CN104085868B - 一种3d微纳结构球形活性磷酸铁的制备方法 - Google Patents

一种3d微纳结构球形活性磷酸铁的制备方法 Download PDF

Info

Publication number
CN104085868B
CN104085868B CN201410316789.1A CN201410316789A CN104085868B CN 104085868 B CN104085868 B CN 104085868B CN 201410316789 A CN201410316789 A CN 201410316789A CN 104085868 B CN104085868 B CN 104085868B
Authority
CN
China
Prior art keywords
solution
micro
iron
gained
nano structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410316789.1A
Other languages
English (en)
Other versions
CN104085868A (zh
Inventor
娄晓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Institute of Technology
Original Assignee
Hunan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Institute of Technology filed Critical Hunan Institute of Technology
Priority to CN201410316789.1A priority Critical patent/CN104085868B/zh
Publication of CN104085868A publication Critical patent/CN104085868A/zh
Application granted granted Critical
Publication of CN104085868B publication Critical patent/CN104085868B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种3D微纳结构球形活性磷酸铁的制备方法,包括以下步骤:(1)制备表面活性剂溶液;(2)制备九水硝酸铁溶液;(3)将九水硝酸铁溶液滴加到表面活性剂溶液中,得溶液A;(4)称取H3PO4溶液,将磷酸溶液加入溶液A中,搅拌混合30-240分钟,得澄清透明溶液B;(5)将所得澄清透明溶液B在80~100℃水浴条件下反应2~4天,或150~200℃油浴条件下反应2~8小时;(6)冷却,再固液分离,洗涤,离心分离,得白色沉淀;将白色沉淀于80~110℃烘干,即得。本发明所得磷酸铁材料,锂化后得到LiFePO4正极材料,同时具有良好的高倍率充放电性能和较好的振实密度。

Description

一种3D微纳结构球形活性磷酸铁的制备方法
技术领域
本发明涉及一种磷酸铁的制备方法,尤其是涉及一种3D微纳结构球形活性磷酸铁的制备方法。
背景技术
目前,磷酸铁锂电池电导率都较低,为提高电导率,将材料做成纳米级,但将材料做成纳米级后,材料的振实密度有所降低,从而使最终电池产品的功率降低。而且,目前在LiFePO4的合成中,为保证产品质量,往往采用价格昂贵的二价铁(常用二价铁原料:FeSO4;FeCl2;NH4FeSO4),纳米材料自组装成为微米材料,该方法能在一定程度提高性能,但往往或价格昂贵,或步骤复杂,或最终性能未尽如人意,成为最终产品价格高企的一个重要原因。采用微波法,产品性能相对较差,设备贵;水热法要用到高压水热釜,设备贵,合成步骤复杂,且安全性差,容易出事故;采用掺杂法制备得到的产品性能难以同时兼具良好高倍率充放电性能和较高的振实密度。
发明内容
本发明要解决的技术问题是,克服现有技术的不足,提供一种振实密度较大的3D微纳结构球形活性磷酸铁的制备方法,制备得到的磷酸铁,锂化后制备的电池,充放电性能、倍率性能较好。
本发明解决其技术问题所采用的技术方案是,一种3D微纳结构球形活性磷酸铁的制备方法,具体包括以下步骤:
(1)称取1~5克表面活性剂,溶解于200ml蒸馏水中,搅拌溶解,得表面活性剂溶液;
所述表面活性剂优选十二烷基硫酸钠(缩写SDS)或十六烷基三甲基溴化铵;
(2)称取九水硝酸铁[Fe(NO3)3·9H2O],作为铁源,溶解于90ml蒸馏水中,所述九水硝酸铁与蒸馏水的质量比为0.2~4:90,搅拌15~240分钟,得九水硝酸铁溶液;
(3)将步骤(2)所得九水硝酸铁溶液滴加到步骤(1)所得表面活性剂溶液中,搅拌15~240分钟,得溶液A;
该过程中表面活性剂包裹在Fe3+周围,使之形成均匀透明溶液;
(4)称取H3PO4溶液(所述H3PO4溶液的质量浓度优选75~85wt%),所述H3PO4溶液中的H3PO4与步骤(2)称取的Fe(NO3)3·9H2O摩尔比为1:0.8~1.2;将磷酸溶液加入步骤(3)所得溶液A中,搅拌混合30~240分钟,得澄清透明溶液B;
此过程中反应方程式为:Fe3++PO4 3-→FePO4
(5)将步骤(4)所得澄清透明溶液B在80~100℃水浴条件下反应2~4天,或150~200℃油浴条件下反应2~8小时;
(6)室温自然冷却,再固液分离,所得固体产品用乙醇和蒸馏水交替洗涤,各洗涤1~5次,离心分离,得白色沉淀;将白色沉淀于80~110℃烘干,得白色粉末,即为具有3D微纳结构的FePO4·2H2O。
本发明所得3D微纳结构的FePO4·2H2O的优势:
(1)单个的纳米片能最大限度的缩短锂离子、电子在材料中传导的路径,提高电导率;
(2)整体而成的微米球能最大限度的提高材料的振实密度,从而提高最终产品电池的功率;本发明所得3D微纳结构的FePO4·2H2O,锂化后得到的LiFePO4的振实密度为1.50~1.54g/cm3;(现有技术所得材料的振实密度为1.1~1.2g/cm3);
(3)纳米片之间的微小缝隙能使电解液渗透到材料中,最大限度的促进锂离子、电子在材料中的传导,提高电导率。
本发明使用廉价的三价铁源,结合表面活性剂,通过水浴法合成具有特殊电化学活性的“3D微纳结构”磷酸铁材料。该特殊结构的材料能极好的为后期锂化后得到的LiFePO4电极材料提供结构基础,克服以往材料中纳米材料振实密度较低、微米材料电化学性能不好的缺点,锂化后得到的LiFePO4正极材料,同时具有良好的高倍率充放电性能和较好的振实密度。本发明通过使用合成条件相对简单的水浴法合成3D“微纳结构”的FePO4·2H2O,后经锂化得到LiFePO4,能简化合成条件,节能降耗,提高产率,降低成本。而且,本发明采用价格低廉的三价铁源,能极大的降低成本,达到绿色环保、节能降耗的目标。
附图说明
图1为本发明实施例1所得FePO4·2H2O多个3D微纳结构扫描电镜图;
图2为本发明实施例1所得FePO4·2H2O单个3D微纳结构FePO4·2H2O扫描电镜图;
图3为本发明实施例1所得FePO4·2H2O锂化后得到的最终产品3D微纳结构LiFePO4扫描电镜图;
图4是本发明实施例1所得LiFePO4正极材料组装成电池在不同倍率下的充放电比容量图;
图5是本发明实施例1所得LiFePO4正极材料组装成电池在高倍率下循环100圈时的放电比容量图。
具体实施方式
以下结合具体实施例对本发明作进一步详细说明。
实施例1
本实施例包括以下步骤:
(1)称取2.5克十二烷基硫酸钠(SDS),溶解于200ml蒸馏水中,搅拌30分钟,得表面活性剂溶液;
(2)称取1.01克(2.5mmol)Fe(NO3)3·9H2O,作为铁源,溶解于90ml蒸馏水中,搅拌30分钟,得九水硝酸铁溶液;
(3)将步骤(2)所得九水硝酸铁溶液滴加到步骤(1)所得表面活性剂溶液中,搅拌30分钟,得溶液A;
(4)称取质量浓度为85%的H3PO4溶液,所述H3PO4溶液中H3PO4与步骤(2)称取的Fe(NO3)3·9H2O摩尔比为1:1;将磷酸溶液加入步骤(3)所得溶液A中,搅拌混合1小时,得澄清透明溶液B;
(5)将步骤(4)所得澄清透明溶液B在100℃水浴条件下反应2天;
(6)室温自然冷却,,再固液分离,所得固体产品用乙醇和蒸馏水交替洗涤,分别洗涤3次,离心分离,得白色沉淀;将白色沉淀于110℃烘干,得白色粉末,即为具有3D微纳结构的FePO4·2H2O。
