung Display Co., Ltd. Display apparatus, method of manufacturing the same, and electronic device
EP3757100B1 (en) 2019-06-25 2022-12-28 Novaled GmbH Triazine compounds substituted with bulky groups
EP3835295A1 (en) 2019-12-10 2021-06-16 Novaled GmbH Acridine compound and organic semiconducting layer, organic electronic device and display device comprising the same
CN117529485A (zh) * 2021-10-20 2024-02-06 株式会社Lg化学 新的化合物和包含其的有机发光器件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101321735A (zh) * 2005-12-02 2008-12-10 出光兴产株式会社 含氮杂环衍生物以及使用其的有机电致发光元件

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270171A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
KR20010050711A (ko) 1999-09-29 2001-06-15 준지 키도 유기전계발광소자, 유기전계발광소자그룹 및 이런소자들의 발광스펙트럼의 제어방법
JP4876333B2 (ja) 2000-06-08 2012-02-15 東レ株式会社 発光素子
DE10058578C2 (de) 2000-11-20 2002-11-28 Univ Dresden Tech Lichtemittierendes Bauelement mit organischen Schichten
JP2003031370A (ja) * 2001-07-13 2003-01-31 Sharp Corp 有機el素子
WO2003088271A1 (en) 2002-04-08 2003-10-23 The University Of Southern California Doped organic carrier transport materials
JP2004203828A (ja) * 2002-12-26 2004-07-22 Toray Ind Inc ホスフィンオキサイド化合物およびそれを用いた発光素子用材料ならびに発光素子
JP4254231B2 (ja) 2002-12-26 2009-04-15 東レ株式会社 発光素子用材料およびそれを用いた発光素子
DE102004010954A1 (de) 2004-03-03 2005-10-06 Novaled Gmbh Verwendung eines Metallkomplexes als n-Dotand für ein organisches halbleitendes Matrixmaterial, organisches Halbleitermaterial und elektronisches Bauteil
JP4790260B2 (ja) 2004-12-22 2011-10-12 出光興産株式会社 アントラセン誘導体を用いた有機エレクトロルミネッセンス素子
DE102005010978A1 (de) 2005-03-04 2006-09-07 Technische Universität Dresden Photoaktives Bauelement mit organischen Schichten
DE102005010979A1 (de) 2005-03-04 2006-09-21 Technische Universität Dresden Photoaktives Bauelement mit organischen Schichten
JPWO2007007464A1 (ja) 2005-07-11 2009-01-29 出光興産株式会社 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US7678474B2 (en) 2005-07-22 2010-03-16 Lg Chem. Ltd. Imidazole derivatives and organic electronic device using the same
JP5031209B2 (ja) * 2005-08-05 2012-09-19 株式会社神戸製鋼所 蓄熱ユニット及び蓄熱ユニットの運転方法
KR100890862B1 (ko) 2005-11-07 2009-03-27 주식회사 엘지화학 유기 발광 소자 및 이의 제조 방법
US20070196688A1 (en) 2006-02-23 2007-08-23 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2007105448A1 (ja) 2006-02-28 2007-09-20 Idemitsu Kosan Co., Ltd. ナフタセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR100813676B1 (ko) * 2006-03-20 2008-03-18 주식회사 진웅산업 새로운 전자주입층 물질 및 이를 포함하는유기전계발광소자
WO2007111262A1 (ja) 2006-03-27 2007-10-04 Idemitsu Kosan Co., Ltd. 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2008106180A (ja) * 2006-10-26 2008-05-08 Matsushita Electric Works Ltd 光半導体封止用樹脂組成物及び光半導体装置
JP2008195623A (ja) * 2007-02-08 2008-08-28 Chemiprokasei Kaisha Ltd 新規な複素環含有ヒドロキシフェニル金属誘導体およびそれを用いた電子注入材料、電子輸送材料および有機エレクトロルミネッセンス素子
DE102007012794B3 (de) 2007-03-16 2008-06-19 Novaled Ag Pyrido[3,2-h]chinazoline und/oder deren 5,6-Dihydroderivate, deren Herstellungsverfahren und diese enthaltendes dotiertes organisches Halbleitermaterial
JP5230218B2 (ja) * 2007-03-26 2013-07-10 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
GB0810532D0 (en) * 2008-06-10 2008-07-09 Oled T Ltd Method of making an oled
JP2010121036A (ja) 2008-11-19 2010-06-03 Canon Inc 発光素子及び画像表示装置および新規有機化合物
JP5164825B2 (ja) 2008-12-19 2013-03-21 キヤノン株式会社 有機発光素子
WO2011010656A1 (ja) * 2009-07-21 2011-01-27 国立大学法人九州大学 有機電界発光素子
EP2395571B1 (en) 2010-06-10 2013-12-04 Novaled AG Organic electronic device comprising an organic semiconducting material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101321735A (zh) * 2005-12-02 2008-12-10 出光兴产株式会社 含氮杂环衍生物以及使用其的有机电致发光元件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A Highly Efficient Universal Bipolar Host for Blue,Green, and Red Phosphorescent OLEDs;Ho-Hsiu Chou,et al;《Advanced Materials》;20100505;第22卷;第2469页图1 *
Lithium phenolate complexes for an electron injection layer in organic light-emitting diodes;Yong-Jin Pu,et al;《Organic Electronics》;20081117;第10卷;第229页路线1 *

Also Published As

Publication number Publication date
TWI558711B (zh) 2016-11-21
US20140353649A1 (en) 2014-12-04
US10374165B2 (en) 2019-08-06
WO2013079678A1 (en) 2013-06-06
US20190312208A1 (en) 2019-10-10
JP2015506095A (ja) 2015-02-26
KR101995047B1 (ko) 2019-07-01
US10818845B2 (en) 2020-10-27
EP2786434A1 (en) 2014-10-08
CN104115296A (zh) 2014-10-22
TW201333018A (zh) 2013-08-16
EP2786434B1 (en) 2015-09-30
JP6165760B2 (ja) 2017-07-19
KR20140112494A (ko) 2014-09-23

Similar Documents

Publication Publication Date Title
CN104115296B (zh) 有机电子器件
CN104067400B (zh) 有机电子器件
JP7051831B2 (ja) ジアザジベンゾフランまたはジアザジベンゾチオフェン構造を有する化合物
CN104321406B (zh) 半导体化合物在有机发光器件中的用途
KR101891224B1 (ko) 유기 전자 장치를 위한 화합물 및 유기 전자 장치
KR101864120B1 (ko) 함질소 방향족 화합물, 유기 반도체 재료 및 유기 전자 디바이스
TWI508343B (zh) Nitrogen-containing aromatic compounds, organic semiconductor materials and organic electronic devices
EP2463927B1 (en) Material for organic electronic device and organic electronic device
KR102205424B1 (ko) 포스핀 옥사이드 매트릭스 및 금속염을 포함하는 반도전성 물질
EP2811000B1 (en) Organic electronic device
TW201322522A (zh) 顯示器
CN107251260B (zh) 半导体材料和用于所述半导体材料的萘并呋喃基质化合物
KR20160102528A (ko) 포스페핀 매트릭스 화합물을 포함하는 반도전성 물질
US10522765B2 (en) Organic electronic device having lithoxy group and phosphine oxide group material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant