CN104094430A - 具有钝化的切换层的非易失性电阻式存储器元件 - Google Patents

具有钝化的切换层的非易失性电阻式存储器元件 Download PDF

Info

Publication number
CN104094430A
CN104094430A CN201280059555.2A CN201280059555A CN104094430A CN 104094430 A CN104094430 A CN 104094430A CN 201280059555 A CN201280059555 A CN 201280059555A CN 104094430 A CN104094430 A CN 104094430A
Authority
CN
China
Prior art keywords
layer
metal oxide
doping agent
atom
variable resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280059555.2A
Other languages
English (en)
Inventor
查伦·陈
迪潘克尔·普拉马尼克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
SanDisk 3D LLC
Original Assignee
Toshiba Corp
SanDisk 3D LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, SanDisk 3D LLC filed Critical Toshiba Corp
Publication of CN104094430A publication Critical patent/CN104094430A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/20Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/023Formation of switching materials, e.g. deposition of layers by chemical vapor deposition, e.g. MOCVD, ALD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of switching materials after formation, e.g. doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of switching materials after formation, e.g. doping
    • H10N70/043Modification of switching materials after formation, e.g. doping by implantation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

一种非易失性电阻式存储器元件具有在沉积切换层期间或之后利用例如氮等非金属掺杂剂原子进行钝化的新型可变电阻层。在可变电阻层中非金属掺杂剂原子的存在使切换层能够通过较小的切换电流来进行操作同时维持改进的数据保持特性。

Description

具有钝化的切换层的非易失性电阻式存储器元件
技术领域
本发明涉及一种非易失性电阻式存储器元件(nonvolatile resistivememory element),更具体地涉及具有钝化的切换层(passivated switchinglayer)的非易失性电阻式存储器元件以及其形成方法。
背景技术
非易失性存储器元件用在需要持久性数据存储的设备(例如数码相机和数字音乐播放器)中,以及用在计算机系统中。电可擦除可编程只读存储器(EPROM,electrically-erasable programmable read only memory)和NAND闪存是当前正在使用的非易失性存储器技术。然而,随着器件尺寸缩小,缩放(scaling)问题对传统非易失性存储器技术提出挑战。这导致了对包括电阻式切换的非易失性存储器的、替代性非易失性存储器技术的研究。
使用双稳态(即,具有不同电阻的两个稳定状态)的存储器元件来形成电阻式切换的非易失性存储器。可以通过施加适当的电压或电流而将双稳态存储器元件置于高电阻状态或低电阻状态。电压脉冲通常用于使双稳态存储器元件从一个电阻状态切换到另一电阻状态。随后,可以在存储器元件上执行无损读取操作以确定被存储在其中的数据位的值。
随着电阻式切换的存储器设备尺寸缩小,重要的是减少可靠地置位(set)、复位(reset)和/或确定设备的期望的“接通(on)”和“关断(off)”状态所必需的必要电流和电压,从而把设备的功耗、设备的电阻性发热和相邻设备之间的串扰减至最低。此外,非常希望通过这样的设备将数据可靠地保持更长时间段。
因为形成有相对较少的氧空位的双稳态存储器元件可以导致更低的操作电压和电流,所以通常期望使形成在双稳态存储器元件中的氧空位的数量最小化。然而,具有少量的氧空位的双稳态存储器元件本质上更可能遭受数据保持问题,这是因为在这样的存储器元件中即使少量的氧空位损失或迁移也可以改变存储器元件的电阻状态,从而导致数据丢失。因此,在电阻式双稳态存储器元件的设计中,在受益于具有更少的氧空位的、具有更低的操作电压和电流的构造与受益于具有更多氧空位的、具有更高的耐用性和可靠性的构造之间存在取舍。
鉴于上述情况,在本领域中需要的是具有降低的电流和电压要求以及可靠的数据保持特性的非易失性电阻式切换的存储器设备。
发明内容
本发明的实施例提出了一种具有新型可变电阻层的非易失性电阻式存储器元件及其形成方法。在切换层的沉积期间或之后,利用非金属掺杂剂原子对新型可变电阻层进行钝化,使得切换层需要较小的切换电流并且具有改进的数据保持特性。适合于用作非金属掺杂剂原子的元素包括氮(N)、氟(F)和氯(Cl)。
根据本发明的一种实施例,形成非易失性存储器元件的方法包括如下步骤:形成可变电阻层,该可变电阻层包括在第一电极层上方的金属氧化物,其中可变电阻层包括高达3原子百分比的非金属掺杂剂原子;以及形成第二电极层,使得可变电阻层设置在第一电极层与第二电极层之间。
根据本发明的另一实施例,非易失性存储器元件包括在衬底上形成的第一电极层、第二电极层、以及可变电阻层,所述可变电阻层包括设置在第一电极层与第二电极层之间的金属氧化物,其中可变电阻层的至少一部分包括高达3原子百分比的掺杂剂原子。
附图说明
所以,通过参考附图可以得到上面简要阐述的能够详细理解本发明的实施例的上述特征的方式、本发明的实施例的更具体描述。然而,应该注意,附图仅例示了本发明的典型实施例,因此不应该被认为是对本发明范围的限制,这是因为本发明可以允许其他等效实施例。
图1是根据本发明的实施例配置的存储器设备的存储器阵列的透视图。
图2A是根据本发明的实施例配置的存储器设备的示意性横截面视图。
图2B示意性地例示了根据本发明的实施例的配置成使得电流正向流过存储器设备的存储器设备。
图3给出了根据本发明的实施例的存储器元件的一个实施例的双极切换曲线的电流与电压的双对数坐标图(log-log plot)。
图4是根据本发明的实施例的由包括新型可变电阻层的一系列沉积层形成的存储器设备的示意性横截面视图。
图5给出了根据本发明的一个实施例的在用于形成存储器设备的处理序列中的方法步骤的流程图。
为了清楚起见,在适用的地方,使用相同的附图标记指代附图中共有的相同元件。预期到的是,在没有进一步声明的情况下,一个实施例的特征可以结合到其他实施例中。
具体实施方式
用作非易失性电阻式存储器元件的切换层的材料通常需要具有双稳态特性,并且理想地能够以较低的切换电流来操作同时具有延长的数据保持特性。本发明的实施例提出了一种具有满足这些要求的新型可变电阻层的非易失性存储器元件。新型可变电阻层包括金属氧化物,该金属氧化物包含高达3原子百分比的阴离子非金属掺杂剂原子。
图1是根据本发明的实施例配置的存储器设备200的存储器阵列100的透视图。存储器阵列100可以是更大的存储器设备或其他集成电路结构(例如片上系统型设备,system-on-a-chip type device)的一部分。存储器阵列100可以形成为大容量非易失性存储器集成电路的一部分,其可以用在例如数码相机、移动电话、手持计算机以及音乐播放器等各种电子设备中。为了清楚起见,存储阵列100例示为单层存储器阵列结构。然而,也可以以垂直方式堆叠存储器阵列,例如存储器阵列100,以制造多层存储器阵列结构。
每个存储器设备200均包括非易失性电阻切换存储器设备,例如,电阻式随机存取存储器(ReRAM,resistive random access memory)设备。存储器设备200包括可以由一个或更多个材料层114形成的新型存储器元件112。材料层114包括新型可变电阻层,该新型可变电阻层包含金属氮化物、金属氧化物-氮化物或其组合,并且在下面结合图4进行描述。在一些实施例中,存储器设备200还包括电流导引器件,在下面结合图2A和图2B对其进行描述。
读取和写入电路(未示出)利用电极102和电极118连接至存储器设备200。电极102和电极118,有时称为“位线”和“字线”,用于读取数据或者将数据写入存储器设备200中的存储器元件112中。可以利用电极102和电极118的合适组合来寻址各个的存储器设备200或者存储器设备200的组。
图2A是根据本发明的实施例配置的存储器设备200的示意图。存储器设备200包括存储器元件112,并且在一些实施例中还包括电流导引器件216,存储器元件112和电流导引器件216均布置在电极102与电极118之间。在一个实施例中,电流导引器件216包括设置在电极102与存储器元件112之间或者设置在电极118与存储器元件112之间的插入电元件,例如p-n结二极管、p-i-n二极管、晶体管或其他类似器件。在一些实施例中,电流导引器件216可以包括两个或更多个半导体材料层,例如,两个或更多个掺杂的硅层,该半导体材料层配置成允许或禁止电流在不同方向流过存储器元件112。此外,读取和写入电路150经由如所示的电极102和电极118耦接至存储器设备200。读取和写入电路150配置成感测存储器设备200的电阻状态并且设置存储器设备200的电阻状态。
图2B示意性地例示了根据本发明的实施例的配置成使得电流正向(“I+”)流过存储器设备200的存储器设备200。然而,由于电流导引器件216的设计,还可以通过向电极102和电极118施加反向偏压使得较小的电流反向流过设备。
在读取操作期间,读取和写入电路150利用在存储器阵列100中适当选择的电极102和电极118在电阻切换存储器元件112两端施加读取电压VREAD,例如,+0.5伏(V)。然后,读取和写入电路150感测由此产生的穿过存储器设备200的电流。相对较高的“接通”电流值(ION)表示存储器元件112处于其低电阻状态,相对较低的“关断”电流值(IOFF)表示存储器元件112处于其高电阻状态。根据其历史,以这种方式被寻址的具体存储器元件112可以处于高电阻状态(HRS,high resistance state)或低电阻状态(LRS,low resistance state)中的任一状态。因此存储器元件112的电阻确定了什么数字数据被存储在存储器元件112中。例如,如果存储器元件112处于高电阻状态,可以说存储器元件112包含逻辑零(即,“0”位),另一方面,如果存储器元件112处于低电阻状态,可以说存储器元件112包含逻辑1(即,“1”位)。
在写入操作期间,可以通过由读取和写入电路150向电极102和电极118的合适组合施加合适的写入信号来改变在存储器阵列100中的具体存储器元件112的电阻状态。在一些实施例中,为了实现这样的改变,使用双极切换,其中相反极性的“置位”和“复位”电压用于使已选择的存储器元件112的电阻在高电阻状态和低电阻状态之间改变。图3给出了存储器元件112的一个实施例的双极切换曲线252的电流(I)与电压(V)的双对数坐标图251,因此例示了用于置位和复位存储器元件112的内容的典型阈值。例如,存储器元件112开始可处于高电阻状态(例如,存储逻辑“零”)。为了在存储器元件112中存储逻辑“1”,将存储器元件112置于其低电阻状态。这可以通过利用读取和写入电路150以将“置位”电压VSET(例如,-2V至-4V)施加在电极102和电极118两端使得“置位”电流ISET流动穿过存储器元件112来实现。在一个实施例中,将负VSET电压施加于存储器元件112,以使存储器元件112切换至其低电阻状态。在该区域中,存储器元件112被改变,使得在去除“置位”电压VSET之后,存储器元件112以低电阻状态为特征。相反,为了在存储器元件112中存储逻辑“零”,可以通过将正“复位”电压VRESET(例如,+2V至+5V)施加在存储器元件112两端而使存储器元件再次置于其高电阻状态,使得“复位”电流IRESET流动穿过存储器元件112。当读取和写入电路150将VRESET施加于存储器元件112时,存储器元件112进入其高电阻状态。当从存储器元件112去除了“复位”电压VRESET时,在施加读取电压VREAD时,存储器元件112再次以高电阻为特征。虽然本文中存储器元件112的讨论主要是提供双极切换的示例,但是在不脱离本文中所描述的发明的范围内的情况下,存储器元件112的一些实施例可以使用单极切换,其中“置位”和“复位”电压具有相同的极性。
为了配备可用的存储器元件112,通常在电极102和电极118两端施加形成电压VFORM至少一次以“老化测试(burn-in)”存储器阵列100中的每个存储器设备200。据认为,通常显著大于VRESET和VSET电压的形成电压VFORM的施加引起在设备的制造过程期间在可变电阻层206(图4中例示)内形成的缺陷在该层的不同区域内移动、排列和/或聚集,使得可变电阻层206在存储器元件的整个寿命内在“接通”和“关断”电阻状态之间一致且可靠地切换。在一个实施例中,形成电压VFORM在VRESET或VSET电压的约1倍至约5倍之间。在一个示例中,形成电压在VRESET或VSET电压的约1.4倍至约2.5倍之间。在一个示例中,形成电压在约3伏至约7伏之间。然而,应当注意,在某些情况下,期望形成一种存储器元件112,使得根本不需要施加形成电压来确保该设备在其整个寿命内如所期望的执行。
人们认为,存储器元件112的电阻状态的变化可能是“陷阱调解(trap-mediated)”(即,电阻状态的改变是归因于在存储器设备200被反向偏置时存储器元件112的可变电阻层中的陷阱或缺陷的重新分配或填充)。当可变电阻层包括金属氧化物(有时称为主体氧化物(host oxide))时,一般认为这些缺陷或陷阱是在可变电阻层的沉积和/或最初的“老化测试”(或“形成”)期间形成的氧空位。通过使金属/氧比率大于在可变电阻层中精确化学计量(exact stoichiometry)的金属/氧比率,很可能在可变电阻层中产生这样的氧空位。氧空位还可以通过在使金属氧化物键断裂之后经由电学方法或化学方法将氧原子从其原子位置转移而形成。一种可能的化学方法是将氮原子引入可变电阻层的金属氧化物材料中。在这种情况下,为了维持电中性,均带有一个负电荷的两个氮原子产生带有净电荷“+2”的一个氧空位。可变电阻层的电阻在很大程度上通过在可变电阻层中形成的这种氧空位的总数量和这种空位将电子传输通过可变电阻层的能力来确定。
用于切换可变电阻层所需的切换电流(即,“置位”电流ISET和“复位”电流IRESET)与包含在可变电阻层中的空位的数量之间的关系通过公式1进行量化:
(1) Iswitch=α*Nvac
其中,Iswitch=在期望的VSET和VRESET下通过可变电阻层的切换电流;α=表示当在可变电阻层两端施加VSET或VRESET时可变电阻层中的氧空位传输电子的平均能力的因子;以及NVAC=可变电阻层中氧空位的数量。电子传输因子α和空位的数量NVAC可以根据可变电阻层的具体材料以及可变电阻层形成的方式而改变。应该注意,可变电阻层的切换电流ISWITCH与可变电阻层的电阻成反比,结果随着可变电阻层的电阻增大,切换电流ISWITCH按比例减小。因此,具体可变电阻层(例如氧化铪(HfOx)层)的电阻值可以通过改变电子传输因子α和/或空位数量NVAC来进行调整。
减小可变电阻层中的空位的数量NVAC将增加可变电阻层的电阻,从而有利地减小了切换电流ISWITCH。然而,在包含可变电阻层的存储器元件的整个寿命内,形成有相对较小数量的空位NVAC的可变电阻层本质上更可能遭受数据保持问题。这是因为在将数据存储在存储器元件中时出现的空位数量NVAC的小变化能够使可变电阻层的电阻产生不期望的大变化。当这样的电阻变化足够大时,可变电阻层的电阻状态改变,导致数据的丢失。这种特征在公式2中量化:
( 2 ) - - - ΔR R = Δ N vac N vac
其中,R=处于具体电阻状态的可变电阻层的电阻;△R=响应于可变电阻层中氧空位的数量的变化△NVAC的可变电阻层的电阻R的变化;NVAC=可变电阻层中存在的氧空位的数量;以及△NVAC=在数据存储在可变电阻层中的时间段期间在可变电阻层中氧空位NVAC的数量的变化。公式2表明如果氧空位的数量NVAC相对较小,例如,5或10,则空位数量的变化△NVAC会相对较小,例如,1至5,并且还产生大的电阻变化△R。这是因为变化△R与变化△NVAC和氧空位的数量NVAC之比成正比。公式2与以下观察相符:该观察指明已知的具有低切换电流ISWITCH的非易失性电阻切换存储器设备存在数据保持问题。
本发明的实施例设想了在切换层的沉积期间或之后利用非金属掺杂剂原子进行钝化的可变电阻层,使得切换层通过较小的切换电流来进行操作,并且该切换层具有改进的数据保持特性。根据是否分别取代金属或氧离子,非金属掺杂剂原子可以是阳离子或阴离子中的任一种。按照公式1,掺杂剂原子的优选类型为同时地增加在可变电阻层中形成的氧空位的数量NVAC并且降低可变电阻层的电子传输因子α的那些类型。以这样的方式,切换电流ISWITCH可以维持在期望的值,而不使氧空位NVAC的数量降低至不期望的低值。相反,氧空位的数量NVAC可以显著增加,从而改进了可变电阻层的数据保持特性。
具体地,适当的非金属掺杂剂原子要么降低切换层中的带正电荷的氧空位的形成能量要么增加将氧原子从其原子位置移走的可能性,从而增加在形成过程期间产生的带电空位的数量。因此,对于相同的形成电压VFORM,在形成过程期间在可变电阻层中产生更大数量的带电空位(即,氧空位的数量NVAC)。同时,非金属掺杂剂原子使可变电阻层中存在的氧空位钝化,从而减少了可变电阻层中的电子传输,也就是说,减少了公式1中的电子传输因子α的值。
图4是根据本发明的实施例的由包括新型可变电阻层206的一系列沉积层形成的存储器设备200的示意性横截面图。在图4例示的实施例中,存储器设备200在衬底201(例如,硅衬底或SOI衬底)的表面部分之上形成,或者与衬底201(例如,硅衬底或SOI衬底)的表面部分集成在一起并且设置在衬底201(例如,硅衬底或SOI衬底)的表面部分之上。应该注意,关于本发明的实施例,本文中所使用的相对的方向术语仅用于描述的目的,并且不限制本发明的范围。具体地,方向术语,例如“在…之上(over)”、“在…上方(above)”、“在…下方(under)”等是在以下假设下使用:在其上形成实施例的衬底201为“底部”元件,因此衬底201是在其上形成本发明的“下方”元件。
在图4中例示的实施例中,存储器设备200包括设置在电极102与电极118之间的存储器元件112。存储器元件112是包括可变电阻层206的非易失性电阻式存储器元件。在另一实施例中,存储器设备200还包括可选的中间电极和置于电极118与可变电阻层206之间的可选的电流导引器件216。
电极102和电极118是由具有期望功函数的导电材料形成,该期望功函数调整成适合(tailor)构成可变电阻层206的材料的带隙。在一些配置中,电极102和电极118由不同材料形成,使得电极102和电极118具有相差为期望值(例如,0.1eV、0.5eV、1.0eV等)的功函数。例如,在一个实施例中,电极102包括TiN,其具有4.5eV至4.6eV的功函数,而电极118可以是n型多晶硅,其具有约4.1eV至4.15eV的功函数。适合用于电极102和/或电极118的其他电极材料包括p型多晶硅(4.9eV至5.3eV)、n型多晶硅、过渡金属、过渡金属合金、过渡金属氮化物、过渡金属碳化物、钨(4.5eV至4.6eV)、氮化钽(4.7eV至4.8eV)、氧化钼(约5.1eV)、氮化钼(4.0eV至5.0eV)、铱(4.6eV至5.3eV)、氧化铱(约4.2eV)、钌(约4.7eV)和氧化钌(约5.0eV)。其他潜在的电极材料包括钛/铝合金(4.1eV至4.3eV)、镍(约5.0eV)、氮化钨(约4.3eV至5.0eV)、氧化钨(5.5eV至5.7eV)、铝(4.2eV至4.3eV)、掺杂有铜或硅的铝(4.1eV至4.4eV)、铜(约4.5eV)、碳化铪(4.8eV至4.9eV)、氮化铪(4.7eV至4.8eV)、氮化铌(约4.95eV)、碳化钽(约5.1eV)、钽硅氮化物(约4.4eV)、钛(4.1eV至4.4eV)、碳化钒(约5.15eV)、氮化钒(约5.15eV)和氮化锆(约4.6eV)。在一些实施例中,电极102是从材料的组中选择的元素所形成的金属、金属合金、金属氮化物或金属碳化物,该材料的组包括钛(Ti)、钨(W)、钽(Ta)、钴(Co)、钼(Mo)、镍(Ni)、钒(V)、铪(Hf)、铝(Al)、铜(Cu)、铂(Pt)、钯(Pd)、铱(Ir)、钌(Ru)和其组合。在一个示例中,电极102包括从掺杂有硅的铝(AlSi)或钛/铝合金(TixAly)的组中选择的金属合金。
可变电阻层206包括可以在两种或更多种稳定的电阻状态之间进行切换的介电材料。在一些实施例中,可变电阻层206具有在约与约之间的厚度,并且包含一种或更多种过渡金属的氧化物,该过渡金属包括但不限于铪(Hf)、锆(Zr)、钛(Ti)、钽(Ta)、铝(Al)、镧(La)、钇(Y)、镝(Dy)和镱(Yb)。此外,高达3原子百分比的可变电阻层206包含阴离子非金属掺杂剂原子。用于可变电阻层206的合适的掺杂剂原子是在被引入可变电阻层206中之后甚至在存储器设备200的形成和集成期间产生的升高的温度(例如,450℃至900℃)时仍基本保持不变的阴离子非金属掺杂剂原子。
在一个实施例中,使用氮(N)作为非金属掺杂剂原子。氮是已被证实通过钝化栅氧化物中的氧空位来减少高介电常数栅氧化物(例如氧化铪(HfOx))中的漏电流的掺杂剂。在这样的应用中,氮掺杂剂增加氧化铪层的固定电荷也是已知的。本领域中的技术人员应该理解的是,虽然在互补金属氧化物半导体(CMOS,complimentary metal oxide semiconductor)晶体管的栅氧化物中固定电荷是极不合需要的,但是增加可变电阻层206中的固定电荷是改进存储器设备200的数据保持的有益特征。在其他实施例中,使用氟(F)和/或氯(Cl)作为非金属掺杂剂原子。
理想地,可变电阻层206的大部分或全部的氧空位通过掺杂剂原子进行钝化。因此,可变电阻层206中的期望的最小掺杂剂原子浓度等于或大于估计的空位浓度,该空位浓度可以在每立方厘米5.0×10e16至5.0×10e19个空位的范围内。在使用氮原子作为非金属掺杂剂原子的实施例中,需要2个氮原子来钝化单个氧空位,并且期望的最小掺杂剂原子浓度等于或大于估计的空位浓度的两倍。因为,在一些实施例中,引入可变电阻层206中的掺杂剂原子的很大一部分可能与氧空位不相符并且不成对,所以引入可变电阻层206中的掺杂剂原子的浓度大于可变电阻层206中估计的空位浓度。在这样的实施例中,非金属掺杂剂原子的浓度可以高达3原子百分比,以确保可变电阻层206中存在的大部分或全部的氧空位通过掺杂剂原子进行钝化。然而,大于约3原子百分比的掺杂剂原子浓度通常不合需要;在这样高的浓度下,掺杂剂原子以与半导体中的p型掺杂剂相同的方式作用,并且增加了可变电阻层206的电导率。如上面所提及的,向可变电阻层206添加掺杂剂原子的目的是实现相反的效果,即降低电导率,因此掺杂剂原子的浓度优选地不大于约3原子百分比。
应该注意,可变电阻层206中仅仅存在掺杂剂原子不一定如期望的使氧空位钝化。通常,掺杂剂原子排列在可变电阻层206内部而不是作为用于形成可变电阻层206的化合物的一部分。因此,可以有效地钝化氧空位的掺杂剂原子位于可变电阻层206的空隙位置(interstitial location)和/或取代位置(substitutional location)中。例如,可变电阻层206中以任意浓度存在的氮化物形式的氮不增加氧空位的数量NVAC或减小电子传输因子α。因此,将掺杂剂原子引入可变电阻层206中的方式确定了这样的原子是否有效地钝化氧空位。在一些实施例中,在可变电阻层206的沉积期间将掺杂剂原子引入可变电阻层206中。在其他实施例中,在可变电阻层206的沉积之后的处理步骤中将掺杂剂原子引入可变电阻层206中。
图5给出了根据本发明的实施例的用于形成存储器设备200的处理序列500中方法步骤的流程图。尽管该方法步骤是结合图4中的存储器设备200进行描述的,但是本领域的技术人员将理解的是,利用处理序列500形成其他电阻切换存储器设备也在本发明的范围内。
如所示,方法500从步骤502开始,在步骤502中,在衬底201上形成电极118。在一个实施例中,电极118为使用常规CVD多晶硅沉积技术在衬底201上形成的高掺杂的多晶硅层。在一个实施例中,电极118包括多晶硅,并且厚度在约至约之间。
在步骤504中,在电极118上或之上形成可变电阻层206。在一些实施例中,如图4所示,在电极118上形成可变电阻层206。在其他实施例中,在电极118上所形成的一个或更多个中间层上形成可变电阻层206。利用一种或更多种沉积工艺形成可变电阻层206,使得可变电阻层206包括用作空位钝化掺杂剂原子的一种或更多种化学元素。本发明的实施例包括沉积可变电阻层206的各种方法,并且部分地取决于可变电阻层206的具体成分和包含在其中的具体掺杂剂原子。
在一些实施例中,在可变电阻层206的沉积之后的处理步骤中将掺杂剂原子掺入到可变电阻层206中。在这样的实施例中,例如,使用反应性物理气相沉积(PVD,physical vapor deposition)工艺来沉积可变电阻层206以形成期望的金属氧化物层。在反应性PVD中,氧与溅射的金属(例如,铪)反应以沉积期望的金属氧化物膜(例如,氧化铪)。在随后的处理步骤中,将期望的掺杂剂原子(例如,氮)引入到所沉积的金属氧化物膜中。例如,在这样的一个实施例中,在氧或氧-氩气氛中通过反应性PVD来沉积氧化铪层,并且利用在氨(NH3)气氛中的热处理、去耦等离子体氮化(DPN,decoupled plasma nitridization)或氮离子注入将氮原子引入所沉积的氧化铪膜中。在这样的另一实施例中,可以使用本领域中已知的在技术上可行的任何其他金属氧化物沉积方法来沉积用于在步骤504中形成可变电阻层206的金属氧化物膜,所述方法包括化学气相沉积(CVD,chemical vapor deposition)、原子层沉积(ALD,atomic layerdeposition)等。
在一些实施例中,在可变电阻层206的沉积期间将掺杂剂原子引入到可变电阻层206中。在这样的一个实施例中,利用反应性PVD工艺来沉积可变电阻层206,以形成掺杂有期望浓度的掺杂剂原子的期望金属氧化物层。在这样的实施例中,在沉积工艺期间,将低浓度的掺杂剂原子引入氧气氛下,使得期望浓度的掺杂剂原子被引入PVD金属氧化物膜中。例如,在一个实施例,在包含痕量浓度的氮(例如1原子百分比的氮)的氧气氛中经由反应性PVD来沉积氧化铪层。当氧化铪膜被沉积时,在氧气氛中的痕量氮原子被引入到氧化铪膜中,从而避免了需要附加的处理步骤来将掺杂剂原子引入到可变电阻层206中。
在步骤506中,在可变电阻层206上方形成电极102。用于形成电极102的合适的材料在上面结合图4进行了描述。在一些实施例中,如图4所示,在可变电阻层206上直接形成电极102,并且在其他实施例中,在存储器元件112的一个或更多个中间层上的可变电阻层206的上方形成电极102。根据用于形成电极102的具体材料,可以利用任何技术上可行的沉积工艺(如PVD、CVD、ALD或其他类似工艺)来形成电极102。在一个实施例中,电极102的厚度在约与1μm之间。
在步骤508中,例如,通过退火工艺对所形成的存储器设备200进行热处理。退火工艺的温度和持续时间由存储器设备200的配置以及存储器设备200中所包含的材料的来决定。例如,在一些实施例中,退火工艺发生在高于约450℃的温度下。在另一实施例中,退火处理发生在高于约600℃的温度下。在又一实施例中,退火工艺发生在高于约1000℃的温度下。退火工艺的持续时间也可以根据存储器设备200的配置而变化很大(例如,在约30秒至20分钟之间变化)。另外,真空退火、氧退火、利用气体混合物(如氢/氩混合物)的退火以及本领域中已知的其他退火工艺落在本发明的范围之内。同样地,可以在不超出本发明的范围的条件下对存储器设备200执行多个热处理步骤。例如,可以在方法500的多个步骤期间或之后执行热处理。
虽然在本文中就用于形成存储器阵列的电阻切换存储器元件来描述了本发明的实施例,但是在不脱离本文描述的本发明的基本范围的情况下本发明的实施例可以应用于其他电阻式存储器设备。
总之,本发明的实施例提供了一种具有利用非金属掺杂剂原子进行钝化的新型可变电阻层的非易失性电阻式存储器元件及其形成方法。非金属掺杂剂原子降低了切换层中的带正电荷的氧空位的形成能,从而有利地增加了在存储器元件的形成过程期间产生的带电空位的数量。此外,掺杂剂原子使氧空位钝化,从而降低了钝化的氧空位的载流能力并且增加了可变电阻层的电阻。因此,新型可变电阻层可以通过较小的切换电流来进行操作,同时具有改进的数据保持特性。
虽然前述内容涉及本发明的实施例,但是可以在不脱离本发明的基本范围的条件下设计出本发明的其他和另外的实施例,并且本发明的范围由所附的权利要求来确定。

