CN103826657A - 改进疫苗免疫原性的方法 - Google Patents

改进疫苗免疫原性的方法 Download PDF

Info

Publication number
CN103826657A
CN103826657A CN201280027239.7A CN201280027239A CN103826657A CN 103826657 A CN103826657 A CN 103826657A CN 201280027239 A CN201280027239 A CN 201280027239A CN 103826657 A CN103826657 A CN 103826657A
Authority
CN
China
Prior art keywords
antibody
epi
antigen
compound
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280027239.7A
Other languages
English (en)
Inventor
G.比肖普
T.范登布什
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Iowa Research Foundation UIRF
Original Assignee
University of Iowa Research Foundation UIRF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Iowa Research Foundation UIRF filed Critical University of Iowa Research Foundation UIRF
Publication of CN103826657A publication Critical patent/CN103826657A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/125Picornaviridae, e.g. calicivirus
    • A61K39/13Poliovirus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • A61K39/292Serum hepatitis virus, hepatitis B virus, e.g. Australia antigen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6012Haptens, e.g. di- or trinitrophenyl (DNP, TNP)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6037Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6075Viral proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/32011Picornaviridae
    • C12N2770/32041Use of virus, viral particle or viral elements as a vector
    • C12N2770/32042Use of virus, viral particle or viral elements as a vector virus or viral particle as vehicle, e.g. encapsulating small organic molecule
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

本发明提供被称为“免疫银行(ImmuneBanking)”的方法,该方法通过利用现有的体液应答而增强疫苗功效。所述方法包括用分子标记来标记新抗原,所述分子标记被现有的抗体应答所识别。这种对带标记的疫苗组分的识别增强了对新疫苗的适应性免疫应答。进一步公开了用于抗原缀合的包含脊髓灰质炎的VP-1表位的抗体识别表位(ARE)的序列。

Description

改进疫苗免疫原性的方法
发明优先权
本申请要求于2011年4月4日提交的美国临时申请号61/471,553的优先权。此临时申请的全部内容都通过引用结合到本文中。
发明背景
免疫系统相当复杂并且包括生物体抗击感染性病原体和癌细胞的许多不同途径。一般而言,认为免疫系统能够引发体液免疫应答(HIR)和/或细胞介导的免疫应答(CMI)。HIR涉及B淋巴细胞谱系的细胞(B细胞)中产生的抗体的产生和分泌。分泌的抗体与侵入的微生物(例如病毒或细菌)表面上的抗原结合。然后,免疫系统中的多种细胞将与抗体结合的抗原破坏掉。体液免疫还指抗体的产生和与之相伴的辅助过程。它还指抗体的效应器功能,其包括病原体和毒素中和、经典补体激活、和吞噬作用及病原体消除的调理素促进。
免疫应答的第二类是细胞介导的免疫(CMI)。CMI是这样的免疫应答:其不涉及抗体或补体,而是涉及多种免疫细胞(例如巨噬细胞、自然杀伤细胞(NK)、抗原特异性细胞毒素T-淋巴细胞)的激活,以及响应抗原的多种细胞因子的释放。细胞免疫能够通过激活抗原特异性T-淋巴细胞而保护机体。这些细胞在其表面展示外源抗原的表位的体细胞中诱发细胞凋亡,所述体细胞例如感染病毒的细胞、感染胞内细菌的细胞和展示肿瘤抗原的癌细胞。T细胞激活巨噬细胞和自然杀伤细胞,使它们能够破坏胞内病原体,并刺激细胞分泌各种细胞因子,所述细胞因子影响到参与适应性及固有免疫应答的其它细胞的功能。细胞介导的免疫主要涉及在吞噬细胞中存活的微生物和感染非吞噬细胞的微生物。它在去除感染病毒的细胞方面非常有效,而且也参与抵抗真菌、原生动物、癌症和胞内细菌。
在传统上,按照世界卫生组织的定义,疫苗是通过刺激抗体的产生而产生针对疾病的免疫力的任何制品。疫苗包括例如经灭活或减毒的微生物悬液,或者微生物的产物或衍生物。给予疫苗的最常见方法是通过接种,但有些通过口或鼻喷入而给予。
目前的疫苗技术依赖于大剂量的抗原和/或再接种(加强接种)而且并非是针对所有感染性因子都具有保护作用。因此,需要新的疫苗,以获得针对目前无有效疫苗的感染性因子的保护作用。还需要施用更安全、生产更便宜、和/或无需加强接种的新型疫苗。无需加强接种将会增加免疫的依从性。最后,某些人群(例如老年人),对接种产生总体较弱的应答,更有效的疫苗能更好地保护这类持续增加的疫苗接受者。
发明概述
在某些实施方案中,本发明提供化合物,所述化合物包含共价结合到抗体-识别表位(ARE,也称为“抗体识别元件”或“抗体反应表位”)上的至少一个抗原。在某些实施方案中,本发明提供包含IPALTAVETGA (SEQ ID NO: 1)的长度为大约11-28个氨基酸的脊髓灰质炎的VP-1表位。在某些实施方案中,所述表位的长度为大约18-28个氨基酸并包含IPALTAVETGA (SEQ ID NO: 1)。在某些实施方案中,所述表位由或基本由IPALTAVETGA (SEQ ID NO: 1)组成。
在某些实施方案中,所述表位的长度为大约11-28个氨基酸并包含ALTAVETGAT (SEQ ID NO: 3)。在某些实施方案中,本发明提供包含ALTAVETGAT (SEQ ID NO: 3)的长度为大约18-28个氨基酸的脊髓灰质炎的VP-1表位。在某些实施方案中,所述表位由或基本由ALTAVETGAT (SEQ ID NO: 3)组成。在某些实施方案中,所述表位的长度为18-28个氨基酸,并包含、基本由或由AHSKEIPALTAVETGATA (SEQ ID NO: 2)组成。
在某些实施方案中,本发明提供化合物,所述化合物包含共价结合到抗体-识别表位(ARE)上的至少一个抗原,其中所述ARE是上述的VP-1表位。在某些实施方案中,所述抗原通过α-Gal连接的方式结合到所述ARE上。在某些实施方案中,所述抗原通过接头分子的方式结合到所述ARE上。在某些实施方案中,所述接头分子是甲醛、戊二醛、MBS (m-马来酰亚胺基苯甲酰基-N-羟基琥珀酰亚胺酯)和/或磺基-MBS。在某些实施方案中,所述抗原是感染性因子抗原。在某些实施方案中,所述感染性因子是细菌、真菌、寄生虫、病毒或朊病毒因子。在某些实施方案中,所述感染性因子是细菌因子或病毒因子。在某些实施方案中,所述抗原是癌抗原。
在某些实施方案中,所述抗原进一步缀合到抗体上,形成抗体:抗原复合物。如本文所用,术语“抗体”包括scFv、人源化、完全的人抗体或嵌合抗体、单链抗体、双抗体和抗体的抗原结合片段(例如Fab片段)。在某些实施方案中,所述抗体是人抗体或人源化抗体。在某些实施方案中,所述抗体是单链Fv或scFv片段。
在某些实施方案中,将半抗原操作性连接到所述抗原上,形成半抗原化的抗原。在某些实施方案中,将半抗原操作性连接到另外的抗原上。
在某些实施方案中,本发明提供包含操作性连接到缀合分子上的化合物的复合物,所述化合物包含共价缀合到抗体-识别表位(ARE)的至少一个抗原。在某些实施方案中,所述缀合分子是并非所述抗原或ARE的肽、核酸或多糖。
在某些实施方案中,本发明提供包含化合物和生理上可接受的无毒溶媒的组合物,所述化合物包含缀合到抗体-识别表位(ARE)上的至少一个抗原。在某些实施方案中,所述组合物还包含佐剂。
在某些实施方案中,本发明提供在预先免疫的(pre-immunized)动物中引发免疫应答的方法,所述方法包括将上述组合物引入所述动物。在某些实施方案中,所述组合物的引入发生在预先免疫(pre-immunization)后的至少15天。在某些实施方案中,所述方法还包括引入上述第二组合物。在某些实施方案中,所述方法还包括引入重复剂量的所述组合物。在某些实施方案中,所述动物是人。
在某些实施方案中,本发明提供产生对抗原具有特异性的抗体的方法,所述方法包括将上述组合物或复合物引入所述动物。在某些实施方案中,所述方法还包括将所述组合物或所述复合物的第二剂量引入所述动物。
在某些实施方案中,本发明提供治疗癌症的方法,所述方法包括将上述组合物或复合物给予患者。
在某些实施方案中,本发明提供预防或治疗感染或感染性疾病的方法,所述方法包括将上述组合物或复合物给予患者。
在某些实施方案中,本发明提供化合物,所述化合物包含缀合到抗体-识别表位(ARE)上的至少一个抗原,所述化合物用于预防性或治疗性治疗感染性因子或癌症。
在某些实施方案中,本发明提供包含缀合到抗体-识别表位(ARE)上的至少一个抗原的化合物,所述化合物用于制备用于在哺乳动物中治疗感染性因子或癌症的药物。
本发明提供化合物,所述化合物包含共价结合到抗体-识别表位(ARE)上的至少一个抗原,其中所述抗原是来自甲型流感病毒H5N1(A/Indonesia/5/2005(H5N1)的核壳蛋白(NP) (Genebank蛋白检索号#ABI36003),所述ARE是包含IPALTAVETGA (SEQ ID NO: 1)的长度为大约11-28个氨基酸的脊髓灰质炎的VP-1表位,并且其中所述ARE直接地共价结合到该NP上。
在某些实施方案中,本发明提供编码上述VP-1表位的核酸,其操作性连接到编码抗原的核酸上。
在某些实施方案中,本发明提供表达盒,所述盒包括邻接连接到编码上述VP-1表位的核酸上的启动子,所述核酸操作性连接到编码抗原的核酸上。在某些实施方案中,所述启动子是组织-特异性启动子。在某些实施方案中,所述启动子是诱导型启动子。在某些实施方案中,所述启动子是CMV、RSV、EFa-1或T7启动子。
在某些实施方案中,本发明提供包含上述表达盒的载体。在某些实施方案中,所述载体是腺伴随病毒(AAV)载体。
附图简述
图1提供了针对Ab-识别元件(ARE)缀合Ag的增强的细胞免疫应答的所提出的机制。小鼠组I和组II对AgA具有体液应答。然后,组I用缀合到AgA衍生的ARE上的AgB免疫。相比之下,组II针对未缀合的AgB而免疫。识别ARE缀合的AgB的AgA特异性体液应答增强了组I的B-特异性适应性免疫应答,超过了组II。
图2显示记忆CD8 T细胞应答。
图3显示当小鼠接受抗原注射时的时间线以及采血用于检测Ag1和半抗原-特异性抗体的天数。
图4显示测试分泌的Ig的作用的体外实验设计和用于可溶性Ig在增强的免疫应答中的作用的体内实验设计。
图5显示连续的ARE-conj接种的时间线和同时ARE-conj接种的时间线。
图6显示免疫银行(Immune Banking),其利用了针对ARE半抗原2,4,6,三硝基苯基(TNP)的先存在的Ab应答,提供了针对流感诱导的死亡的保护作用。
图7显示可溶性Ag-特异性的免疫球蛋白在增强的应答中的作用。将来自KLH或KLH-TNP免疫的小鼠的血清与TNP缀合的卵白蛋白一起孵育。将得到的含有卵白蛋白-TNP加上小鼠血清的混合物或卵白蛋白-TNP:抗体复合物注射到首次用于实验的小鼠(3只/组)中。卵白蛋白注射后7天,通过胞内细胞因子染色而测定ova-特异性的脾CD8 T细胞的百分率。注意到使用TNP作为ARE的免疫复合物的注射增强了针对疫苗的细胞应答。
图8显示ARE修饰的肽疫苗的功效测定。在接种和用流感攻击后,具有ARE特异性抗体的小鼠显示出较低的发病率。小鼠接受模拟接种(明矾w/PBS)或者针对肝炎B而使用人疫苗(HBsAg,在明矾中)接种。在试验组中针对HBsAg的血清转化后,两组小鼠接受肝炎ARE标记的流感核蛋白疫苗(共价结合到流感的核蛋白-NP-上的HepPep-)。然后用毒性流感攻击这两组并通过减重测定发病率。HepPep-ARE标记的疫苗组显示出比对照组更低的发病率。
图9显示化学连接到HBsAg上并作为免疫复合物提供的VP-1 ARE的结果。
发明详述
增加亚单位疫苗免疫原性的技术开发对健康专家、军事人员和普通公众具有很大的吸引力。增加抗原的免疫原性的能力改善了现有疫苗和增强了新疫苗的开发,以降低感染相关的发病率和死亡率。除了与感染性疾病抗争之外,疫苗开发上的进展分别通过免疫治疗和免疫干预而使癌症患者和化学品依赖者(例如针对活性化学品例如可卡因的免疫接种)获益。
成功的免疫导致包括B淋巴细胞(也称为“B细胞”)在内的适应性免疫细胞的活化。B细胞的活化诱导克隆扩增并分化为长寿Ab产生细胞(浆细胞)和记忆B细胞。因此,经免疫的个体表达可溶性Ab和维持记忆B细胞,这两者各自能识别原有疫苗中含有的特定Ag。
在某些实施方案中,本发明提供被称为“免疫银行的方法,该方法通过利用现有的体液应答而增强疫苗功效。免疫银行方法包括用分子标记来标记新抗原,所述分子标记已被个体内现有的抗体应答所识别。这种对带标记的疫苗组分的识别增强了对新疫苗的适应性免疫应答。先前的疫苗技术依赖于大剂量的抗原和/或再接种(加强接种)并且不能提供针对所有感染性因子的保护作用。因为免疫银行方法能够增强疫苗功效,所以可用于降低现有疫苗的剂量要求,降低生产成本,并减少对加强接种(这将会提高免疫依从性)的需要。免疫银行方法还能够产生新的疫苗以抗击新出现的感染性因子和癌症(对此还没有疫苗)。该方法还提高了用于研究用途或临床治疗的单克隆抗体和多克隆抗体的生产。因此免疫银行技术对于人用和动物用疫苗的生产者、生产用于实验研究的多克隆抗体和单克隆抗体的生物技术公司以及生产用于治疗疾病的单克隆抗体的医药公司而言都具有极大的吸引力。
在某些实施方案中,本发明扩大了疫苗反应的功效,并因此扩大了响应特定疫苗的人数。还增加了疫苗在新生儿中的有效性。该方法的使用克服了现有疫苗使用中的多个难题,包括需要多次接种或“加强接种”、需要大剂量疫苗组分、不能接种新生儿、难于产生能免遭特定感染性因子的有效疫苗和在制备能免遭癌症的疫苗中的挑战。多项研究表明,通过将抗原(Ag)靶向或导向免疫细胞而增加疫苗功效将有助于解决这些问题。在实验室环境下已经通过将Ag与细胞-特异性配体或细胞-特异性抗体缀合,实现了将抗原靶向免疫细胞,但是这类疫苗的大规模生产和开发是成本不允许的并面对相当大的技术障碍。因此,将疫苗抗原靶向抗原呈递细胞(APC)的一个简单有效的、成本合算的方式就是最重要的。免疫银行方法通过利用先存在的体液免疫应答将疫苗抗原靶向或导向免疫细胞实现该目标,因此增强了对疫苗的免疫应答。
在本发明的某些实施方案中,针对已知抗原,预先免疫动物(例如人),以产生起始免疫应答(即给予疫苗,所述动物的免疫系统产生免疫应答)。然后给予预先免疫的动物包含缀合到抗体-识别表位(ARE)上的至少一个抗原的化合物。免疫银行建立在以下事实上:动物和人按常规接受已知抗原的免疫接种。在某些实施方案中,所述免疫银行疫苗用半抗原化的抗原来修饰,和在某些情况下,免疫银行疫苗具有缀合其上的额外抗原。在某些实施方案中,所述ARE是包含IPALTAVETGA (SEQ ID NO: 1)的长度为大约11-28个氨基酸的脊髓灰质炎的VP-1表位。在某些实施方案中,所述ARE通过α-Gal连接的方式缀合到所述抗原。
通过先存在的体液应答改进疫苗免疫原性
增加疫苗免疫原性改进了现有可用疫苗,并增强新疫苗的开发,以降低感染相关的发病率和死亡率。通过Ag与APC-特异性配体或Ab的缀合而靶向抗原呈递细胞(APC)的疫苗表现出增加的免疫原性。然而,这类疫苗的大规模生产和开发面对着成本和技术的障碍。缺乏将疫苗Ag靶向APC的简单、有效、成本合算的方式。成功的免疫导致B细胞活化,其诱导克隆扩增并分化为长寿Ab产生浆细胞和记忆B细胞。因此,经免疫的个体具有可溶性Ab和记忆B细胞,这两者各自能识别原始疫苗中的Ag。本发明人利用来自一次免疫的ARE修饰新Ag,因此通过利用现有的B记忆应答将其靶向APC。靶向APC的特异性Ag使用了现有的体液免疫应答,并改进了疫苗的免疫原性。这导致增加的疫苗功效和对重复免疫的需要的降低。
先存在的Ab对新Ab应答的调节(称为Ab反馈调节的现象)最初由Emil von Berhing描述于1892年(Hjelm, F.等人2006. Scand J Immunol 64:177-184)。根据实验模型,新Ab应答的调节可以是正向(增强)或负向(抑制)的(Heyman, B. 2000. Annu Rev Immunol 18:709-737)。尽管并未完全理解,但是认为增强的机制依赖于FcR介导的Ab:Ag复合物的摄取,然后由APC将Ag呈递给CD4 T细胞。然后,这些T细胞能够给新Ag-特异性B细胞提供“帮助”,因此增强了Ab应答(Heyman, B. 2000. Annu Rev Immunol 18:709-737;Getahun, A.和B. Heyman. 2006. Immunol Lett 104:38-45)。有趣的是,虽然讨论超过了100多年并认为包括了T淋巴细胞,但是Ab对CD4和CD8 T细胞应答的反馈调节效应并未确定。本文概述的实验评价了先存在的体液应答对产生针对新Ag的T细胞应答的作用,和作为新的免疫增强策略的潜在用途。
图1提供了针对ARE缀合的Ag的增强的细胞免疫应答的所提出的机制。小鼠组I和组II对AgA具有体液应答。然后,组I用缀合到Ag-A衍生的ARE上的AgB免疫。组II针对未缀合的Ag-B而免疫。识别ARE-缀合的AgB的Ag-A特异性体液应答增强了组I的淋巴细胞-特异性适应性免疫应答,超过了组II。
表1图2显示针对ARE的先存在的体液应答增强了针对ARE-缀合的、新的免疫原的CD8 T细胞应答。
表1
先存在的Ab应答在针对新Ag的增强的适应性免疫应答中的作用。
首先,测定了体液免疫-增强的T细胞和B细胞应答的动力学。持久的Ag-特异性Ab(疫苗功效的度量),由导致产生长寿Ab发生器(producer)的B细胞活化产生。Ab部分通过Ag的调理素作用提供免疫保护所述调理素作用通过表达FcR的免疫细胞促进Ag的吞噬。内化的Ag经加工用于呈递到T淋巴细胞。为了定量测定首次用于实验的B细胞对接种的初次应答,给5只C57Bl/6小鼠组注射TNP-KLH或对照Ag (KLH、KLH-NP、BSA-TNP)。在第0天收获血清,然后通过i.p.免疫缀合的或非半抗原化的Ag (KLH、KLH-NP、KLH-TNP、BSA-TNP)或仅用PBS,并在第14天加强免疫。从第14天起每3天采集血清并与免疫前血清(preimmune sera)一起测试半抗原和载体特异性的IgM和IgG (参见以下的“通用方法”)。如果第二次免疫后不产生Ag-特异性Ab,就在第28天给予第三次注射,然后再次每3天在血清中测定Ag特异性Ab (参见图3)。
图2表明当被先存在的Ab应答识别时,针对新Ag的T细胞应答被增强(图1模型)。将增强的免疫应答的动力学和表型与接受对照免疫的小鼠进行比较。为了比较体液增强应答与非增强应答的Ag-特异性应答和动力学的峰值水平,用KLH-TNP或对照Ag预先免疫的小鼠经i.p.接受ova-TNP。ova免疫后每隔一天采集血清以评价ova-特异性Ab (ELISA)和监测血清细胞因子(多重细胞因子)。因为在i.p.免疫后循环Ag-特异性T细胞水平相对低,所以从3只小鼠/组/次中分离排出的气管支气管的(TB) LN并用于评价T淋巴细胞应答。将LN细胞与或不与CD4和CD8免疫显性肽(表2,参见以下“通用方法”)一起培养6 h和24 h。通过流式细胞术分析孵育6h的细胞的谱系特异性标记(CD4和CD8)和胞内IFN-γ,其指示T淋巴细胞应答。使用多重Luminex?分析来自24h样品的上清液的多种细胞因子。
测定了独特ARE免疫和暴露于新Ag而诱导体液增强应答之间所需的最少时间。使用上述模型,在KLH-TNP免疫小鼠的血清中发现TNP-特异性Ab后第一天,开始用Ova-TNP免疫。根据Ova-TNP注射的时间将预先免疫的小鼠分组,从第15天起每3天一次,直到峰值抗TNP Ab应答。通过测定半抗原-加强和观察到增强的应答所需的第二次Ag注射之间的最少时间,开发优化的接种策略。
可溶性Ag-特异性免疫球蛋白在增强的应答中的作用
体液应答对T细胞应答的促进作用尚不清楚。针对Ag的活性体液应答增强了针对缀合到原始免疫原的新Ag的CTL应答(图2)。很可能这种增强的T细胞应答是因为通过以下Ig依赖性机制的增加的Ag摄取:1)经由在APC (DC和mφ)上的FcR摄取Ig:Ag复合物和2)由对原始Ag具有特异性的记忆B细胞摄取Ag。
为了在体外测试分泌的Ig的作用,将半抗原-特异性血清或预先免疫的血清与修饰的萤光染料PE (藻红蛋白)或对照(TNP-PE、PE或DP-PE;非-特异性半抗原)一起孵育(图4)。来自WT和FcγR-/-小鼠的BMDC (骨髓衍生的DC) (Takai, T.等人1994. Cell 76:519-529)用PE分子处理。使用流式细胞术定量测定与BMDC缔合的萤光Ag。针对使用MHC:SIINFEKL (SEQ ID NO:3)特异性Ab的MHC:ova-肽表达,通过染色BMDC测定Ova交叉呈递。通过将血清-吸收的ova经i.p.注射到小鼠并监测淋巴细胞应答,测定可溶性Ig在增强体内免疫应答中的作用。分离血清和TB-LN并测试ova-特异性Ab、细胞因子和如上所述的谱系特异性标记。通过在FcγR-/-小鼠中免疫测定可溶性Ig的作用,其中FcγRI和III是无功能的(Takai, T.等人1994. Cell 76:519-529),其严重削弱半抗原-缀合的Ag或Ab-调理素化的Ag的APC吞噬作用(Wernersson, S.等人1999. J Immunol 163:618-622)。相反,膜IgM转基因(tg)小鼠CB-17,维持不能分泌的tg IgM H链(Hannum, L.等人2000. J Exp Med 192:931-942)。当CB-17是H-链Ig-tg,Ab全部组成集合(repertoire)减少。然而,具有λ L链的H-链mIgM的表达提供对半抗原NP的识别,产生2-4% NP特异性的B细胞(Hannum, L.等人2000. J Exp Med 192:931-942;Levine, M.等人2000. Proc Natl Acad Sci U S A 97:2743-2748)。CB-17用于测定Ag-特异性B细胞作为APC在体液-增强的免疫中的作用。在每种情况下,突变小鼠和对照接受起始KLH-NP免疫,然后Ova-NP免疫,并分析Ova-特异性应答。不测定CB-17小鼠的血清Ig,因为它们不分泌Ab。CB-17和FcγR-/-小鼠两者都是市售可得的。
对用ARE-修饰的新Ag重复免疫的免疫效果的测定。
ARE Ab的连续产生可能是有害的,因为调节性B细胞分化/扩增、与抑制性FcγRIIb相互作用或通过免疫复合物清除而掩蔽对新的ARE缀合Ag的应答。这些实验鉴定了对新的ARE缀合的Ag的体液-增强的同时或连续应答的潜在限制(图5)。小鼠首先针对KLH-TNP免疫(如上所述),然后在最大T细胞应答所测定的时间进行Ova-TNP免疫。然后,BSA-TNP是免疫原,接着是HEL-TNP。每种新Ag之后,监测针对所有接受的免疫原的T细胞应答并以3天的间隔与首次用于实验的和对照免疫的小鼠相比较。虽然通过使用指定的MHC I和II类肽的胞内染色(ICS)测定了针对ova的Ag-特异性的T细胞应答,但是对于B6小鼠,对于PCC和HEL的免疫显性肽是未知的,所以PCC和HEL-特异性的T细胞的列举使用Ag呈递BMDC。多价疫苗在单一剂量中提供针对多种病原体的保护作用。确定如果同时给予多种ARE-缀合的Ag,是否观察到对所有ARE-修饰的Ag的增强的适应性免疫。用KLH-TNP免疫后,小鼠接受含有Ova-TNP、HEL-TNP和PCC-TNP的多价抗体。对照接受针对未缀合的Ova、HEL和PCC的疫苗。作为ARE-非依赖性应答扩增的额外对照,一组KLH-TNP免疫的小鼠接受含有Ova-TNP、PCC-TNP和未缀合的HEL的多价疫苗。将来自该组的HEL特异性的免疫应答与其它两组比较,显示当给予多价ARE-缀合的疫苗时,是否有ARE-非依赖性适应性免疫增强。
上述实验比较了识别和不识别ARE-缀合的Ag的小鼠之间的适应性免疫应答。图2表明先存在的Ab应答增强了针对新Ag-缀合的ARE的CD8 T细胞应答。
ARE修饰的肽疫苗的功效测定
ARE策略需要用半抗原:载体缀合物免疫或者使用自在先免疫所识别的表位。许多早期疫苗的Ig-免疫显性表位是已知的并且有潜力作为缀合到新Ag上的ARE。以下实验测试了ARE缀合的疫苗与非-ARE疫苗相比的保护水平和相关的人ARE与半抗原相比的用途。
ARE修饰的流感相关肽的免疫原性。使用上述模型,用KLH、KLH-TNP、KLH-破伤风类毒素(TT)或仅用TT来免疫小鼠。然后分开各组并用TNP或TT-缀合的流感蛋白A免疫。然后通过流感-特异性Ab效价(ELISA)和Ag-特异性T细胞应答测定相对免疫应答。
针对流感感染的疫苗-诱导的保护作用。与传统接种比较,检查了ARE-修饰的接种针对致死的鼻内流感感染的保护作用。经鼻内给予1.0X LD50 H1N1/小鼠。在与来自流感NP Ag的免疫显性肽相互作用之后,以2天的间隔,通过ICS监测来自TB-LN的T细胞(方法)。计算每克肺组织的病毒效价(Legge, K. L.和T. J. Braciale. 2005. Immunity 23:649-659)。在用TNP或TT缀合的KLH免疫的小鼠中预期增强的适应性免疫应答,其通过NP-特异性T细胞活性和Ab测定。
在减少对重复免疫的需要中ARE策略的有效性测定。
通过ARE修饰所诱导的增强免疫可以减少对加强接种的需要,并因此得到较高的免疫依从性。这在发展中国家是特别重要的,在这些国家中个体经常为了接种而长途跋涉。以下实验比较了传统的加强免疫所产生的免疫应答与用ARE修饰的疫苗经单次免疫而产生的免疫应答。乙肝表面Ag (HBsAg)用作免疫原。用乙肝疫苗(含HBsAg)免疫需要3次注射(第0、30和180天)。注射方案的依从性是~68% (Trevisan, A.等人2006. Am J Infect Control 34:465-466),部分是因为接种之间的时间。
小鼠用上述的KLH-TNP免疫。血清转化后,小鼠接受半抗原化的或等量的非-半抗原化的HBsAg疫苗。免疫后每5天监测小鼠的针对HBsAg的B和T细胞应答。通过ICS监测响应全-Ag脉冲的BMDC的CD4 T细胞应答。使用MHC I类特异性肽特异性地检测CD8 T细胞应答。
尽管关于ARE修饰的Hep B疫苗对T细胞应答的作用的信息是重要的,但是Ab效价关系到针对Hep B感染的保护作用,因此重点在于Ag-特异性Ab的产生。
与用传统Hep B免疫所需的3次免疫相比,在单次ARE-缀合的疫苗之后预期可检测的Hep B特异性的体液应答和细胞应答。将1-2次ARE-缀合的Hep B接种后的适应性免疫水平与用传统策略的3次接种的每一次所产生的应答相比较。
可溶性Ag-特异性的免疫球蛋白在增强的应答中的作用。
简而言之,将来自KLH或KLH-TNP免疫小鼠的血清与TNP缀合的卵白蛋白一起孵育(图7)。将含有卵白蛋白-TNP加上小鼠血清或卵白蛋白-TNP:抗体复合物的所得混合物注射到首次用于实验的小鼠(3只/组)。卵白蛋白注射后7天,通过胞内细胞因子染色测定ova-特异性的脾脏CD8 T细胞的百分率。注意到使用TNP作为ARE的免疫复合物的注射增强了针对疫苗的细胞应答。
ARE修饰的肽疫苗的功效测定。
在接种和用流感攻击后,具有ARE特异性抗体的小鼠显示出较低的发病率(图8)。小鼠接受模拟接种(明矾w/PBS)或者使用人疫苗(HBsAg,在明矾中)针对乙肝接种。在试验组中针对HBsAg的血清转化后,两组小鼠接受肝炎ARE标记的流感核蛋白疫苗(共价结合到流感的核蛋白-NP-上的HepPep-)。然后用毒性流感攻击这两组并通过减重测定发病率。HepPep-ARE标记的疫苗组显示出比对照组更低的发病率。
ARE-Ag缀合的化合物
本发明提供化合物,所述化合物是任选通过接头部分操作性连接的ARE和抗原的缀合物。
A. 抗体识别元件(ARE)
ARE (抗体识别元件)是任何免疫原的B细胞表位。为了商业化使用,ARE被大量潜在接受者识别是重要的。因此,对于各接受者组,最好是源自常用的识别元件的ARE,所述元件源自在先接种或自然发生的感染。
本发明的ARE是肽。在一个实施方案中,所述ARE是包含IPALTAVETGA (SEQ ID NO: 1)的长度为大约11-28个氨基酸的脊髓灰质炎的VP-1表位。在另一个实施方案中,所述ARE是含有在氨基酸序列N-端添加RAGG (SEQ ID NO:10)的该HBsAg表位的变体。在另一个实施方案中,所述ARE是HBsAg表位变体,其中其含有用作间隔基或反应基的其它氨基酸。
B. 抗原
结合到ARE的抗原包括已知人和动物感染性因子(例如细菌、真菌、寄生虫、朊病毒和病毒)或癌抗原的蛋白组分。能够结合到ARE的抗原的实例是来自多种感染人类的感染性疾病的抗原,包括如下:
细菌性感染性疾病
炭疽
细菌性脑膜炎
肉毒中毒
布氏菌病
弯曲菌病
猫抓病
霍乱
白喉
流行性斑疹伤寒
淋病
脓疱病
军团杆菌病
麻风病(汉森氏病)
钩端螺旋体病
李斯特菌病
莱姆病
类鼻疽
MRSA感染
诺卡氏菌病(星状诺卡氏菌(Nocardia asteroides)或巴西诺卡氏菌(Nocardia brasiliensis))
百日咳(Whooping cough)
鼠疫
肺炎球菌性肺炎
鹦鹉热
Q热
落基山斑疹热
沙门氏菌病
猩红热
志贺氏菌病
梅毒
破伤风
沙眼
结核病
兔热病
伤寒症
斑疹伤寒症
尿路感染:膀胱炎或肾盂肾炎
真菌性感染性疾病
曲霉病:变应性支气管肺曲霉病或肺曲霉肿(pulmonary aspergilloma)或侵袭性曲霉病
芽生菌病
念珠菌病
球孢子菌病
隐球菌病
组织胞浆菌病
脚癣
寄生虫感染性疾病
非洲锥虫病
阿米巴病
蛔虫病
巴贝西虫病
查加斯病
支睾吸虫病
隐孢子虫病
囊虫病
裂头绦虫病
龙线虫病
包虫病
蛲虫病
片形吸虫病
姜片虫病
丝虫病
自由生存的阿米巴感染(由福氏纳格里阿米巴原虫(Naegleria fowleri)和棘阿米巴属(Acanthamoeba)所致)
贾第虫病
颚口线虫病
膜壳绦虫病(短膜壳绦虫(Hymenolepis nana)或缩小膜壳绦虫(Hymenolepis diminuta))
等孢子球虫病
疟疾
后殖吸虫病
蝇蛆病
盘尾丝虫病
虱病
疥疮
绦虫病
弓蛔虫病
弓形体病
旋毛虫病
鞭虫病
滴虫病
锥虫病
朊病毒感染性疾病
阿尔佩斯综合征(Alpers syndrome)
克雅氏病(Creutzfeldt-Jakob disease)
致命性家族性失眠症
库鲁病(Kuru)
传染性海绵样脑病(Transmissible spongiform encephalopathy)
病毒性感染性疾病
AIDS
水痘(Varicella)
普通感冒(急性病毒性鼻咽炎)
巨细胞病毒感染
科罗拉多蜱热
登革热
埃博拉出血热
手足口病(柯萨奇A病毒)
肝炎
单纯疱疹
带状疱疹
HPV
流感(Flu)
拉沙热
麻疹
马尔堡出血热
传染性单核细胞增多症.
腮腺炎
脊髓灰质炎
进行性多灶性白质脑病(Progressive multifocal leukencephalopathy)
狂犬病
风疹
SARS
天花(Variola):由重型天花(Variola major)和轻型天花(Variola minor)所致
病毒性脑炎
病毒性胃肠炎
病毒性脑膜炎
病毒性肺炎
西尼罗病
黄热病
本发明的抗原还可以是兽医来源。参见例如Veterinary Microbiology第2版;Hirsh, DC;MacLachlan, NJ;和Walker, RL.;Blackwell Publishing。
在某些实施方案中,来自甲型流感H5N1 (A/Indonesia/5/2005(H5N1))的核壳蛋白(NP) (Genebank蛋白检索号#ABI36003)用作抗原。
C. 连接头/接头
ARE-抗原的偶联可直接进行或者可按照常规实践使用化学接头进行。
在某些实施方案中,使用化学交联剂将ARE和抗原分子共价连接在一起。许多不同的交联剂都可使用。在某些实施方案中,交联剂是大约400-1000道尔顿或长度大约3-12埃。用于本发明的交联剂必须至少是二价的,以便它们能够共价连接两个分子,将ARE连接到抗原分子。在某些实施方案中,交联-接头可以是氨基三乙酸三-琥珀酰亚胺酯(TSAT);辛二酸双(磺基琥珀酰亚胺基)酯(BS3);辛二酸二琥珀酰亚胺酯(DSS);双(2-[磺基琥珀酰亚胺基氧基羰基氧基]乙基砜) (BOSCOES);双(2-[琥珀酰亚胺基氧基羰基氧基]乙基砜) (磺基-BOSCOES);乙二醇双-(琥珀酰亚胺基琥珀酸酯) (EGS);乙二醇双-(磺基琥珀酰亚胺基琥珀酸酯) (磺基-EBS);或3,3′-二硫代双-丙亚氨酸二甲酯(DTBP)。在某些实施方案中,交联-接头是二价的,例如BS3、磺基-Boscoes、EGS、磺基-EBS或DTBP。
连接交联剂的方法是本领域众所周知的(c.f. Hermanson, 1995 Bioconjugate Techniques, Academic Press, Inc. New York, 第728页;Wong, 1991 Chemistry of Protein Conjugation and Cross-linking. CRC Press, 第340页;Brinkley, 1992 A brief survey of methods for preparing protein conjugates with dyes, haptens andcross-linking reagents Bioconjugate Chem. 3:2-13)。
合适的接头的实例包括甲醛、戊二醛、MBS (m-马来酰亚胺基苯甲酰基-N-羟基琥珀酰亚胺酯)和/或磺基-MBS (MBS的水溶性类似物)等。连接头/接头的实例详述于互联网上,在solulink.com/white_papers/ peptide和在piercenet.com和在piercenet.com/products/browse.cfm?fldID=020306.。
通用方法和程序:
Ag缀合。KLH-TNP和ova-TNP是市售可得的(Biosearch Technologies)。在疫苗Ag存在下使用TNP-e-氨基己酰基-O-Su (Biosearch),通过还原制备另外的缀合物。通过ICS监测T细胞活性。如上所述收获腹膜排出的TB-LN。将LN均质并计算细胞数目/LN。在布雷菲德菌素A存在下,用或不用Ag-特异性MHC I类或II类限制性肽(表2)处理细胞悬液 ,并孵育6小时。
表2
小鼠品系 抗原 MHC I类表位 MHC II类表位
CH57BI/6 卵白蛋白 SIINFEKL (SEQ ID NO. 3) ISQAVHAAHAEINEAGR (SEQ ID NO. 6)
CH57BI/6 Influ - NP ASNENMETM (SEQ ID NO. 34) QVYSLIRPNENPAHK (SEQ ID NO. 7)
CH57BI/6 Influ - NP 未知 RSALILRGSVAHKSC (SEQ ID NO. 8)
CH57BI/6 PCC 未知 未知
CH57BI/6 HEL 未知 未知
CH57BI/6 HBsAg IPQSLDSWWTSL (SEQ ID NO. 5) CTTPAQGNSMFPSCCCTKPTDGNC (SEQ ID NO. 9)
对T细胞亚型的表面表达标记将样品染色,固定并透性化,然后对胞内IFN-γ染色。流式细胞术测定IFN- γ+ (Ag-应答性) CD4+和CD8+ T细胞的百分比(Kraus, Z. J.等人2008. J Immunol 181:7800-7809)。如果MHC I类和II类免疫显性肽是未知的(表2),产生同基因的BMDC并用作APC (Breckpot, K.等人2004. JGene Med 6:1175-1188;Sudowe, S.等人2003. Mol Ther 8:567-575;Bros, M.等人2009. J Immunol Methods 343:13-20)。为了刺激Ag特异性CD4 T细胞,BMDC用Ag脉冲(pulse)24小时,使细胞加工处理和经由MHC II类呈递。因为CD8+ T细胞Ag更有效地从胞内来源产生,通过用编码所需Ag的DNA转染BMDC而完成MHC I类的装载。转染之后,使BMDC经过36小时以产生、加工处理和呈递Ag。这些BMDC,连同未脉冲的(nonpulsed)-BMDC一起,随后用作APC,用于刺激源自TB-LN的T细胞。
通过测定Ag-特异性血清Ab进行体液应答分析。Ag-特异性ELISA先前已有描述(Xie, P.等人2007. Immunity 27:253-267;Stunz, L.等人2004. Immunity 21:255-266)。针对小鼠IgM和IgG的20种Ab用于检测Ag-特异性血清Ab。OD读数是背景的2倍以上,就认为是阳性(Xie, P.等人2007. Immunity 27:253-267;Stunz, L.等人2004. Immunity 21:255-266)。使用多重Luminex测量血清和细胞培养物中的细胞因子。在LN收获期间采集血清样品。用如上所述的肽刺激分离自TB-LN的细胞。24小时后收集上清液并进行多重细胞因子测定。
免疫银行
目前的佐剂系统诱导总体上非特异性的免疫活性,其能导致炎症、组织损伤或者甚至自身免疫性疾病-样综合征。免疫银行方法的一个新的优势是使用先存在的抗体作为内源佐剂,能够诱导强烈的免疫应答。然而,与目前的佐剂相比,该应答对免疫的抗原而言是高度特异性的,并且不导致总体上非特异性免疫触发。因为已存在的免疫应答,由接受者创建和维持免疫银行的利用作为抵抗外源生物分子的天然防御,所以该技术降低了佐剂的副作用并被接受者更好地耐受。
在一个实例中,免疫银行利用针对ARE半抗原TNP已存在的Ab应答,并提供针对流感所致死亡的保护作用。将用单独的明矾、明矾中的KLH或明矾中的KLH-TNP接种的小鼠使用TNP-半抗原化的重组流感核壳蛋白(NP)针对流感进行免疫(图6)。然后用致死剂量的流感感染小鼠并监测疾病。与0%存活率的对照组相比,用KLH-TNP免疫的小鼠显示出66%存活率。
ARE与抗原的连接
在某些实施方案中,将VP-1 ARE化学连接到HBsAg并作为免疫复合物而给予。换句话说,将HBsAg化学连接到VP-1 ARE,然后与识别ARE的抗体混合。然后将ARE-标记的HBsAg +抗体的复合物作为疫苗注射并与无抗体的HBsAg比较。当通过HBsAg-特异性抗体的产生而测定时,结果是针对HBsAg的强免疫应答。
在某些实施方案中,通过重组DNA技术将ARE连接到抗原,即将构建体制成象ARE一样有效起作用的融合蛋白。
本发明的疫苗
在某些实施方案中,本发明提供疫苗,所述疫苗用于保护哺乳动物免遭感染性因子的定植和/或感染,或者用于治疗癌症。
“半抗原”是指低分子量的有机化合物,其自身不能诱导免疫应答,但如果连接到载体分子就可诱导免疫应答。用于本发明的缀合化合物、组合物和方法的示例性半抗原包括药物、激素和毒素,但不限于这些具体的半抗原。
术语“表位”是指单个抗体或T细胞受体所识别的基本元件或最小单元,并因此是所述抗体或T-细胞受体所能结合的特定的结构域、区或分子结构。抗原可由大量表位组成,而半抗原通常可具有少数表位。本文所用的“基本上相当于”是指可诱导至少基本上等同于天然表位所产生的应答的免疫应答的表位。针对组合物或疫苗的免疫应答是在细胞宿主中针对目标多肽或疫苗的发展,和/或针对目标多肽或疫苗的抗体-介导的免疫应答。通常,这样的应答由受试者产生的抗体、B细胞、辅助性T细胞、抑制性T细胞和/或细胞毒T细胞组成,其特异性指向目标组合物或疫苗中包括的一种或多种抗原。本发明的疫苗还可包括有效量的已知能增强免疫应答的免疫佐剂。“有效量”是指实现所需生物学效应所需的或足够的量。组合物的有效量是达到该选择结果的量,这样的量可被本领域技术人员按常规测定。例如,治疗免疫系统缺陷的有效量可以是引起免疫系统活化所需的量,一旦暴露于抗原后导致抗原特异性免疫应答的发展。该术语还与“足够量”同义。任何特定应用的有效量将因以下因素的不同而异:所治疗疾病或病况、所给予的具体组合物、受试者的大小和/或疾病或病况的严重程度。本领域的普通技术人员能够经验性地确定本发明具体组合物的有效量而无需过分实验。
本文所用的术语“佐剂”是指免疫应答的非特异性刺激物或允许在宿主中产生贮库(depot)的物质,当分别与本发明的疫苗和药物组合物混合时,它可提供甚至更强的免疫应答。各种各样的佐剂都可使用。实例包括完全和不完全弗氏佐剂、氢氧化铝和修饰的胞壁酰二肽。额外的佐剂是矿物凝胶例如氢氧化铝、表面活性剂例如溶血卵磷脂、复合多元醇(pluronic polyols)、聚阴离子、肽、油乳剂、匙孔
Figure 2012800272397100002DEST_PATH_IMAGE004
血蓝蛋白(keyhole limpet hemocyanin)、二硝基苯酚和潜在有用的人佐剂例如BCG (卡介苗)和短小棒杆菌(Corynebacterium parvum)。这些佐剂也是本领域众所周知的。可与本发明的组合物一起给予的另外的佐剂包括但不限于单磷酰脂免疫调节剂、AdjuVax 100a、QS-21、QS-18、CRL1005、铝盐(明矾)、MF-59、OM-174、OM-197、OM-294和Virosomal佐剂技术。佐剂还可包含这些物质的混合物。
为了免疫受试者,经胃肠外、通常通过肌内或皮下注射给予在合适溶媒中的组合物。然而,其它给予方式,例如经口、鼻内或皮内递送也是可接受的。
疫苗制剂可含有在溶媒中的有效量的活性成分,本领域技术人员可容易地测定所述有效量。活性成分范围通常可以为组合物的大约1%至约95% (w/w),或者如果合适的话甚至更高或更低。给予量取决于例如以下因素:考虑接种的动物或人受试者的年龄、体重和身体状态。所述量还取决于动物的免疫系统合成抗体的能力以及所需保护的程度。本领域普通技术人员通过建立剂量反应曲线的常规实验就能容易地确定有效剂量。通过给予一个或多个剂量的生物膜肽或其片段来免疫受试者。可按照维持针对目标细菌的免疫状态所需而给予多个剂量。
鼻内制剂可包括溶媒,所述溶媒既不会引起对鼻粘膜的刺激也不会明显破坏纤毛功能。稀释剂例如水、盐水或其它已知物质可用于本发明。鼻用制剂还可含有防腐剂,例如但不限于氯丁醇和苯扎氯铵。可含有表面活性剂以增强鼻粘膜对所述蛋白质的吸收。
口服液体制剂可以呈例如水性或油性混悬剂、溶液剂、乳剂、糖浆剂或酏剂的形式,或者可以呈干的片剂形式或产物,其可在临用前用水或其它合适溶媒重配。这类液体制剂可含有常规添加剂例如助悬剂、乳化剂、非水性溶媒(其可包括食用油)或防腐剂。
为了制备疫苗,纯化的组合物可以被分离、冻干和稳定化。然后可将组合物调节至合适的浓度,任选与合适的疫苗佐剂混合,然后包装备用。合适的佐剂包括但不限于表面活性剂,例如十六烷基胺、十八烷基胺、溶血卵磷脂、二甲基双十八烷基溴化铵、N,N-双十八烷基-N'-N-二(2-羟乙基-丙烷二-胺)、甲氧基十六烷基-甘油和复合多元醇;聚阴离子,例如吡喃、硫酸葡聚糖、聚IC、聚丙烯酸、聚羧乙烯;肽,例如胞壁酰二肽、aimethylglycine、他福新(tuftsin)、油乳剂、明矾及其混合物。其它潜在的佐剂包括大肠杆菌热不稳定毒素或霍乱毒素的B肽亚基。McGhee, J.R.等人, "On vaccine development," Sem. Hematol., 30:3-15 (1993)。最终,可将免疫原性产物掺入到脂质体中用于疫苗制剂,或者可将其缀合到蛋白质例如匙孔
Figure 2012800272397100002DEST_PATH_IMAGE004A
血蓝蛋白(KLH)或人血清白蛋白(HSA)或其它聚合物。
定义
“结合”是指结合或连接,其可以是共价例如通过化学偶联,或非共价例如离子相互作用、疏水性相互作用、氢键。共价键可以是例如酯、醚、磷酸酯、酰胺、肽、酰亚胺、碳-硫键、碳-磷键等。术语“结合”比例如“缀合”、“偶联”、“融合”和“连接”等术语更广泛并包括这些术语。
术语“蛋白”、“肽”和“多肽”在本文可互换使用。本发明包括分离的或基本纯化的蛋白组合物。在本发明的情况下,“分离的”或“纯化的”多肽是远离其天然环境而存在并因此并非天然产物的多肽。多肽可以以纯化的形式存在或者可以存在于非天然环境例如在转基因宿主细胞中。例如,“分离的”或“纯化的”蛋白或其生物活性部分基本不含其它细胞材料或培养基(当通过重组技术产生时),或者基本不含化学前体或其它化学品(当经化学合成时)。基本不含细胞材料的蛋白包括具有小于大约30%、20%、10%、5% (以干重计)的污染蛋白的蛋白或多肽制剂。当本发明的蛋白或其生物活性部分是重组产生的,优选地培养基具有小于大约30%、20%、10%或5% (以干重计)的化学前体或非目标蛋白的化学品。所公开的蛋白或其编码的部分长度的蛋白的片段和变体也包括在本发明中。关于“片段”或“部分”是指多肽或蛋白的全长或小于全长的氨基酸序列。
