CN103866265A - 基于氮的双受主共掺氧化锌薄膜的制备方法 - Google Patents

基于氮的双受主共掺氧化锌薄膜的制备方法 Download PDF

Info

Publication number
CN103866265A
CN103866265A CN201210530522.3A CN201210530522A CN103866265A CN 103866265 A CN103866265 A CN 103866265A CN 201210530522 A CN201210530522 A CN 201210530522A CN 103866265 A CN103866265 A CN 103866265A
Authority
CN
China
Prior art keywords
source
zinc
deposition
preparation
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210530522.3A
Other languages
English (en)
Other versions
CN103866265B (zh
Inventor
卢维尔
夏洋
李超波
解婧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201210530522.3A priority Critical patent/CN103866265B/zh
Priority to PCT/CN2012/086951 priority patent/WO2014089861A1/zh
Publication of CN103866265A publication Critical patent/CN103866265A/zh
Application granted granted Critical
Publication of CN103866265B publication Critical patent/CN103866265B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开基于氮的双受主共掺氧化锌薄膜的制备方法,其包括:将基片放入原子层沉积设备的反应腔室中;进行多组分的复合沉积;所述复合沉积包括在锌源沉积之前引入一次As掺杂源的沉积和氧源沉积之前引入一次氮掺杂源的沉积;循环沉积该多组分复合体,得到原子层沉积制备的N-As的双受主共掺的氧化锌薄膜。本发明提供的基于氮的双受主共掺氧化锌薄膜的制备方法,利用ALD技术,在氧化锌薄膜生长的过程中,完成整个薄膜结构的共掺,得到N-As双受主的共掺。本发明制备工艺简单,沉积和掺杂过程易于控制,制备所得共掺氧化锌薄膜有利于氧化锌薄膜的p型掺杂和提高p型电学性质的稳定性。

Description

基于氮的双受主共掺氧化锌薄膜的制备方法
技术领域
本发明涉及氧化锌薄膜的制备与掺杂技术领域,具体涉及一种基于氮的双受主共掺氧化锌薄膜的制备方法。
背景技术
氧化锌(ZnO)作为一种新型的II-Ⅵ族直接带隙宽禁带化合物,具有大的室温禁带宽度3.37eV,而且自由激子结合能高达60meV,作为半导体材料越来越受到人们的重视。与其它宽禁带半导体材料相比,ZnO薄膜生长温度低,抗辐射性好,受激辐射有较低的阈值功率和很高的能量转换效率,这些优点使ZnO正成为光电子、微电子、信息等高新技术的关键基础材料。然而本征ZnO由于存在缺陷,使得ZnO呈n型,p型ZnO薄膜制备是目前ZnO相关研究的热点和难点。氮掺杂虽然在理论上的计算使得p型ZnO的制备成为可能,但是众多实验表明,可能是由于掺入的N原子会结合形成N分子,占据置换位置((N2)o),形成一种双施主缺陷,导致单独N掺杂ZnO薄膜的不稳定性。为了解决该问题,目前共掺被认为是制备出相对稳定的p-ZnO薄膜最有发展前景的方向之一。
为了提高p型ZnO薄膜的稳定性,人们对双受主共掺杂技术进行了研究,主要包括Li-N、N-As和N-P双受主掺杂技术。2005年,Krtschil等人利用MOVPE技术制备出了N-As双受主共掺杂ZnO薄膜,研究发现单独N或As掺杂的ZnO薄膜并非整个样品都具有p型导电性能,即掺杂特性很不均匀,这是单独受主掺杂p型ZnO不稳定性的根源;与此相对,对于N-As双受主掺杂的ZnO薄膜而言,几乎整个薄膜都是p型导电,n型导电的区域几乎不存在了,因而p型ZnO的可重复性和稳定性都有了大幅度提高。据报道,N-As双受主掺杂ZnO薄膜的p型导电性能可以稳定存在几个月之久,参见:Krtschil等,Appl.Phys.Lett.,87,262105,2005。2007年,Vlasenflin等人[30]利用超声喷雾热分解技术制备出N-P双受主掺杂的ZnO薄膜。研究者认为,在N-P双受主掺杂ZnO中,形成PZn-2VZn。复合体受主,并可能进一步形成No-PZn-2VZn的双受主复合体,参见:Vlasenflin等,Solid StateCommunications,142,292–294,2007。
原子层沉积技术(ALD)对薄膜的成分和厚度具有出色地控制能力,所制备的薄膜保形性好、纯度高且均匀性好,被广泛的应用于制取高质量的薄膜材料,并得到了迅速发展,成为一种既有技术上的优势,又有市场潜力的薄膜制备技术。因此,扩展ALD技术的应用范围,寻求采用ALD技术的双受主共掺技术,对于p型ZnO薄膜的制备具有不可估量的科学和应用价值。
发明内容
本发明所要解决的技术问题是提供一种可以将As与N元素共同掺杂在氧化锌薄膜中的基于氮的双受主共掺氧化锌薄膜的制备方法。
为解决上述技术问题,本发明提供了一种基于氮的双受主共掺氧化锌薄膜的制备方法,包括:
将基片放入原子层沉积设备的反应腔室中;进行多组分的复合沉积;
所述复合沉积包括在锌源沉积之前引入一次As掺杂源的沉积和氧源沉积之前引入一次氮掺杂源的沉积;循环沉积该多组分复合体,得到原子层沉积制备的N-As的双受主共掺的氧化锌薄膜。
进一步地,所述基片是经过浓硫酸和双氧水处理,并经超纯水超声过的硅片、蓝宝石或玻璃,衬底表面带有羟基。
进一步地,所述As掺杂源的沉积顺序是指在Zn源沉积之前、与Zn同时通入腔室进行沉积或先Zn源沉积之后沉积As掺杂源。
进一步地,所述复合沉积包括在真空环境下依次用As掺杂源、锌源、氮掺杂源和氧源进行沉积得到N-As双受主共掺的ZnO薄膜。
进一步地,所述As掺杂源、锌源、氮掺杂源和氧源在沉积室内暴露时间依次为0.08s、0.075s、5s、0.08s、50s,基片衬底温度为300℃。
进一步地,在每次沉积之后采用高纯氮气清洗沉积室。
进一步地,所述锌源是含锌的烷基化合物或含锌的卤化物,所述氧源是水蒸汽或氧气等离子体;所述氮掺杂源为N2O、N2、NO、NO2或NH3等离子体,所述As掺杂源是含As的烷基化物、含As的氢化物或含As的卤化物。
进一步地,所述含锌的卤化物是氯化锌ZnCl2,所述含锌的烷基化合物是二乙基锌Zn(C2H5)2或二甲基锌Zn(CH3)2,所述含As的烷基化物是甲基砷As(CH3)3或三乙基砷As(CH2CH3)3,所述含As的氢化物是氢化砷AsH3
进一步地,该制备方法还包括通过控制所述的氮掺杂源与水的通气时间来调节掺杂氧化锌薄膜中氮掺杂源与氧的比例;通过控制As掺杂源与锌源的通气时间来调节掺杂氧化锌薄膜中As掺杂与锌的比例。
本发明提供的基于氮的双受主共掺氧化锌薄膜的制备方法,利用ALD技术,在氧化锌薄膜生长的过程中,完成整个薄膜结构的共掺,得到N-As双受主的共掺。本发明制备工艺简单,沉积和掺杂过程易于控制,制备所得共掺氧化锌薄膜有利于氧化锌薄膜的p型掺杂和提高p型电学性质的稳定性。
附图说明
图1为本发明实施例提供的基于氮的双受主共掺氧化锌薄膜的制备方法流程示意图。
具体实施方式
参见图1,本发明实施例提供的一种基于氮的双受主共掺氧化锌薄膜的制备方法包括:
将硅衬底或者玻璃衬底用浓硫酸双氧水进行处理,再用超纯水超声波进行清洗,N2吹干,其中浓硫酸:双氧水=4:1,使得衬底表面带有羟基(-OH)。
抽真空并对衬底、腔室和管道进行加热,达到实验所需各种工作环境,其中衬底温度为300℃。
向ALD设备反应腔室中通入一种V族掺杂源者As(CH3)3,该掺杂源作为受主掺杂源沉积在衬底表面,之后采用N2载气吹扫反应腔室;其中掺杂源的通入时间为0.08s,N2的吹扫时间为50s。
向反应腔室中通入锌源Zn(C2H5)2,衬底表面未与As掺杂源反应的基团与锌源反应形成锌氧键;采用载气吹扫反应腔室;其中掺杂源的通入时间为0.075s,N2的吹扫时间为50s。
启动射频等离子体,向反应腔室中通入N2等离子体,作为另一受主掺杂源N,采用N2载气吹扫反应腔室;其中等离子体的通入时间为5s,放电功率为50W,放电时间为10s,载气N2的吹扫时间为50s。
向反应腔室中通入水作为氧源,水与未被N2等离子体反应的-Zn-C2H5基团发生反应形成Zn-OH键,与-As-CH3基团反应形成As-OH;其中水的通入时间为0.08s,N2的吹扫时间为50s。
重复上述循环沉积N-As共掺的ZnO薄膜。
本发明通过ALD逐层循环的生长方式生长N-As双受主的共掺的氧化锌薄膜,其中As在ZnO中替锌的位置(VZn),N替代O的位置,在薄膜中形成一定的复合体,双受主的共掺有利于对p型ZnO的可重复性和稳定性都有大幅度的提高。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (9)