Claims (17)

1.一种形成非易失性存储器元件的方法,包括:
形成第一层,所述第一层能够作为可变电阻层操作并且包括在第二层上方的金属氧化物,所述第二层能够作为电极层操作,其中,所述第一层包括高达3原子百分比的非金属掺杂剂原子;以及
形成能够作为电极层操作的第三层,使得所述第一层设置在所述第二层与所述第三层之间。
2.根据权利要求1所述的方法,其中,所述形成第一层包括:
沉积所述金属氧化物;以及
将所述非金属掺杂剂原子引入所述金属氧化物中。
3.根据权利要求2所述的方法,其中,沉积所述金属氧化物与将所述非金属掺杂剂原子引入所述金属氧化物中同时执行。
4.根据权利要求2所述的方法,其中,沉积所述金属氧化物包括执行反应性物理气相沉积工艺或原子层沉积工艺。
5.根据权利要求4所述的方法,其中,所述非金属掺杂剂原子包括氮(N)原子,以及将所述非金属掺杂剂原子引入所述金属氧化物中包括在所述反应性物理气相沉积工艺中纳入氮气。
6.根据权利要求2所述的方法,其中,所述非金属掺杂剂原子包括氮原子。
7.根据权利要求6所述的方法,其中,将所述非金属掺杂剂原子引入所述金属氧化物中包括从以下组中选择的至少一种工艺,所述组包括在氨(NH3)气氛中的热处理工艺、去耦等离子体氮化工艺或离子注入工艺。
8.根据权利要求1所述的方法,其中,所述非金属掺杂剂原子包括从以下组中选择的至少一种化学元素,所述组包括氮、氯(Cl)和氟(F)。
9.根据权利要求1所述的方法,其中,所述金属氧化物包括从以下组中选择的至少一种化学元素,所述组包括铪(Hf)、锆(Zr)、钛(Ti)、钽(Ta)、铝(Al)、镧(La)、钇(Y)、镝(Dy)和镱(Yb)。
10.根据权利要求1所述的方法,其中,所述第一层的厚度在约 之间。
11.一种非易失性存储器元件,包括:
第一层,所述第一层能够作为电极层操作并且形成在衬底之上;
第二层,所述第二层能够作为电极层操作;以及
第三层,所述第三层能够作为可变电阻层操作并且包括设置在所述第一层与所述第二层之间的金属氧化物,其中,所述第三层的至少一部分包括高达3原子百分比的非金属掺杂剂原子。
12.根据权利要求11所述的非易失性存储器元件,其中,所述金属氧化物包括从以下组中选择的至少一种化学元素,所述组包括铪、锆、钛、钽、铝、镧、钇、镝和镱。
13.根据权利要求11所述的非易失性存储器元件,其中,所述非金属掺杂剂原子包括从以下组中选择的至少一种化学元素,所述组包括氮、氯和氟。
14.根据权利要求11所述的非易失性存储器元件,其中,所述金属氧化物通过反应性物理气相沉积工艺进行沉积。
15.根据权利要求11所述的非易失性存储器元件,其中,所述非金属掺杂剂原子包括氮原子。
16.根据权利要求11所述的非易失性存储器元件,其中,所述非金属掺杂剂原子通过在氨气氛中的热处理工艺、去耦等离子体氮化工艺或离子注入工艺中的至少一种工艺来引入所述金属氧化物中。
17.根据权利要求15所述的非易失性存储器元件,其中,所述非金属掺杂剂原子通过在沉积所述金属氧化物的反应性物理气相沉积工艺中纳入氮气来引入所述金属氧化物中。
CN201280059555.2A 2011-12-02 2012-11-21 具有钝化的切换层的非易失性电阻式存储器元件 Pending CN104094430A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/309,813 2011-12-02
US13/309,813 US8637413B2 (en) 2011-12-02 2011-12-02 Nonvolatile resistive memory element with a passivated switching layer
PCT/US2012/066398 WO2013081945A1 (en) 2011-12-02 2012-11-21 Nonvolatile resistive memory element with a passivated switching layer

Publications (1)

Publication Number Publication Date
CN104094430A true CN104094430A (zh) 2014-10-08

Family

ID=48523345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280059555.2A Pending CN104094430A (zh) 2011-12-02 2012-11-21 具有钝化的切换层的非易失性电阻式存储器元件

Country Status (5)

Country Link
US (2) US8637413B2 (zh)
EP (1) EP2791986A4 (zh)
KR (1) KR20140121393A (zh)
CN (1) CN104094430A (zh)
WO (1) WO2013081945A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107134457A (zh) * 2016-02-29 2017-09-05 东芝存储器株式会社 半导体存储装置及其制造方法
CN109196654A (zh) * 2016-05-25 2019-01-11 美光科技公司 铁电装置及形成铁电装置的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8866121B2 (en) 2011-07-29 2014-10-21 Sandisk 3D Llc Current-limiting layer and a current-reducing layer in a memory device
US8659001B2 (en) 2011-09-01 2014-02-25 Sandisk 3D Llc Defect gradient to boost nonvolatile memory performance
US8698119B2 (en) 2012-01-19 2014-04-15 Sandisk 3D Llc Nonvolatile memory device using a tunnel oxide as a current limiter element
US8686386B2 (en) 2012-02-17 2014-04-01 Sandisk 3D Llc Nonvolatile memory device using a varistor as a current limiter element
US8907314B2 (en) * 2012-12-27 2014-12-09 Intermolecular, Inc. MoOx-based resistance switching materials
US20140241031A1 (en) 2013-02-28 2014-08-28 Sandisk 3D Llc Dielectric-based memory cells having multi-level one-time programmable and bi-level rewriteable operating modes and methods of forming the same
KR20160066971A (ko) * 2014-12-03 2016-06-13 삼성전자주식회사 저항성 메모리 장치
US10797238B2 (en) 2016-01-26 2020-10-06 Arm Ltd. Fabricating correlated electron material (CEM) devices
US20170237001A1 (en) * 2016-02-17 2017-08-17 Arm Ltd. Fabrication of correlated electron material devices comprising nitrogen
US10211064B2 (en) 2016-06-08 2019-02-19 International Business Machines Corporation Multi time programmable memories using local implantation in high-K/ metal gate technologies

Family Cites Families (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311039A (en) 1990-04-24 1994-05-10 Seiko Epson Corporation PROM and ROM memory cells
WO1994005041A1 (en) 1992-08-21 1994-03-03 Xilinx, Inc. Antifuse structure and method for forming
US5475253A (en) 1992-08-21 1995-12-12 Xilinx, Inc. Antifuse structure with increased breakdown at edges
US5373169A (en) 1992-12-17 1994-12-13 Actel Corporation Low-temperature process metal-to-metal antifuse employing silicon link
US5818749A (en) 1993-08-20 1998-10-06 Micron Technology, Inc. Integrated circuit memory device
US5379250A (en) 1993-08-20 1995-01-03 Micron Semiconductor, Inc. Zener programmable read only memory
US7052941B2 (en) 2003-06-24 2006-05-30 Sang-Yun Lee Method for making a three-dimensional integrated circuit structure
US5915167A (en) 1997-04-04 1999-06-22 Elm Technology Corporation Three dimensional structure memory
US6369421B1 (en) 1998-06-29 2002-04-09 Advanced Micro Devices, Inc. EEPROM having stacked dielectric to increase programming speed
US6034882A (en) 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6351406B1 (en) 1998-11-16 2002-02-26 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6750500B1 (en) 1999-01-05 2004-06-15 Micron Technology, Inc. Capacitor electrode for integrating high K materials
US6750079B2 (en) 1999-03-25 2004-06-15 Ovonyx, Inc. Method for making programmable resistance memory element
US6100120A (en) 1999-05-11 2000-08-08 Advanced Micro Devices, Inc. Method of locally forming a high-k dielectric gate insulator
US6627744B2 (en) 1999-07-02 2003-09-30 Genencor International, Inc. Synthesis of glycodendrimer reagents
IL130901A (en) 1999-07-12 2004-12-15 Technion Res & Dev Foundation Improved high-power bipolar transistor with an emitter current density limitation
JP4491870B2 (ja) 1999-10-27 2010-06-30 ソニー株式会社 不揮発性メモリの駆動方法
US6492241B1 (en) 2000-04-10 2002-12-10 Micron Technology, Inc. Integrated capacitors fabricated with conductive metal oxides
US6420215B1 (en) 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US8575719B2 (en) 2000-04-28 2013-11-05 Sandisk 3D Llc Silicon nitride antifuse for use in diode-antifuse memory arrays
US6631085B2 (en) 2000-04-28 2003-10-07 Matrix Semiconductor, Inc. Three-dimensional memory array incorporating serial chain diode stack
US6455424B1 (en) 2000-08-07 2002-09-24 Micron Technology, Inc. Selective cap layers over recessed polysilicon plugs
US6515888B2 (en) 2000-08-14 2003-02-04 Matrix Semiconductor, Inc. Low cost three-dimensional memory array
US6376787B1 (en) 2000-08-24 2002-04-23 Texas Instruments Incorporated Microelectromechanical switch with fixed metal electrode/dielectric interface with a protective cap layer
US6342414B1 (en) 2000-12-12 2002-01-29 Advanced Micro Devices, Inc. Damascene NiSi metal gate high-k transistor
US6475874B2 (en) 2000-12-07 2002-11-05 Advanced Micro Devices, Inc. Damascene NiSi metal gate high-k transistor
US6529038B2 (en) 2000-12-13 2003-03-04 Actel Corporation Antifuse programming method
US6486065B2 (en) 2000-12-22 2002-11-26 Matrix Semiconductor, Inc. Method of forming nonvolatile memory device utilizing a hard mask
US6664639B2 (en) 2000-12-22 2003-12-16 Matrix Semiconductor, Inc. Contact and via structure and method of fabrication
US6306715B1 (en) 2001-01-08 2001-10-23 Chartered Semiconductor Manufacturing Ltd. Method to form smaller channel with CMOS device by isotropic etching of the gate materials
US6495437B1 (en) 2001-02-09 2002-12-17 Advanced Micro Devices, Inc. Low temperature process to locally form high-k gate dielectrics
US6403434B1 (en) 2001-02-09 2002-06-11 Advanced Micro Devices, Inc. Process for manufacturing MOS transistors having elevated source and drain regions and a high-k gate dielectric
US6551885B1 (en) 2001-02-09 2003-04-22 Advanced Micro Devices, Inc. Low temperature process for a thin film transistor
US6574145B2 (en) 2001-03-21 2003-06-03 Matrix Semiconductor, Inc. Memory device and method for sensing while programming a non-volatile memory cell
US6552409B2 (en) 2001-06-05 2003-04-22 Hewlett-Packard Development Company, Lp Techniques for addressing cross-point diode memory arrays
US6587394B2 (en) 2001-07-24 2003-07-01 Hewlett-Packard Development Company, L.P. Programmable address logic for solid state diode-based memory
US6704235B2 (en) 2001-07-30 2004-03-09 Matrix Semiconductor, Inc. Anti-fuse memory cell with asymmetric breakdown voltage
US6434060B1 (en) 2001-07-31 2002-08-13 Hewlett-Packard Company Write pulse limiting for worm storage device
US6525953B1 (en) 2001-08-13 2003-02-25 Matrix Semiconductor, Inc. Vertically-stacked, field-programmable, nonvolatile memory and method of fabrication
US6490218B1 (en) 2001-08-17 2002-12-03 Matrix Semiconductor, Inc. Digital memory method and system for storing multiple bit digital data
US7012297B2 (en) 2001-08-30 2006-03-14 Micron Technology, Inc. Scalable flash/NV structures and devices with extended endurance
JP4599059B2 (ja) 2001-09-18 2010-12-15 キロパス テクノロジー インコーポレイテッド 超薄膜誘電体のブレークダウン現象を利用した半導体メモリセルセル及びメモリアレイ
US6580144B2 (en) 2001-09-28 2003-06-17 Hewlett-Packard Development Company, L.P. One time programmable fuse/anti-fuse combination based memory cell
US6559014B1 (en) 2001-10-15 2003-05-06 Advanced Micro Devices, Inc. Preparation of composite high-K / standard-K dielectrics for semiconductor devices
US6549447B1 (en) 2001-10-31 2003-04-15 Peter Fricke Memory cell structure
US6879525B2 (en) 2001-10-31 2005-04-12 Hewlett-Packard Development Company, L.P. Feedback write method for programmable memory
US6456524B1 (en) 2001-10-31 2002-09-24 Hewlett-Packard Company Hybrid resistive cross point memory cell arrays and methods of making the same
US6483734B1 (en) 2001-11-26 2002-11-19 Hewlett Packard Company Memory device having memory cells capable of four states
US6514808B1 (en) 2001-11-30 2003-02-04 Motorola, Inc. Transistor having a high K dielectric and short gate length and method therefor
US6534841B1 (en) 2001-12-14 2003-03-18 Hewlett-Packard Company Continuous antifuse material in memory structure
US7038248B2 (en) 2002-02-15 2006-05-02 Sandisk Corporation Diverse band gap energy level semiconductor device
US6586349B1 (en) 2002-02-21 2003-07-01 Advanced Micro Devices, Inc. Integrated process for fabrication of graded composite dielectric material layers for semiconductor devices
US6451641B1 (en) 2002-02-27 2002-09-17 Advanced Micro Devices, Inc. Non-reducing process for deposition of polysilicon gate electrode over high-K gate dielectric material
US6937528B2 (en) 2002-03-05 2005-08-30 Micron Technology, Inc. Variable resistance memory and method for sensing same
US20040108573A1 (en) 2002-03-13 2004-06-10 Matrix Semiconductor, Inc. Use in semiconductor devices of dielectric antifuses grown on silicide
US6451647B1 (en) 2002-03-18 2002-09-17 Advanced Micro Devices, Inc. Integrated plasma etch of gate and gate dielectric and low power plasma post gate etch removal of high-K residual
US6579760B1 (en) 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
US6661691B2 (en) 2002-04-02 2003-12-09 Hewlett-Packard Development Company, L.P. Interconnection structure and methods
US6861715B2 (en) 2002-04-08 2005-03-01 Guobiao Zhang Electrically programmable three-dimensional memory
US6842369B2 (en) 2002-05-07 2005-01-11 Hewlett-Packard Development Company, L.P. Intermesh memory device
US6617639B1 (en) 2002-06-21 2003-09-09 Advanced Micro Devices, Inc. Use of high-K dielectric material for ONO and tunnel oxide to improve floating gate flash memory coupling
US7081377B2 (en) 2002-06-27 2006-07-25 Sandisk 3D Llc Three-dimensional memory
US6753561B1 (en) 2002-08-02 2004-06-22 Unity Semiconductor Corporation Cross point memory array using multiple thin films
US7285464B2 (en) 2002-12-19 2007-10-23 Sandisk 3D Llc Nonvolatile memory cell comprising a reduced height vertical diode
US20060249753A1 (en) 2005-05-09 2006-11-09 Matrix Semiconductor, Inc. High-density nonvolatile memory array fabricated at low temperature comprising semiconductor diodes
US6946719B2 (en) 2003-12-03 2005-09-20 Matrix Semiconductor, Inc Semiconductor device including junction diode contacting contact-antifuse unit comprising silicide
WO2004061851A2 (en) 2002-12-19 2004-07-22 Matrix Semiconductor, Inc An improved method for making high-density nonvolatile memory
US7800933B2 (en) 2005-09-28 2010-09-21 Sandisk 3D Llc Method for using a memory cell comprising switchable semiconductor memory element with trimmable resistance
US7767499B2 (en) 2002-12-19 2010-08-03 Sandisk 3D Llc Method to form upward pointing p-i-n diodes having large and uniform current
US7176064B2 (en) 2003-12-03 2007-02-13 Sandisk 3D Llc Memory cell comprising a semiconductor junction diode crystallized adjacent to a silicide
US8637366B2 (en) 2002-12-19 2014-01-28 Sandisk 3D Llc Nonvolatile memory cell without a dielectric antifuse having high- and low-impedance states
US20050226067A1 (en) 2002-12-19 2005-10-13 Matrix Semiconductor, Inc. Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
EP1609154B1 (en) 2003-03-18 2013-12-25 Kabushiki Kaisha Toshiba Phase change memory device
US7606059B2 (en) 2003-03-18 2009-10-20 Kabushiki Kaisha Toshiba Three-dimensional programmable resistance memory device with a read/write circuit stacked under a memory cell array
US20040183144A1 (en) * 2003-03-20 2004-09-23 Beaman Kevin L. Plasma nitridization for adjusting transistor threshold voltage
US6879505B2 (en) 2003-03-31 2005-04-12 Matrix Semiconductor, Inc. Word line arrangement having multi-layer word line segments for three-dimensional memory array
WO2004090984A1 (en) 2003-04-03 2004-10-21 Kabushiki Kaisha Toshiba Phase change memory device
