CN103941220B - 一种基于稀疏重构的网格外目标波达方向估计方法 - Google Patents

一种基于稀疏重构的网格外目标波达方向估计方法 Download PDF

Info

Publication number
CN103941220B
CN103941220B CN201410169416.6A CN201410169416A CN103941220B CN 103941220 B CN103941220 B CN 103941220B CN 201410169416 A CN201410169416 A CN 201410169416A CN 103941220 B CN103941220 B CN 103941220B
Authority
CN
China
Prior art keywords
sparse
signal
grid
deviation
dictionary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410169416.6A
Other languages
English (en)
Other versions
CN103941220A (zh
Inventor
段惠萍
王艳艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201410169416.6A priority Critical patent/CN103941220B/zh
Publication of CN103941220A publication Critical patent/CN103941220A/zh
Application granted granted Critical
Publication of CN103941220B publication Critical patent/CN103941220B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received

Abstract

一种基于稀疏重构的网格外目标波达方向估计方法,包括:1)使用一种基于字典平滑的新网格不匹配模型:通过对空间区域的角度进行网格划分,形成两组角度成平移等差关系的子字典,用网格上角度对应的导向矢量以线性组合的方式表示非网格角度上的导向矢量,得到新的基于字典平滑的网格不匹配模型。2)基于该模型在稀疏重构框架下,用联合稀疏重构方法求解稀疏信号,用最小二乘方法求解方向偏差,求解稀疏信号和求解方向偏差的过程交替迭代直至收敛,最后将稀疏信号中的非零元素位置映射到角度空间并根据方向偏差进行补偿得到信号的波达方向。本发明比传统的泰勒模型更高的波达方向估计精度,平滑后的字典维数降低从而使稀疏重构算法的运算量减少。

Description

一种基于稀疏重构的网格外目标波达方向估计方法
技术领域
本发明属于阵列信号处理领域,具体涉及稀疏重构框架下的信号波达方向估计技术,针对字典不匹配引起的波达方向估计性能下降问题提出一种新网格不匹配模型及稀疏重构方法对网格外目标的波达方向进行估计。
背景技术
波达方向(DirectionofArrival,DOA)估计是阵列信号处理领域研究的一个重要课题,在雷达、声呐、地震探测、通信、医学等领域都有广泛的应用。经典的波达方向估计方法包括参数估计方法和非参数估计方法;参数估计方法主要基于最大似然估计算法(MaximumLikelihood,ML)得到,其中又包括确定性最大似然估计和随机性最大似然估计。最大似然估计算法的局限性在于初始值的选择直接影响到能否获得全局最优解,而且计算复杂度高。非参数估计法之一是Bartlett波束形成法,该方法的分辨率取决于阵列孔径。1979年Schmidt(施密特)等人提出多重信号分类(MultipleSignalClassification,MUSIC)算法,这是一类子空间类的算法,可以达到超分辨,但是子空间类算法对相干或相关信源波达方向无法获得理想的估计结果。
近年来随着压缩感知理论的发展,出现了一类基于稀疏重构框架的信号波达方向估计方法,这类方法依据压缩感知理论,对空间区域进行网格划分,由此形成基于网格的字典。在恢复信号的过程中,使用l1范数约束来保证信号的稀疏性。最经典的一个方法是Malioutov提出的l1-SVD方法,该方法为了降低计算的复杂性,用奇异值分解(SingularValueDecomposition,SVD)来降低信号的维数。l1-SVD算法可以分辨出间隔很近的两个相关信号,在低信噪比或者快拍数比较少的情况下,也可以达到很好的效果。一般稀疏重构框架下的信号波达方向估计方法均假设信号方向恰好落在网格上,但是实际上这个假设往往不能得到满足,当信号角度不在网格上时,l1-SVD算法就不能准确地估计出信号波达方向。此后,ArisGretsistas等人提出了泰勒估计模型,将网格外导向矢量在最近网格处作一阶泰勒展开,通过估计方向偏差,对网格外目标的波达方向进行补偿,弥补了l1-SVD算法的不足。但是,泰勒估计模型的估计精度还较低,且受字典维数影响稀疏重构算法的运算量大,这些问题都有待进一步改进。
发明内容
本发明的目的在于改善稀疏重构框架下字典不匹配带来的信号波达方向估计性能降低问题,通过设计新的网格不匹配模型及相应的稀疏重构算法提高信号波达方向估计的精度。
为了实现上述目的,本发明设计了如下技术方案:
一种基于稀疏重构的网格外目标波达方向估计方法,包括:
准备步骤:通过对空间区域的角度进行网格划分,形成两组角度成平移等差关系的子字典,依据字典平滑的思想,用网格上角度对应的导向矢量以线性组合的方式表示非网格角度上的导向矢量,建立一个基于字典平滑的网格不匹配模型;
估计步骤:基于网格不匹配模型,通过交替迭代的过程实现信号波达方向的估计和方向偏差的补偿:在求解信号的波达方向时,用联合稀疏重构的方法求解稀疏信号,用最小二乘的方法求解方向偏差,求解稀疏信号和求解方向偏差的过程交替迭代直至收敛,最后将稀疏信号的非零行位置映射到角度空间并根据方向偏差进行补偿得到估计的信号波达方向。
该方法的具体步骤是:
1)、获取阵列接收数据Y,初始化方向偏差矢量Λ=diag(δ);
2)、根据输入的子字典构造平滑字典A=[I-Λk/r].A1k/r.A2
3)、根据接收数据维数用稀疏重构或联合稀疏重构算法求解稀疏信号X,优化准则为:
在使用联合稀疏重构算法时可以选择使用l1-SVD法降低数据维数;
4)、用最小二乘法求解δ,优化准则为:求解公式为:
δk=C+vec(Rk)=C+vec(Y-A1Xk),其中C的第n列是
5)、判断是否收敛或迭代次数是否达到最大,如果不是重复执行步骤2)-4);
6)、在结束步骤2)-4)的循环后输出估计的稀疏信号和方向偏差非零行的
位置映射到角度空间并根据方向偏差矢量进行补偿得到估计的信号波达方向。
所述准备步骤的详细步骤是:
设信号波达方向为θ,对空间区域进行网格划分,离θ最近的两个网格是θ1和θ2,对a(θ1),a(θ2)分别在θ处进行一阶泰勒展开,得:
a(θ1)=a(θ)+a′(θ)(θ1-θ),a(θ2)=a(θ)+a′(θ)(θ2-θ)
如果角度θ处对应的导向矢量a(θ)可以用a(θ1),a(θ2)线性表示:
a(θ)=k1a(θ1)+k2a(θ2)
把a(θ1),a(θ2)的表达式代入上式,得方程:
a(θ)=k1(a(θ)+a′(θ)(θ1-θ))+k2(a(θ)+a′(θ)(θ2-θ)
=(k1+k2)a(θ)+[k11-θ)+k22-θ)]a′(θ)
上面方程对任意角度θ成立的条件是:
k1+k2=1
k11-θ)+k22-θ)=0
设网格间距为r,θ-θ1=δ,θ2-θ=r-δ,求解出k1,k2取值分别为:
k 1 = 1 - δ r , k 2 = δ r
把k1,k2代入a(θ)的表达式得到:
a ( θ ) = ( 1 - δ r ) a ( θ 1 ) + δ r a ( θ 2 )
δ表示方向偏差,是信号波达方向和最近网格之间的偏差;如果每个潜在目标,或者说字典中的每
一个导向矢量都采用上面的线性组合表达方式,那么网格不匹配模型可以表达为如下形式:
Y={[I-Λ/r].A1+Λ/r.A2}X+E
其中Y∈CM×T中包含了M个阵元测量得到的T次快拍,X表示T次快拍对应的稀疏信号矩阵,X
的每一列具有相同的稀疏结构,将X的非零行位置映射到角度空间就可以找到目标信号的波达方向;
其中A1,A2∈CM×N-1表示两个网格子集对应的子字典:
A1=[a(θ1)a(θ2)...a(θN-1)]
A2=[a(θ2)a(θ3)...a(θN)],
N为网格总数,每个网格子集中包含N-1个网格;
Λ=diag(δ)为对角矩阵包含了所有可能的方向偏差;
δ为方向偏差矢量:δ=[δ12…,δN-1]T;E∈CM×T表示加性噪声。
所述估计步骤的详细步骤是:
设方向偏差矢量δ为某一个固定值,采用联合稀疏重构的方法基于如下优化准则对最优稀疏信号进行求解:
min X | | X | | 2,1 + λ | | Y - { [ I - Λ ^ / r ] · A 1 + Λ / r · A 2 } X ^ | | F
其中:
X2,1表示对X各行先求l2范数再对得到的列向量求l1范数;
λ为正则化参数,λ值的选取与信噪比有关;
采用任何一种联合稀疏重构的方法都可以获得稀疏信号的估计
在获得稀疏信号的估计之后,对方向偏差矢量δ进行估计:
基于字典平滑的新网格不匹配模型经过整理可以重写为:
Y = { A 1 + [ A 2 - A 1 r ] Λ } X + E
因此可以采用如下优化准则对方向偏差矢量δ进行估计:
min δ | | Y - { A 1 + [ A 2 - A 1 r ] Λ } X ^ | | F
假设 那么 Y - A 1 X ^ - BΛ X ^ = R - Σ n = 1 N - 1 δ n b n x ^ n T , 上面的优化准则可以重新表达为:
min δ | | vec ( R ) - Cδ | | 2
其中bn表示矩阵B的第n列,表示的第n行,vec(R)表示将R各列堆叠实现矩阵矢量化,矩阵C的第n列是该优化准则意味着δ可以用最小二乘法进行估计:以上稀疏信号和方向偏差矢量估计的过程采用如下步骤交替迭代直至收敛:
步骤1:输入子字典A1,A2,观测矩阵Y,来波信号的个数K,最大迭代次数Max_iters,最大误差ε;