“天然存在的”用于描述可在自然界中发现的、不同于人工产生的对象。例如,存在于生物体(包括病毒)中、能够从天然来源中分离并且未经人为在实验室中有意修饰的蛋白序列或核苷酸序列,就是天然存在的。
分子的“变体”是基本类似于天然分子的序列的序列。
“野生型”是指在自然界发现的、没有任何已知突变的正常基因或生物体。
“操作性连接”是指分子的缔合,使得一个的功能受到另一个的影响。
术语“基本同一性”就肽而言是指在指定的比较窗中,肽包含与参考序列具有至少70%、71%、72%、73%、74%、75%、76%、77%、78%、或79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、或89%、至少90%、91%、92%、93%、或94%、或95%、96%、97%、98%或99%序列同一性的序列。使用Needleman和Wunsch, J. Mol. Biol. 48:443 (1970)的同源比对算法进行优化比对。两种肽序列基本相同的指示就是一种肽对于针对第二种肽所产生的抗体具有免疫反应性。因此,一种肽与第二种肽基本相同,例如其中这两种肽仅因保守取代而不同。
对于序列比对,通常,一种序列作为参考序列,将试验序列与之比较。当使用序列比对算法时,将试验序列和参考序列输入计算机,如有必要指定顺序坐标,并指定序列算法程序参数。然后根据所指定的程序参数,序列比对算法计算测试序列相对于参考序列的序列同一性百分比。
多肽“变体”是指通过以下衍生自天然蛋白的多肽:在天然蛋白的N-端和/或C端末端的一个或多个氨基酸的缺失(所谓的截短)或添加;在天然蛋白的一个或多个位置上的一个或多个氨基酸的缺失或添加;或在天然蛋白的一个或多个位置上的一个或多个氨基酸的取代。这样的变体可以来自例如遗传多态性或来自人为操纵。这类操纵的方法通常是本领域已知的。
因此,本发明的多肽可以以多种方式来改变,包括氨基酸取代、缺失、截短和插入。这类操纵的方法通常是本领域已知的。例如,可通过DNA中的突变而制备多肽的氨基酸序列变体。诱变和核苷酸序列改变的方法是本领域众所周知的。参见例如Kunkel, Proc. Natl. Acad. Sci. USA, 82:488 (1985);Kunkel等人, Meth. Enzymol., 154:367 (1987);美国专利号4,873,192;Walker和Gaastra, Techniques in Mol. Biol. (MacMillan Publishing Co. (1983)和其中引用的参考文献。不影响目标蛋白的生物活性的合适的氨基酸取代的指南可以在Dayhoff等人, Atlas of Protein Sequence and Structure (Natl. Biomed. Res. Found. 1978)的模型中找到。优选保守取代,例如一个氨基酸被具有类似性质的另一个置换。
因此,本发明的多肽包括天然存在的蛋白及其变体和修饰形式。这样的变体将会继续拥有所需活性。本文所包括的多肽序列的缺失、插入和取代并不期望在多肽特征上产生根本改变。然而,当难以在进行取代、缺失或插入之前就预测其确切效果时,本领域技术人员将会理解,可通过常规筛选测定来评价其效果。
在编码序列中改变、添加或缺失单个氨基酸或小百分率氨基酸(通常小于5%,更通常小于1%)的个别取代、缺失或添加是“保守修饰的变化”,其中改变导致氨基酸被化学上类似的氨基酸取代。提供功能类似的氨基酸的保守取代表是本领域众所周知的。以下5组各自含有彼此可保守取代的氨基酸:脂肪族:甘氨酸(G)、丙氨酸(A)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I);芳香族:苯丙氨酸(F)、酪氨酸(Y)、色氨酸(W);含硫:甲硫氨酸(M)、半胱氨酸(C);碱性:精氨酸(R)、赖氨酸(K)、组氨酸(H);酸性:天冬氨酸(D)、谷氨酸(E)、天冬酰胺(N)、谷氨酰胺(Q)。另外,在编码序列中改变、添加或缺失单个氨基酸或小百分率氨基酸的个别取代、缺失或添加也是“保守修饰的变化”。
本文所用的术语“治疗剂”是指对哺乳动物接受者具有有益效果的任何作用剂或材料。因此,“治疗剂”包括具有核酸或蛋白组分的治疗性和预防性两者的分子。
本文所用的“治疗”是指减轻指定疾病或病况的至少一种症状、治疗和/或预防指定疾病或病症的发展。
“抗原”是指可被抗体结合的分子。抗原还具有被免疫系统识别的能力和/或诱导导致B-和/或T-淋巴细胞活化的体液免疫应答和/或细胞免疫应答的能力。抗原可具有一个或多个表位(B-和/或T-细胞表位)。本文使用的抗原还可以是若干单个抗原的混合物。“抗原决定簇”是指被B-淋巴细胞或者T-淋巴细胞特异性识别的抗原部分。响应抗原决定簇的B-淋巴细胞产生抗体,而T-淋巴细胞则通过增殖和建立介导细胞免疫和/或体液免疫所关键的效应器功能响应抗原决定簇。
本文所用的术语“抗体”是指能结合表位或抗原决定簇的分子。该术语包括完整抗体及其抗原结合片段,包括单链抗体。在某些实施方案中,所述抗体是人抗原结合抗体片段并包括但不限于Fab、Fab'和F(ab')2、Fd、单链Fvs (scFv)、单链抗体、二硫键连接的Fvs (sdFv)和包含VL或者VH结构域的片段。抗体可来自任何动物来源,包括鸟类(例如鸡)和哺乳动物(例如人、鼠、兔、山羊、豚鼠、骆驼、马等)。本文所用的“人”抗体包括具有人免疫球蛋白氨基酸序列的抗体,和包括分离自人免疫球蛋白文库或分离自一个或多个人免疫球蛋白转基因动物(其不表达内源免疫球蛋白)的抗体,如例如美国专利号5,939,598所述。
本文所用的术语“单克隆抗体”是指得自一组基本同质的抗体(也就是说,这样一抗体组,其中构成该组的抗体是同质的,除了少量存在的天然存在的突变体之外)的抗体。单克隆抗体是高度特异性的并且与单一抗原位置相互作用。此外,每种单克隆抗体都靶向抗原上的单个抗原决定簇(表位),与常见的多克隆抗体制剂相比,后者通常含有针对不同抗原决定簇的不同抗体。除了它们的特异性之外,单克隆抗体还有以下优势:它们产自不会污染有其它免疫球蛋白的杂交瘤培养物。
形容词“单克隆”是指得自基本同质的一组抗体的抗体特征,并未指定通过具体方法产生的抗体。例如,用于本发明的单克隆抗体可通过例如杂交瘤方法(Kohler和Milstein, Nature 256:495, 1975)或重组方法(美国专利号4,816,567)而产生。用于本发明的单克隆抗体还可分离自噬菌体抗体文库(Clackson等人, Nature 352:624-628, 1991;Marks等人, J. Mol. Biol. 222:581-597, 1991)。本发明的单克隆抗体尤其包含“嵌合”抗体(免疫球蛋白),其中一部分重(H)链和/或轻(L)链衍生自特定物种或特定抗体类型或亚类,而且所述链的剩余部分衍生自另一物种或另一抗体类型或亚类。此外,突变的抗体及其抗体片段也包括在本发明中(美国专利号4,816,567;Morrison等人, Proc. Natl. Acad. Sci. USA 81:6851-6855, 1984)。
本文所用的术语“突变的抗体”是指包含变体氨基酸序列的抗体,其中一个或多个氨基酸残基已被改变。例如,抗体的可变区可被修饰以改进其生物学性质,例如抗原结合。可通过定点诱变(参见Kunkel, Proc. Natl. Acad. Sci. USA 82: 488 (1985))、基于PCR的诱变、盒诱变等实现这样的修饰。这样的突变体包含的氨基酸序列与抗体的重链或轻链可变区的氨基酸序列具有至少70%同一性,更优选地至少75%,甚至更优选地至少80%,还更优选地至少85%,再更优选地至少90%和最优选地至少95%同一性。本文所用的术语“序列同一性”定义为与抗体的原始氨基酸序列中的残基相同的残基的百分率,经序列比对并引入合适空位以优化序列同一性(如有必要)之后确定。
具体地讲,可使用Karlin和Altschul (Proc. Natl. Acad. Sci. USA, 90: 5873-5877, 1993)的算法BLAST确定一种核苷酸序列或氨基酸序列与另一种的同一性。根据该算法开发出例如BLASTN和BLASTX等程序(Altschul等人, J. Mol. Biol. 215: 403-410, 1990)。为了按照基于BLAST的BLASTN分析核苷酸序列,设定参数,例如分值=100和字长=12。另一方面,通过基于BLAST的BLASTN分析氨基酸序列所用的参数包括例如分值=50和字长=3。当使用BLAST和Gapped BLAST程序时,使用各程序的默认参数。用于这类分析的具体技术是本领域已知的(参见生物技术信息国家中心(NCBI)的网站,碱基定位比对检索工具(BLAST);http://www.ncbi.nlm.nih.gov)。
可通过本领域技术人员已知的方法制备多克隆抗体和单克隆抗体。例如,可通过下述方法制备抗体。
将如上所述制备的抗原给予哺乳动物,例如小鼠、大鼠、仓鼠、豚鼠、马、猴、兔、山羊和绵羊。可通过任何现有方法进行该免疫,包括通常使用的静脉内注射、皮下注射和腹膜内注射。对免疫间隔没有限制。可以以数天至数周、优选4-21天的间隔进行免疫。小鼠可例如以单剂量10-100 μg (例如,20-40 μg)的抗原蛋白免疫,但是该剂量不限于这些数值。
初次免疫之前,以及第二次和随后免疫之后3-7天,从动物中采血,分析血清的抗体效价。为了促进免疫应答,优选使用聚集剂例如明矾。一般而言,所选的哺乳动物抗体具有足够高的抗原结合亲和力。可使用饱和结合测定、酶联免疫吸附测定(ELISA)或竞争性测定(例如放免测定)检测抗体亲和力。
可通过例如描述于以下文献的常规交联分析,筛选多克隆抗体:"Antibodies, A Laboratory Manual (Cold Spring Harbor Laboratories, Harlow和David Lane编辑(1988))"。一个替代方法是例如表位作图(Champe等人, J. Biol. Chem. 270:1388-1394 (1995))。检测多肽或抗体效价的优选方法包括定量测定抗体-结合亲和力。在其它实施方案中,除了测定抗体-结合亲和性的方法之外,或者替代该方法,还可使用用于评价抗体的一个或多个生物学性能的方法。这样的分析方法特别有用,因为它们证明抗体的治疗有效性。当抗体在这样的分析中表现出改进的性能时,其结合亲和力通常(但并非总是)被提高。
可通过例如Milstein等人的方法(Kohler, G.,和Milstein, C., Methods Enzymol. 1981, 73, 3-46)而获取用于制备单克隆抗体的杂交瘤。与产生抗体的细胞融合的骨髓瘤细胞可以是源自任何不同动物的细胞系,所述动物例如小鼠、大鼠和人,其对于本领域技术人员而言通常是可获得的。所用的细胞系是药物抗性的,并且在未融合状态下在选择性培养基(例如HAT培养基)中是不能存活的,但在融合状态下能够存活。通常使用8-氮杂鸟嘌呤-抗性细胞系,其缺乏次黄嘌呤-鸟嘌呤-磷酸核糖基转移酶并且在次黄嘌呤-氨基蝶呤-胸苷(HAT)培养基上不能生长。骨髓瘤细胞包括多种已知的细胞系,例如P3x63Ag8.653 (J. Immunol. (1979) 123: 1548-1550)、P3x63Ag8U.1 (Current Topics in Microbiology and Immunology (1978) 81: 1-7)、NS-1 (Kohler, G.和Milstein, C., Eur. J. Immunol. (1976) 6: 511-519)、MPC-11 (Margulies, D. H.等人, Cell (1976) 8: 405-415)、SP2/0 (Shulman, M.等人, Nature (1978) 276: 269-270)、F0 (de St. Groth, S. F.等人, J. Immunol. Methods (1980) 35: 1-21)、S194 (Trowbridge, I. S., J. Exp. Med. (1978) 148: 313-323)、R210 (Galfre, G.等人, Nature (1979) 277: 131-133)和P3U1 (J. Exp. Med. 1979, 150:580;Curr Top Microbiol. Immunol. 1978, 81:1)。人类骨髓瘤和小鼠-人杂合骨髓瘤(heteromycloma)细胞系也可用于产生人单克隆抗体(Kozbar, J. Immunol. 133:3001 (1984);Brodeur等人, Monoclonal Antibody Production Techniques and Application, 第51-63页(Marcel Dekker, Inc., New York, 1987))。从例如在末次免疫之后2-3天处死的动物中收集产生抗体的细胞。产生抗体的细胞包括脾细胞、淋巴结细胞和外周血细胞。通常使用脾细胞。具体地讲,从上述的各种动物中切除或收集组织,例如脾或淋巴结。然后将组织破碎,并将所得材料悬浮于培养基或缓冲液例如PBS、DMEM或RPMI1640中,再通过不锈钢网筛等过滤。再将其离心,得到产生抗体的目标细胞。
然后将上述骨髓瘤细胞和产生抗体的细胞融合。通过在用于动物细胞培养的培养基(例如MEM、DMEM和RPMI-1640)中,在30-37°C,在融合促进剂的存在下,使骨髓瘤细胞与产生抗体的细胞以1:1至1:20的比例接触1-15分钟,实现细胞融合。为了促进细胞融合,可使用市售的细胞融合装置将产生抗体的细胞和骨髓瘤细胞融合,所述装置利用例如聚乙二醇(平均分子量1,000-6,000 (Da))或聚乙烯醇或用于融合的病毒(例如仙台病毒)等融合促进剂。
从细胞融合后的细胞中筛选目标杂交瘤。选择方法包括使用在选择性培养基中的细胞选择性繁殖的方法。具体地讲,将细胞悬液用合适的培养基稀释,然后将细胞铺到微量滴定板上。向每孔中加入等份的选择培养基(例如HAT培养基),然后培养细胞,同时适当地更换选择培养基。结果生长的细胞可作为杂交瘤而保存。
在另一个实施方案中,可从抗体噬菌体文库中分离出抗体或抗体片段,所述文库是通过使用McCafferty等人所报道的技术(Nature 348:552-554 (1990))而产生的。Clackson等人(Nature 352:624-628 (1991))和Marks等人(J. Mol. Biol. 222:581-597 (1991))报道了从噬菌体文库中分别分离出小鼠抗体和人抗体。也有报道描述了高亲和力(nM范围)人抗体的产生,其基于链改组(Marks等人, Bio/Technology 10:779-783 (1992))和其为构建大规模噬菌体文库方法的组合感染和体内重组(Waterhouse等人, Nucleic Acids Res. 21:2265-2266 (1993))。这些技术还可用于分离单克隆抗体,替代使用用于单克隆抗体产生的常规杂交瘤技术。
从所获得的杂交瘤中制备单克隆抗体的方法包括标准细胞培养方法和包括产生腹水的方法。在细胞培养方法中,将杂交瘤在标准培养条件(例如,在37°C在5%CO2气氛中)下,在用于动物细胞的培养基(例如含10-20%胎牛血清的RPMI-1640或MEM,或无血清培养基)中培养2-14天,然后从培养上清液中制备抗体。在包括产生腹水的方法中,将杂交瘤给予与骨髓瘤细胞的来源动物相同物种的哺乳动物个体的腹膜腔中,并大量增殖杂交瘤。然后在1-4周后采集腹水或血清。为了增加腹水产量,可将例如姥鲛烷(2,6,10,14-四甲基十五烷)预先给予到腹膜腔中。
本发明所用的抗体可通过适当选自已知方法的方法来纯化,所述方法例如蛋白A-琼脂糖方法、羟基磷灰石色谱、用硫酸盐的盐析方法、离子交换色谱和亲和色谱,或通过这些方法的组合使用。
本发明可使用经基因工程产生的重组抗体。编码通过上述方法获得的抗体的基因自杂交瘤分离。将基因插入到合适的载体,然后引入到宿主(参见例如Carl, A. K. Borrebaeck, James, W. Larrick, Therapeutic Monoclonal Antibodies, Published in the United Kingdom by Macmillan Publishers Ltd, 1990)。本发明提供编码本发明抗体的核酸,以及包含这些核酸的载体。具体地讲,使用逆转录酶,从杂交瘤的mRNA合成编码抗体可变区(V区)的cDNA。获得编码目标抗体可变区的DNA之后,将它们与编码所需抗体恒定区(C区)的DNA连接,然后将所得DNA构建体插入到表达载体。或者,可将编码抗体可变区的DNA插入到包含抗体C区的DNA的表达载体。将这些都插入到表达载体,以便在表达调节区例如增强子和启动子的调节之下表达基因。然后,用表达抗体的表达载体转化宿主细胞。本发明提供表达本发明抗体的细胞。表达本发明抗体的细胞包括用所述抗体基因转化的细胞和杂交瘤。
在本发明中,可使用经人工修饰以降低针对人的异源抗原性的重组抗体。实例包括嵌合抗体和人源化抗体。可使用已知方法产生这些经修饰的抗体。嵌合抗体包括含有彼此不同的物种的可变区和恒定区的抗体,例如,含有非人类哺乳动物例如小鼠的抗体重链可变区和轻链可变区、以及人抗体重链恒定区和轻链恒定区的抗体。可通过以下获得这样的抗体:(1)将编码小鼠抗体可变区的DNA与编码人抗体恒定区的DNA连接;(2)将其掺入到表达载体;和(3)将所述载体倒入宿主,用于产生抗体。
通过用人抗体的互补决定区(CDR)取代非人类哺乳动物例如小鼠抗体的H链或L链的CDR,获取人源化抗体(其也称为改造的人抗体)。用于制备这类抗体的常规遗传重组技术是已知的(参见例如Jones等人, Nature 321: 522-525 (1986);Reichmann等人, Nature 332: 323-329 (1988);Presta Curr. Op. Struct. Biol. 2: 593-596 (1992))。具体地讲,通过PCR合成经设计将小鼠抗体的CDR与人抗体的框架区(FR)连接的DNA序列,使用经构建在其末端包含重叠部分的若干寡核苷酸。可通过以下获得人源化抗体:(1)将所得DNA与编码人抗体恒定区的DNA连接;(2)将其掺入到表达载体;和(3)将所述载体转染到宿主以产生抗体(参见欧洲专利申请号EP 239,400和国际专利申请号WO 96/02576)。当CDR形成有利的抗原结合位点时,选出通过CDR连接的人抗体FR。人源化抗体可包含额外的氨基酸残基,其不包含在在引入到受体抗体中的CDR中,也不包含在框架序列中。通常引入这样的氨基酸残基以便更准确地优化抗体识别和结合抗原的能力。例如,如有必要,抗体可变区的框架区中的氨基酸可以被取代,使得改造的人抗体的CDR形成合适的抗原结合位点(Sato, K.等人, Cancer Res. (1993) 53, 851-856)。
获取人抗体的方法也是已知的。例如,可通过以下获取具有抗原结合活性的所需的人抗体:(1)用目标抗原或在体外表达目标抗原的细胞致敏人淋巴细胞;和(2)将致敏的淋巴细胞与人骨髓瘤细胞例如U266融合(参见Examined Published Japanese Patent Application No. (JP-B) Hei 1-59878)。或者,还可通过使用抗原来免疫转基因(Tg)动物获取所需的人抗体,所述动物包含人抗体基因的部分或全部组成集合(参见Nature Genetics 7:13-21 (1994);Nature Genetics 15:146-156 (1997);Nature 368:856-859 (1994);International Patent Application WO 93/12227、WO 92/03918、WO 94/02602、WO 94/25585、WO 96/34096和WO 96/33735)。具体地讲,如下创建这样的Tg动物:通过创建敲除动物或Tg动物,或使这样的动物交配,获得非人类哺乳动物,在其中内源免疫球蛋白的重链和轻链的基因座已经被破坏,而且代替为通过酵母人工染色体(YAC)载体等引入人免疫球蛋白的重链和轻链的基因座。免疫球蛋白重链基因座可例如通过在J区或C区(例如Cμ区)中的某一位点上引入缺陷而功能性失活。免疫球蛋白轻链(例如κ链)可例如通过在J区或C区或者包含J区和C区的区域中的某一位点上引入缺陷而功能性失活。
这样的人源化抗体还可通过以下得自培养上清液:使用遗传工程技术,用编码抗体的每条重链和轻链的cDNA或者优选包含这些cDNA的载体转化真核细胞,然后培养产生重组人单克隆抗体的转化细胞。宿主是例如所需的真核细胞,优选哺乳动物细胞,例如CHO细胞、淋巴细胞和骨髓瘤。
此外,通过人抗体文库的淘选而获取人抗体的技术是已知的。例如,使用噬菌体展示方法,人抗体的可变区在噬菌体表面上被表达为单链抗体(scFv),然后可选出与抗原结合的噬菌体。通过分析所选出噬菌体的基因,可测定编码与抗原结合的人抗体的可变区的DNA序列。如果鉴定出与抗原结合的scFv的DNA序列,就可构建包含这些序列的合适的表达载体,然后引入到合适的宿主中并表达,以获取人抗体。这样的方法已经是众所周知的(参见WO 92/01047、WO 92/20791、WO 93/06213、WO 93/11236、WO 93/19172、WO 95/01438和WO 95/15388)。
当已经分离出抗体基因并引入到合适的宿主时,宿主和表达载体可以以合适的组合用于产生抗体。作为真核宿主细胞,可以使用动物细胞、植物细胞和真菌细胞。动物细胞包括:(1)哺乳动物细胞例如CHO、COS、骨髓瘤、幼仓鼠肾(BHK)、HeLa和Vero细胞;(2)两栖动物细胞例如爪蟾卵母细胞;或(3)昆虫细胞例如sf9、sf21,和Tn5或蚕。已知的植物细胞包括源自烟草属例如烟草(Nicotiana tabacum)的细胞,所述细胞可以是培养的愈伤组织。已知的真菌细胞包括酵母菌例如酵母属(Saccharomyces)例如啤酒酵母(Saccharomyces cerevisiae),和丝状真菌例如曲霉属(Aspergillus)例如黑曲霉(Aspergillus niger)。原核细胞也可用于利用细菌细胞的生产系统。已知的细菌细胞包括大肠杆菌(E. coli)和枯草杆菌(Bacillus subtilis)。可通过转化将目标抗体基因转入这些细胞,然后体外培养转化的细胞以获得抗体。
本发明抗体的同种型没有限制。同种型包括例如IgG (IgG1、IgG2、IgG3和IgG4)、IgM、IgA (IgA1和IgA2)、IgD和IgE。本发明的抗体还可以是包含负责抗原结合的部分的抗体片段或其修饰的片段。术语“抗体片段”是指全长抗体的一部分,通常是指包含抗原结合结构域或可变区的片段。这样的抗体片段包括例如Fab、F(ab')2、Fv、单链Fv (scFv) (其包含通过合适接头偶联的重链Fv和轻链Fv)、双抗体、线状抗体和从抗体片段制备的多特异性抗体。之前,通过用蛋白酶消化天然抗体而产生抗体片段;现在,使用遗传工程技术将它们表达为重组抗体的方法也是已知的(参见Morimoto等人, Journal of Biochemicaland Biophysical Methods 24:107-117 (1992);Brennan等人, Science 229:81 (1985);Co, M. S.等人, J. Immunol., 1994, 152, 2968-2976;Better, M. & Horwitz, A. H., Methods in Enzymology, 1989, 178, 476-496, Academic Press, Inc.;Plueckthun, A. & Skerra, A., Methods in Enzymology, 1989, 178, 476-496, Academic Press, Inc.;Lamoyi, E., Methods in Enzymology, 1989, 121, 663-669;Bird, R. E.等人, TIBTECH, 1991, 9, 132-137)。
“Fv”片段是最小的抗体片段,并且含有完整的抗原识别位点和结合位点。该区是二聚体(VH-VL二聚体),其中每条重链和轻链的可变区通过非共价键紧密连接。每个可变区的3个CDR彼此相互作用,在VH-VL二聚体表面上形成抗原结合位点。换句话说,来自重链和轻链的总共6个CDR共同作为抗体的抗原结合位点而起作用。然而,还已知单独的可变区(或半Fv,其仅含有3个抗原-特异性CDR)能够识别和结合到抗原,尽管其亲和力比完整结合位点的亲和力低。因此,本发明优选的抗体片段是Fv片段,但不限于此。这样的抗体片段可以是多肽,其包括重链或轻链CDR的抗体片段,所述片段是保守的并且能够识别和结合其抗原。
Fab片段(也称为F(ab))还含有轻链恒定区和重链恒定区(CH1)。例如,抗体经木瓜蛋白酶消化产生两类片段:抗原结合片段,称为Fab片段,含有重链和轻链的可变区,其起到单一抗原结合结构域的作用;和剩余部分,因为它容易结晶而称为“Fc”。Fab'片段不同于Fab片段之处在于Fab'片段还具有来自重链CH1区羧基端的若干残基,其含有来自抗体铰链区的一个或多个半胱氨酸残基。然而,Fab'片段在结构上相当于Fab,因为这两者都是包含重链和轻链的可变区的抗原结合片段,其起到单个抗原结合结构域的作用。在此,包含重链和轻链的可变区的抗原结合片段(其作为单个抗原结合结构域,并且其相当于经木瓜蛋白酶消化而获得片段),称为“Fab-样抗体”,甚至当它不同于通过蛋白酶消化而产生的抗体片段。Fab'-SH是在其恒定区具有一个或多个半胱氨酸残基(带有游离的巯基)的Fab'。F(ab')片段通过裂解F(ab')2的铰链区中的半胱氨酸残基之间的二硫键而产生。其它化学交联的抗体片段也是本领域技术人员已知的。抗体经胃蛋白酶消化得到两个片段:一个是F(ab')2片段,其包含两个抗原结合结构域并可与抗原交叉反应;和另一个是剩余片段(称为pFc')。在此,相当于通过胃蛋白酶消化所得到的抗体片段的抗体片段当其包含两个抗原结合结构域并且可与抗原交叉反应时称为“F(ab')2-样抗体”。这样的抗体片段还可例如通过基因工程而产生。还可从例如上述抗体噬菌体文库中分离这样的抗体片段。或者,可从宿主例如大肠杆菌中直接回收F(ab')2-SH片段,然后通过化学交联而形成F(ab')2片段(Carter等人, Bio/Technology 10:163-167 (1992))。在一个替代方法中,可从重组宿主的培养物中直接分离F(ab')2片段。
术语“双抗体(Db)”是指通过基因融合而构建的二价抗体片段(例如P. Holliger等人, Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993)、EP 404,097、WO 93/11161)。一般而言,双抗体是两条多肽链的二聚体。在每条多肽链中,在同一链中的轻链可变区(VL)和重链可变区(VH)经由短接头例如大约5个残基的接头相连,使它们不能结合在一起。因为两者间的接头太短,所以同一多肽链中的VL和VH不能形成单链V区片段,而是形成二聚体。因此,双抗体具有两个抗原结合结构域。当将针对两类抗原(a和b)的VL区和VH区组合通过大约5个残基的接头形成VLa-VHb和VLb-VHa然后共表达时,它们作为双特异性Db分泌。本发明的抗体可以是这样的Db。
可通过链接抗体的重链V区和轻链V区而制备单链抗体(也称为“scFv”) (有关scFv的综述参见Pluckthun "The Pharmacology of Monoclonal Antibodies" 第113卷, 编著.Rosenburg和Moore, Springer Verlag, N.Y., pp. 269-315 (1994))。制备单链抗体的方法是本领域已知的(参见例如美国专利号4,946,778;5,260,203;5,091,513;和5,455,030)。在这样的scFv中,重链V区和轻链V区经由接头、优选多肽接头而连接在一起(Huston, J. S.等人, Proc. Natl. Acad. Sci. U.S.A, 1988, 85, 5879-5883)。在scFv中的重链V区和轻链V区可以来自同一抗体,或来自不同的抗体。用于连接V区的肽接头可以是由12-19个残基组成的任何单链肽。编码scFv的DNA可通过PCR而扩增,使用编码所需氨基酸序列的完整DNA或者部分DNA作为模板的,其选自编码上述抗体的重链或重链V区的DNA和编码上述抗体的轻链或轻链V区的DNA;并使用限定两端的引物对。随后可使用编码肽接头部分的DNA和限定准备分别连接到重链和轻链的DNA的两端的引物对的组合,进一步进行扩增。构建编码scFv的DNA之后,可使用常规方法获取包含这些DNA的表达载体和通过这些表达载体转化的宿主。此外,使用所得的宿主可按照常规方法获取scFv。通过获取编码抗体片段的基因并表达这些基因(如上所述),可在宿主中产生这些抗体片段。结合到不同类型的分子例如聚乙二醇(PEG)的抗体可用作修饰的抗体。用于修饰抗体的方法是本领域已经建立的。在本发明中术语“抗体”还包括上述抗体。
所得的抗体可纯化至同质(homogeneity)。可通过常规用于分离和纯化蛋白的方法,分离并纯化抗体。可通过一种或多种方法的组合使用来分离和纯化抗体,所述方法适宜地选自柱色谱、过滤、超滤、盐析、透析、制备性聚丙烯酰胺凝胶电泳和等电点聚焦,例如(Strategies for Protein Purification and Characterization: A Laboratory Course Manual, Daniel R. Marshak等人编著, Cold Spring Harbor Laboratory Press (1996);Antibodies: A Laboratory Manual. Ed Harlow和David Lane, Cold Spring Harbor Laboratory, 1988)。所述方法不限于以上列出的那些。色谱方法包括亲和色谱、离子交换色谱、疏水性色谱、凝胶过滤、反相色谱和吸附色谱。可使用液相色谱例如HPLC和FPLC实施这些色谱方法。亲和色谱中使用的柱包括蛋白A柱和蛋白G柱。例如,蛋白A柱包括Hyper D、POROS和Sepharose F. F. (Pharmacia)。还可利用抗原结合纯化抗体,使用抗原已经在其上固定化的载体。
可按照标准方法配制本发明的抗体(参见例如Remington's Pharmaceutical Science, 最新版, Mark Publishing Company, Easton, U.S.A),并且可包含药学上可接受的载体和/或添加剂。本发明涉及组合物(包括试剂和药物),其包含本发明的抗体和药学上可接受的载体和/或添加剂。示例性的载体包括表面活性剂(例如PEG和Tween)、赋形剂、抗氧化剂(例如抗坏血酸)、着色剂、矫味剂、防腐剂、稳定剂、缓冲剂(例如磷酸、柠檬酸和其它有机酸)、螯合剂(例如EDTA)、助悬剂、等渗剂、粘合剂、崩解剂、润滑剂、流动促进剂和矫正剂(corrigent)。然而,可用于本发明的载体不限于该列表。事实上,其它常用载体可适当地使用:轻质无水硅酸、乳糖、结晶纤维素、甘露醇、淀粉、羧甲基纤维素钙(carmelose calcium)、羧甲基纤维素钠(carmelose sodium)、羟丙基纤维素、羟丙基甲基纤维素、聚乙烯乙缩醛二乙氨基乙酯、聚乙烯吡咯烷酮、明胶、中链脂肪酸三甘油酯、聚氧乙烯氢化蓖麻油60、蔗糖、羧甲基纤维素、玉米淀粉、无机盐等。组合物还可包含其它低分子量多肽、蛋白质例如血清白蛋白、明胶和免疫球蛋白、和氨基酸例如甘氨酸、谷氨酰胺、天冬酰胺、精氨酸和赖氨酸。当所述组合物制备成注射用水性溶液剂时,它可包含等渗溶液,所述等渗溶液包括例如生理盐水、葡萄糖和其它辅料(包括例如D-山梨醇、D-甘露糖、D-甘露醇和氯化钠),它还可含有合适的增溶剂,例如醇(例如乙醇)、多元醇(例如丙二醇和PEG)、和非离子型去垢剂(聚山梨酯80和HCO-50)。
必要时,可将本发明的抗体包入微胶囊剂中(由羟基纤维素、明胶、聚甲基丙烯酸甲酯等制备的微胶囊剂),并制成胶态药物递送系统(脂质体、白蛋白微球体、微型乳剂、纳米粒和纳米胶囊)中的组分(例如参见"Remington's Pharmaceutical Science第16版", Oslo主编(1980))。此外,制备持续释放药物的方法是已知的,并且其可适用于本发明的抗体(Langer等人,J. Biomed. Mater. Res. 15: 167-277 (1981);Langer, Chem. Tech. 12: 98-105 (1982);美国专利号3,773,919;EP专利申请号58,481;Sidman等人, Biopolymers 22: 547-556 (1983);EP: 133,988)。
“免疫应答”是指导致B-淋巴细胞和/或T-淋巴细胞和/或抗原呈递细胞活化或增值的体液免疫应答和/或细胞免疫应答。然而,在某些情况下,免疫应答可以是低强度的并且仅当使用本发明的至少一种物质时是才可检测。“免疫原性”是指一种作用剂,其用于刺激活生物体免疫系统,使得一种或多种免疫系统功能增加并针对所述免疫原性剂。“免疫原性多肽”是无论其是单独或是连接到载体,在佐剂存在或不存在时诱导细胞免疫应答和/或体液免疫应答的多肽。优选地,抗原呈递细胞可以被活化。
“增强”免疫应答的物质是指这样的物质:其中观察到在加入该物质时的免疫应答比未加该物质时所测的同样免疫应答更大或更强或以任何方式偏离。例如,可在免疫期间用和不用该物质而得到的样品中例如使用51Cr释放测定法测定细胞毒性T细胞的溶解活性。与无该物质的CTL溶解活性相比,增强CTL溶解活性的该物质的量认为是足以增强针对抗原的动物免疫应答的量。在某些实施方案中,免疫应答增强了至少大约2倍,例如大约3倍或更高。还可改变所分泌的细胞因子的量或种类。或者,可以改变所诱导的抗体的量或它们的亚类。
术语“使免疫”或“免疫”或相关术语是指赋予引发针对靶抗原或表位的实质性免疫应答(包括抗体和/或细胞免疫例如效应器CTL)的能力。这些术语不需要产生完整的免疫,而是产生基本上大于基线的免疫应答。例如,如果在应用本发明的方法之后发生了针对该靶抗原的细胞免疫应答和/或体液免疫应答,可考虑针对靶抗原免疫哺乳动物。
术语“免疫治疗的”是指用于治疗疾病、病症或病况的组合物。更具体地讲,该术语用于指治疗方法,其中通过接种或通过转移免疫分子而产生有益的免疫应答。“免疫有效量”是指当将组合物引入到个体时在该个体中足以诱导免疫应答的组合物的量。在自动免疫情况下,该术语与“免疫原性有效量”同义。免疫有效所需的组合物的量因多种因素的不同而异,所述因素包括组合物、该组合物种其它成分的存在(例如佐剂)、抗原、免疫途径、个体、在先免疫或身体状态等。
核酸分子、表达盒和表达载体
ARE和缀合的化合物可由核酸序列编码,并且核酸序列还可包括启动子。核酸序列还可包括聚腺苷酸化信号。在某些实施方案中,聚腺苷酸化信号是合成的最小聚腺苷酸化信号或6个T的序列。
术语“核酸”是指呈单链或双链形式的脱氧核糖核酸(DNA)或核糖核酸(RNA)及其聚合物,由含糖、磷酸酯和碱基(嘌呤或嘧啶)的单体(核苷酸)组成。除非另有说明,该术语包括含有天然核苷酸的已知类似物的核酸,其具有与参考核酸类似的结合性质并且可以类似于天然存在的核苷酸的方式代谢。除非另有说明,具体的核酸序列还包括其保守修饰的变体(例如简并密码子取代)和互补序列、以及明确指出的序列。具体地讲,简并密码子取代可通过产生这样的序列而实现:所述序列中一个或多个所选(或全部)密码子的第三位置被混合碱基和/或脱氧肌苷残基取代。“核酸片段”是指定核酸分子的一部分。
“核苷酸序列”是DNA或RNA的聚合物,其可以是单链或双链,任选包含能够掺入到DNA或RNA聚合物中的合成的、非天然的或改变的核苷酸碱基。
术语“核酸”、“核酸分子”、“核酸片段”、“核酸序列或区段”或“多核苷酸”可互换使用并且还可与基因、基因编码的cDNA、DNA和RNA互换使用。
本发明包括分离的或基本纯化的核酸分子和含有这些分子的组合物。就本发明而言,“分离的”或“纯化的”DNA分子或RNA分子是远离其天然环境而存在并因此而并非是天然产物的DNA分子或RNA分子。分离的DNA分子或RNA分子可以以纯化的形式存在或者可以存在于非天然环境例如在转基因宿主细胞中。例如,“分离的”或“纯化的”核酸分子或或其生物活性部分基本不含其它细胞材料或培养基(当通过重组技术产生时),或者基本不含化学前体或其它化学品(当经化学合成时)。在一个实施方案中,“分离的”核酸不含在该核酸来源生物体的基因组DNA中天然侧接该核酸的序列(即位于该核酸的5′和3′末端的序列)。例如,在各种实施方案中,分离的核酸分子可含有在该核酸来源细胞的基因组DNA中天然侧接该核酸分子的小于大约5 kb、4 kb、3 kb、2 kb、1 kb、0.5 kb或0.1 kb的核苷酸序列。所公开的核苷酸序列的片段和变体也包括在本发明内。关于“片段”或“部分”是指全长或小于全长的核苷酸序列。
“天然存在的”、“天然的”、或“野生型”用于描述可在自然界中发现的、不同于人工产生的对象。例如,存在于生物体(包括病毒)中的、能够从天然来源中分离的并且未经人为在实验室中有意修饰的蛋白序列或核苷酸序列,就是天然存在的。
分子的“变体”是基本类似于天然分子的序列的序列。对于核苷酸序列而言,变体包括因遗传密码子的简并性而编码相同的天然蛋白的氨基酸序列的那些序列。天然存在的等位基因变体例如可使用分子生物学技术例如使用聚合酶链式反应(PCR)和杂交技术而鉴定。变体核苷酸序列还包括合成衍生的核苷酸序列,例如通过例如使用定点诱变产生的编码天然蛋白的那些,以及编码具有氨基酸取代的多肽的那些。通常,本发明的核苷酸序列变体将与天然的(内源的)核苷酸序列具有至少40%、50%、60%、至70%、例如71%、72%、73%、74%、75%、76%、77%、78%、至79%、通常至少80%、例如81%-84%,至少85%、例如86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、至98%序列同一性。
“转基因”是指已通过转化而引入基因组的基因。转基因包括例如与所转化的特定细胞的DNA异源或者同源的DNA。另外,转基因可包括插入到非天然的生物体中的天然的基因,或嵌合基因。
术语“内源基因”是指在生物体的基因组中其天然位置上的天然的基因。
术语“蛋白”、“肽”和“多肽”在本文中可互换使用。
“野生型”是指在自然界存在的正常的基因或生物体。
“基因组”是指生物体的完整的遗传物质。
“载体”定义为尤其包括呈双链或单链线状或环状形式的任何病毒载体以及任何质粒、粘粒、噬菌体或二元载体,其自身可以或不可以传递或移动,并且其可或者通过整合到细胞基因组或者以染色体外存在(例如具有复制起点的自主复制质粒)来转化原核或真核宿主。
本文所用的“表达盒”是指能够指导特定核苷酸序列在合适宿主细胞中表达的核酸序列,其可包含操作性连接到该目标核苷酸序列的启动子,所述目标核苷酸序列可以操作性连接到终止信号。编码区通常编码功能性的目标RNA,例如编码表位或缀合的化合物的RNA。包含目标核苷酸序列的表达盒可以是嵌合的。表达盒还可以是天然存在的、但以用于异源表达的重组形式获得的表达盒。表达盒中核苷酸序列的表达可以是处于组成型启动子或调节型启动子的控制之下,后者仅在宿主细胞暴露于某些特定刺激时才起始转录。就多细胞生物体而言,启动子还可以是对特定组织或器官或发育阶段特异性的。
这样的表达盒可包括连接到目标核苷酸序列的转录起始区。这类表达盒提供有用于插入目的基因的多个限制位点,使其处于调节区的转录调节之下。
“调节序列”是位于编码区上游(5′非编码序列)、编码区内、或编码区下游(3′非编码序列)的核苷酸序列,并且其影响转录、RNA加工或稳定性、或相关编码序列的翻译。调节序列包括增强子、启动子、翻译前导序列、内含子和聚腺苷酸化信号序列。它们包括天然的和合成的序列以及合成的和天然的序列的组合序列。如本文所述,术语“合适的调节序列”不限于启动子。然而,用于本发明的某些合适的调节序列将包括但不限于组成型启动子、组织-特异性启动子、发育-特异性启动子、调节型启动子和病毒启动子。
“启动子”是指通常在其编码序列的上游(5′)的核苷酸序列,其通过提供对正确转录所需的RNA聚合酶和其它因子的识别而指导和/或控制编码序列的表达。“启动子”包括其为由TATA-盒和其它序列组成的短DNA序列的最小启动子,其起到指定转录起始位点的作用,调节元件加于其上用于控制表达。“启动子”还指包括最小启动子加上调节元件的核苷酸序列,所述调节元件能够控制编码序列或功能性RNA的表达。这类启动子序列是由邻近的和较远端的上游元件组成,后一类元件通常称为增强子。因此,“增强子”是这样的DNA序列:其能够刺激启动子活性并可以是启动子的固有元件或插入以增强启动子的水平或组织特异性的异源元件。它能够以两个方向(正常的或翻转的)操作,并且甚至当其从启动子的上游或下游移动时能够起作用。增强子和其它上游启动子元件两者结合介导它们的作用的序列-特异性DNA-结合蛋白。启动子可以是全部衍生自天然基因,或可以由衍生自天然存在的不同启动子的不同元件组成,或者甚至由合成的DNA区段组成。启动子也还含有参与蛋白因子结合的DNA序列,所述蛋白因子在响应生理或发育条件时控制转录起始的效率。可用于本发明的启动子的实例包括小鼠U6 RNA启动子、合成的人H1RNA启动子、SV40、CMV、RSV、RNA聚合酶 II和RNA聚合酶III启动子。
“起始位点”是围绕其为转录序列的一部分的第一核苷酸的位置,其也定义为位置+1。对于该位点,对基因及其控制区的所有其它序列编号。下游序列(即在3′方向的其他的蛋白编码序列)都是正数,而上游序列(在5′方向的大部分控制区)都是负数。
当缺乏上游活化时为失活的或启动子活性极大降低的启动子元件(特别是TATA元件),称为“最小或核心启动子”。在合适的转录因子存在下,最小启动子起到允许转录的作用。因此“最小或核心启动子”仅由转录起始所需的所有基础元件组成,例如TATA盒和/或起始子。
“组成型表达”是指使用组成型或调节型启动子的表达。“条件型”和“调节型表达”是指受到调节型启动子控制的表达。
“操作性连接”是指在单一核酸片段上的核酸序列的缔合,使得一个序列的功能受到另一个的影响。例如,在以下情况下调节型DNA序列就被认为是“操作性连接到”或“缔合到”编码RNA或多肽的DNA序列:如果两个序列的位置使得调节型DNA序列影响编码DNA序列的表达(即编码序列或功能性RNA处于启动子的转录控制之下)。能够将编码序列以有义或反义方向操作性连接到调节序列。
“表达”是指内源基因、异源基因或核酸区段或细胞中的转基因的转录和/或翻译。例如,在表位构建体的情况下,表达可以指仅表位的转录。另外,表达是指有义RNA (mRNA)或功能性RNA的转录和稳定积累。表达还可指蛋白的产生。
术语“转化”是指核酸片段转移到宿主细胞基因组内,导致遗传上稳定的遗传。“宿主细胞”是已被转化的细胞,或者能够通过外源核酸分子转化的细胞。含有转化的核酸片段的宿主细胞称为“转基因的”细胞。
“转化的”、“转导的”、“转基因的”和“重组”是指已向其中引入异源核酸分子的宿主细胞。本文所用的术语“转染”是指DNA向真核(例如哺乳动物)细胞的递送。术语“转化”在本文用于指DNA向原核(例如大肠杆菌(E. coli))细胞的递送。术语“转导”在本文用于指指用病毒颗粒感染细胞。核酸分子能够稳定地整合到通常为本领域已知的基因组中。已知的PCR方法包括但不限于以下方法:使用成对引物、巢式引物、单特异性引物、简并引物、基因-特异性引物、载体-特异性引物、部分错配引物等。例如,“转化的”、“转化体”和“转基因的”细胞已经通过转化过程并含有整合到其染色体上的外源基因。术语“未转化的”是指还没有通过转化过程的正常细胞。
“经遗传改变的细胞”是指已通过引入重组或异源核酸(例如一个或多个DNA构建体或其RNA相对物)修饰的细胞并且还包括这类细胞的后代,其保留部分或全部的这样的遗传修饰。
本发明的核酸分子
术语“分离的和/或纯化的”是指在体外将核酸(例如DNA或RNA分子)从其天然细胞环境中和从与细胞的其它组分(例如核酸或多肽)的缔合中分离出来,以便能够将其测序、复制和/或表达。在不含在RNA或DNA的天然来源中通常与之缔合的至少一种污染的核酸,优选基本不含任何其它哺乳动物RNA或DNA的情况下,RNA或DNA是“分离的”。短语“不含通常与之缔合的至少一种污染的核酸”包括这样的情况:其中将核酸重新引入其来源或天然细胞,但在不同的染色体位置或者另外侧接在其来源细胞中通常并非正常存在的核酸序列,例如在载体或质粒中。
如本文所用,术语“重组核酸”,例如“重组DNA序列或区段”是指已从任何合适细胞来源中衍生或分离的核酸(例如DNA),其可以随后在体外经化学改变,使得其序列并非天然存在的,或相当于并非按它们在未经外源DNA转化的基因组中定位一样定位的天然存在的序列。“衍生”自来源的预选的DNA的实例是在指定生物体内经鉴定作为有用片段的DNA序列,其然后以基本纯的形式进行化学合成。“分离”自来源的这样的DNA的实例是通过化学方式(例如使用限制性内切酶)从其来源切除或移出的有用的DNA序列,使得其能够通过遗传工程的方法被进一步操纵,例如扩增,用于本发明。“重组DNA”包括全合成的DNA序列、半合成的DNA序列、分离自生物来源的DNA序列和衍生自RNA的DNA序列以及其混合物。
本发明的表达盒
为了制备表达盒,重组DNA序列或区段可以是环状或线状、双链或单链。通常,DNA序列或区段呈嵌合DNA形式,例如质粒DNA或载体,其还可含有与控制序列侧接的编码区,所述控制序列促进所得转化的细胞中存在的重组DNA的表达。
本文所用的“嵌合”载体或表达盒是指包括来自至少两个不同物种的核酸序列的载体或盒,或者具有来自同一物种、但以在该物种的“天然”或野生型中不存在的方式连接或缔合的核酸序列。
除了用作用于RNA转录的转录单元或其部分的重组DNA序列,重组DNA的一部分可以是未转录的,起到调节或结构功能。例如,重组DNA可以具有在哺乳动物细胞中具有活性的启动子。
在宿主细胞中具有功能的其它元件,例如内含子、增强子、聚腺苷酸化序列等,也可作为重组DNA的一部分。这样的元件可以是或不必然是对DNA功能所需要的,但可通过影响转录等来提供改进的DNA表达。这样的元件可以包括在所需的DNA中,以便在细胞中得到最佳的RNA性能。
控制序列是操作性连接的编码序列在特定宿主细胞中表达所必需的DNA序列。适合原核细胞的控制序列例如包括启动子和任选操纵子的序列以及核糖体结合位点。已知真核细胞利用启动子、聚腺苷酸化信号和增强子。
操作性连接的核酸是与另一核酸序列具有功能性关系的核酸。例如,如果启动子或增强子影响编码序列的转录,则该启动子或增强子操作性连接到该编码序列;或如果核糖体结合位点的位置使得促进翻译,则该核糖体结合位点操作性连接到编码序列。通常,操作性连接的DNA序列是连续连接的DNA序列。然而,增强子不必是连续的。通过在合适的限制位点上连接而实现连接。如果这样的位点不存在,按照常规实践使用合成的寡核苷酸连接头或接头。
欲引入细胞的重组DNA可含有可选择标记基因或者报道基因或者这两者,以便于从试图通过病毒载体转染或感染的细胞群中鉴定和筛选表达的细胞。在其它实施方案中,可选择标记可以携带在单独一段DNA上并用于共转染步骤。可选择标记和报道基因都可以侧接合适的调节序列,使其可在宿主细胞中表达。有用的可选择标记是本领域已知的并且包括例如抗生素-抗性基因,例如neo等。
报道基因用于鉴定可能转染的细胞和用于评价调节序列的功能性。编码易于测定的蛋白质的报道基因是本领域众所周知的。一般而言,报道基因是受体生物体或组织中不存在的或不表达的基因并且其编码蛋白,所述蛋白的表达显示为某些易于测定的性能,例如酶活性。例如,报道基因包括来自大肠杆菌Tn9的氯霉素乙酰转移酶基因(cat)和来自萤火虫Photinus pyralis的萤光素酶基因。在将DNA引入受体细胞后的合适时间测定报道基因的表达。
用于构建能够转染靶细胞的重组DNA的通用方法是本领域技术人员众所周知的,和同样的组合物和构建方法可用于产生用于本文中的DNA。
即通过用由编码表位或缀合的化合物的DNA组成的表达载体进行转染,能够容易地将重组DNA引入宿主细胞,例如哺乳动物细胞、细菌细胞、酵母细胞或昆虫细胞,,所述转染通过用于引入特定细胞的任何程序,例如物理的或生物的方法,以得到具有稳定整合到其基因组上或以附加体元件存在的重组DNA的细胞,使得宿主细胞表达本发明的DNA分子或序列。优选地,将DNA经由载体引入宿主细胞。宿主细胞优选地是真核来源,例如植物、哺乳动物、昆虫、酵母菌或真菌来源,但也可使用非真核来源的宿主细胞。
将预选的DNA引入宿主细胞中的物理学方法包括磷酸钙沉淀、脂质转染、粒子轰击、显微注射、电穿孔等。将目标DNA引入宿主细胞中的生物学方法包括使用DNA和RNA病毒载体。对于哺乳动物基因治疗,如下文所述,使用将拷贝基因插入到宿主基因组中的有效方式是合乎需要的。病毒载体,尤其是逆转录病毒载体,已经成为将基因插入到哺乳动物例如人体细胞中的最广泛使用的方法。其它的病毒载体可源自痘病毒、单纯疱疹病毒I、腺病毒和腺伴随病毒等。参见例如美国专利号5,350,674和5,585,362。
如本文所述,“转染的”或“转导的”宿主细胞或细胞系是这样的细胞系:其中基因组因存在至少一个异源或重组核酸序列而被改变或扩大。通常通过用在质粒表达载体、病毒表达载体中的DNA序列或作为分离的线状DNA序列的DNA序列进行转染,产生本发明的宿主细胞。转染的DNA可变成经染色体整合的重组DNA序列,其由编码表位或缀合的化合物的序列组成。
为了证实宿主细胞中重组DNA序列的存在,可以进行多种测定。这样的测定包括例如本领域技术人员众所周知的“分子生物学”测定,例如DNA印迹、RNA印迹、RT-PCR和PCR;“生化”测定,例如检测特定肽的存在与否,例如通过免疫方法(ELISA和蛋白质印迹)或通过本文所述的测定,以鉴定落入本发明范围之内的因子。
为了检测和定量测定由引入的重组DNA区段所产生的RNA,可以使用RT-PCR。在PCR的这一应用中,首先有必要使用酶例如逆转录酶将RNA逆转录为DNA,然后通过使用常规PCR技术扩增DNA。在大部分情况下,PCR技术,尽管有用,但不能证明RNA产物的完整性(integrity)。有关RNA产物性质的进一步信息可得自RNA印迹。该技术证明RNA种类的存在并给出有关该RNA完整性的信息。还可使用点或狭缝印迹RNA杂交测定RNA种类的存在或不存在。这些技术是RNA印迹的改进并且仅证明RNA种类的存在或不存在。
尽管DNA印迹和PCR可用于检测目标重组DNA区段,但它们并不提供有关预选的DNA区段是否被表达的信息。可通过具体地鉴定所引入的重组DNA序列的肽产物或者评价由所引入的重组DNA区段在宿主细胞中表达所致的表型变化,而评价表达。
用于将本发明的表达盒引入细胞中的方法
可通过遗传转移方法,例如转染或转导,在离体或体内将核酸物质(例如编码表位或缀合的化合物的表达盒)引入细胞中,以提供经遗传修饰的细胞。多种表达载体(即便于将外源核酸递送到靶细胞的载体)是本领域普通技术人员已知的。
如本文所用,“细胞的转染”是指通过掺入附加的DNA使细胞获取新的核酸物质。因此,转染是指使用物理或化学的方法将核酸插入到细胞中。数种转染技术是本领域普通技术人员已知的,包括磷酸钙DNA共沉淀、DEAE-葡聚糖、电穿孔、阳离子脂质体-介导的转染、钨粒子促进的微粒轰击和磷酸锶DNA共沉淀。
相比之下,“细胞的转导”是指使用DNA病毒或RNA病毒将核酸移入细胞的过程。用于将核酸移入细胞的RNA病毒(逆转录病毒)在本文中称为转导嵌合逆转录病毒。逆转录病毒中所含有的外源核酸物质掺入到转导的细胞的基因组中。已用嵌合DNA病毒(例如携带编码治疗剂的cDNA的腺病毒)转导的细胞,将不具有掺入到其基因组的外源核酸物质,但能够表达细胞内保留的在染色体外的外源核酸物质。
外源核酸物质可包括编码表位或缀合的化合物的核酸以及控制转录的启动子。启动子特征性地具有起始转录所必需的特定的核苷酸序列。外源核酸物质还可以包括获取想要的基因转录活性所需的额外序列(增强子)。为了所述目的,“增强子”仅仅是任何非翻译的DNA序列,其与编码序列(cis中)一起作用,以改变启动子所指导的基础转录水平。可将外源核酸物质引入细胞基因组中紧邻所述启动子的下游,使得所述启动子和编码序列操作性连接,以便允许编码序列的转录。表达载体可包含外源启动子元件,以控制所插入的外源基因的转录。这样的外源启动子包括组成型启动子和调节型启动子两者。
天然存在的组成型启动子控制必要的细胞功能的表达。结果,处于组成型启动子控制之下的核酸序列在细胞生长的所有条件下都表达。组成型启动子包括用于下列编码某些组成型或“管家”功能的基因的启动子:次黄嘌呤磷酸核糖基转移酶(HPRT)、二氢叶酸还原酶(DHFR)、腺苷脱氨酶、磷酸甘油激酶(PGK)、丙酮酸激酶、磷酸甘油变位酶、beta-肌动蛋白启动子和本领域技术人员已知的其它组成型启动子。另外,许多病毒启动子在真核细胞中以组成型方式起作用。这些尤其包括:SV40的早期和晚期启动子;莫洛尼白血病毒和其它逆转录病毒的长末端重复序列(LTR);和单纯疱疹病毒的胸苷激酶启动子。
处于调节型启动子控制之下的核酸序列仅在诱导剂或阻遏剂存在下表达或以更大或更小程度表达,(例如,在某些金属离子存在下,在金属硫蛋白启动子控制之下的转录被极大地增加)。调节型启动子包括当其诱导因子结合时刺激转录的反应元件(RE)。例如,存在针对以下的RE:血清因子、类固醇激素、视黄酸、环状AMP和四环素和强力霉素。可选择含有特定RE的启动子以获得调节型应答,并且在某些情况下,RE自身可连接到不同的启动子,从而赋予所编码的核酸序列调节性。因此,通过选择合适的启动子(组成型对调节型;强对弱),有可能在经遗传修饰的细胞中控制核酸序列表达的存在和水平。如果核酸序列处于调节型启动子控制之下,通过将经遗传修饰的细胞在原位暴露于允许核酸序列转录的条件而触发治疗剂的原位递送,例如通过腹膜内注射控制所述治疗剂转录的调节型启动子的特定诱导剂。例如,在经遗传修饰的细胞中,处于金属硫蛋白启动子控制之下的核酸序列的原位表达通过使所述经遗传修饰的细胞与含有合适的(即诱导性的)金属离子的溶液在原位接触而被增强。
因此,原位产生的RNA的量通过控制例如以下因素而调节:用于指导核酸序列转录的启动子的性质,(即启动子是否是组成型或调节型的,强或弱的)和编码细胞中的表位或缀合化合物序列的外源核酸序列的拷贝数。
除了至少一个启动子和编码表位或缀合化合物序列的至少一个异源核酸序列之外,表达载体还可包括选择基因,例如新霉素抗性基因,以便选择已用表达载体转染或转导的细胞。
还可用两个或更多个表达载体转染细胞,至少一个载体含有编码表位或缀合化合物序列的核酸序列,另一个载体含有选择基因。对合适的启动子、增强子、选择基因和/或信号序列的选择被认为在本领域普通技术的范围内,无需过度实验。
以下讨论涉及本发明的多种用途。例如,本发明具有作为适合于沉默目标基因表达的表达系统的用途。
本发明还提供用于在体内遗传修饰哺乳动物受体细胞的方法。依据一个实施方案,所述方法包括引入用于在哺乳动物受体细胞内原位表达表位或缀合化合物序列的表达载体,例如将所述载体注射到所述受体中。
制剂和给予方式
本发明的疫苗和组合物可以配制成药物组合物并以适合于所选给予途径的各种形式给予哺乳动物宿主(例如人类患者),所述途径即经口服、鼻内、皮内或胃肠外、经静脉内、肌内、局部或皮下途径。
因此,本发明的化合物可以与药学上可接受的溶媒例如惰性稀释剂或可吸收的可食用载体组合经全身性给予(例如经口服)。可将它们包入硬壳或软壳明胶胶囊剂中,可压制成片剂,或者可直接掺入到患者饮食的食物中。对于口服治疗性给予,活性化合物可以与一种或多种赋形剂组合并以可摄取的片剂、口含片剂、锭剂、胶囊剂、酏剂、混悬剂、糖浆剂、糯米纸囊剂(wafer)等形式使用。这样的组合物和制剂应当含有至少0.1%的活性化合物。组合物和制剂的百分率当然可以改变并且可合宜地介于指定单位剂型的重量的大约2至约60%之间。在这类治疗有用的组合物中的活性化合物的量是达到有效剂量水平的量。
片剂、锭剂、丸剂、胶囊剂等还可含有以下:粘合剂例如西黄蓍胶、阿拉伯胶、玉米淀粉或明胶;赋形剂例如磷酸二钙;崩解剂例如玉米淀粉、马铃薯淀粉、海藻酸等;润滑剂例如硬脂酸镁;和甜味剂例如蔗糖、果糖、乳糖或阿斯巴甜或可加入矫味剂例如薄荷、冬青油或樱桃调料。当单位剂型是胶囊剂时,除了上述类型的材料之外,它还可含有液体载体,例如植物油或聚乙二醇。多种其它材料可以作为包衣存在,或以其他方式改变固体单位剂型的物理形式而存在。例如,片剂、丸剂或胶囊剂可以用明胶、蜡、虫胶或糖等包衣。糖浆剂或酏剂可含有以下活性化合物:蔗糖或果糖作为甜味剂、对羟基苯甲酸甲酯和对羟基苯甲酸丙酯作为防腐剂、染色剂和矫味剂例如樱桃调料或橙子调料。当然,用于制备任何单位剂型的任何材料应当是药学上可接受的,并且在所用的量上基本是无毒的。另外,可将活性化合物掺入到持续释放制剂和装置中。
活性化合物也可经静脉内或腹膜内通过输注或注射而给予。活性化合物或其盐的溶液剂可以在水中制备,任选与无毒表面活性剂混合。还可在甘油、液体聚乙二醇、三醋精(triacetin)及其混合物中和在油中制备分散剂。在通常的贮存和使用条件下,这些制备物含有阻止微生物生长的防腐剂。
适用于注射或输注的药物剂型可包括无菌的水性溶液剂或分散剂或无菌粉剂,所述粉剂包含适用于临时配制无菌注射用或输注用溶液剂或分散剂的活性成分,任选包封在脂质体中。在所有情况下,最终剂型在制备和贮存条件下应当是无菌的、流体的和稳定的。液体载体或溶媒可以是溶剂或液体分散介质,包括例如水、乙醇、多元醇(例如甘油、丙二醇、液体聚乙二醇等)、植物油、无毒的甘油酯及其合适的混合物。可保持适当的流动性,例如通过形成脂质体,在分散剂情况下通过所需粒度的维持或通过使用表面活性剂。可通过多种抗细菌剂和抗真菌剂导致阻止微生物活动所述作用剂例如对羟基苯甲酸酯类、氯丁醇、苯酚、山梨酸、硫柳汞等。在许多情况下,优选包括等渗剂,例如糖、缓冲液或氯化钠。可通过在注射用组合物中使用延长吸收的作用剂例如单硬脂酸铝和明胶,使得所述组合物能够延长吸收。
通过将所需量的活性化合物与上文列举的多种其它成分(视需要)掺入到合适的溶剂中,然后通过过滤除菌,制备无菌注射用溶液剂。在用于制备无菌注射用溶液的无菌粉剂的情况下,优选的制备方法是真空干燥和冷冻干燥技术,其得到活性成分以及在先前除菌过滤溶液中存在的任何添加的所需成分的粉末。
对于局部给予,本发明的化合物可以以纯的形式施加,即当它们是液体时。然而,将它们作为与皮肤可接受的载体组合的组合物或制剂(可以是固体或液体)给予皮肤通常是合乎需要的。
有用的固体载体包括细碎的固体例如滑石粉、粘土、微晶纤维素、硅石粉(silica)、矾土粉(alumina)等。有用的液体载体包括水、醇或二醇或水-醇/二醇掺和物,其中本发明的化合物可任选在无毒表面活性剂的帮助下以有效水平溶解或分散。可加入辅料例如芳香剂和另外的抗微生物剂以优化性能,用于指定用途。所得的液体组合物可从吸收垫(absorbent pad)施用,用于浸透绷带或其它敷料,或用泵型或气溶胶喷雾器喷在患病部位上。
还可使用增稠剂例如合成的聚合物、脂肪酸、脂肪酸盐和酯、脂肪醇、改性纤维素或改性矿物材料等,与液体载体一起形成可涂抹的糊剂、凝胶剂、软膏剂、肥皂等,用于直接施用在使用者的皮肤上。
可用于将本发明化合物递送到皮肤的有用的皮肤用组合物的实例是本领域已知的;例如参见Jacquet等人(美国专利号4,608,392)、Geria (美国专利号4,992,478)、Smith等人(美国专利号4,559,157)和Wortzman (美国专利号4,820,508)。
可通过比较本发明化合物的体外活性和动物模型中的体内活性,测定它们的有用剂量。将小鼠和其它动物中的有效剂量外推至人的方法是本领域已知的;例如参见美国专利号4,938,949。
通常,本发明化合物在液体组合物例如洗剂中的浓度为大约0.1-25 wt-%,优选大约0.5-10 wt-%。半固体或固体组合物例如凝胶剂或粉剂中的浓度为大约0.1-5 wt-%,优选大约0.5-2.5 wt-%。
用于治疗所需的化合物其活性盐或衍生物的量可以变化,不仅随所选的具体的盐而且随给予途径、所治疗的病况的性质和患者年龄和条件而异,最终由主治医师或临床医师决定。
然而,一般而言,合适剂量范围在大约0.5至约100 mg/kg、例如每天大约10至约75 mg/kg体重,例如每天3至约50 mg/kg受体体重,优选范围在6-90 mg/kg/天,最优选范围在15-60 mg/kg/天。
所述化合物适宜以单位剂型给予;例如,每单位剂型含有5-1000 mg、适宜含有10-750 mg、最适宜含有50-500 mg活性成分。
理想地,应给予活性成分以达到活性化合物的峰值血浆浓度为大约0.5至约75 μM,优选地大约1-50 μM,最优选地大约2至约30 μM。这可例如通过静脉内注射任选地在盐水中的0.05-5%活性成分溶液,或作为含有大约1-100 mg活性成分的大丸剂经口服给予而实现。可通过连续输注以提供大约0.01-5.0 mg/kg/hr的活性成分或通过含有大约0.4-15 mg/kg的活性成分的间断输注,维持所需的血液水平。
想要的剂量可适宜地以单剂量或以合适间隔给予的分次剂量(例如每天2、3、4或更多的亚剂量)存在。亚剂量本身可进一步分开为例如多次不连续的宽松的间隔给予;例如从吹药器中多次吸入或者通过将多滴施用到眼内。
尽管上述说明书和实例充分公开本发明并使其可行,但是它们无意限制本发明的范围,所述范围由所附权利要求书限定。
所有出版物、专利和专利申请都通过引用结合到本文中。尽管在上述说明书中,已经描述了本发明关于其某些实施方案,并为说明的目的已阐明了许多细节,但是本领域技术人员显而易见的是本发明可接受其他的实施方案,并且本文所述的某些细节可以有相当大的改变而不偏离本发明的基本原则。
在描述本发明的情况下,术语“a”和“an”和“the”以及类似的指示语应解释为涵盖了单数与复数,除非在本文中另作指明或明显地与上下文相抵触。术语“包含”、“具有”、“包括”和“含有”应解释为开放式的术语(即是指“包括但不限于”),除非另有说明。本文中对数值范围的引用仅用作单独指落入该范围内的各个单独数值时的速记方法,除非在本文中另有说明,并且各个单独数值结合到说明书中,如同它在本文中被单独引用。本文所述的所有方法可以任何合适顺序进行,除非在本文中另有说明或明显地与上下文相抵触。本文提供的任何和所有实施例、或示例性语言(例如“例如”)的使用,仅意图更好地说明本发明和并不形成对本发明的范围的限制,除非另有说明。说明书中的语言不应解释为表示任何非-要求保护的要素对本发明的实施是必不可少的。
本文描述了本发明的实施方案,包括本发明人已知实施本发明的最好方式。这些实施方案的改变对于本领域普通技术人员在阅读上述描述之后是显而易见的。本发明人希望技术人员在合适时使用这样的改变,而且本发明人希望按照除本文明确描述之外实施本发明。因此,本发明包括适用的法律所允许的所附权利要求书中引用的主题的所有修改和等同方案。此外,上述要素以其所有可能改变形式的任何组合都包括在本发明中,除非在本文中另有说明或明显地与上下文相抵触。

Claims (54)

1. 包含IPALTAVETGA (SEQ ID NO: 1)的长度为大约11-28个氨基酸的脊髓灰质炎的VP-1表位。
2. 权利要求1的VP-1表位,其中所述表位为大约18-28个氨基酸长度并包含IPALTAVETGA (SEQ ID NO: 1)。
3. 权利要求1的VP-1表位,其中所述表位基本由IPALTAVETGA (SEQ ID NO: 1)组成。
4. 权利要求1的VP-1表位,其中所述表位由IPALTAVETGA (SEQ ID NO: 1)组成。
5. 包含ALTAVETGAT (SEQ ID NO: 3)的长度为大约11-28个氨基酸的脊髓灰质炎的VP-1表位。
6. 权利要求5的VP-1表位,其中所述表位为大约18-28个氨基酸长度并包含ALTAVETGAT (SEQ ID NO: 3)。
7. 权利要求5的VP-1表位,其中所述表位基本由ALTAVETGAT (SEQ ID NO: 3)组成。
8. 权利要求5的VP-1表位,其中所述表位由ALTAVETGAT (SEQ ID NO: 3)组成。
9. 权利要求5的VP-1表位,其中所述表位为18-28个氨基酸长度并包含AHSKEIPALTAVETGATA (SEQ ID NO: 2)。
10. 权利要求5的VP-1表位,其中所述表位基本由AHSKEIPALTAVETGATA (SEQ ID NO: 2)组成。
11. 权利要求5的VP-1表位,其中所述表位由AHSKEIPALTAVETGATA (SEQ ID NO: 2)组成。
12. 包含与抗体-识别表位(ARE)共价结合的至少一个抗原的化合物,其中所述ARE是权利要求1-11中任一项的VP-1表位。
13. 权利要求12的化合物,其中所述抗原通过α-Gal连接的方式与所述ARE结合。
14. 权利要求12或13的化合物,其中所述抗原通过接头分子的方式与所述ARE结合。
15. 权利要求14的化合物,其中所述接头分子是甲醛、戊二醛、MBS (m-马来酰亚胺基苯甲酰基-N-羟基琥珀酰亚胺酯)和/或磺基-MBS。
16. 权利要求12-15中任一项的化合物,其中所述抗原是感染性因子抗原。
17. 权利要求16的化合物,其中所述感染性因子是细菌、真菌、寄生虫、病毒或朊病毒因子。
18. 权利要求17的化合物,其中所述感染性因子是细菌因子。
19. 权利要求17的化合物,其中所述感染性因子是病毒因子。
20. 权利要求12-19中任一项的化合物,其中所述抗原是癌抗原。
21. 权利要求12-20中任一项的化合物,其中所述抗原进一步结合到抗体上,形成抗体:抗原复合物。
22. 权利要求21的化合物,其中所述抗体是人抗体或人源化抗体。
23. 权利要求22的化合物,其中所述抗体是人源化抗体。
24. 权利要求23的化合物,其中所述抗体是完全人源化的抗体。
25. 权利要求21的化合物,其中所述抗体是单链Fv或scFv片段。
26. 权利要求12-25中任一项的化合物,其中半抗原操作性连接到所述抗原上,形成半抗原化的抗原。
27. 权利要求26的化合物,其中所述半抗原操作性连接到另外的抗原上。
28. 包含权利要求12-27中任一项的化合物的复合物,其操作性连接到缀合分子上。
29. 权利要求28的复合物,其中所述缀合分子是并非所述抗原或ARE的肽、核酸或多糖。
30. 一种组合物,包含权利要求12-27中任一项的化合物或权利要求28或29的复合物和生理上可接受的无毒溶媒。
31. 权利要求30的组合物,还包含佐剂。
32. 在预先免疫的动物中引发免疫应答的方法,所述方法包括将权利要求30或31的组合物引入到所述动物。
33. 权利要求32的方法,其中所述组合物的引入发生在预先免疫后至少15天。
34. 权利要求32或33中任一项的方法,还包括引入权利要求30或31的第二组合物。
35. 权利要求32-34中任一项的方法,还包括引入重复剂量的权利要求30或31的组合物。
36. 权利要求32-35中任一项的方法,其中所述动物是人。
37. 在预先免疫的动物中产生对抗原具有特异性的抗体的方法,所述方法包括将权利要求30或31的组合物引入到所述动物。
38. 权利要求32-37中任一项的方法,还包括将第二剂量的权利要求30或31的组合物引入到所述动物。
39. 治疗癌症的方法,所述方法包括将权利要求30或31的组合物给予患者。
40. 预防或治疗感染或感染性疾病的方法,所述方法包括将权利要求30或31的组合物给予患者。
41. 包含与抗体-识别表位(ARE)共价结合的至少一个纯化的抗原的化合物,其中所述ARE是权利要求1-11中任一项的VP-1表位,所述化合物用于预防性或治疗性治疗感染性因子或癌症。
42. 包含与抗体-识别表位(ARE)共价结合的至少一个纯化的抗原的化合物,其中所述ARE是权利要求1-11中任一项的VP-1表位,所述化合物用于制备用于在哺乳动物中治疗感染性因子或癌症的药物。
43. 包含与抗体-识别表位(ARE)共价结合的至少一个抗原的化合物,其中所述抗原是来自甲型流感H5N1 (A/Indonesia/5/2005(H5N1)) Genebank蛋白检索号#ABI36003的核壳蛋白(NP),并且所述ARE是权利要求1-11中任一项的VP-1表位,其中所述ARE与所述NP直接共价结合。
44. 包含与抗体-识别表位(ARE)共价结合的至少一个抗原的化合物,其中所述抗原是来自甲型流感H1N1 (A/Puerto Rico/8-V24/1934 (H1N1)) Genebank检索号ADY00024.1的核壳蛋白(NP),并且所述ARE是权利要求1-11中任一项的VP-1表位,其中所述ARE与所述NP直接共价结合。
45. 包含与抗体-识别表位(ARE)共价结合的至少一个抗原的化合物,其中所述抗原是来自甲型流感H1N1 (A/Puerto Rico/8-V24/1934(H1N1)) Genebank检索号ADY00020.1的血凝素蛋白(HA),并且所述ARE是权利要求1-11中任一项的VP-1表位,其中所述ARE与所述NP直接共价结合。
46. 包含与抗体-识别表位(ARE)共价结合的至少一个抗原的化合物,其中所述抗原是来自乙肝病毒的乙肝表面抗原(HBsAg),并且所述ARE是权利要求1-11中任一项的VP-1表位,其中所述ARE与所述NP直接共价结合。
47. 包含与抗体-识别表位(ARE)共价结合的至少一个抗原的化合物,其中所述抗原是来自甲型流感H5N1 (A/Indonesia/5/2005(H5N1)) Genebank蛋白检索号#ABI36003的核壳蛋白(NP),并且所述ARE是权利要求1-11中任一项的VP-1表位,其中所述ARE与所述TNP直接共价结合。
48. 编码权利要求1-11中任一项的VP-1表位的核酸,其操作性连接到编码抗原的核酸上。
49. 表达盒,所述盒包含连续连接到权利要求48的核酸上的启动子。
50. 权利要求49的表达盒,其中所述启动子是组织-特异性启动子。
51. 权利要求49的表达盒,其中所述启动子是诱导型启动子。
52. 权利要求49的表达盒,其中所述启动子是CMV、RSV、EFa-1或T7启动子。
53. 包含权利要求48-52中任一项的表达盒的载体。
54. 权利要求53的载体,其中所述载体是腺伴随病毒(AAV)载体。
CN201280027239.7A 2011-04-04 2012-04-04 改进疫苗免疫原性的方法 Pending CN103826657A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161471553P 2011-04-04 2011-04-04
US61/471,553 2011-04-04
PCT/US2012/032190 WO2012138774A2 (en) 2011-04-04 2012-04-04 Methods of improving vaccine immunogenicity

Publications (1)

Publication Number Publication Date
CN103826657A true CN103826657A (zh) 2014-05-28

Family

ID=46969796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280027239.7A Pending CN103826657A (zh) 2011-04-04 2012-04-04 改进疫苗免疫原性的方法

Country Status (9)

Country Link
US (1) US10059746B2 (zh)
EP (1) EP2694102A4 (zh)
JP (2) JP2014512182A (zh)
KR (1) KR20140027211A (zh)
CN (1) CN103826657A (zh)
AU (2) AU2012240231B2 (zh)
CA (1) CA2834734A1 (zh)
MX (1) MX356426B (zh)
WO (1) WO2012138774A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108472350A (zh) * 2016-01-08 2018-08-31 瓦西博迪公司 新表位rna癌症疫苗

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2950818A4 (en) * 2013-02-01 2016-08-24 Univ Iowa Res Found TUMORIN VEGETABLES AND METHOD FOR USE THEREOF
AR095425A1 (es) * 2013-03-15 2015-10-14 Glaxosmithkline Biologicals Sa Vacuna, uso y procedimiento para prevenir una infección por picornavirus
JP2018058812A (ja) * 2016-06-01 2018-04-12 パナソニックIpマネジメント株式会社 インフルエンザウィルス核内蛋白質に結合する抗体、複合体、それを用いた検出装置及び検出方法
US11541105B2 (en) 2018-06-01 2023-01-03 The Research Foundation For The State University Of New York Compositions and methods for disrupting biofilm formation and maintenance
WO2020172635A1 (en) * 2019-02-21 2020-08-27 Distributed Bio, Inc. Optimized vaccine compositions and methods for making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070026502A1 (en) * 1994-04-28 2007-02-01 Matti Sallberg Specificity exchangers that redirect antibodies to a pathogen
US20080090225A1 (en) * 2006-06-16 2008-04-17 Kirkegaard Karla A Methods of identifying anti-viral agents
US20080118530A1 (en) * 2004-10-08 2008-05-22 Kew Olen M Modulation of Replicative Fitness By Deoptimization of Synonymous Codons

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
IE52535B1 (en) 1981-02-16 1987-12-09 Ici Plc Continuous release pharmaceutical compositions
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4559157A (en) 1983-04-21 1985-12-17 Creative Products Resource Associates, Ltd. Cosmetic applicator useful for skin moisturizing
HUT35524A (en) 1983-08-02 1985-07-29 Hoechst Ag Process for preparing pharmaceutical compositions containing regulatory /regulative/ peptides providing for the retarded release of the active substance
LU84979A1 (fr) 1983-08-30 1985-04-24 Oreal Composition cosmetique ou pharmaceutique sous forme aqueuse ou anhydre dont la phase grasse contient un polyether oligomere et polyethers oligomeres nouveaux
US5204096A (en) 1984-03-07 1993-04-20 New York Blood Center, Inc. Pre-S gene coded peptide hepatitis B immunogens, vaccines, diagnostics, and synthetic lipid vesicle carriers
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
US5260203A (en) 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5374426A (en) 1986-09-03 1994-12-20 University Of Saskatchewan Rotavirus nucleocapsid protein VP6 in vaccine compositions
US4873192A (en) 1987-02-17 1989-10-10 The United States Of America As Represented By The Department Of Health And Human Services Process for site specific mutagenesis without phenotypic selection
US5091513A (en) 1987-05-21 1992-02-25 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US4820508A (en) 1987-06-23 1989-04-11 Neutrogena Corporation Skin protective composition
US4992478A (en) 1988-04-04 1991-02-12 Warner-Lambert Company Antiinflammatory skin moisturizing composition and method of preparing same
US4938949A (en) 1988-09-12 1990-07-03 University Of New York Treatment of damaged bone marrow and dosage units therefor
DE3920358A1 (de) 1989-06-22 1991-01-17 Behringwerke Ag Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung
US5585362A (en) 1989-08-22 1996-12-17 The Regents Of The University Of Michigan Adenovirus vectors for gene therapy
DE69120146T2 (de) 1990-01-12 1996-12-12 Cell Genesys Inc Erzeugung xenogener antikörper
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
DK0585287T3 (da) 1990-07-10 2000-04-17 Cambridge Antibody Tech Fremgangsmåde til fremstilling af specifikke bindingsparelementer
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
ES2246502T3 (es) 1990-08-29 2006-02-16 Genpharm International, Inc. Animales no humanos transgenicos capaces de producir anticuerpos heterologos.
WO1992014489A1 (en) * 1991-02-14 1992-09-03 Repligen Corporation Poliovirus-based vaccines
DK0605522T3 (da) 1991-09-23 2000-01-17 Medical Res Council Fremgangsmåde til fremstilling af humaniserede antistoffer
JPH07501451A (ja) 1991-11-25 1995-02-16 エンゾン・インコーポレイテッド 多価抗原結合タンパク質
DK1024191T3 (da) 1991-12-02 2008-12-08 Medical Res Council Fremstilling af autoantistoffer fremvist på fag-overflader ud fra antistofsegmentbiblioteker
ATE245446T1 (de) * 1992-02-11 2003-08-15 Jackson H M Found Military Med Dualer träger für immunogene konstrukte
CA2131151A1 (en) 1992-03-24 1994-09-30 Kevin S. Johnson Methods for producing members of specific binding pairs
ATE381614T1 (de) 1992-07-24 2008-01-15 Amgen Fremont Inc Bildung von xenogenen antikörpern
US5350674A (en) 1992-09-04 1994-09-27 Becton, Dickinson And Company Intrinsic factor - horse peroxidase conjugates and a method for increasing the stability thereof
CA2161351C (en) 1993-04-26 2010-12-21 Nils Lonberg Transgenic non-human animals capable of producing heterologous antibodies
GB9313509D0 (en) 1993-06-30 1993-08-11 Medical Res Council Chemisynthetic libraries
CA2125344A1 (en) * 1993-07-01 1995-01-02 Casey D. Morrow Encapsidated recombinant poliovirus nucleic acid and methods of making and using same
CA2177367A1 (en) 1993-12-03 1995-06-08 Andrew David Griffiths Recombinant binding proteins and peptides
US6660842B1 (en) * 1994-04-28 2003-12-09 Tripep Ab Ligand/receptor specificity exchangers that redirect antibodies to receptors on a pathogen
AU701342B2 (en) 1994-07-13 1999-01-28 Chugai Seiyaku Kabushiki Kaisha Reconstituted human antibody against human interleukin-8
ES2304786T3 (es) 1995-04-27 2008-10-16 Amgen Fremont Inc. Anticuerpos anti-il-8 humanos, derivados a partir de xenoratones inmunizados.
EP0823941A4 (en) 1995-04-28 2001-09-19 Abgenix Inc HUMAN ANTIBODIES DERIVED FROM IMMUNIZED XENO MOUSES
CN1044092C (zh) 1997-02-26 1999-07-14 上海医科大学 抗原-抗体-重组dna复合型疫苗
US6232082B1 (en) 1998-12-01 2001-05-15 Nabi Hapten-carrier conjugates for treating and preventing nicotine addiction
US20020131953A1 (en) 2001-03-14 2002-09-19 Ut Southwestern Medical Center In situ langerhans cell vaccine
FR2827605B1 (fr) 2001-07-20 2004-07-16 Pf Medicament Nouveaux peptides derives de la proteine g du vrs et leur utilisation dans un vaccin
EP1523334A2 (en) 2002-07-18 2005-04-20 Cytos Biotechnology AG Hapten-carrier conjugates and uses thereof
US20050158323A1 (en) 2003-12-04 2005-07-21 Vaccinex, Inc. Methods of killing tumor cells by targeting internal antigens exposed on apoptotic tumor cells
US20080311147A1 (en) 2004-04-19 2008-12-18 Thomas Jeffeson University Rhabdoviral N-Fusion Proteins as Carrier for Foreign Antigens
US7078179B2 (en) 2004-05-04 2006-07-18 Newlink Genetics Corporation Selectable gene marker system based on expression of N-acetyllactosaminide 3-α galactosyltransferase
GB0428394D0 (en) 2004-12-24 2005-02-02 Chiron Srl Saccharide conjugate vaccines
CN101184839A (zh) 2005-04-08 2008-05-21 纳斯泰克制药公司 用于呼吸道病毒感染的RNAi治疗
WO2007052238A2 (en) 2005-11-07 2007-05-10 University Of Pretoria Chimeric antigens and vaccines
US9662383B2 (en) * 2007-03-26 2017-05-30 University Of Massachusetts Compositions and methods for increasing immunogenicity of glycoprotein vaccines
WO2008147847A1 (en) 2007-05-22 2008-12-04 Baylor College Of Medicine Immune complex vaccination as a strategy to enhance immunity in the elderly and other immune compromised populations
US8470771B2 (en) * 2007-11-14 2013-06-25 Institute Of Microbiology, Chinese Academy Of Sciences Method and medicament for inhibiting the infection of influenza virus
US20090324630A1 (en) 2008-04-21 2009-12-31 Jensen Michael C Fusion multiviral chimeric antigen
AU2010300380B2 (en) * 2009-10-02 2016-06-09 University Of Iowa Research Foundation Methods of improving vaccine immunogenicity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070026502A1 (en) * 1994-04-28 2007-02-01 Matti Sallberg Specificity exchangers that redirect antibodies to a pathogen
US20080118530A1 (en) * 2004-10-08 2008-05-22 Kew Olen M Modulation of Replicative Fitness By Deoptimization of Synonymous Codons
US20080090225A1 (en) * 2006-06-16 2008-04-17 Kirkegaard Karla A Methods of identifying anti-viral agents

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KINGSMAN S M: "多价重组抗原: 一种新的疫苗策略", 《国外医学.预防.诊断.治疗用生物制品分册》 *
董明: "1 型脊髓灰质炎病毒中和抗原决定簇在白喉病毒融合蛋白中的表达", 《国外医学.预防.诊断.治疗用生物制品分册》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108472350A (zh) * 2016-01-08 2018-08-31 瓦西博迪公司 新表位rna癌症疫苗

Also Published As

Publication number Publication date
WO2012138774A2 (en) 2012-10-11
US20140134204A1 (en) 2014-05-15
US10059746B2 (en) 2018-08-28
AU2012240231A1 (en) 2013-11-14
JP2017158556A (ja) 2017-09-14
MX356426B (es) 2018-05-29
CA2834734A1 (en) 2012-10-11
JP2014512182A (ja) 2014-05-22
NZ617303A (en) 2016-07-29
EP2694102A4 (en) 2015-03-04
KR20140027211A (ko) 2014-03-06
MX2013011689A (es) 2014-07-14
EP2694102A2 (en) 2014-02-12
WO2012138774A3 (en) 2014-02-27
AU2012240231B2 (en) 2017-05-25
AU2017218957A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
CN103826657A (zh) 改进疫苗免疫原性的方法
JP6877143B2 (ja) インフルエンザワクチンおよび治療
AU2016225926A1 (en) Methods of improving vaccine immunogenicity
CN107847579A (zh) 人和禽h5n1流感的计算优化的广泛反应性抗原的协同共同给药
CN110078826A (zh) 抗bcma的人源化单链抗体及应用
CN108997497A (zh) 特异结合人质膜膜泡关联蛋白pv-1的单克隆抗体及其制备方法与应用
NO329917B1 (no) Anvendelse av antistoffer for fremstilling av et farmasoytisk preparat mot cancer som uttrykker Ep-CAM
CN107530417A (zh) H1n1流感的计算优化的广泛反应性抗原的协同共同给药
JP2020141703A (ja) 改変インフルエンザヘマグルチニンポリペプチドの修飾
Webster Potential advantages of DNA immunization for influenza epidemic and pandemic planning
Mohd-Lila et al. The application of naked DNA plasmid (DrZP3) and recombinant adenovirus (Ad-rZP3) in rat animal model to determine comparative efficacy of ZP3-Immunocontraceptive vaccines
DE60016806T2 (de) Selfantigen-impfstoffe zur behandlung von b-zell lymphomen und sonstigen krebsen
NZ617303B2 (en) Methods of improving vaccine immunogenicity
Takayama et al. Quantitative and qualitative features of heterologous virus-vector-induced antigen-specific CD8+ T cells against Trypanosoma cruzi infection
CN105358176A (zh) 肿瘤疫苗及其使用方法
CA2940065A1 (en) Method for the rapid production of high affinity monoclonal anitibodies
JP2018532813A (ja) 体液性親和性の加速に関する方法及び組成物
WO2024086728A2 (en) Methods and related aspects for increasing antigenic insertion sites on a recombinant immune complex platform
van Assen Influenza vaccination in primary and secondary immunodeficiencies
Hanly et al. Information Resources for Adjuvants and Antibody Production: Comparisons and Alternative Technologies
US20030044417A1 (en) Self antigen vaccines for treating B cell lymphomas and other cancers
KR20100058141A (ko) 수지상 세포의 에프씨 수용체를 표적화한 말 헤르페스 바이러스 백신 제제

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140528

RJ01 Rejection of invention patent application after publication