本实施例所得白色粉末为具有3D微纳结构的FePO4·2H2O,其多个3D微纳结构FePO4·2H2O扫描电镜图如图1所示,其单个3D微纳结构FePO4·2H2O扫描电镜图如图2所示。从图1、图2中可以看出,该3D微纳结构FePO4·2H2O由平均单个厚度30nm,平均长度150nm,平均宽度50nm的纳米片自组装成平均直径为1.5μm的微米球,所以该结构称为3D微纳结构。
本实施例所得3D微纳结构的FePO4·2H2O的应用:最终产品磷酸铁锂(LiFePO4)的合成(现有技术):
(1)称取本实施例得到的3D微纳结构FePO4·2H2O;
(2)按照每1摩尔的二水磷酸铁称取50克聚乙二醇,根据LiOH和二水磷酸铁的摩尔比为1:1.1称取LiOH;
(3)将FePO4·2H2O、PEG和LiOH在玛瑙研钵中混合均匀,得到糊状产物;
(4)将糊状产物放入氩气气氛下,于450~850℃煅烧3~10小时;
(5)自然冷却,得到黑色产物,即为3D微纳结构LiFePO4
由于混合的原料中含有有机物PEG,该物质经过煅烧,产生大量的C(碳)包覆在3D微纳结构LiFePO4的表面,使得材料的导电率进一步提高,并且液态的PEG渗透到3D微纳结构FePO4内部,在煅烧过程中产生的C存在材料内部,将进一步提高导电率,再有其在内部产生的反应热使得材料反应更均匀、完全。图3为本发明实施例1所得FePO4·2H2O锂化后得到的最终产品3D微纳结构LiFePO4扫描电镜图。
该3D微纳结构LiFePO4电极材料,制成电池后,在0~4.5V的电压范围内,以不同倍率充放电,得到图4。可以看出,在0.1C、0.5C、1C、5C、10C、20C、30C倍率情况下,其比容量分别为153、149、143、115、91、75mAh/g。图5是本实施例所得LiFePO4正极材料组装成电池在高倍率下循环100圈时的放电比容量图。从图5可以看出,在进行大倍率充放电循环100圈的稳定性也很好。
振实密度测试
称取本实施例合成的3D微纳结构LiFePO4电极材料3g,倒入容量为5ml的量筒内,手工在桌面上振动,直到量筒内物面不再下降,测得其容积为1.96cm3,故其振实密度为1.53g/cm3
将本实施例所得正极材料的充放电性能与现有技术所得正极材料的充放电性能进行比较,其结果如表1所示。
表1本实施例与参考文献中所得LiFePO4/C的电化学性能比较
参考文献:
1.L.Wang,G.C.Liang,X.Q.Ou,X.K.Zhi,J.P.Zhang,J.Y.Cui.EffectofsynthesistemperatureonthepropertiesofLiFePO4/Ccompositespreparedbycarbothermalreduction.JournalofPowerSources.2009,189,423~428.电导率:~10~9Scm~1
2.BingZhao,YongJiang,HaijiaoZhang,HaihuaTao,MingyangZhong,ZhengJiao.MorphologyandelectricalpropertiesofcarboncoatedLiFePO4cathodematerials.JournalofPowerSources.2009,189,462~466.
3.YongminWu,ZhenhaiWen,JinghongLi.HierachicalCarbon~coatedLiFePO4NanoplatemicrosphereswithhighelectrochemicalperformanceforLi~ionbatteries.AdvancedMaterials.2011,23,1126~1129.
4.Lung~HaoHu,Feng~YuWu,Cheng~TeLin,AndreiN.Khlobystov,Lain~JongLi.Graphene~modifiedLiFePO4cathodforlithiumionbatteriesbeyongtheoreticalcapacity.NatureCommunications.DOI:10.1038/ncomms2705.
5.FeiCheng,ShuaiWang,An~HuiLu,Wen~CuiLi.ImmobilizationofnanosizedLiFePO4spheresby3Dcoralloidcarbonstructurewithlargeporevolumeandthinwallsforhighpowerlithiumionbatteries.JournalofPowerSources.2013,229,249~257.
6.JiangfengQian,MinZhou,YuliangCao,XinpingAi,HanxiYang.Template~freehydrothermalsynthesisofNanoembossedMesoporousLiFePO4microspheresforhigh~performancelithiumionbatteries.JournalofPhysicalChemistryC.2010,114,3477~3482.
7.ChunwenSun,ShreyasRajasekhara,JohnB.Goodenough,FengZhou.JournaloftheAmericanChemicalSociety.2011,133,2132~2135。

Claims (3)

1.一种3D微纳结构球形活性磷酸铁的制备方法,其特征在于,包括以下步骤:
(1)称取1~5克表面活性剂,溶解于200ml蒸馏水中,搅拌溶解,得表面活性剂溶液;
(2)称取九水硝酸铁,作为铁源,溶解于90ml蒸馏水中,所述九水硝酸铁与蒸馏水的质量比为0.2~4:90,搅拌15~240分钟,得九水硝酸铁溶液;
(3)将步骤(2)所得九水硝酸铁溶液滴加到步骤(1)所得表面活性剂溶液中,搅拌15-240分钟,得溶液A;
(4)称取H3PO4溶液,所述H3PO4溶液中的H3PO4与步骤(2)称取的Fe(NO3)3·9H2O摩尔比为1:0.8~1.2;将磷酸溶液加入步骤(3)所得溶液A中,搅拌混合30~240分钟,得澄清透明溶液B;
(5)将步骤(4)所得澄清透明溶液B在80~100℃水浴条件下反应2~4天,或150~200℃油浴条件下反应2~8小时;
(6)室温自然冷却,再固液分离,所得固体产品用乙醇和蒸馏水交替洗涤,各洗涤1~5次,离心分离,得白色沉淀;将白色沉淀于80~110℃烘干,得白色粉末,即为具有3D微纳结构的FePO4·2H2O。
2.根据权利要求1所述的3D微纳结构球形活性磷酸铁的制备方法,其特征在于,步骤(1)中,所述表面活性剂为十二烷基硫酸钠或十六烷基三甲基溴化铵。
3.根据权利要求1或2所述的3D微纳结构球形活性磷酸铁的制备方法,其特征在于,步骤(4)中,所述H3PO4溶液的质量浓度为75~85wt%。
CN201410316789.1A 2014-07-04 2014-07-04 一种3d微纳结构球形活性磷酸铁的制备方法 Active CN104085868B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410316789.1A CN104085868B (zh) 2014-07-04 2014-07-04 一种3d微纳结构球形活性磷酸铁的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410316789.1A CN104085868B (zh) 2014-07-04 2014-07-04 一种3d微纳结构球形活性磷酸铁的制备方法

Publications (2)

Publication Number Publication Date
CN104085868A CN104085868A (zh) 2014-10-08
CN104085868B true CN104085868B (zh) 2016-03-23

Family

ID=51633667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410316789.1A Active CN104085868B (zh) 2014-07-04 2014-07-04 一种3d微纳结构球形活性磷酸铁的制备方法

Country Status (1)