步骤2:初始化循环次数和方向偏差矢量:k=1,δk=0;
步骤3:构造平滑字典A=[I-Λk/r].A1k/r.A2,其中Λk=diag(δk),根据接收数据维数用稀疏重构或联合稀疏重构算法求解稀疏信号X,优化准则为:
步骤4:用最小二乘法求解δ,优化准则为:求解公式为:δk=C+vec(Rk)=C+vec(Y-A1Xk),其中C的第n列是
步骤5:k=k+1,判断:如果k>Max_iters或δkk-1>ε则退出循环到步骤6,否则回到步骤3;
步骤6:在结束步骤3-5的循环后输出稀疏信号和方向偏差非零行的位置映射到角度空间并根据方向偏差矢量进行补偿得到估计的信号波达方向。
本发明与现有技术相比具有如下优点:对于网格外目标,本发明设计的基于字典平滑的新网格不匹配模型可以比传统的泰勒模型提供更高的估计精度,平滑后的字典维数降低从而使稀疏重构算法的运算量减少。
附图说明
图1:本发明的流程图;
图2:本发明与传统一阶泰勒模型的方向估计误差随目标方向变化的比较图;
图3:本发明与传统一阶泰勒模型的方向估计均方根误差随信噪比变化的比较图。
具体实施方式
下面结合图1、图2、图3和仿真结果详细说明本发明的内容和效果:
一.基于字典平滑的新网格不匹配模型:
1)假设信号波达方向为θ,对空间区域进行网格划分,离θ最近的两个网格是θ1和θ2,对a(θ1),a(θ2)分别在θ处进行一阶泰勒展开,可以得到:
a(θ1)=a(θ)+a′(θ)(θ1-θ),a(θ2)=a(θ)+a′(θ)(θ2-θ);
如果角度θ处对应的导向矢量a(θ)可以用a(θ1),a(θ2)线性表示:
a(θ)=k1a(θ1)+k2a(θ2)
把a(θ1),a(θ2)的表达式代入上式:
a(θ)=k1(a(θ)+a′(θ)(θ1-θ))+k2(a(θ)+a′(θ)(θ2-θ)
=(k1+k2)a(θ)+[k11-θ)+k22-θ)]a′(θ)
上面方程对任意角度θ成立的条件是:
k1+k2=1
k11-θ)+k22-θ)=0
假设网格间距为r,θ-θ1=δ,θ2-θ=r-δ,可以求解出k1,k2取值分别为:
k 1 = 1 - δ r , k 2 = δ r
把k1,k2代入a(θ)的表达式得到:
a ( θ ) = ( 1 - δ r ) a ( θ 1 ) + δ r a ( θ 2 )
注意δ表示方向偏差,是信号波达方向和最近网格之间的偏差。如果每个潜在目标,或者说字典中的每一个导向矢量都采用上面的线性组合表达方式,那么新的网格不匹配模型可以表达为如下形式:Y={[I-Λ/r].A1+Λ/r.A2}X+E
其中YCM×T中包含了M个阵元测量得到的T次快拍,X表示T次快拍对应的稀疏信号矩阵,X的每一列具有相同的稀疏结构,将X的非零行位置映射到角度空间就可以找到目标信号的波达方向。
由此式可以看出,如果每个潜在目标方向对应的导向矢量用两个最近网格对应的导向矢量的线性组合来表示,最终稀疏重构的字典就是对两个子字典的平滑,因此申请人提出的新模型叫做字典平滑的网格不匹配模型。需要注意的是,在字典平滑的网格不匹配模型中,网格间距不能太大。
另外,A1,A2∈CM×N-1表示两个网格子集对应的子字典:
A1=[a(θ1)a(θ2)…a(θN-1)]
A2=[a(θ2)a(θ3)…a(θN)],
N为网格总数,每个网格子集中包含N-1个网格。Λ=diag(δ)为对角矩阵包含了所有可能的方向偏差,δ为方向偏差矢量:δ=[δ12…,δN-1]T。E∈CM×T表示加性噪声。
可以看出在字典平滑的网格不匹配模型中,字典的列数为N-1,方向偏差向量的长度为N-1,比泰勒模型中减少一维,所以基于新提出的网格不匹配模型,稀疏重构的运算量减少。
二.基于新网格不匹配模型的稀疏重构算法
基于本发明设计的新网格不匹配模型,稀疏信号X和方向偏差矢量δ采用交替迭代的过程进行求解。
