CN103887496B - 一种高性能锂离子电池正极材料LiMBO3@C复合材料的制备方法 - Google Patents

一种高性能锂离子电池正极材料LiMBO3@C复合材料的制备方法 Download PDF

Info

Publication number
CN103887496B
CN103887496B CN201410119464.4A CN201410119464A CN103887496B CN 103887496 B CN103887496 B CN 103887496B CN 201410119464 A CN201410119464 A CN 201410119464A CN 103887496 B CN103887496 B CN 103887496B
Authority
CN
China
Prior art keywords
source
limbo
lithium
lithium ion
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410119464.4A
Other languages
English (en)
Other versions
CN103887496A (zh
Inventor
徐立强
李爱华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201410119464.4A priority Critical patent/CN103887496B/zh
Publication of CN103887496A publication Critical patent/CN103887496A/zh
Application granted granted Critical
Publication of CN103887496B publication Critical patent/CN103887496B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种高性能锂离子正极材料LiMBO3C复合材料的制备方法,包括,将锂源Li,过渡金属源M,硼源B和聚合物单体加水搅拌均匀,于70~95℃水浴中加热,加入引发剂,后转移至烘箱中于100~120℃烘干4~6小时,研磨制得LiMBO3C前驱体粉末;将LiMBO3C前驱体粉末置于管式炉中在惰性气氛中,逐渐加热至450-800℃煅烧5~7小时,即得高性能锂离子正极材料LiMBO3C复合材料。本发明所使用原料简单易得、价格低廉、环境友好,可大批量低成本生产;在较低温度下水浴中预处理即可进行下一步的煅烧,对设备要求低;具有一定的适用性,既可用于合成LiMnBO3,又可用于合成LiZnBO3

Description

一种高性能锂离子电池正极材料LiMBO3C复合材料的制备方法
技术领域
本发明涉及一种高性能锂离子电池正极材料LiMBO3C复合材料,属于电化学和新能源材料技术领域。
背景技术
锂离子电池作为能源存储器件,在现代社会中得到了广泛的应用。目前为止,提升电池性能的关键性决定因素在于提升正极材料的性能(稳定性、能量密度等)。近期,含有聚阴离子结构的硫酸盐、磷酸盐、硅酸盐材料因其具有开放的三维框架结构备受关注。其中,稳定性较高的LiFePO4已被商业化应用。与LiFePO4相比,硼酸盐材料具有更高的理论比容量(~220mAhg-1)、更高的放电平台、更高的电导率、更小的体积变化,另外硼酸盐材料也具备资源丰富、环境友好等优点。
2001年,Legagneur首次报道了含硼化合物(LiMBO3,M=Fe,Mn,&Co)可以用作锂离子电池材料(SolidStateIonics,2001,139,37–46)。目前合成硼酸盐正极材料的方法主要有高温固相(JournalofPowerSources,2013,236,54-60)(MaterialsSciencesandApplications,2013,4,246-249)、溶胶-凝胶(JournalofPowerSources,2013,224,145-151)、溶液燃烧(JournalofElectrochemicalSociety,2013,160,5,A3095-A3099)、自燃烧(J.Mater.Chem.A,2014,2,2060-2070)等,但是有关聚合物热解法制备硼酸盐材料的报道尚未出现。聚合物热解法结合了高温固相与液相反应(溶胶-凝胶、溶液燃烧、自燃烧)的优点,既有高温固相法的简单,同时又能够对产物的形貌在一定程度上得到控制且能提高产物的电化学性能。此外,聚合物热解法可以实现原位的碳包覆,有效的提高硼酸盐材料的导电性、缓解其表面中毒(在空气中易氧化)现象。我们采用简单的聚合物热解法,通过控制选择不同的反应原料可合成LiMnBO3和LiZnBO3与多孔碳的复合材料,并得到了较好的电化学性能。
发明内容
针对现有技术的不足,本发明提供一种简便且易于工业化生产高性能锂离子正极材料LiMBO3C复合材料的制备方法,并有效的提高了锂离子电池性能。
本发明的技术方案如下:
一种高性能锂离子正极材料LiMBO3C复合材料的制备方法,包括如下步骤:
(1)将锂源Li,过渡金属源M,硼源B和聚合物单体按锂源Li:过渡金属源M:硼源B:聚合物单体=(1~1.1):1:1:(1~3)的摩尔比混合并加水搅拌均匀,于70~95℃水浴中加热,不断搅拌下加入引发剂,所述的引发剂的加入量为聚合物单体质量的0.04~8%,持续搅拌加热1~3小时至粘稠状,制得粘稠物;
(2)将步骤(1)制得的粘稠物转移至烘箱中于100~120℃烘干4~6小时,研磨制得LiMBO3C前驱体粉末;
(3)将步骤(2)制得的LiMBO3C前驱体粉末置于管式炉中在惰性气氛中,所述的惰性气氛为Ar/CO混合气体、Ar/H2混合气体、氩气或氮气,逐渐加热至450-800℃煅烧5~7小时,即得高性能锂离子正极材料LiMBO3C复合材料。
本发明优选的,步骤(1)中所述的锂源Li为氢氧化锂,碳酸锂,硝酸锂,氯化锂,氟化锂,醋酸锂,草酸锂,偏硼酸锂的一种或任意两种或两种以上的组合;
进一步优选的,所述的锂源Li为氢氧化锂或碳酸锂。
本发明优选的,步骤(1)中所述的过渡金属源M为锰源或锌源。
进一步优选的,所述的锰源为碳酸锰,硝酸锰溶液,乙酸锰,二氧化锰,三氧化二锰,氧化亚锰,羟基氧化锰,H2Mn8O16﹒2.4H2O的一种或任意两种或两种以上的组合;锌源为硝酸锌,氧化锌,硫酸锌,乙酸锌,氯化锌中的一种或任意两种或两种以上的组合。
本发明优选的锰源为碳酸锰或硝酸锰;优选的锌源为硝酸锌或氧化锌。
本发明优选的,所述的硼源为硼酸,硼酸铵,偏硼酸锂,氧化硼的一种或任意两种或两种以上的组合。
进一步优选的,所述硼源为硼酸或硼酸铵。
本发明优选的,所述的聚合物单体为甲基丙烯酸,丙烯酸,丁烯酸中的一种或任意两种或两种以上的组合。
进一步优选的,聚合物单体为甲基丙烯酸或丙烯酸。
本发明优选的,所述的引发剂为硫酸钠,过硫酸钾,过硫酸铵,过硫酸钠、硫酸氢钠中的一种或任意两种或两种以上的组合,所述硫酸钠,过硫酸钾,过硫酸铵,过硫酸钠、硫酸氢钠的质量浓度均为5%。
本发明优选的,步骤(1)中水的加入量与锂源Li的体积摩尔比为(1~3):1,单位L/mol。即每加入一摩尔锂源要加入1~3升去离子水。
本发明优选的,步骤(3)中的升温速率为2~10℃/min,当过渡金属源M为锰源,所述的惰性气氛优选体积比95:5的Ar/CO混合气体,或体积比95:5的Ar/H2混合气体;当过渡金属源M为锌源,所述的惰性气氛为纯度为99.999%氩气或氮气。
本发明制得的LiMBO3C复合材料最外层为多孔碳包覆层,平均厚度为40~50nm。
本发明的优点如下:
(a)本发明所使用原料简单易得、价格低廉、环境友好,可大批量低成本生产;
(b)本发明方法简单,只需在较低温度下水浴中预处理即可进行下一步的煅烧,对设备要求低;
(c)本发明具有一定的适用性,既可用于合成LiMnBO3,又可用于合成LiZnBO3
(d)本发明所得复合物中碳包覆层为多孔碳(e)本发明所得产物无需进行后处理,反应过程中无有毒有害物质生成。
附图说明
图1是实施例1制备的产品LiMnBO3C的XRD衍射图,其中左纵坐标为强度,横坐标为衍射角度(2θ)。
图2是实施例2与实例3制备的产品LiMnBO3C的XRD衍射对比图,其中左纵坐标为相对强度,横坐标为衍射角度(2θ)。
图3是实施例4所得LiZnBO3C的XRD衍射图,其中左纵坐标为强度,横坐标为衍射角度(2θ)。
图4是实施例1制备的产品LiMnBO3C的SEM照片。
图5是实施例2制备的产品LiMnBO3C的锂离子电池循环性能图,测试电流为10mA/g;其中,左纵坐标是比容量,比容量单位:毫安时每克(mAh/g),横坐标是循环圈数(n)。
图6是实施例4制备的产品LiZnBO3C的锂离子电池循环性能图,测试电流为10mA/g;其中,左纵坐标是比容量,比容量单位:毫安时每克(mAh/g),横坐标是循环圈数(n)。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应该理解,这些实例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明所阐述的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
硼酸锰锂与碳的复合材料(LiMnBO3C)的制备
1、将2.5mmolMnCO3,2.5mmolH3BO3,1.25mmolLi2CO3,7.5mmol甲基丙烯酸加入25mL烧杯中,加入5mL去离子水搅拌均匀,置于80℃水浴中搅拌加热,不断搅拌下加入1mL5%的过硫酸铵水溶液作为引发剂,继续搅拌加热2小时至有粘稠状固体生成。转移至100℃烘箱中烘干5小时,研磨制得LiMnBO3C前驱体粉末。将LiMnBO3C前驱体粉末在Ar/H2气氛中以5℃/min的升温速率加热至650℃煅烧7小时即可得到最终产物。将产物采用BrukerD8ADVANCEX射线粉末衍射仪以CuKα射线(波长扫描步速为0.08°/秒)进行物相分析,结果显示为纯相的LiMnBO3C复合物(结果如图1所示),可作为锂离子电池正极活性材料,图4为其SEM照片。
实施例2
硼酸锰锂与碳的复合材料(LiMnBO3C)的制备