Country Link
CN (1) CN104085868B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106064811B (zh) * 2016-05-31 2017-09-29 百川化工(如皋)有限公司 一种磷酸铁的制备方法
CN106946236B (zh) * 2017-03-23 2019-01-04 湖南工学院 无定形纳米球形活性磷酸铁水合物及其制备方法和应用
CN110357057B (zh) * 2019-07-22 2021-05-18 湖南雅城新材料有限公司 一种片状磷酸铁及其制备方法与应用
CN111244447B (zh) * 2020-01-20 2021-11-12 湖南雅城新材料有限公司 一种片状二水磷酸铁及其制备方法
CN116374978A (zh) * 2023-04-26 2023-07-04 四川大学 制备磷酸铁的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102009968A (zh) * 2011-01-14 2011-04-13 武汉大学 一种纳米片状FePO4·2H2O的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102009968A (zh) * 2011-01-14 2011-04-13 武汉大学 一种纳米片状FePO4·2H2O的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Synthesis of FePO4·2H2O nanoplates and their usage for fabricating superior high-rate performance LiFePO4;Meng Wang et al.;《Electrochimica Acta》;20110128;第56卷;第4294–4298页 *
沉淀法制备磷酸铁锂的研究;张建利;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20120515(第05期);第C042-681页 *
纳米FePO4.2H2O的制备与表征;马晓玲等;《广州化工》;20120331;第40卷(第5期);第60-62页 *

Also Published As

Publication number Publication date
CN104085868A (zh) 2014-10-08

Similar Documents

Publication Publication Date Title
Liang et al. Co-doped Li4Ti5O12 nanosheets with enhanced rate performance for lithium-ion batteries
Chang et al. Rheological phase reaction synthesis and electrochemical performance of Li3V2 (PO4) 3/carbon cathode for lithium ion batteries
CN104085868B (zh) 一种3d微纳结构球形活性磷酸铁的制备方法
CN101964411B (zh) LiFePO4复合型正极材料的制备方法
CN108735997A (zh) 一种超过磷酸铁锂理论容量的磷酸铁锂基复合材料、其制备方法及用途
CN102104143A (zh) 一种高性能动力电池用复合材料的水热合成法
CN102881871A (zh) 一种制备锂离子电池负极石墨/硅复合材料的方法
TWI498278B (zh) 電池複合材料及其前驅物之製備方法
CN105845904B (zh) 一种钠离子电池金属氧化物/聚吡咯空心纳米管负极复合材料及其制备方法
CN105428649A (zh) 一种纳米碳包覆氟磷酸亚铁钠及水热法的制备方法
CN104934574A (zh) 一种用于锂离子电池的超高密度四氧化三钴/多孔石墨烯纳米复合负极材料的制备方法
CN106058249A (zh) 一种溶剂热制备碳包覆纳米棒状氟磷酸亚铁钠材料的方法
CN108539133A (zh) Li3V2(PO4)3纳米晶/导电聚合物锂离子电池正极材料的制备方法
CN105826550A (zh) 一种含铁化合物涂层锰酸锂正极材料的制备方法
CN102244244A (zh) 一种提高锂离子电池复合正极材料xLiFePO4· yLi3V2(PO4)3振实密度的方法
CN102760879B (zh) 具有稳定低温性能的纳米磷酸亚铁锂/碳复合物的制备方法
Lv et al. MOF-derived CoFe2O4/FeO/Fe nanocomposites as anode materials for high-performance lithium-ion batteries
CN107512740B (zh) 一种锂离子电池负极材料FeVO4纳米线的制备方法
CN104183827B (zh) 一种磷酸铁锂纳米棒及其制备方法
CN104362318B (zh) 一种制备微孔球结构的硅酸亚铁锂/碳复合正极材料的方法
TW201444163A (zh) 電池複合材料及其前驅物之製備方法
CN108807891A (zh) 高电位锂离子电池正极材料LiNi0.5-xMxMn1.5-ySiyO4及制备方法
CN100483809C (zh) 一种锂离子电池正极材料超细LiFePO4/C的制备方法
CN106711420B (zh) 一种锂电池钛酸锂复合负极材料的制备方法
WO2023226556A1 (zh) 一种磷酸铁锂的制备方法及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant