CN103805785A - 从粉煤灰中回收镓的方法 - Google Patents

从粉煤灰中回收镓的方法 Download PDF

Info

Publication number
CN103805785A
CN103805785A CN201310746828.7A CN201310746828A CN103805785A CN 103805785 A CN103805785 A CN 103805785A CN 201310746828 A CN201310746828 A CN 201310746828A CN 103805785 A CN103805785 A CN 103805785A
Authority
CN
China
Prior art keywords
gallium
solution
tbp
extration resin
flyash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310746828.7A
Other languages
English (en)
Inventor
韩建国
赵飞燕
张云峰
刘延红
郭志峰
董宏
池君洲
王思琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Shenhua Energy Co Ltd
Shenhua Zhunneng Resources Development and Utilisation Co Ltd
Original Assignee
China Shenhua Energy Co Ltd
Shenhua Zhunneng Resources Development and Utilisation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Shenhua Energy Co Ltd, Shenhua Zhunneng Resources Development and Utilisation Co Ltd filed Critical China Shenhua Energy Co Ltd
Priority to CN201310746828.7A priority Critical patent/CN103805785A/zh
Publication of CN103805785A publication Critical patent/CN103805785A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

本发明公开了一种从粉煤灰中回收镓的方法。该方法包括以下步骤:溶解步骤:将粉煤灰加至盐酸中,搅拌并过滤,得到含镓溶液;分离步骤:将含镓溶液通过CL-TBP萃淋树脂进行离子吸附,得到吸附萃淋树脂;对吸附萃淋树脂进行洗脱,得到洗脱液;电解步骤:电解洗脱液,得到金属镓。该方法中,利用盐酸能够将粉煤灰中的镓元素转化为Ga3+。将含镓溶液通过CL-TBP萃淋树脂,能够将含镓溶液中的Ga3+选择性吸附至CL-TBP萃淋树脂中。将吸附萃淋树脂洗脱后,得到镓浓度较高的洗脱液。将该洗脱液电解,能够得到纯度较高的金属镓。上述的方法,只对粉煤灰进行了溶解、吸附、洗脱及电解的步骤,其工艺操作简单、回收成本较低。

Description

从粉煤灰中回收镓的方法
技术领域
本发明涉及镓的回收领域,具体而言,涉及一种从粉煤灰中回收镓的方法。
背景技术
金属镓作为现代高新技术的支撑材料,在国防、宽带光纤通信、航天技术及电子技术等领域得到越来越广泛地应用。近年来,随着科学技术的飞速发展及人民生活水平的日益提高,镓的消耗量也在逐年增加。目前,世界上大约90%的镓为炼铝工业的副产品,其余10%主要来自锌冶炼残渣。
研究发现,我国晋北、陕北及内蒙南部的电厂每年排弃的亿吨粉煤灰中,不仅含有高于40%的氧化铝,其镓的含量亦高达40~50g/t,有些品种的粉煤灰中镓含量竟达100g/t,属富镓粉煤灰。如果能在粉煤灰提取铝的同时获得这部分镓,将会大大增加我国镓的储量,为我国经济的持续发展做出巨大贡献。
现有的从粉煤灰中回收镓的方法,其主要流程是对含镓溶液进行吸附、反应、碳分、复盐溶解及电解等步骤,其操作工艺复杂,生产成本高。基于此,有必要设计一种工艺简单、生产成本较低的从粉煤灰中回收金属镓的方法。
发明内容
本发明旨在提供一种从粉煤灰中回收镓的方法,以解决现有技术中从粉煤灰中回收镓时工艺复杂的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种从粉煤灰中回收镓的方法,其包括以下步骤:溶解步骤:将粉煤灰加至盐酸中,搅拌并过滤,得到含镓溶液;分离步骤:将含镓溶液通过CL-TBP萃淋树脂进行离子吸附,得到吸附萃淋树脂;对吸附萃淋树脂进行洗脱,得到洗脱液;电解步骤:电解洗脱液,得到金属镓。
进一步地,上述溶解步骤中,将粉煤灰加至强酸溶液之前,将粉煤灰进行湿法磁选除铁。
进一步地,上述溶解步骤中,将粉煤灰加至强酸溶液中搅拌并过滤后,向滤液中加入铁粉,反应后,得到含镓溶液。
进一步地,上述溶解步骤中,将滤液进行湿法磁选除铁后,将其浓缩至体积为滤液体积的1/3~1/2,并向浓缩后的滤液中加入铁粉,反应后,得到含镓溶液。
进一步地,上述分离步骤中,将含镓溶液通过CL-TBP萃淋树脂进行离子吸附之前,还包括将含镓溶液酸化的步骤;酸化的步骤包括:向含镓溶液中加入盐酸,搅拌,得到氢离子的浓度为4~6mol/L的含镓溶液。
进一步地,上述分离步骤中,将含镓溶液通过CL-TBP萃淋树脂时,将含镓溶液由下至上通过含有CL-TBP萃淋树脂的树脂塔;优选含镓溶液的流速为1~5ml/min。
进一步地,上述分离步骤中,对吸附萃淋树脂进行洗脱时,洗脱剂为浓度为0.5~1.5mol/L的NH4Cl水溶液。
进一步地,上述洗脱剂的体积为含镓溶液体积的2/3~4/5,洗脱时间为30~50min。
进一步地,上述CL-TBP萃淋树脂的粒径为40~60目,CL-TBP萃淋树脂中TBP的含量为55~65wt%。
进一步地,上述电解步骤中,以不锈钢为阳极,以铂为阴极,以浓度为100~160g/L NaOH水溶液为电解质,且电流密度为200~300A/m2,电压为5~10V。
应用本发明的从粉煤灰中回收镓的方法,利用盐酸能够将粉煤灰中的镓元素转化为Ga3+。将经过溶解步骤得到的含镓溶液通过CL-TBP萃淋树脂,能够将含镓溶液中的Ga3+选择性吸附至CL-TBP萃淋树脂中。将含有Ga3+的CL-TBP萃淋树脂洗脱后,得到了镓浓度较高的洗脱液。将该洗脱液进行电解,即可得到纯度较高的金属镓。本发明的这种方法中,只对粉煤灰进行了溶解、吸附、洗脱及电解的步骤,相比于现有技术中的回收方法,其工艺操作简单、回收成本较低。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
为了解决现有技术中从粉煤灰中回收镓的工艺复杂的问题,本发明发明人提供了一种从粉煤灰中回收镓的方法,其包括以下步骤:溶解步骤:将粉煤灰加至盐酸中,搅拌并过滤,得到含镓溶液;分离步骤:将含镓溶液通过CL-TBP萃淋树脂进行离子吸附,得到吸附萃淋树脂;对吸附萃淋树脂进行洗脱,得到洗脱液;电解步骤:电解洗脱液,得到金属镓。
本发明所提供的上述方法,采用的CL-TBP萃淋树脂是以苯乙烯-二乙烯苯为骨架,共聚固化中性磷萃取剂磷酸三丁酯(TBP)制备而成。上述方法中,首先利用盐酸能够将粉煤灰中的镓元素转化为Ga3+。其次,将经过溶解步骤得到的含镓溶液通过CL-TBP萃淋树脂,能够将含镓溶液中的Ga3+选择性吸附至CL-TBP萃淋树脂中。将含有Ga3+的CL-TBP萃淋树脂洗脱后,得到了镓浓度较高的洗脱液。将该洗脱液进行电解,即可得到纯度较高的金属镓。上述的方法,只对粉煤灰进行了溶解、吸附、洗脱及电解的步骤,相比于现有技术中的回收方法,其工艺操作简单、回收成本较低。
在上述方法中,溶解步骤中通过采用强酸溶液对粉煤灰进行溶解,就能够得到含镓溶液。在一种优选的实施方式中,上述溶解步骤中,将粉煤灰加至强酸溶液之前,将粉煤灰进行湿法磁选除铁。将粉煤灰进行湿法磁选除铁,能够减少进入含镓溶液的杂质铁离子,使粉煤灰中的铁含量降低至2wt%以下,进而能够降低杂质铁离子对镓离子吸附性的影响,从而提高金属镓的纯度和回收率。
在上述方法中,含镓溶液中除了Ga3+外,还具有微量的Fe3+和Fe2+,CL-TBP萃淋树脂对其中的Fe3+具有一定的选择吸附性。在一种优选的实施方式中,上述溶解步骤中,将粉煤灰加至强酸溶液中搅拌并过滤后,向滤液中加入铁粉,反应后,得到含镓溶液。利用铁粉的加入,能够将含镓溶液中的Fe3+还原为Fe2+。从而能够避免Fe3+被吸附至CL-TBP萃淋树脂中,影响金属镓的纯度。
按照上述的方法,能够得到回收率较高的、纯度较高的金属镓。在一种优选的实施方式中,上述溶解步骤中,将滤液进行所述湿法磁选除铁后,将其浓缩至体积为滤液体积的1/3~1/2,并向浓缩后的滤液加入铁粉,反应后,得到所述含镓溶液。利用浓缩后的含镓溶液进行离子吸附,能够提高CL-TBP萃淋树脂对镓离子的吸附速度和吸附效果,从而提高金属镓的回收率。
上述方法中,将上述含镓溶液通过CL-TBP萃淋树脂进行离子吸附,就能够得到回收率较高、纯度较高的金属镓。在一种优选的实施方式中,上述分离步骤中,将含镓溶液通过CL-TBP萃淋树脂进行离子吸附之前,还包括将含镓溶液酸化的步骤;该酸化的步骤包括:向含镓溶液中加入盐酸,搅拌,得到氢离子的浓度为4~6mol/L的含镓溶液。在酸性条件下,溶液中的氯离子能够与镓离子形成镓配阴离子GaCl4 ,该镓配阴离子能够与CL-TBP萃淋树脂中的(C4H9O3)P=O+H发生离子缔合作用。这就能够进一步提高CL-TBP萃淋树脂对镓离子的吸附率,从而提高金属镓的回收率。使上述含镓溶液中HCl的浓度为4~6mol/L,这是由于,CL-TBP萃淋树脂与含镓溶液相接触的过程中,HCl的浓度过高,会发生如下反应:
TBP+HCl TBPH++ClTBPH+·Cl
该反应会在一定程度上降低TBP的萃取活性。将HCl的浓度设定在上述范围内,能够避免上述反应的进行,从而能够使CL-TBP萃淋树脂对含镓溶液中的镓离子的吸附率更高,从而能够进一步提高金属镓的回收率。
根据本发明的教导,本领域技术人员有能力选择具体的吸附工艺,以将镓离子选择性吸附至CL-TBP萃淋树脂中。在一种优选的实施方式中,上述分离步骤中,将含镓溶液通过CL-TBP萃淋树脂时,将含镓溶液由下至上通过含有CL-TBP萃淋树脂的树脂塔;优选含镓溶液的流速为1~5ml/min。在这种流动方式与流速下,含镓溶液能够与CL-TBP萃淋树脂充分接触,使镓离子充分地吸附至CL-TBP萃淋树脂中,从而能够提高金属镓的回收率。
根据本发明的教导,本领域技术人员有能力选择具体的洗脱工艺,以将镓离子从离子吸附树脂中脱出。在一种优选的实施方式中,上述分离步骤中,对吸附萃淋树脂进行洗脱时,洗脱剂为浓度为0.5~1.5mol/L的NH4Cl水溶液,优选洗脱剂的体积为含镓溶液体积的2/3~4/5,洗脱时间为30~50min。采用浓度为0.5~1.5mol/L的NH4Cl水溶液对离子吸附树脂进行洗脱,能够将离子吸附树脂中的镓离子充分地洗脱出来。此外,使用体积为含镓溶液体积的2/3~4/5的洗脱剂,能够将镓离子充分的脱出的同时,使镓离子在洗脱液中的浓度提高。浓度提高有利于提高后期电解过程中金属镓的析出量,从而提高金属镓的回收率。
本发明上述的方法中,对CL-TBP萃淋树脂的粒径没有特殊的要求,只要采用CL-TBP萃淋树脂对含镓溶液进行离子吸附,便能够在一定程度上将镓离子与其他杂质离子分离。在一种优选的实施方式中,上述分离步骤中,CL-TBP萃淋树脂的粒径为40~60目,CL-TBP萃淋树脂中TBP的含量为55~65wt%。采用上述粒径的CL-TBP萃淋树脂,能够避免粒径过大时含镓溶液与树脂接触不充分所导致的镓离子吸附率降低的问题,还能够避免粒径过小时吸附时间过长的问题。
根据本发明的教导,本领域技术人员有能力选择具体的电解工艺,以将金属镓从洗脱液中析出。在一种优选的实施方式中,上述电解步骤中,以不锈钢为阳极,以铂为阴极,以浓度为100~160g/L NaOH水溶液为电解质,且电流密度为200~300A/m2,电压为5~10V。采用上述工艺对洗脱液进行电解,能够使金属镓充分析出,并且避免其他杂质离子的析出。从而能够保证金属镓的回收率和纯度。其中不锈钢包括但不限于316L不锈钢。
以下结合具体实施例对本发明作进一步详细描述,这些实施例不能理解为限制本发明所要求保护的范围。
实施例1
将5Kg粉煤灰加入盐酸,使粉煤灰中的金属元素转化为金属离子,搅拌、过滤后,得到含镓溶液;
将上述含镓溶液以0.5ml/min的流速由下至上通过含有CL-TBP萃淋树脂的树脂塔(柱径Φ=1.0cm,床高5cm×3,CL-TBP萃淋树脂粒径为30目,TBP含量为50wt%),得到吸附萃淋树脂;
采用浓度为0.2mol/L、体积与含镓溶液相等的NH4Cl水溶液对上述吸附萃淋树脂进行洗脱,洗脱时间为25min,得到洗脱液;
电解上述洗脱液,得到金属镓;其中,电解过程中,以316L不锈钢为阳极,以铂为阴极,以浓度为90g/L NaOH水溶液为电解质,且电流密度为150A/m2,电压为3V。
实施例2
将5Kg粉煤灰加入盐酸,使粉煤灰中的金属元素转化为金属离子,搅拌、过滤后,得到含镓溶液;
将上述含镓溶液以6ml/min的流速由下至上通过含有CL-TBP萃淋树脂的树脂塔(柱径Φ=1.0cm,床高5cm×3,CL-TBP萃淋树脂粒径为70目,TBP含量为70wt%),得到吸附萃淋树脂;
采用浓度为1.8mol/L、体积与含镓溶液相等的NH4Cl水溶液对上述吸附萃淋树脂进行洗脱,洗脱时间为60min,得到洗脱液;
电解上述洗脱液,得到金属镓;其中,电解过程中,以316L不锈钢为阳极,以铂为阴极,以浓度为180g/L NaOH水溶液为电解质,且电流密度为150A/m2,电压为3V。
实施例3
将5Kg粉煤灰进行湿法磁选除铁后,将其加入盐酸,使粉煤灰中的金属元素转化为金属离子,搅拌、过滤后,得到含镓溶液;
将上述含镓溶液的体积浓缩至原来体积的1/3,并其中加入铁粉,至铁粉不再反应即可,已将溶液中的三价铁离子还原为亚铁离子;其次,向含镓溶液中加入盐酸,使其溶液中氢离子的浓度为4mol/L;
将上述含镓溶液以1ml/min的流速由下至上通过含有CL-TBP萃淋树脂的树脂塔(柱径Φ=1.0cm,床高5cm×3,CL-TBP萃淋树脂粒径为40目,TBP含量为55wt%),得到吸附萃淋树脂;
采用浓度为0.5mol/L、体积为浓缩前含镓溶液体积2/3的NH4Cl水溶液对上述吸附萃淋树脂进行洗脱,洗脱时间为30min,得到洗脱液;
电解上述洗脱液,得到金属镓;其中,电解过程中,以316L不锈钢为阳极,以铂为阴极,以浓度为100g/L NaOH水溶液为电解质,且电流密度为200A/m2,电压为5V。
实施例4
将5Kg粉煤灰进行湿法磁选除铁后,将其加入盐酸,使粉煤灰中的金属元素转化为金属离子,搅拌、过滤后,得到含镓溶液;
将上述含镓溶液的体积浓缩至原来体积的1/2,并其中加入铁粉,至铁粉不再反应即可,已将溶液中的三价铁离子还原为亚铁离子;其次,向含镓溶液中加入盐酸,使其溶液中氢离子的浓度为6mol/L;
将上述含镓溶液以5ml/min的流速由下至上通过含有CL-TBP萃淋树脂的树脂塔(柱径Φ=1.0cm,床高5cm×3,CL-TBP萃淋树脂粒径为60目,TBP含量为65wt%),得到吸附萃淋树脂;
采用浓度为1.5mol/L、体积为浓缩前含镓溶液体积4/5的NH4Cl水溶液对上述吸附萃淋树脂进行洗脱,洗脱时间为50min,得到洗脱液;
电解上述洗脱液,得到金属镓;其中,电解过程中,以316L不锈钢为阳极,以铂为阴极,以浓度为160g/L NaOH水溶液为电解质,且电流密度为300A/m2,电压为10V。
实施例5
将5Kg粉煤灰进行湿法磁选除铁后,将其加入盐酸,使粉煤灰中的金属元素转化为金属离子,搅拌、过滤后,得到含镓溶液;
将上述含镓溶液的体积浓缩至原来体积的1/2,并其中加入铁粉,至铁粉不再反应即可,已将溶液中的三价铁离子还原为亚铁离子;其次,向含镓溶液中加入盐酸,使其溶液中氢离子的浓度为5mol/L;
将上述含镓溶液以1ml/min的流速由下至上通过含有CL-TBP萃淋树脂的树脂塔(柱径Φ=1.0cm,床高5cm×3,CL-TBP萃淋树脂粒径为50目,TBP含量为60wt%),得到吸附萃淋树脂;
采用浓度为1mol/L、体积为浓缩前含镓溶液体积4/5的NH4Cl水溶液对上述吸附萃淋树脂进行洗脱,洗脱时间为40min,得到洗脱液;
电解上述洗脱液,得到金属镓;其中,电解过程中,以316L不锈钢为阳极,以铂为阴极,以浓度为130g/L NaOH水溶液为电解质,且电流密度为250A/m2,电压为10V。
对比例1
将1Kg粉煤灰中加入1.5Kg碳酸钠和2Kg石灰石,在1100℃烧结2h,冷却后粉碎;用浓度为4wt%的Na2CO3溶液浸出熔块,温度为80℃,浸出时间1h,之后过滤得到镓铝酸钠溶液;
向镓铝酸钠溶液中通入CO2气体,在温度为80℃下进行一次碳酸化,控制pH为11,滤出产生的氢氧化铝沉淀,滤液继续作二次碳酸化,反应温度为100℃,在二次碳酸化后的沉淀物中加入氢氧化钠溶液,使镓转移到溶液中,180℃蒸发分离碳酸盐,剩余溶液做三次碳酸化,镓从溶液转移到沉淀中,经过滤分离并加水洗涤得到富镓沉淀,产生的碳酸氢盐浓度控制在150g/L左右;
用氢氧化钠溶液在90℃溶解上述富镓沉淀物,并电解该含镓碱液,制得金属镓。
对上述实施例与对比例中所回收的金属镓的纯度和回收率进行表征测量。
测量方法:
1)纯度:采用ICP-AES电感耦合等离子体原子发射光谱仪对金属镓的纯度进行测量,结果如表1所示;
2)回收率:采用722型分光光度计对金属镓的回收率进行测量,结果如表1所示。
表1:
金属镓纯度(%) 金属镓回收率(%)
实施例1 99.99 90.2
实施例2 99.99 90.5
实施例3 99.999 94.9
实施例4 99.999 95.1
实施例5 99.999 95.8
对比例1 99.9 88.7
从以上的数据中,可以看出,采用本发明上述实施例的方法从粉煤灰中回收的金属镓,其纯度更高,回收率更高。更特别地,采用上述实施例3至5中的方法所回收的金属镓,比上述实施例1和2中所回收的金属镓的纯度和回收率更高。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种从粉煤灰中回收镓的方法,其特征在于,包括以下步骤:
溶解步骤:将粉煤灰加至盐酸中,搅拌并过滤,得到含镓溶液;
分离步骤:将所述含镓溶液通过CL-TBP萃淋树脂进行离子吸附,得到吸附萃淋树脂;对所述吸附萃淋树脂进行洗脱,得到洗脱液;
电解步骤:电解所述洗脱液,得到金属镓。
2.根据权利要求1所述的方法,其特征在于,所述溶解步骤中,将所述粉煤灰加至所述强酸溶液之前,将粉煤灰进行湿法磁选除铁。
3.根据权利要求2所述的方法,其特征在于,所述溶解步骤中,将所述粉煤灰加至所述强酸溶液中搅拌并过滤后,向滤液中加入铁粉,反应后,得到所述含镓溶液。
4.根据权利要求3所述的方法,其特征在于,所述溶解步骤中,将所述滤液进行所述湿法磁选除铁后,将其浓缩至体积为滤液体积的1/3~1/2,并向浓缩后的滤液中加入铁粉,反应后,得到所述含镓溶液。
5.根据权利要求1至4中任一项所述的方法,其特征在于,所述分离步骤中,将所述含镓溶液通过所述CL-TBP萃淋树脂进行离子吸附之前,还包括将所述含镓溶液酸化的步骤;所述酸化的步骤包括:向所述含镓溶液中加入盐酸,搅拌,得到氢离子的浓度为4~6mol/L的所述含镓溶液。
6.根据权利要求1所述的方法,其特征在于,所述分离步骤中,将所述含镓溶液通过所述CL-TBP萃淋树脂时,将所述含镓溶液由下至上通过含有所述CL-TBP萃淋树脂的树脂塔;优选所述含镓溶液的流速为1~5ml/min。
7.根据权利要求1所述的方法,其特征在于,所述分离步骤中,对所述吸附萃淋树脂进行洗脱时,洗脱剂为浓度为0.5~1.5mol/L的NH4Cl水溶液。
8.根据权利要求7所述的方法,其特征在于,所述洗脱剂的体积为所述含镓溶液体积的2/3~4/5,洗脱时间为30~50min。
9.根据权利要求6至8中任一项所述的方法,其特征在于,所述CL-TBP萃淋树脂的粒径为40~60目,所述CL-TBP萃淋树脂中TBP的含量为55~65wt%。
10.根据权利要求1所述的方法,其特征在于,所述电解步骤中,以不锈钢为阳极,以铂为阴极,以浓度为100~160g/L NaOH水溶液为电解质,且电流密度为200~300A/m2,电压为5~10V。
CN201310746828.7A 2013-12-30 2013-12-30 从粉煤灰中回收镓的方法 Pending CN103805785A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310746828.7A CN103805785A (zh) 2013-12-30 2013-12-30 从粉煤灰中回收镓的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310746828.7A CN103805785A (zh) 2013-12-30 2013-12-30 从粉煤灰中回收镓的方法

Publications (1)

Publication Number Publication Date
CN103805785A true CN103805785A (zh) 2014-05-21

Family

ID=50703166

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310746828.7A Pending CN103805785A (zh) 2013-12-30 2013-12-30 从粉煤灰中回收镓的方法

Country Status (1)

Country Link
CN (1) CN103805785A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018012A (zh) * 2014-06-16 2014-09-03 中国神华能源股份有限公司 一种从氯化铝溶液中提取镓的方法
CN104745841A (zh) * 2015-04-10 2015-07-01 平顶山博迈特科技有限公司 一种从粉煤灰中提取金属镓的方法
CN107523695A (zh) * 2017-09-15 2017-12-29 安徽大学 一种粉煤灰中稀土元素的富集分离提取方法
CN111004931A (zh) * 2019-12-12 2020-04-14 广西大学 一种基于阴离子交换树脂从盐酸洗脱含镓溶液中提纯镓的方法
CN111778413A (zh) * 2020-07-03 2020-10-16 神华准能资源综合开发有限公司 一种基于树脂法从粉煤灰中提取镓的方法
CN113088724A (zh) * 2021-04-06 2021-07-09 攀枝花学院 提钒尾渣中镓浸出方法
CN114855222A (zh) * 2022-04-25 2022-08-05 珠海经济特区方源有限公司 一种从磁铁粉中回收镓的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191384A (zh) * 2010-04-27 2011-09-21 中国神华能源股份有限公司 一种由粉煤灰提取镓的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191384A (zh) * 2010-04-27 2011-09-21 中国神华能源股份有限公司 一种由粉煤灰提取镓的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
何佳振等: "从粉煤灰中回收金属镓的工艺研究", 《粉煤灰》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018012A (zh) * 2014-06-16 2014-09-03 中国神华能源股份有限公司 一种从氯化铝溶液中提取镓的方法
CN104745841A (zh) * 2015-04-10 2015-07-01 平顶山博迈特科技有限公司 一种从粉煤灰中提取金属镓的方法
CN107523695A (zh) * 2017-09-15 2017-12-29 安徽大学 一种粉煤灰中稀土元素的富集分离提取方法
CN111004931A (zh) * 2019-12-12 2020-04-14 广西大学 一种基于阴离子交换树脂从盐酸洗脱含镓溶液中提纯镓的方法
CN111004931B (zh) * 2019-12-12 2021-09-21 广西大学 一种基于阴离子交换树脂从盐酸洗脱含镓溶液中提纯镓的方法
CN111778413A (zh) * 2020-07-03 2020-10-16 神华准能资源综合开发有限公司 一种基于树脂法从粉煤灰中提取镓的方法
CN113088724A (zh) * 2021-04-06 2021-07-09 攀枝花学院 提钒尾渣中镓浸出方法
CN114855222A (zh) * 2022-04-25 2022-08-05 珠海经济特区方源有限公司 一种从磁铁粉中回收镓的方法

Similar Documents

Publication Publication Date Title
CN103805785A (zh) 从粉煤灰中回收镓的方法
CN102443701B (zh) 铁矾渣的清洁冶金综合利用方法
CN106834722B (zh) 一种利用氢氧化钴镍冶炼渣和钛白废酸中和提取氧化铁、氧化铝、氧化钪的方法
CN104278165A (zh) 从独居石冶炼酸不溶渣中回收钍、铀和稀土
CN103205570A (zh) 石煤钒矿和软锰矿联合制取五氧化二钒副产硫酸锰的方法
CN102121068A (zh) 一种制备五氧化二钒的方法
CN103805794B (zh) 酸法粉煤灰提取氧化铝粗精液中镓的回收方法
CN112662877A (zh) 一种从电解锰硫化渣中制备高纯硫酸镍的方法
CN107354484A (zh) 一种脱除锌电解废液中氯的方法
CN104018012A (zh) 一种从氯化铝溶液中提取镓的方法
CN113620268A (zh) 一种利用赤泥中的铁源制备电池级磷酸铁的方法
CN103820646B (zh) 一种从粉煤灰中提取镓的方法
CN105950865B (zh) 一种从高铬型钒浸出液中分离提取钒铬的方法
CN103739005B (zh) 一种以铅锌矿冶炼废水为原料制备氯化亚铊的方法
CN113430395A (zh) 一种用锂离子筛在废旧锂离子电池材料中提锂的方法
CN105274352A (zh) 一种从碳酸铜锰钴钙锌混合物中分离铜钴锰的方法
CN107475523A (zh) 一种从粉煤灰中回收铟的方法
CN113512652B (zh) 一种从煤系固体废弃物中提取金属镓的方法
CN112662878B (zh) 一种从电解锰硫化渣中制备高纯硫酸钴的方法
CN111778413B (zh) 一种基于树脂法从粉煤灰中提取镓的方法
CN113800677A (zh) 一种含氯离子废水高值化利用制氯化亚铜的方法
CN105983707B (zh) 一种从含铼高砷铜硫化物中制备高纯铼粉的方法
CN101265523A (zh) 石煤矿回转窑钙法焙烧提取五氧化二钒的工艺
CN112080748A (zh) 酸性蚀刻废液的回收利用方法
CN109022833A (zh) 一种离子吸附型稀土矿浸出母液除杂工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140521