首先,假设方向偏差矢量δ为某一个固定值,采用联合稀疏重构的方法基于如下优化准则对最优稀疏信号进行求解:
min X | | X | | 2,1 + λ | | Y - { [ I - Λ ^ / r ] · A 1 + Λ / r · A 2 } X ^ | | F
其中X2,1表示对X各行先求l2范数再对得到的列向量求l1范数。λ为正则化参数,λ值的选取与信噪比有关。以上优化问题为多测量矢量(MultipleMeasurementVectors,MMV)的联合稀疏重构问题,通过任何一种联合稀疏重构的方法都可以获得稀疏信号的估计假设已知目标信号个数K,先通过l1-SVD的方法对多快拍的数据先进行降维,然后采用联合稀疏重构的方法,比如同时正交匹配追踪法(SimultaneousOrthogonalMatchingPursuit,SOMP)求解稀疏信号。
其次,在获得稀疏信号的估计之后,对方向偏差矢量δ进行估计:
基于字典平滑的新网格不匹配模型经过整理可以重写为:
Y = { A 1 + [ A 2 - A 1 r ] Λ } X + E
因此可以采用如下优化准则对方向偏差矢量δ进行估计:
min δ | | Y - { A 1 + [ A 2 - A 1 r ] Λ } X ^ | | F
假设 那么 Y - A 1 X ^ - BΛ X ^ = R - Σ n = 1 N - 1 δ n b n x ^ n T , 上面的优化准则可以重新表达为:
min δ | | vec ( R ) - Cδ | | 2
其中bn表示矩阵B的第n列,表示的第n行,vec(R)表示将R各列堆叠实现矩阵矢量化,矩阵C的第n列是该优化准则意味着δ可以用最小二乘法进行估计:以上稀疏信号和方向偏差矢量估计的过程采用如下步骤交替迭代直至收敛:
步骤1:输入子字典A1,A2,观测矩阵Y,来波信号的个数K,最大迭代次数Max_iters,最大误差ε;
步骤2:初始化循环次数和方向偏差矢量:k=1,δk=0;
步骤3:构造平滑字典A=[I-Λk/r]·A1k/r.A2,其中Λk=diag(δk),根据接收数据维数用稀疏重构或联合稀疏重构算法求解稀疏信号X,优化准则为:
步骤4:用最小二乘法求解δ,优化准则为:求解公式为:δk=C+vec(Rk)=C+vec(Y-A1Xk),其中C的第n列是
步骤5:k=k+1,判断:如果k>Max_iters或δkk-1>ε则退出循环到步骤6,否则回到步骤3;
步骤6:在结束步骤3-5的循环后输出稀疏信号和方向偏差非零行的位置映射到角度空间并根据方向偏差矢量进行补偿得到估计的信号波达方向。
本发明的效果通过以下仿真进行说明:
仿真条件:阵元个数为M=8,阵元间距为半波长,网格划分的区域为[0°:180°],划分间隔为r=2°,假设有一个目标:K=1,快拍数T=200。
仿真1:与传统一阶泰勒模型的方向估计误差随目标方向的变化进行比较。假设目标方向在[81°:171°]之间变化,以2°为间隔从而保证仿真的目标方向都在网格外,图2所示为方向估计误差随信源方向变化的曲线,可以看出对于网格外目标,本发明设计的基于字典平滑的网格不匹配模型能够提供优于传统泰勒模型的方向估计精度。
仿真2:假设目标方向固定为121°,信噪比在[-10:15]dB范围内以1dB为间隔变化,图3所示为目标方向估计的均方根误差RMSE随信噪比SNR的变化曲线。可以看出与传统的泰勒模型相比,在不同的信噪比环境下本发明中的新网格不匹配模型以及基于该模型的稀疏重构算法可以提供具有更低均方根误差的波达方向估计结果。
对于网格外目标,本发明提出的稀疏重构算法由于采用了一种基于字典平滑的新网格不匹配模型,可以比传统泰勒模型下的稀疏重构算法提供更高的波达方向估计精度,平滑后的字典维数降低从而使稀疏重构算法的运算量减少。

Claims (3)

1.一种基于稀疏重构的网格外目标波达方向估计方法,包括:
准备步骤:通过对空间区域的角度进行网格划分,形成两组角度成平移等差关系的子字典,依据字典平滑的思想,用网格上角度对应的导向矢量以线性组合的方式表示非网格角度上的导向矢量,建立一个基于字典平滑的网格不匹配模型;
估计步骤:基于网格不匹配模型,通过交替迭代的过程实现信号波达方向的估计和方向偏差的补偿:在求解信号的波达方向时,用联合稀疏重构的方法求解稀疏信号,用最小二乘的方法求解方向偏差,求解稀疏信号和求解方向偏差的过程交替迭代直至收敛,最后将稀疏信号的非零行位置映射到角度空间并根据方向偏差进行补偿得到估计的信号波达方向;
该方法的具体步骤是:
1)、获取阵列接收数据Y,初始化方向偏差矢量Λ=diag(δ);
2)、根据输入的子字典构造平滑字典
3)、根据接收数据维数用稀疏重构或联合稀疏重构算法求解稀疏信号X,优化准则为:在使用联合稀疏重构算法时可以选择使用l1-SVD法降低数据维数;
4)、用最小二乘法求解δ,优化准则为:求解公式为:δk=C+vec(Rk)=C+vec(Y-A1Xk),其中C的第n列是
5)、判断是否收敛或迭代次数是否达到最大,如果不是重复执行步骤2)-4);
6)、在结束步骤2)-4)的循环后输出估计的稀疏信号和方向偏差非零行的位置映射到角度空间并根据方向偏差矢量进行补偿得到估计的信号波达方向。
2.如权利要求1所述的基于稀疏重构的网格外目标波达方向估计方法,其特征在于,所述准备步骤的详细步骤是:
设信号波达方向为θ,对空间区域进行网格划分,离θ最近的两个网格是θ1和θ2,对a(θ1),a(θ2)分别在θ处进行一阶泰勒展开,得:
a(θ1)=a(θ)+a′(θ)(θ1-θ),a(θ2)=a(θ)+a′(θ)(θ2-θ)
如果角度θ处对应的导向矢量a(θ)可以用a(θ1),a(θ2)线性表示:
a(θ)=k1a(θ1)+k2a(θ2)
把a(θ1),a(θ2)的表达式代入上式,得方程:
a(θ)=k1(a(θ)+a′(θ)(θ1-θ))+k2(a(θ)+a′(θ)(θ2-θ)
=(k1+k2)a(θ)+[k11-θ)+k22-θ)]a′(θ)
上面方程对任意角度θ成立的条件是:
k1+k2=1
k11-θ)+k22-θ)=0
设网格间距为r,θ-θ1=δ,θ2-θ=r-δ,求解出k1,k2取值分别为:
把k1,k2代入a(θ)的表达式得到:
δ表示方向偏差,是信号波达方向和最近网格之间的偏差;如果每个潜在目标,或者说字典中的每一个导向矢量都采用上面的线性组合表达方式,那么网格不匹配模型可以表达为如下形式:
Y={[I-Λ/r]·A1+Λ/r·A2}X+E
其中Y∈CM×T中包含了M个阵元测量得到的T次快拍,X表示T次快拍对应的稀疏信号矩阵,X的每一列具有相同的稀疏结构,将X的非零行位置映射到角度空间就可以找到目标信号的波达方向;其中A1,A2∈CM×N-1表示两个网格子集对应的子字典:
A1=[a(θ1)a(θ2)…a(θN-1)]
A2=[a(θ2)a(θ3)…a(θN)],
N为网格总数,每个网格子集中包含N-1个网格;
Λ=diag(δ)为对角矩阵包含了所有可能的方向偏差;
δ为方向偏差矢量:δ=[δ12…,δN-1]T;E∈CM×T表示加性噪声。
3.如权利要求1所述的基于稀疏重构的网格外目标波达方向估计方法,其特征在于,所述估计步骤的详细步骤是:
设方向偏差矢量δ为某一个固定值,采用联合稀疏重构的方法基于如下优化准则对最优稀疏信号进行求解:
其中:
||X||2,1表示对X各行先求l2范数再对得到的列向量求l1范数;
λ为正则化参数,λ值的选取与信噪比有关;
采用任何一种联合稀疏重构的方法都可以获得稀疏信号的估计
在获得稀疏信号的估计之后,对方向偏差矢量δ进行估计:
基于字典平滑的新网格不匹配模型经过整理可以重写为:
因此可以采用如下优化准则对方向偏差矢量δ进行估计:
假设那么上面的优化准则可以重新表达为:
其中bn表示矩阵B的第n列,表示的第n行,vec(R)表示将R各列堆叠实现矩阵矢量化,矩阵C的第n列是该优化准则意味着δ可以用最小二乘法进行估计:
以上稀疏信号和方向偏差矢量估计的过程采用如下步骤交替迭代直至收敛:
步骤1:输入子字典A1,A2,观测矩阵Y,来波信号的个数K,最大迭代次数Max_iters,最大误差ε;
步骤2:初始化循环次数和方向偏差矢量:k=1,δk=0;
步骤3:构造平滑字典其中Λk=diag(δk),根据接收数据维数用稀疏重构或联合稀疏重构算法求解稀疏信号X,优化准则为:
步骤4:用最小二乘法求解δ,优化准则为:求解公式为:δk=C+vec(Rk)=C+vec(Y-A1Xk),其中C的第n列是
步骤5:k=k+1,判断:如果k>Max_iters或||δkk-1||>ε则退出循环到步骤6,否则回到步骤3;
步骤6:在结束步骤3-5的循环后输出稀疏信号和方向偏差非零行的位置映射到角度空间并根据方向偏差矢量进行补偿得到估计的信号波达方向。
CN201410169416.6A 2014-04-25 2014-04-25 一种基于稀疏重构的网格外目标波达方向估计方法 Expired - Fee Related CN103941220B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410169416.6A CN103941220B (zh) 2014-04-25 2014-04-25 一种基于稀疏重构的网格外目标波达方向估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410169416.6A CN103941220B (zh) 2014-04-25 2014-04-25 一种基于稀疏重构的网格外目标波达方向估计方法

Publications (2)

Publication Number Publication Date
CN103941220A CN103941220A (zh) 2014-07-23
CN103941220B true CN103941220B (zh) 2016-06-01

Family

ID=51188968

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410169416.6A Expired - Fee Related CN103941220B (zh) 2014-04-25 2014-04-25 一种基于稀疏重构的网格外目标波达方向估计方法

Country Status (1)

Country Link
CN (1) CN103941220B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407319A (zh) * 2014-12-01 2015-03-11 广东电网有限责任公司电力调度控制中心 阵列信号的目标源测向方法和系统
CN105093200B (zh) * 2015-08-11 2017-08-11 电子科技大学 一种基于修正字典的网格外目标波达方向估计方法
CN105549005B (zh) * 2015-11-04 2018-03-06 上海大学 一种基于网格划分的动态目标波达方向跟踪方法
CN106291452B (zh) * 2016-09-12 2018-10-16 电子科技大学 一种基于改进贪婪算法的波达角估计方法
CN106646344B (zh) * 2016-12-16 2019-02-01 西北工业大学 一种利用互质阵的波达方向估计方法
CN107147433A (zh) * 2017-04-26 2017-09-08 重庆大学 基于半张量积压缩感知模型的确定性随机观测阵构造方法
CN110663081B (zh) * 2017-10-10 2023-12-22 谷歌有限责任公司 基于网格偏移方法的联合宽带源定位和获取
CN108537886B (zh) * 2018-04-09 2019-06-21 哈尔滨理工大学 一种虚拟手术切割中的高质量网格划分和优化方法
CN108957390B (zh) * 2018-07-09 2022-03-18 东南大学 一种存在互耦时基于稀疏贝叶斯理论的到达角估计方法
CN109061630B (zh) * 2018-08-01 2022-05-03 电子科技大学 在嵌套阵列下基于改进的正交匹配追踪doa估计方法
CN109143194A (zh) * 2018-09-10 2019-01-04 中国人民解放军空军工程大学 一种非格点条件下的双基地mimo雷达的快速角度估计方法
CN110954860B (zh) * 2019-12-18 2021-06-29 金陵科技学院 一种doa和极化参数估计方法
WO2021243529A1 (zh) * 2020-06-01 2021-12-09 华为技术有限公司 一种波达角aoa估计方法和装置
CN113050027B (zh) 2021-03-08 2023-09-19 浙江大学 一种幅相误差情况下基于稀疏重构的波达方向估计方法
CN113970718A (zh) * 2021-10-27 2022-01-25 东南大学 一种阵列超分辨波达方向估计方法
CN115963469B (zh) * 2023-03-17 2023-06-16 艾索信息股份有限公司 相干信源波达方向估算方法、装置、处理设备及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692586B2 (en) * 2008-08-11 2010-04-06 The United States Of America As Represented By The Secretary Of The Navy Sparse interferometric array for radio frequency azimuth direction finding
CN103399292B (zh) * 2013-07-22 2015-06-03 西安电子科技大学 一种基于软稀疏表示的doa估计方法

Also Published As

Publication number Publication date
CN103941220A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
CN103941220B (zh) 一种基于稀疏重构的网格外目标波达方向估计方法
CN104977558B (zh) 一种基于贝叶斯压缩感知的分布源中心波达方向估计方法
CN103971029B (zh) 一种用于网格失配下的doa估计的交替迭代方法
CN104020439B (zh) 基于空间平滑协方差矩阵稀疏表示的波达方向角估计方法
CN106772226A (zh) 基于压缩感知时间调制阵列的doa估计方法
CN109116293B (zh) 一种基于离格稀疏贝叶斯的波达方向估计方法
CN103323845B (zh) 一种非均匀采样综合孔径辐射计的图像反演方法
CN109061554A (zh) 一种基于空间离散网格动态更新的目标到达角度估计方法
CN107192878A (zh) 一种基于压缩感知的电力系统谐波检测方法及装置
CN105676168A (zh) 一种声矢量阵方位估计方法
CN111551895B (zh) 基于加权多维标度和拉格朗日乘子的运动源tdoa和fdoa定位方法
CN109613473A (zh) 基于稀疏性的展开互质线阵角度估计方法
CN106683185B (zh) 一种基于大数据的高精度曲面建模方法
CN106526529A (zh) 导向矢量失配情况下基于稀疏表示的波达方向估计方法
CN109239649A (zh) 一种阵列误差条件下的互质阵列doa估计新方法
CN104950297A (zh) 基于矩阵1范数拟合的阵元误差估计方法
CN104539340A (zh) 一种基于稀疏表示和协方差拟合的稳健波达角估计方法
CN103454677A (zh) 基于粒子群与线性加法器结合的地震数据反演方法
CN107576931A (zh) 一种基于协方差低维度迭代稀疏重构的相关/相干信号波达方向估计方法
CN104076332A (zh) 一种雷达均匀线性阵列幅度和相位的估计方法
CN106483559A (zh) 一种地下速度模型的构建方法
CN103235282A (zh) 一种l型二维天线阵列去耦自校正及波达方向估计方法
CN110954860B (zh) 一种doa和极化参数估计方法
CN106156451A (zh) 一种基于改进量子粒子群的波达方向估计技术
CN112147571A (zh) 基于正则正交匹配追踪和蝙蝠算法的声源方位角估计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160601

Termination date: 20190425

CF01 Termination of patent right due to non-payment of annual fee