US6690597B1 (en) 2003-04-24 2004-02-10 Hewlett-Packard Development Company, L.P. Multi-bit PROM memory cell
US7291878B2 (en) 2003-06-03 2007-11-06 Hitachi Global Storage Technologies Netherlands B.V. Ultra low-cost solid-state memory
US20050006719A1 (en) 2003-06-24 2005-01-13 Erh-Kun Lai [three-dimensional memory structure and manufacturing method thereof]
US7132350B2 (en) 2003-07-21 2006-11-07 Macronix International Co., Ltd. Method for manufacturing a programmable eraseless memory
US6937509B2 (en) 2003-09-08 2005-08-30 Hewlett-Packard Development Company, L.P. Data storage device and method of forming the same
US7682920B2 (en) 2003-12-03 2010-03-23 Sandisk 3D Llc Method for making a p-i-n diode crystallized adjacent to a silicide in series with a dielectric antifuse
US6937507B2 (en) 2003-12-05 2005-08-30 Silicon Storage Technology, Inc. Memory device and method of operating same
US7172840B2 (en) 2003-12-05 2007-02-06 Sandisk Corporation Photomask features with interior nonprinting window using alternating phase shifting
US6952038B2 (en) 2003-12-08 2005-10-04 Macronix International Co., Ltd. 3D polysilicon ROM and method of fabrication thereof
US20060171200A1 (en) 2004-02-06 2006-08-03 Unity Semiconductor Corporation Memory using mixed valence conductive oxides
US20050221200A1 (en) 2004-04-01 2005-10-06 Matrix Semiconductor, Inc. Photomask features with chromeless nonprinting phase shifting window
US7410838B2 (en) 2004-04-29 2008-08-12 Taiwan Semiconductor Manufacturing Co., Ltd. Fabrication methods for memory cells
US7009694B2 (en) 2004-05-28 2006-03-07 International Business Machines Corporation Indirect switching and sensing of phase change memory cells
DE112005002160T5 (de) 2004-09-09 2009-03-12 Tokyo Electron Ltd. Dünnfilmkondensator und Verfahren zum Bilden desselben sowie computerlesbares Speichermedium
DE102004046392A1 (de) 2004-09-24 2006-04-06 Infineon Technologies Ag Halbleiterspeicher
US7405465B2 (en) 2004-09-29 2008-07-29 Sandisk 3D Llc Deposited semiconductor structure to minimize n-type dopant diffusion and method of making
US7812404B2 (en) 2005-05-09 2010-10-12 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
US20060273298A1 (en) 2005-06-02 2006-12-07 Matrix Semiconductor, Inc. Rewriteable memory cell comprising a transistor and resistance-switching material in series
US7453755B2 (en) 2005-07-01 2008-11-18 Sandisk 3D Llc Memory cell with high-K antifuse for reverse bias programming
US20070069241A1 (en) 2005-07-01 2007-03-29 Matrix Semiconductor, Inc. Memory with high dielectric constant antifuses and method for using at low voltage
US7304888B2 (en) 2005-07-01 2007-12-04 Sandisk 3D Llc Reverse-bias method for writing memory cells in a memory array
US7426128B2 (en) 2005-07-11 2008-09-16 Sandisk 3D Llc Switchable resistive memory with opposite polarity write pulses
US7303971B2 (en) 2005-07-18 2007-12-04 Sharp Laboratories Of America, Inc. MSM binary switch memory device
US7446010B2 (en) 2005-07-18 2008-11-04 Sharp Laboratories Of America, Inc. Metal/semiconductor/metal (MSM) back-to-back Schottky diode
US20070015348A1 (en) 2005-07-18 2007-01-18 Sharp Laboratories Of America, Inc. Crosspoint resistor memory device with back-to-back Schottky diodes
US7206214B2 (en) 2005-08-05 2007-04-17 Freescale Semiconductor, Inc. One time programmable memory and method of operation
JP2007184419A (ja) 2006-01-06 2007-07-19 Sharp Corp 不揮発性メモリ装置
US7875871B2 (en) 2006-03-31 2011-01-25 Sandisk 3D Llc Heterojunction device comprising a semiconductor and a resistivity-switching oxide or nitride
US7575984B2 (en) 2006-05-31 2009-08-18 Sandisk 3D Llc Conductive hard mask to protect patterned features during trench etch
WO2008007481A1 (en) 2006-07-14 2008-01-17 Murata Manufacturing Co., Ltd. Resistive memory device
US8766224B2 (en) 2006-10-03 2014-07-01 Hewlett-Packard Development Company, L.P. Electrically actuated switch
US7847341B2 (en) * 2006-12-20 2010-12-07 Nanosys, Inc. Electron blocking layers for electronic devices
US7629198B2 (en) 2007-03-05 2009-12-08 Intermolecular, Inc. Methods for forming nonvolatile memory elements with resistive-switching metal oxides
WO2008123139A1 (ja) 2007-03-26 2008-10-16 Murata Manufacturing Co., Ltd. 抵抗記憶素子
US7667999B2 (en) 2007-03-27 2010-02-23 Sandisk 3D Llc Method to program a memory cell comprising a carbon nanotube fabric and a steering element
JP4252110B2 (ja) 2007-03-29 2009-04-08 パナソニック株式会社 不揮発性記憶装置、不揮発性記憶素子および不揮発性記憶素子アレイ
US20080278988A1 (en) * 2007-05-09 2008-11-13 Klaus Ufert Resistive switching element
US8148711B2 (en) 2007-05-18 2012-04-03 Panasonic Corporation Nonvolatile memory element, manufacturing method thereof, and nonvolatile semiconductor apparatus using nonvolatile memory element
US8022502B2 (en) 2007-06-05 2011-09-20 Panasonic Corporation Nonvolatile memory element, manufacturing method thereof, and nonvolatile semiconductor apparatus using the nonvolatile memory element
US7920408B2 (en) 2007-06-22 2011-04-05 Panasonic Corporation Resistance change nonvolatile memory device
US7800939B2 (en) 2007-06-29 2010-09-21 Sandisk 3D Llc Method of making 3D R/W cell with reduced reverse leakage
US8294219B2 (en) 2007-07-25 2012-10-23 Intermolecular, Inc. Nonvolatile memory element including resistive switching metal oxide layers
US20090086521A1 (en) 2007-09-28 2009-04-02 Herner S Brad Multiple antifuse memory cells and methods to form, program, and sense the same
US8349663B2 (en) 2007-09-28 2013-01-08 Sandisk 3D Llc Vertical diode based memory cells having a lowered programming voltage and methods of forming the same
US8343813B2 (en) 2009-04-10 2013-01-01 Intermolecular, Inc. Resistive-switching memory elements having improved switching characteristics
US8183553B2 (en) 2009-04-10 2012-05-22 Intermolecular, Inc. Resistive switching memory element including doped silicon electrode
US8467224B2 (en) 2008-04-11 2013-06-18 Sandisk 3D Llc Damascene integration methods for graphitic films in three-dimensional memories and memories formed therefrom
US8304284B2 (en) 2008-04-11 2012-11-06 Sandisk 3D Llc Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element, and methods of forming the same
US8129704B2 (en) 2008-05-01 2012-03-06 Intermolecular, Inc. Non-volatile resistive-switching memories
US8551809B2 (en) * 2008-05-01 2013-10-08 Intermolecular, Inc. Reduction of forming voltage in semiconductor devices
US8062918B2 (en) 2008-05-01 2011-11-22 Intermolecular, Inc. Surface treatment to improve resistive-switching characteristics
WO2010004705A1 (ja) 2008-07-11 2010-01-14 パナソニック株式会社 不揮発性記憶素子およびその製造方法、並びにその不揮発性記憶素子を用いた不揮発性半導体装置
US8362454B2 (en) * 2008-08-12 2013-01-29 Industrial Technology Research Institute Resistive random access memory having metal oxide layer with oxygen vacancies and method for fabricating the same
US7920407B2 (en) 2008-10-06 2011-04-05 Sandisk 3D, Llc Set and reset detection circuits for reversible resistance switching memory material
CN102017145B (zh) 2008-12-04 2012-08-01 松下电器产业株式会社 非易失性存储元件以及非易失性存储装置
US8279650B2 (en) 2009-04-20 2012-10-02 Sandisk 3D Llc Memory system with data line switching scheme
JP2011040613A (ja) 2009-08-12 2011-02-24 Toshiba Corp 不揮発性記憶装置
US8207064B2 (en) 2009-09-17 2012-06-26 Sandisk 3D Llc 3D polysilicon diode with low contact resistance and method for forming same
JP5006369B2 (ja) 2009-09-18 2012-08-22 株式会社東芝 不揮発性半導体記憶装置
US8289749B2 (en) 2009-10-08 2012-10-16 Sandisk 3D Llc Soft forming reversible resistivity-switching element for bipolar switching
US8274130B2 (en) 2009-10-20 2012-09-25 Sandisk 3D Llc Punch-through diode steering element
US8072795B1 (en) 2009-10-28 2011-12-06 Intermolecular, Inc. Biploar resistive-switching memory with a single diode per memory cell
US8654560B2 (en) * 2009-10-28 2014-02-18 Intermolecular, Inc. Variable resistance memory with a select device
US8227896B2 (en) * 2009-12-11 2012-07-24 International Business Machines Corporation Resistive switching in nitrogen-doped MgO
US8045364B2 (en) 2009-12-18 2011-10-25 Unity Semiconductor Corporation Non-volatile memory device ion barrier
JP5732827B2 (ja) 2010-02-09 2015-06-10 ソニー株式会社 記憶素子および記憶装置、並びに記憶装置の動作方法
JP5462027B2 (ja) 2010-02-22 2014-04-02 株式会社東芝 不揮発性半導体記憶装置
US8395926B2 (en) 2010-06-18 2013-03-12 Sandisk 3D Llc Memory cell with resistance-switching layers and lateral arrangement
CN102473457B (zh) 2010-06-29 2014-07-23 松下电器产业株式会社 非易失性存储装置以及其驱动方法
KR20120010050A (ko) 2010-07-23 2012-02-02 삼성전자주식회사 비휘발성 메모리요소 및 이를 포함하는 메모리소자
US8841648B2 (en) 2010-10-14 2014-09-23 Sandisk 3D Llc Multi-level memory arrays with memory cells that employ bipolar storage elements and methods of forming the same
US8618525B2 (en) 2011-06-09 2013-12-31 Intermolecular, Inc. Work function tailoring for nonvolatile memory applications
US8681530B2 (en) 2011-07-29 2014-03-25 Intermolecular, Inc. Nonvolatile memory device having a current limiting element
US20130065377A1 (en) 2011-09-09 2013-03-14 Intermolecular, Inc. Interface layer improvements for nonvolatile memory applications
US8866121B2 (en) 2011-07-29 2014-10-21 Sandisk 3D Llc Current-limiting layer and a current-reducing layer in a memory device
US8659001B2 (en) 2011-09-01 2014-02-25 Sandisk 3D Llc Defect gradient to boost nonvolatile memory performance
US20130148404A1 (en) 2011-12-08 2013-06-13 Abhijit Bandyopadhyay Antifuse-based memory cells having multiple memory states and methods of forming the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107134457A (zh) * 2016-02-29 2017-09-05 东芝存储器株式会社 半导体存储装置及其制造方法
CN107134457B (zh) * 2016-02-29 2020-12-08 东芝存储器株式会社 半导体存储装置及其制造方法
CN109196654A (zh) * 2016-05-25 2019-01-11 美光科技公司 铁电装置及形成铁电装置的方法
CN109196654B (zh) * 2016-05-25 2022-09-30 美光科技公司 铁电装置及形成铁电装置的方法

Also Published As

Publication number Publication date
KR20140121393A (ko) 2014-10-15
EP2791986A1 (en) 2014-10-22
EP2791986A4 (en) 2015-07-01
US20140103280A1 (en) 2014-04-17
US20130140512A1 (en) 2013-06-06
WO2013081945A1 (en) 2013-06-06
US8637413B2 (en) 2014-01-28

Similar Documents

Publication Publication Date Title
CN104094430A (zh) 具有钝化的切换层的非易失性电阻式存储器元件
US9362497B2 (en) Reduction of forming voltage in semiconductor devices
US8698121B2 (en) Resistive switching memory element including doped silicon electrode
JP5536039B2 (ja) 不揮発性抵抗スイッチングメモリ
US8866121B2 (en) Current-limiting layer and a current-reducing layer in a memory device
US8847190B2 (en) ALD processing techniques for forming non-volatile resistive switching memories
US8618525B2 (en) Work function tailoring for nonvolatile memory applications
US8652923B2 (en) Nonvolatile memory device having an electrode interface coupling region
US20140264237A1 (en) Resistive ram and fabrication method
US8853099B2 (en) Nonvolatile resistive memory element with a metal nitride containing switching layer
US20110175050A1 (en) Metal Oxide Resistance Based Semiconductor Memory Device With High Work Function Electrode
KR101145373B1 (ko) 저항성 메모리 장치 및 그 제조방법
US20140054531A1 (en) Defect enhancement of a switching layer in a nonvolatile resistive memory element
US20130134373A1 (en) Nonvolatile resistive memory element with a novel switching layer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141008