将Mn(NO3)2(50%水溶液),LiOH·H2O,H3BO3各0.06mol,甲基丙烯酸0.18mol加入250mL烧杯中,加入120mL去离子水搅拌均匀,置于80℃水浴中搅拌加热,加入1mL5%的过硫酸钠水溶液作为引发剂,继续搅拌加热1小时至有粘稠状固体生成。转移至110℃烘箱中烘干4小时,研磨制得LiMnBO3C前驱体粉末。将LiMnBO3C前驱体粉末在Ar/H2气氛中以6℃/min的速率升温至700℃煅烧6小时即可得到最终产物。将产物采用BrukerD8ADVANCEX射线粉末衍射仪以CuKα射线(波长扫描步速为0.08°/秒)进行物相分析,结果显示为纯相的LiMnBO3C复合物,可作为锂离子电池正极活性材料。
电化学性能测试
将该实施例制备的产品用作锂离子电池正极材料,采用涂布法制备电极,将原料按质量比LiMnBO3C:乙炔黑:PVDF=70:20:10的比例混合,以NMP为溶剂,制成正极浆料,涂在铝箔上,经充分干燥压片后切片得到直径为12mm的正极片。电池负极片用锂片。在惰性气体保护的手套箱中,以1mol/L的LiPF6/EC/DMC/DEC(1:1:1)为电解液,Celgerd2300为隔膜,组装成2320型扣式电池。测试仪器:充放电仪(Land);BrukerD8-X射线衍射仪。在蓝电测试仪上进行LiMnBO3C电池充放电性能测试,充放电条件:在1.0~4.8v电压范围内,电流密度为10mA/g时,初始放电容量达到167.8mAh/g,经15圈循环后可达到98.7mAh/g;电流密度为100mA/g时,经15圈循环后尚可达到87.4mAh/g,如图5所示。
实施例3
硼酸锰锂与碳的复合材料(LiMnBO3C)的制备
将Mn(NO3)2(50%水溶液),LiOH·H2O,H3BO3各0.06mol,丙烯酸0.06mol加入250mL烧杯中,加入120mL去离子水搅拌均匀,置于90℃水浴中搅拌加热,加入1mL5%的过硫酸铵水溶液作为引发剂,继续搅拌加热1小时至有粘稠状固体生成。转移至120℃烘箱中烘干4小时,研磨制得LiMnBO3C前驱体粉末。将LiMnBO3C前驱体粉末在Ar/H2气氛中以7℃/min的速率升温至750℃煅烧5小时即可得到最终产物。将产物采用BrukerD8ADVANCEX射线粉末衍射仪以CuKα射线(波长扫描步速为0.08°/秒)进行物相分析,结果显示为纯相的LiMnBO3C复合物,可作为锂离子电池正极活性材料。图2为实施例2与实施例3产物的XRD对比图,通过对比可以发现,利用不同比例不同种类的聚合物单体(甲基丙烯酸或丙烯酸)均可得到纯相LiMnBO3C。
实施例4
硼酸锌锂与碳的复合材料(LiZnBO3C)的制备
将Zn(NO3)2·6H2O,LiOH·H2O,H3BO3各0.06mol,甲基丙烯酸0.18mol加入250mL烧杯中,加入120mL去离子水搅拌均匀,置于90℃水浴中搅拌加热,加入1mL5%的过硫酸钾水溶液作为引发剂,继续搅拌加热2小时至有粘稠状固体生成。转移至120℃烘箱中烘干6小时得,研磨制得LiZnBO3C前驱体粉末。将LiZnBO3C前驱体粉末在Ar气氛中以7℃/min的速率升温至600℃煅烧5小时即可得到最终产物。将产物采用BrukerD8ADVANCEX射线粉末衍射仪以CuKα射线(波长扫描步速为0.08°/秒)进行物相分析,结果显示为纯相的LiZnBO3C复合物(结果如图3所示),可作为锂离子电池正极活性材料。
电化学性能测试
将该实施例制备的产品用作锂离子电池正极材料,采用涂布法制备电极,将原料按质量比LiZnBO3C:乙炔黑:PVDF=70:20:10的比例混合,以NMP为溶剂,制成正极浆料,涂在铝箔上,经充分干燥压片后切片得到直径为12mm的正极片。电池负极片用锂片。在惰性气体保护的手套箱中,以1mol/L的LiPF6/EC/DMC/DEC(1:1:1)为电解液,Celgerd2300为隔膜,组装成2320型扣式电池。测试仪器:充放电仪(Land);BrukerD8-X射线衍射仪。在蓝电测试仪上进行LiZnBO3C电池充放电性能测试,充放电条件:在1.0~4.8v电压范围内,电流密度为10mA/g时,初始放电容量达到126.9mAh/g,经5圈循环后可达到92.0mAh/g,结果如图6所示。

Claims (9)

1.一种高性能锂离子正极材料LiMBO3C复合材料的制备方法,包括如下步骤:
(1)将锂源,过渡金属M源,硼源和聚合物单体按锂源:过渡金属M源:硼源:聚合物单体=(1~1.1):1:1:(1~3)的摩尔比混合并加水搅拌均匀,于70~95℃水浴中加热,不断搅拌下加入引发剂,所述的引发剂的加入量为聚合物单体质量的0.04~8%,持续搅拌加热1~3小时至粘稠状,制得粘稠物;
所述的锂源为氢氧化锂,碳酸锂,硝酸锂,氯化锂,氟化锂,醋酸锂,草酸锂,偏硼酸锂的一种或任意两种以上的组合;
所述的过渡金属M源为锰源或锌源;所述的锰源为碳酸锰,乙酸锰,二氧化锰,三氧化二锰,氧化亚锰,羟基氧化锰,H2Mn8O16﹒2.4H2O的一种或任意两种以上的组合;锌源为硝酸锌,硫酸锌,乙酸锌,氯化锌中的一种或任意两种以上的组合;
所述的聚合物单体为甲基丙烯酸,丙烯酸,丁烯酸中的一种或任意两种以上的组合;
(2)将步骤(1)制得的粘稠物转移至烘箱中于100~120℃烘干4~6小时,研磨制得LiMBO3C前驱体粉末;
(3)将步骤(2)制得的LiMBO3C前驱体粉末置于管式炉中在惰性气氛中,所述的惰性气氛为Ar/CO混合气体、Ar/H2混合气体、氩气或氮气,逐渐加热至450-800℃煅烧5~7小时,即得高性能锂离子正极材料LiMBO3C复合材料;最外层为多孔碳包覆层。
2.根据权利要求1所述的高性能锂离子正极材料LiMBO3C复合材料的制备方法,其特征在于,步骤(1)中,所述的锂源为氢氧化锂或碳酸锂。
3.根据权利要求1所述的高性能锂离子正极材料LiMBO3C复合材料的制备方法,其特征在于,锰源为碳酸锰;锌源为硝酸锌。
4.根据权利要求1所述的高性能锂离子正极材料LiMBO3C复合材料的制备方法,其特征在于,所述的硼源为硼酸,硼酸铵,偏硼酸锂,氧化硼的一种或任意两种以上的组合。
5.根据权利要求4所述的高性能锂离子正极材料LiMBO3C复合材料的制备方法,其特征在于,所述硼源为硼酸或硼酸铵。
6.根据权利要求1所述的高性能锂离子正极材料LiMBO3C复合材料的制备方法,其特征在于,聚合物单体为甲基丙烯酸或丙烯酸。
7.根据权利要求1所述的高性能锂离子正极材料LiMBO3C复合材料的制备方法,其特征在于,所述的引发剂为硫酸钠,过硫酸钾,过硫酸铵,过硫酸钠、硫酸氢钠中的一种或任意两种以上的组合,所述硫酸钠,过硫酸钾,过硫酸铵,过硫酸钠、硫酸氢钠的质量浓度均为5%。
8.根据权利要求1所述的高性能锂离子正极材料LiMBO3C复合材料的制备方法,其特征在于,步骤(1)中水的加入量与锂源的体积摩尔比为(1~3):1,单位L/mol。
9.根据权利要求1所述的高性能锂离子正极材料LiMBO3C复合材料的制备方法,其特征在于,步骤(3)中的升温速率为2~10℃/min,当过渡金属M源为锰源,所述的惰性气氛为体积比95:5的Ar/CO混合气体,或体积比95:5的Ar/H2混合气体;当过渡金属M源为锌源,所述的惰性气氛为纯度为99.999%氩气或氮气。
CN201410119464.4A 2014-03-27 2014-03-27 一种高性能锂离子电池正极材料LiMBO3@C复合材料的制备方法 Expired - Fee Related CN103887496B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410119464.4A CN103887496B (zh) 2014-03-27 2014-03-27 一种高性能锂离子电池正极材料LiMBO3@C复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410119464.4A CN103887496B (zh) 2014-03-27 2014-03-27 一种高性能锂离子电池正极材料LiMBO3@C复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN103887496A CN103887496A (zh) 2014-06-25
CN103887496B true CN103887496B (zh) 2016-04-06

Family

ID=50956298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410119464.4A Expired - Fee Related CN103887496B (zh) 2014-03-27 2014-03-27 一种高性能锂离子电池正极材料LiMBO3@C复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN103887496B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617297B (zh) * 2015-02-09 2017-02-22 湖南科技大学 一种熔盐法制备锂离子电池正极材料LiMnBO3的方法
CN107256953B (zh) * 2017-06-13 2019-08-02 枣庄学院 一种高性能钠离子电池负极材料(vo)2p2o7/c复合材料的制备方法
CN107774261B (zh) * 2017-11-01 2022-03-11 枣庄学院 一种非均相类Fenton催化剂Co/C复合材料的制备方法
CN108232186B (zh) * 2017-12-25 2020-10-27 中国科学院化学研究所 一种单晶颗粒的制备方法及其在二次电池中的应用
CN114242969B (zh) * 2021-11-18 2024-04-26 广州大学 一种层状无钴锰基锂离子电池正极材料及其制备方法与应用
CN115133002B (zh) * 2022-07-29 2023-05-16 湖北万润新能源科技股份有限公司 一种钠电池正极材料及其制备方法以及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386418A (zh) * 2011-11-02 2012-03-21 宁波大学 锂离子电池碳纳米管包覆硼酸锰锂正极材料的制备方法
CN102447113A (zh) * 2011-12-12 2012-05-09 南开大学 聚合物包覆硫/碳复合材料为正极的锂电池
CN102969508A (zh) * 2012-12-06 2013-03-13 苏州大学 锂离子电池碳包覆石墨烯复合材料制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI23488A (sl) * 2010-09-22 2012-03-30 Kemijski inštitut Dvostopenjska sintezna metoda za pripravo kompozitov insercijskih aktivnih spojin za litijeva ionske akumulatorje

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386418A (zh) * 2011-11-02 2012-03-21 宁波大学 锂离子电池碳纳米管包覆硼酸锰锂正极材料的制备方法
CN102447113A (zh) * 2011-12-12 2012-05-09 南开大学 聚合物包覆硫/碳复合材料为正极的锂电池
CN102969508A (zh) * 2012-12-06 2013-03-13 苏州大学 锂离子电池碳包覆石墨烯复合材料制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Study of the Electrochemical Properties of H-LiMnBO3 Compound";Guoqiang Liu et. al;《Advanced Materials Research》;20110221;第197-198卷;第526-530页 *

Also Published As

Publication number Publication date
CN103887496A (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
CN103887496B (zh) 一种高性能锂离子电池正极材料LiMBO3@C复合材料的制备方法
CN101587948B (zh) 一种Li4Ti5O12/C复合电极材料的制备方法
CN101315981B (zh) 一种锂离子电池用磷酸亚铁锂正极材料及改性方法
CN105428637B (zh) 锂离子电池及其正极材料的制备方法
CN109301240A (zh) 阳离子掺杂梯度高镍多元材料前驱体及其制备方法和应用
CN102034971B (zh) 锂离子电池磷酸铁锂/聚并吡啶复合正极材料及其制备方法
CN103441258B (zh) 一种碳包覆多孔钛酸锂粉体的制备方法
CN107403913A (zh) 一种表面修饰的镍钴铝酸锂正极材料及其制备方法
CN109950498A (zh) 一种具有均匀包覆层的高镍正极材料及其制备方法
CN101752562B (zh) 一种复合掺杂改性锂离子电池正极材料及其制备方法
CN108933237B (zh) 一种锂离子电池正极材料的制备方法及应用
CN107093739B (zh) 钾离子电池正极材料用钾锰氧化物及其制备方法
CN104037412B (zh) 高性能锂离子二次电池负极材料多级结构纳米空心球的制备方法
CN108987683A (zh) 一种碳包覆三元正极材料的制备方法
CN104409715A (zh) 一种高性能氮掺杂碳包覆的钛酸锂复合锂离子电池负极材料的制备方法
CN103441267A (zh) 一种二氧化钛包覆钴酸锂正极材料的制备方法
CN106571452A (zh) 一种锂离子电池正极材料及其制备方法
CN102694164A (zh) 表面掺氮或碳的富锂氧化物正极材料及其制备方法
CN103078099A (zh) 一种锂离子电池正极材料及其制备方法
CN102403505A (zh) 锂离子电池正极材料原位碳包覆硼酸锰锂复合材料的制备方法
CN108091854A (zh) 一种阴阳离子复合掺杂的高电压尖晶石型锂离子电池正极材料及其制备方法
CN1787254A (zh) 一种锂离子电池正极活性材料及其制备方法
CN103441278A (zh) 微波裂解离子液体法制备碳包覆磷酸铁锂的方法
CN104009232B (zh) 一种磷酸铁锂复合正极材料的制备方法
CN110350185B (zh) 一种氟掺杂富锂正极材料及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160406

CF01 Termination of patent right due to non-payment of annual fee