1.一种基于氮的双受主共掺氧化锌薄膜的制备方法,其特征在于,包括:
将基片放入原子层沉积设备的反应腔室中;进行多组分的复合沉积;
所述复合沉积包括在锌源沉积之前引入一次As掺杂源的沉积和氧源沉积之前引入一次氮掺杂源的沉积;循环沉积该多组分复合体,得到原子层沉积制备的N-As的双受主共掺的氧化锌薄膜。
2.根据权利要求1所述的制备方法,其特征在于,所述基片是经过浓硫酸和双氧水处理,并经超纯水超声过的硅片、蓝宝石或玻璃,衬底表面带有羟基。
3.根据权利要求2所述的制备方法,其特征在于,
所述As掺杂源的沉积顺序是指在Zn源沉积之前、与Zn同时通入腔室进行沉积或先Zn源沉积之后沉积As掺杂源。
4.根据权利要求3所述的制备方法,其特征在于,所述复合沉积包括:
在真空环境下依次用As掺杂源、锌源、氮掺杂源和氧源进行沉积得到N-As双受主共掺的ZnO薄膜。
5.根据权利要求4所述的制备方法,其特征在于,所述As掺杂源、锌源、氮掺杂源和氧源在沉积室内暴露时间依次为0.08s、0.075s、5s、0.08s、50s,基片衬底温度为300℃。
6.根据权利要求5所述的制备方法,其特征在于,在每次沉积之后采用高纯氮气清洗沉积室。
7.根据权利要求1-6任一项所述的制备方法,其特征在于,所述锌源是含锌的烷基化合物或含锌的卤化物,所述氧源是水蒸汽或氧气等离子体;所述氮掺杂源为N2O、N2、NO、NO2或NH3等离子体,所述As掺杂源是含As的烷基化物、含As的氢化物或含As的卤化物。
8.根据权利要求7所述的制备方法,其特征在于,所述含锌的卤化物是氯化锌ZnCl2,所述含锌的烷基化合物是二乙基锌Zn(C2H5)2或二甲基锌Zn(CH3)2,所述含As的烷基化物是甲基砷As(CH3)3或三乙基砷As(CH2CH3)3,所述含As的氢化物是氢化砷AsH3
9.根据权利要求7所述的制备方法,其特征在于,还包括:
通过控制所述的氮掺杂源与水的通气时间来调节掺杂氧化锌薄膜中氮掺杂源与氧的比例;通过控制As掺杂源与锌源的通气时间来调节掺杂氧化锌薄膜中As掺杂与锌的比例。
CN201210530522.3A 2012-12-11 2012-12-11 基于氮的双受主共掺氧化锌薄膜的制备方法 Active CN103866265B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201210530522.3A CN103866265B (zh) 2012-12-11 2012-12-11 基于氮的双受主共掺氧化锌薄膜的制备方法
PCT/CN2012/086951 WO2014089861A1 (zh) 2012-12-11 2012-12-19 基于氮的双受主共掺氧化锌薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210530522.3A CN103866265B (zh) 2012-12-11 2012-12-11 基于氮的双受主共掺氧化锌薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN103866265A true CN103866265A (zh) 2014-06-18
CN103866265B CN103866265B (zh) 2016-12-21

Family

ID=50905260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210530522.3A Active CN103866265B (zh) 2012-12-11 2012-12-11 基于氮的双受主共掺氧化锌薄膜的制备方法

Country Status (2)

Country Link
CN (1) CN103866265B (zh)
WO (1) WO2014089861A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090081826A1 (en) * 2007-09-26 2009-03-26 Cowdery-Corvan Peter J Process for making doped zinc oxide
CN101540354A (zh) * 2008-02-29 2009-09-23 陈敏璋 氧化锌基半导体发光组件及其制造方法
CN102304700A (zh) * 2011-09-23 2012-01-04 中国科学院微电子研究所 一种掺氮氧化锌薄膜的制备方法
CN102420136A (zh) * 2010-09-25 2012-04-18 中芯国际集成电路制造(上海)有限公司 Mos晶体管的形成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW589672B (en) * 2002-12-31 2004-06-01 Ind Tech Res Inst Method of manufacturing p-type transparent conductive film and its system
CN1303650C (zh) * 2003-11-04 2007-03-07 浙江大学 一种p-Zn1-xMgxO晶体薄膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090081826A1 (en) * 2007-09-26 2009-03-26 Cowdery-Corvan Peter J Process for making doped zinc oxide
CN102017104A (zh) * 2007-09-26 2011-04-13 伊斯曼柯达公司 用于制造掺杂的氧化锌的方法
CN101540354A (zh) * 2008-02-29 2009-09-23 陈敏璋 氧化锌基半导体发光组件及其制造方法
CN102420136A (zh) * 2010-09-25 2012-04-18 中芯国际集成电路制造(上海)有限公司 Mos晶体管的形成方法
CN102304700A (zh) * 2011-09-23 2012-01-04 中国科学院微电子研究所 一种掺氮氧化锌薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曹国忠等: "《纳米结构和纳米材料合成、性能及应用》", 31 January 2012, 高等教育出版社 *

Also Published As

Publication number Publication date
WO2014089861A1 (zh) 2014-06-19
CN103866265B (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
CN102304700B (zh) 一种掺氮氧化锌薄膜的制备方法
CN110047922A (zh) Ga2O3系MISFET和Ga2O3系MESFET
CN103779425A (zh) 一种铟镓锌氧化物半导体薄膜的制备方法
CN103866277A (zh) 一种原子层沉积制备双受主共掺氧化锌薄膜的方法
CN105779971A (zh) 一种原子层沉积p型半导体氧化锌薄膜的方法
CN103866269A (zh) 原子层沉积制备Te-N共掺的氧化锌薄膜的方法
CN102593282A (zh) 一种ZnO纳米线阵列的掺杂方法
CN103866265A (zh) 基于氮的双受主共掺氧化锌薄膜的制备方法
CN103866279A (zh) 原子层沉积制备N-As共掺的氧化锌薄膜的方法
CN103866268B (zh) 基于氮的施主-受主共掺氧化锌薄膜的制备方法
CN102557110B (zh) 低温蒸汽中ZnO纳米棒阵列的制备方法
CN103866289A (zh) 一种p-n共掺氧化锌薄膜的制备方法
CN101760726B (zh) 一种B和N共掺杂ZnO薄膜的制备方法
CN103695866A (zh) 采用简单化学气相沉积法制备Sb掺杂p型ZnO薄膜的方法
CN103866280B (zh) 一种原子层沉积制备施主-受主共掺氧化锌薄膜的方法
CN103866276B (zh) 原子层沉积制备共掺的氧化锌薄膜的方法
CN103866275A (zh) 原子层沉积的共掺氧化锌薄膜的制备方法
KR20160075042A (ko) Ald 공정을 통한 박막 태양전지 제조방법 및 이로부터 제조된 박막 태양전지
CN103866272B (zh) 用于提高氧化锌薄膜p型稳定性的方法
CN103866267A (zh) 用于N-Zr共掺氧化锌薄膜的制备方法
CN103866271B (zh) 用于施主-受主共掺氧化锌薄膜的制备方法
CN103866273A (zh) 原子层沉积制备N-Zr共掺的氧化锌薄膜的方法
Singh et al. Atomic Layer Deposition of Transparent Conducting Oxides
CN100355937C (zh) 利用直流辉光等离子体化学气相沉积系统制备氧化锌薄膜的工艺
CN108070843B (zh) 一种p型氧化锌薄膜制备装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant