CN103773054B - 一种制备木质纤维类生物基塑料的方法 - Google Patents

一种制备木质纤维类生物基塑料的方法 Download PDF

Info

Publication number
CN103773054B
CN103773054B CN201310727553.2A CN201310727553A CN103773054B CN 103773054 B CN103773054 B CN 103773054B CN 201310727553 A CN201310727553 A CN 201310727553A CN 103773054 B CN103773054 B CN 103773054B
Authority
CN
China
Prior art keywords
ionic liquid
based plastics
quaternary ammonium
ammonium salt
lignocellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310727553.2A
Other languages
English (en)
Other versions
CN103773054A (zh
Inventor
洪建国
陈肖
杨蕊
叶菊娣
李小保
陈健强
高勤卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN201310727553.2A priority Critical patent/CN103773054B/zh
Publication of CN103773054A publication Critical patent/CN103773054A/zh
Application granted granted Critical
Publication of CN103773054B publication Critical patent/CN103773054B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种制备木质纤维类生物基塑料的方法,包括:先对木质纤维类生物质进行干燥和粉碎预处理;然后进行球磨预处理;然后将球磨后的木质纤维原料与离子液体/二甲基亚砜或季铵盐/二甲基亚砜溶液混合;接着放入捏合机中捏合;捏合过程中回收二甲基亚砜,捏合结束后,即可得到木质纤维类生物基塑料。该方法原料来源广泛且成本低廉,资源利用率高,通过预球磨破坏木质素的三维立体网状结构,较大幅度地提高试剂的可及度,避免使用大量强腐蚀试剂和溶剂;利用捏合机强大的剪切力,使季铵盐或离子液体能够渗透到纤维素分子链之间,且使用的离子液体量少,产物可挤出造粒并注塑成型;环境友好,工艺简单易操作。

Description

一种制备木质纤维类生物基塑料的方法
技术领域
本发明属于木质纤维类生物质资源利用领域,具体涉及一种制备木质纤维类生物基塑料的方法。
背景技术
近些年来,随着石油、煤炭等非可再生资源总量的日趋减少以及相应开发石化产品所带来的环境污染等一系列问题日益突出,将储量丰富且可再生的生物质转化为新能源、新材料和化工产品已经成为世界各国研究开发的热点。我国的生物质产量每年超过21亿吨,储量非常丰富,每年仅农作物秸秆就有7亿多吨。我国大量农林废弃物中的木质纤维类生物质,如树枝、木屑、刨花、秸秆、稻壳、玉米芯、花生壳、甘蔗渣等,未得到高效利用,有些甚至在田地里焚烧,不仅浪费资源,而且污染了大气环境。
通过物理和化学手段,将木质纤维类生物质转化制备成新材料,是其高效利用的途径之一。目前利用木质纤维类生物质制备新材料主要有两类:(1)以石油基树脂为基体,木质纤维为增强材料,生产称之为“塑木”或“木塑”的复合材料;(2)将木质纤维类生物质中主要组分之一的纤维素分离出来,对其进行改性制备成各种新材料。第一类材料即塑木仍以人工合成的石油基树脂为基体,仍然难以生物降解,环境友好性差,而且未从根本上改变对石油资源的依赖。另外,塑木中的木质纤维与树脂之间的界面相容性差,木质纤维/树脂复合材料的机械强度不高,限制了复合材料的应用。第二类材料仅利用了木质纤维中的一种组分,不仅资源利用率低,资源浪费严重,而且造成环境污染。因此,对木质纤维类生物质的全组分同时进行化学改性,使其具有热塑性,以加工成各种生物基塑料产品,从而逐步取代石油基塑料,已成为世界各国竞相研究开发的热点之一。
木质纤维主要由纤维素、半纤维素和木质素三种天然高聚物组成。这三种高分子化合物分子上均有羟基。这三种组分尤其纤维素通过羟基形成分子间的氢键,是木质纤维不具有热塑性的主要原因。目前文献报道各种对木质纤维的化学改性方法,主要借鉴纤维素的改性反应,通过酯化、醚化或接枝共聚取代纤维素、半纤维素和木质素上的羟基。纤维素、半纤维素和木质素三种物质互为伴生,且具有特定的微观和宏观结构,对木质纤维改性比纤维素具有更大的难度。日本白石信夫等报道了木材经过酯化和醚化可以使其有一定的热塑性;SunRuncang等研究了稻草、小麦草、黑麦草和大麦草与杨木相比在无溶剂、无催化剂条件下的线性酸酐酰化反应。Lu等研究了剑麻纤维的苄基化改性,并对其热成型进行了较为系统的研究。章明秋等制备了苄基化剑麻纤维,并用于制备自增强复合材料。Aguirre等研究了木材纤维和甲基丙烯酸甲酯接枝共聚时的影响因素,热重曲线说明改性后木材纤维有了明显的热塑性。David等以NaOH水溶液作预润胀剂和催化剂,以溴代丙烯作醚化剂,获得的烯丙基化表面改性木材具有表面热塑性。
上述改性都是通过化学反应取代分子上的羟基,工艺比较复杂,容易造成环境污染,木质纤维溶解或反应过程中降解严重,而且改性产物的成型加工性能不好,很难制备成塑料。因此,需要研究开发一种更为高效、便捷并且环境友好的改性方法,使木质纤维类生物质转化成生物基塑料。
发明内容
发明目的:针对上述现有技术中存在的问题,本发明的目的是提供一种制备木质纤维类生物基塑料的方法,通过离子液体或季铵盐与纤维素上的羟基发生作用,从而屏蔽羟基,降低纤维素分子间的作用力,高温下纤维素分子链之间可以自由滑移,从而将木质纤维类生物质制备成生物基塑料。
技术方案:为了实现上述发明目的,本发明采用的技术方案为:
一种制备木质纤维类生物基塑料的方法,先对木质纤维类生物质进行干燥和粉碎预处理;然后进行球磨预处理;然后将球磨后的木质纤维原料与离子液体/二甲基亚砜或季铵盐/二甲基亚砜溶液混合;接着放入捏合机中捏合;捏合过程中回收二甲基亚砜,捏合结束后,即可得到木质纤维类生物基塑料。
所述的制备木质纤维类生物基塑料的方法,包括以下步骤:
1)取木质纤维类生物质,干燥,粉碎,得粗料备用;
2)用球磨机对粗料进行球磨预处理,球磨时间为1~8h,得细料;其中,球磨罐材质选用玛瑙,容量为250mL,原料加入量6~10g,采用正反转无间隔交替方式进行球磨;
3)将离子液体或季铵盐与二甲基亚砜混合,制备混合溶液;其中,二甲基亚砜与离子液体或季铵盐的质量比为20~50:1;
4)先取部分细料与混合溶液混合搅拌,放入捏合机中捏合,捏合过程中分批次加入剩余细料;或,先将全部细料与混合溶液混合搅拌,然后放入捏合机中捏合;
5)捏合结束后,将产物挤出造粒,即可得到木质纤维类生物基塑料粒子;
其中,离子液体或季铵盐与木质纤维类生物质的质量比为0.1~1。
所述木质纤维类生物质包括木材、木屑、扶桑枝条、秸秆、稻壳、玉米芯、花生壳和甘蔗渣。
所述的离子液体选自1-丙烯-3-甲基咪唑氯盐、1-乙基-3-甲基醋酸盐、1-乙基-3-甲基氯盐、1-丁基-3-甲基咪唑氯化盐、1,3-二甲基咪唑硫酸甲酯、1-丁基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑六氟磷酸盐和1-苄基-3-甲基咪唑氯盐。
所述的季铵盐选自四乙基氯化铵、四甲基醋酸铵、四乙基醋酸铵和四丁基醋酸铵。
所述捏合温度为50℃~150℃。
有益效果:与现有技术相比,本发明具备的优点包括:
1)以各种木质纤维类生物质为原料,来源广泛且成本低廉。
2)资源利用率高。综合利用木质纤维类生物质中的纤维素、半纤维素和木质素。改变“分离、提取、改性”这种单一改性利用纤维素的传统模式。
3)通过预球磨破坏木质素的三维立体网状结构,较大幅度地提高试剂的可及度,改变了传统采用化学方法的预处理方式,避免使用大量强腐蚀试剂和溶剂。
4)利用捏合机强大的剪切力,使季铵盐或离子液体能够渗透到纤维素分子链之间,且使用的离子液体量少,捏合温度低,产物可挤出造粒并注塑成型。捏合过程中无三废产生,环境友好。
5)物理与化学结合的改性方法,工艺简单易操作。
6)产品可生物降解;具有很好的实用性和较好的工业化前景。
附图说明
图1是未加四乙基氯化铵与40g四乙基氯化铵捏合产物X射线衍射对比图。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
实施例1
一种利用季铵盐制备木质纤维类生物基塑料的方法,具体步骤为:
1)以扶桑枝条为原料,进行剥皮,晾干,并且机械粉碎,干燥。
2)采用行星球磨机对原料进行球磨预处理,球磨时间为4小时。球磨罐材质选用玛瑙,容量为250mL,原料加入量8g,大中小球个数各为20、50、100。球磨转速580r/min,正反转之间无时间间隔;每30min交替一次。
3)将40g四乙基氯化铵溶于640g二甲基亚砜中,加入80g球磨后的木质纤维,搅拌混匀,制备混合溶液。
4)将混合溶液加入捏合机中,在物料温度为100℃条件下捏合4小时后,接上冷凝回收装置继续捏合,直至物料变干后,停止机器运转。
5)捏合结束后,将产物挤出造粒,即可得到木质纤维类生物基塑料粒子。
产品注塑成型后经检测,拉伸强度为3.5714MPa,弯曲强度为34.8649MPa。产物可生物降解。经广角X射线衍射仪检测,如图1所示,可以看出经四乙基氯化铵捏合后纤维素Ⅰ晶格002平面2θ=22.4°的衍射峰,峰宽显著增加,峰强明显减弱,是扶桑枝条粉去结晶化的结果。
实施例2
一种利用离子液体制备木质纤维类生物基塑料的方法,具体步骤为:
1)以扶桑枝条为原料,进行剥皮,晾干,并且机械粉碎,干燥。
2)采用行星球磨机对原料进行球磨预处理,球磨时间为4小时。球磨罐材质选用玛瑙,容量为250mL,原料加入量8g,大中小球个数各为20、50、100。球磨转速580r/min,正反转之间无时间间隔;每30min交替一次。
3)将20g1-乙基-3-甲基咪唑醋酸盐与640g二甲基亚砜混合,加入80g球磨后的木质纤维,搅拌混匀,制备混合溶液。
4)将混合溶液加入捏合机中,在物料温度为90℃条件下捏合4小时后,接上冷凝回收装置继续捏合,直至物料变干后,停止机器运转。
5)捏合结束后,将产物挤出造粒,即可得到木质纤维类生物基塑料。
产品注塑成型后经检测,拉伸强度为7.9352MPa,弯曲强度为34.9692MPa。产物可生物降解。
实施例3
一种利用离子液体制备木质纤维类生物基塑料的方法,具体步骤为:
1)以扶桑枝条为原料,进行剥皮,晾干,并且机械粉碎,干燥。
2)采用行星球磨机对原料进行球磨预处理,球磨时间为4小时。球磨罐材质选用玛瑙,容量为250mL,原料加入量8g,大中小球个数各为20、50、100。球磨转速580r/min,正反转之间无时间间隔;每30min交替一次。
3)将20g1-乙基-3-甲基咪唑醋酸盐和10g四乙基氯化铵溶于640g二甲基亚砜中,加入20g球磨后的木质纤维,搅拌混匀,制备混合溶液。
4)将混合溶液加入捏合机中,物料温度90℃条件下捏合4小时后,接上冷凝回收装置继续捏合,直至物料变干后,停止机器运转。
5)捏合结束后,将产物挤出造粒,即可得到木质纤维类生物基塑料。
产品注塑成型后经检测,拉伸强度为6.6859MPa,弯曲强度为21.7466MPa。产物可生物降解。
实施例4
一种制备木质纤维类生物基塑料的方法,具体步骤为:
1)以扶桑枝条为原料,进行剥皮,晾干,并且机械粉碎,干燥。
2)采用行星球磨机对原料进行球磨预处理,球磨时间为4小时。球磨罐材质选用玛瑙,容量为250mL,原料加入量8g,大中小球个数各为25、60、150。球磨转速500r/min,正反转之间无时间间隔;每60min交替一次。
3)将10g1-乙基-3-甲基咪唑醋酸盐与640g二甲基亚砜混合,加入80g球磨后的木质纤维,搅拌混匀,制备混合溶液。
4)将混合溶液加入捏合机中,在物料温度为100℃条件下捏合4小时后,接上冷凝回收装置继续捏合,直至物料变干后,停止机器运转。
5)捏合结束后,将产物挤出造粒,即可得到木质纤维类生物基塑料。
产品注塑成型后经检测,拉伸强度为6.7364MPa,弯曲强度为41.0705MPa。产物可生物降解。
实施例5
一种制备木质纤维类生物基塑料的方法,具体步骤为:
1)以扶桑枝条为原料,进行剥皮,晾干,并且机械粉碎,干燥。
2)采用行星球磨机对原料进行球磨预处理,球磨时间为4小时。球磨罐材质选用玛瑙,容量为250mL,原料加入量8g,大中小球个数各为20、50、100。球磨转速580r/min,正反转之间无时间间隔;每30min交替一次。
3)将30g1-烯丙基-3-甲基咪唑氯盐与640g二甲基亚砜混合,加入80g球磨后的木质纤维,搅拌混匀,制备混合溶液。
4)将混合溶液加入捏合机中,在物料温度为90℃条件下捏合4小时后,接上冷凝回收装置继续捏合,直至物料变干后,停止机器运转。
5)捏合结束后,将产物挤出造粒,即可得到木质纤维类生物基塑料。
产品注塑成型后经检测,拉伸强度为6.0740MPa,弯曲强度为15.6393MPa。产物可生物降解。
实施例6
一种利用离子液体制备木质纤维类生物基塑料的方法,具体步骤为:
1)以扶桑枝条为原料,进行剥皮,晾干,并且机械粉碎,干燥。
2)采用行星球磨机对原料进行球磨预处理,球磨时间为4小时。球磨罐材质选用玛瑙,容量为250mL,原料加入量8g,大中小球个数各为20、50、100。球磨转速580r/min,正反转之间无时间间隔;每30min交替一次。
3)将20g1-乙基-3-甲基咪唑醋酸盐与640g二甲基亚砜混合,加入80g球磨后的木质纤维,搅拌混匀,制备混合溶液。
4)将混合溶液加入捏合机中,在物料温度为90℃条件下捏合3小时后,接上冷凝回收装置继续捏合,直至物料变干后,停止机器运转。
5)捏合结束后,将产物挤出造粒,即可得到木质纤维类生物基塑料。
产品注塑成型后经检测,拉伸强度为6.344MPa,弯曲强度为20.6543MPa。产物可生物降解。
实施例7
一种利用离子液体制备木质纤维类生物基塑料的方法,具体步骤为:
1)以麦草为原料,晾干,并且机械粉碎,干燥。
2)采用行星球磨机对原料进行球磨预处理,球磨时间为4小时。球磨罐材质选用玛瑙,容量为250mL,原料加入量8g,大中小球个数各为20、50、100。球磨转速580r/min,正反转之间无时间间隔;每30min交替一次。
3)将20g1-乙基-3-甲基咪唑醋酸盐与640g二甲基亚砜混合,加入80g球磨后的木质纤维,搅拌混匀,制备混合溶液。
4)将混合溶液加入捏合机中,在物料温度为90℃条件下捏合4小时后,接上冷凝回收装置继续捏合,直至物料变干后,停止机器运转。
5)捏合结束后,将产物挤出造粒,即可得到木质纤维类生物基塑料。
产品注塑成型后经检测,拉伸强度为7.9252MPa,弯曲强度为25.9682MPa。产物可生物降解。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化、均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (5)

1.一种制备木质纤维类生物基塑料的方法,其特征在于:先对木质纤维类生物质进行干燥和粉碎预处理;然后进行球磨预处理;然后将球磨后的木质纤维原料与离子液体/二甲基亚砜或季铵盐/二甲基亚砜溶液混合;接着放入捏合机中捏合;捏合过程中回收二甲基亚砜,捏合结束后,即可得到木质纤维类生物基塑料;其中,二甲基亚砜与离子液体或季铵盐的质量比为20~50:1;离子液体或季铵盐与木质纤维类生物质的质量比为0.1~1;捏合温度为50℃~150℃。
2.根据权利要求1所述的制备木质纤维类生物基塑料的方法,其特征在于,包括以下步骤:
1)取木质纤维类生物质,干燥,粉碎,得粗料备用;
2)用球磨机对粗料进行球磨预处理,球磨时间为1~8h,得细料;其中,球磨罐材质选用玛瑙,容量为250mL,原料加入量6~10g,采用正反转无间隔交替方式进行球磨;
3)将离子液体或季铵盐与二甲基亚砜混合,制备混合溶液;其中,二甲基亚砜与离子液体或季铵盐的质量比为20~50:1;
4)先取部分细料与混合溶液混合搅拌,放入捏合机中捏合,捏合过程中分批次加入剩余细料;或,先将全部细料与混合溶液混合搅拌,然后放入捏合机中捏合;
5)捏合结束后,将产物挤出造粒,即可得到木质纤维类生物基塑料粒子;
其中,离子液体或季铵盐与木质纤维类生物质的质量比为0.1~1。
3.根据权利要求1或2所述的制备木质纤维类生物基塑料的方法,其特征在于:所述木质纤维类生物质包括木材、木屑、扶桑枝条、秸秆、稻壳、玉米芯、花生壳和甘蔗渣。
4.根据权利要求1或2所述的制备木质纤维类生物基塑料的方法,其特征在于:所述的离子液体选自1-烯丙基-3-甲基咪唑氯盐、1-乙基-3-甲基咪唑醋酸盐、1-丁基-3-甲基咪唑氯化盐、1,3-二甲基咪唑硫酸甲酯、1-丁基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑六氟磷酸盐和1-苄基-3-甲基咪唑氯盐。
5.根据权利要求1或2所述的制备木质纤维类生物基塑料的方法,其特征在于:所述的季铵盐选自四乙基氯化铵、四甲基醋酸铵、四乙基醋酸铵和四丁基醋酸铵。
CN201310727553.2A 2013-12-26 2013-12-26 一种制备木质纤维类生物基塑料的方法 Expired - Fee Related CN103773054B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310727553.2A CN103773054B (zh) 2013-12-26 2013-12-26 一种制备木质纤维类生物基塑料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310727553.2A CN103773054B (zh) 2013-12-26 2013-12-26 一种制备木质纤维类生物基塑料的方法

Publications (2)

Publication Number Publication Date
CN103773054A CN103773054A (zh) 2014-05-07
CN103773054B true CN103773054B (zh) 2015-12-30

Family

ID=50565848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310727553.2A Expired - Fee Related CN103773054B (zh) 2013-12-26 2013-12-26 一种制备木质纤维类生物基塑料的方法

Country Status (1)

Country Link
CN (1) CN103773054B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104151622B (zh) * 2014-08-08 2016-09-07 华中科技大学 一种可生物降解的纤维素共混材料及其制备方法
CN104610577B (zh) * 2015-01-21 2016-08-17 上海理工大学 采用青核桃皮制备生物质塑料的方法
CN105061789B (zh) * 2015-07-29 2019-03-01 广东省微生物研究所 一种化学改性木质纤维薄膜材料的制备方法
CN105176012A (zh) * 2015-08-30 2015-12-23 常州市鼎日环保科技有限公司 一种聚对苯二甲酸丁二酸/己二酸丁二醇酯稻麦秸秆生物降解薄膜
CN106750548A (zh) * 2015-11-20 2017-05-31 中国科学院理化技术研究所 一种活化预处理纤维素热塑材料及其制备方法
CN105754121A (zh) * 2016-04-14 2016-07-13 南京林业大学 一种超薄木质纤维膜的制备方法
CN106554503B (zh) * 2016-11-15 2019-06-04 南京林业大学 一种木质纤维类注塑级生物基塑料的制备方法
CN108587208A (zh) * 2018-04-11 2018-09-28 南京林业大学 一种gt增塑dmso/teac体系溶解木粉制备注塑级生物基塑料的方法
CN110407989B (zh) * 2018-04-27 2021-10-15 中国科学院大连化学物理研究所 以木质纤维素糠醛渣为原料制备自聚合生物材料的方法
CN108641095B (zh) * 2018-05-09 2021-04-13 河南科技大学 一种四丁基季鏻羧酸盐在木质素溶解中的应用
CN109249512A (zh) * 2018-09-04 2019-01-22 南京林业大学 一种gt增塑木质纤维类注塑级生物基塑料的制备方法
CN109771359A (zh) * 2018-12-30 2019-05-21 武汉华丽环保科技有限公司 一种生物基塑料微珠及其制备方法
US11492737B1 (en) 2021-08-19 2022-11-08 United Arab Emirates University Method for dissolving lignocellulosic biomass
CN115521632A (zh) * 2022-08-29 2022-12-27 苏州南望新材料有限公司 一种基于木粉制备生物基类橡胶材料的方法
CN115387145B (zh) * 2022-09-30 2023-09-29 英德市匠心新材料股份有限公司 一种稻草秸秆综纤维素高产率提取方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1807515A (zh) * 2005-01-20 2006-07-26 中国科学院过程工程研究所 利用秸秆制备可降解材料的方法
CN101085838A (zh) * 2007-07-03 2007-12-12 中国科学院化学研究所 一种连续制备纤维素/离子液体溶液的方法
CN101177792A (zh) * 2007-11-21 2008-05-14 山东海龙股份有限公司 纤维素纺丝原液的制备方法
WO2011027220A1 (en) * 2009-09-01 2011-03-10 Paul O'connor Improved process for dissolving cellulose-containing biomass material in an ionic liquid medium
CN102061059A (zh) * 2010-12-22 2011-05-18 中国林业科学研究院林产化学工业研究所 木质纤维增强阻燃泡沫材料及其加工方法
CN102101915A (zh) * 2010-11-11 2011-06-22 华南理工大学 一种农林生物质组分的分离方法
CN103146017A (zh) * 2013-03-06 2013-06-12 东北林业大学 一种快速溶解木质纤维素制备气凝胶的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080188636A1 (en) * 2007-02-06 2008-08-07 North Carolina State University Polymer derivatives and composites from the dissolution of lignocellulosics in ionic liquids
CN100572432C (zh) * 2007-02-08 2009-12-23 中国纺织科学研究院 一种纤维素溶液及其制备方法
CN102050952B (zh) * 2010-11-11 2012-12-05 华南理工大学 室温均相制备木质纤维衍生物的方法
CN102677510B (zh) * 2011-03-11 2014-12-24 中国科学院过程工程研究所 一种用离子液体从植物纤维原料中分离纤维素和木质素的方法
CN103031762B (zh) * 2011-09-30 2014-11-05 中国科学院过程工程研究所 一种在可降解型离子液体溶剂中制备富含纤维素材料的方法
CN103388272B (zh) * 2013-07-31 2015-10-28 东北林业大学 一种离子液体塑化木质纤维材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1807515A (zh) * 2005-01-20 2006-07-26 中国科学院过程工程研究所 利用秸秆制备可降解材料的方法
CN101085838A (zh) * 2007-07-03 2007-12-12 中国科学院化学研究所 一种连续制备纤维素/离子液体溶液的方法
CN101177792A (zh) * 2007-11-21 2008-05-14 山东海龙股份有限公司 纤维素纺丝原液的制备方法
WO2011027220A1 (en) * 2009-09-01 2011-03-10 Paul O'connor Improved process for dissolving cellulose-containing biomass material in an ionic liquid medium
CN102101915A (zh) * 2010-11-11 2011-06-22 华南理工大学 一种农林生物质组分的分离方法
CN102061059A (zh) * 2010-12-22 2011-05-18 中国林业科学研究院林产化学工业研究所 木质纤维增强阻燃泡沫材料及其加工方法
CN103146017A (zh) * 2013-03-06 2013-06-12 东北林业大学 一种快速溶解木质纤维素制备气凝胶的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"All-cellulose and all-wood composites by partial dissolution of cottonfabric and wood in ionic liquid";Mitsuhiro Shibata等;《Carbohydrate Polymers》;20130806;第98卷;第1532–1539页 *
"Novel all-cellulose ecocomposites prepared in ionic liquids";Qiang Zhao等;《Cellulose》;20080927;第217–226页 *
"木质纤维材料的热塑性改性与塑性加工研究进展";王清文等;《林业科学》;20110615;第47卷(第6期);第133-142页 *

Also Published As

Publication number Publication date
CN103773054A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
CN103773054B (zh) 一种制备木质纤维类生物基塑料的方法
CN103881340B (zh) 一种生物质纤维-脂肪族聚酯复合材料的制备方法
CN102212212B (zh) 溶剂型木质素改性淀粉热塑性复合材料的制备方法
CN102675804A (zh) 热塑性魔芋葡甘聚糖/氧化石墨烯复合材料及其制备方法
CN103755975B (zh) 一种木质纤维酯化改性制备生物基塑料的方法
CN104892779A (zh) 一种酯化淀粉、制备方法及应用
CN103265669B (zh) 秸秆纤维/pbs复合材料专用增容剂的制备方法及应用
CN112796134A (zh) 一种生物基极性非质子溶剂体系中木质纤维预处理的方法
CN103012856A (zh) 一种基于微晶纤维素和聚乙烯醇增强的淀粉基全生物降解共混材料及其制备方法
CN104312482B (zh) 一种松香/淀粉基可生物降解热熔胶的制备方法
CN102250389A (zh) 一种木质纤维素增容共混降解高分子材料及其制备方法
CN101709113B (zh) 脲醛改性木质素高分子相容添加剂的制备与应用
CN103881283B (zh) 一种提高马来酸酐接枝聚丙烯塑料热降解能力的方法
CN105647085A (zh) 一种高性能完全生物降解塑料的制备方法
CN111234484B (zh) 一种全生物基可降解聚乳酸/淀粉复合材料及其制备方法
CN100506899C (zh) 一种天然高分子复合材料及其制备方法和应用
CN101871020A (zh) 离子液可控水解木质纤维原料获取木糖、葡萄糖及木质素的方法
CN103360736A (zh) 一种腐植酸复合材料及其制备方法
CN104277245A (zh) 一种通过c2,3位氧化制备农作物秸秆增强淀粉塑料的方法
CN101555311A (zh) 一种木质素复合聚酯材料及其制备方法
CN103421214A (zh) 一种通过c6位氧化制备农作物秸秆增强淀粉塑料的方法
CN106554503B (zh) 一种木质纤维类注塑级生物基塑料的制备方法
CN102127232A (zh) 一种木质素磺酸盐的接枝改性方法
CN104893273B (zh) 一种腐植酸/ppc树脂共混改性可降解固态地膜
CN102617892A (zh) 一种可降解淀粉基塑料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151230

Termination date: 20201226