CN103633841B - 供电单元、半导体装置与无线通信装置 - Google Patents

供电单元、半导体装置与无线通信装置 Download PDF

Info

Publication number
CN103633841B
CN103633841B CN201310365279.9A CN201310365279A CN103633841B CN 103633841 B CN103633841 B CN 103633841B CN 201310365279 A CN201310365279 A CN 201310365279A CN 103633841 B CN103633841 B CN 103633841B
Authority
CN
China
Prior art keywords
voltage
stablizer
output
target
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310365279.9A
Other languages
English (en)
Other versions
CN103633841A (zh
Inventor
鮎川仁
鮎川一仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Publication of CN103633841A publication Critical patent/CN103633841A/zh
Application granted granted Critical
Publication of CN103633841B publication Critical patent/CN103633841B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0045Converters combining the concepts of switch-mode regulation and linear regulation, e.g. linear pre-regulator to switching converter, linear and switching converter in parallel, same converter or same transistor operating either in linear or switching mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本公开涉及供电单元、半导体装置与无线通信装置。本发明在供电单元中实现了更稳定的输出电压可变控制。本发明公开了一种能够改变动态的输出电压的供电单元,该供电单元具有:用于通过开关方法来降低电压并且将所生成的电压输出到第一节点的第一稳压器;以及用于以电压降来降低输入电压并且将所生成的电压输出到第一节点的第二稳压器。在由第一信息指示的目标电压大于预定的阈值电压的情形中,供电单元施加控制使得第一节点的电压变为目标电压并且停止来自第二稳压器的电压供应。在目标电压小于预定的阈值电压的情形中,供电单元控制第二稳压器使得第一节点的电压变为目标电压并且停止来自第一稳压器的电压输出。

Description

供电单元、半导体装置与无线通信装置
相关申请的交叉引用
在2012年8月22日提交的日本专利申请No.2012-183027的公开内容(包括说明书、附图和摘要)以引用方式全文并入本文。
技术领域
本发明涉及用于生成电压的供电单元、用于控制供电单元的半导体装置以及供电单元应用于其上的无线通信装置,并且更具体地涉及有效地应用于具有改变待输出电压的功能的供电单元的技术。
背景技术
近些年,用于以非接触(无线)方式来供电的无线供电系统正在不断推广。例如,使用在彼此间隔开布置的线圈之间的电磁感应的电磁感应方法的无线供电系统包含于用于传输电力的传输侧装置以及用于接收所传输的电力的接收侧装置内,并且作为接收侧装置的小型便携式终端装置能够例如在接收到的电力的基础上对电池充电。作为与通过无线电来传输信息的非接触式通信技术相关的标准,NFC(近场通信)是已知的。符合NFC标准的小的便携式终端装置同样是正在推广。
近些年,用于在通过共同地使用用于NFC的天线以及用于电磁谐振方法的无线电力传输的天线来切换电力传输以及用于传输信息的通信时执行电力传输以及用于传输信息的通信的无线供电系统正在发展。在执行用于传输信息的通信时,在这样的无线供电系统中的传输侧装置通过驱动电路来生成具有相对较小的振幅的驱动信号,并且通过驱动天线来传输信号。在传输电力时,装置通过驱动电路来生成具有大的振幅的驱动信号,并且通过驱动天线来传输信号。为了生成具有不同振幅的驱动信号用于通过在传输侧装置内的单个驱动电路进行的电力传输和信息通信,例如,能够改变待供应给驱动电路的供电电压的供电单元是必要的。
在传统上,作为供电单元,开关式稳压器(switching regulator)和串联式稳压器(series regulator)是已知的。另外,用于在选择性地切换来自开关式稳压器的输出与来自串联式稳压器的输出时给负载供电的供电单元是已知的。例如,专利文献1公开了与通过根据负载电流来切换至作为线性稳压器的低压差(low drop out,LDO)稳压器和开关式稳压器的任一输出电压并输出该电压而在轻负载时实现降低的电流消耗的供电单元相关的技术。
背景技术文献
专利文献
专利文献1:日本未经审查的专利公开No.2008-61452
发明内容
本发明要解决的问题
本发明的发明人已经研究了在预定的电压范围内改变输出电压的开关式稳压器作为待应用于无线供电系统内的传输侧装置的供电单元的用法。而以下内容已经清楚。在开关式稳压器中,当输入/输出电位差改变时,用于驱动开关元件的信号的占空比改变,并且供电单元的反馈回路的频率特性改变。因此,当输入/输出电位差的波动范围大时,在所有输入/输出条件下执行稳定的控制是极其困难的。在上述专利文献中描述的技术是用于处理在输出固定电压的情况下的负载波动的技术,而变化的输出电压的情形以及其中输入/输出电压差改变的情形没有被考虑。
以下将描述用于解决这样的问题的手段等。其他主题和新的特征根据本说明书及附图的描述将会变得明了。
在本说明书中公开的一种典型实施例的概要将进行如下简要的描述。
能够改变动态的输出电压的供电单元具有:第一稳压器,用于通过开关方法来降低输入电压并且将所生成的电压输出到第一节点;以及第二稳压器,用于以电压降来降低输入电压并且将所生成的电压输出到第一节点。在由第一信息指示的目标电压大于预定的阈值电压的情形中,供电单元进行控制以使得第一节点的电压变为目标电压并且停止来自第二稳压器的电压供应。在目标电压小于预定的阈值电压的情形中,供电单元控制第二稳压器使得第一节点的电压变为目标电压并且停止来自第一稳压器的电压输出。
发明效果
通过本说明书所公开的典型实施例获得的效果将进行如下简要的描述。
即,供电单元能够执行对输出电压的更稳定的可变控制。
附图说明
图1是示出作为本发明的一种实施例的供电单元的框图。
图2是示出包括第一实施例中的无线通信装置的无线充电系统的框图。
图3是示出在传输侧装置101中的供电电路2的详细配置的框图。
图4是示出在PWM信号发生单元230内的电压的时序的说明图。
图5是表示相对于输出电压VOUT的目标电压的参考电压VREF1和VREF2的说明图。
图6是示出在无线供电系统100中的无线供电时的通信时序的说明图。
具体实施方式
1.实施例的概要
首先,将描述在本申请中公开的典型的实施例的概要。在关于实施例的概要的描述中标示于括号内的附图标记只是指示包含于附图标记所指定的部件的概念内的元件。
[1]根据待输出的电压的大小在开关方法和串联方法之间切换的供电单元
根据本发明的一种典型的实施例的供电单元(2)能够改变动态的输出电压(VOUT),如图1所示。该供电单元具有:用于输出该输出电压的第一节点(OUT);用于通过开关方法来降低输入电压并将所生成的电压输出到第一节点的第一稳压器(20);以及用于以电压降来降低输入电压并且将所生成的电压输出到第一节点的第二稳压器(25)。供电单元还包括用于根据指示输出电压的目标电压的第一信息(TGT_VOUT)来控制第一及第二稳压器的输出电压控制单元(22)。在由第一信息指示的目标电压大于预定的阈值电压的情形中,输出电压控制单元控制第一稳压器使得第一节点的电压变为目标电压并且停止来自第二稳压器的电压供应。在目标电压小于预定的阈值电压的情形中,输出电压控制单元控制第二稳压器使得第一节点的电压变为目标电压并且停止来自第一稳压器的电压供应。
当输入/输出电位差的波动大时,开关式稳压器难以在所有输入/输出条件下执行稳定的控制。供电单元通过开关方法的第一稳压器来生成在输入/输出电位差为小的范围内的电压,并且通过串联方法的第二稳压器来生成在输入/输出电位差为大的范围内的电压,使得能够执行更稳定的输出电压可变控制。
[2](停止串联式稳压器的输出:稳压器的参考电压的箝位(clamp)
在[1]的供电装置中,第二稳压器包括:给第一节点供应电流的输出晶体管(MP1);以及误差放大器(251),用于接收反馈电压(VFB)以及以第一节点的电压为基础的参考电压(VREF2)并且通过输出晶体管来控制电流供应使得两个输入电压之间的误差减小。输出电压控制单元在所指示的目标电压大于预定的阈值电压的情形中根据比目标电压小的电压来生成参考电压,并且在所指示的目标电压小于预定的阈值电压的情形中根据目标电压来生成参考电压。
以该配置,能够容易地控制在来自第二稳压器的电压供应的停止与来自第二稳压器的电压供应的重启之间的切换。由于误差放大器等的操作没有停止,从而停止来自第二稳压器的电压供应,因而能够缩短自输出电压的电源从第一稳压器切换到第二稳压器起直到输出电压稳定后的时间。
[3]两个不同的输入电压
在[1]或[2]的供电装置中,第一稳压器降低第一输入电压(VIN1)并且输出所生成的电压,并且第二稳压器降低比第一输入电压小的第二输入电压(VIN2)并且输出所生成的电压。
以该配置,能够减小第二稳压器的电压降量,从而能够提高在从第二稳压器供应电压时的效率。
[4]防回流二极管
在[3]的供电单元中,第二稳压器经由沿正向偏置的二极管(D2)来将电压输出到第一节点。
以该配置,即使在从第一稳压器供应电压时输出电压高于第二输入电压的情形中,也能够防止电流从第一节点经由第二稳压器回流到第二输入电压供应到的节点。在使用开关元件(例如,晶体管)的情形中,用于控制开关元件等的控制信号必要的。在上文中,这样的控制信号是不必要的,从而能够简化电路配置。
[5]串联式稳压器的参考电压的上限值:阈值电压
在[1]至[4]的任一项的供电单元中,在所指示的目标电压大于预定的阈值电压的情形中,输出电压控制单元根据预定的阈值电压来生成参考电压。
以该配置,能够容易地生成在所指示的目标电压大于预定的阈值电压的情形中停止来自第二稳压器的电压供应所依据的参考电压。
[6]开关式稳压器的停止:开关元件的关断
在[1]至[5]的任一项的供电单元中,第一稳压器包括:电压转换电路(24),通过开关元件(PW_PMOS)来控制待供应给电感器(L)的电流以由此生成比输入电压小的电压并输出所生成的电压;以及控制开关元件的通/断状态的开关控制单元(23)。输出电压控制单元控制开关控制单元以便关断开关元件,以由此停止来自第一稳压器的电压输出。
以该配置,能够容易地停止来自第一稳压器的电压供应。
[7]无线通信装置
作为本发明的一种典型实施例的无线通信装置(101)能够通过切换数据的传输/接收与电力传输来执行通信。该无线通信装置具有:天线(5);用于生成用于驱动天线的驱动信号的驱动电路(3);用于在该天线与在接收装置侧的天线之间进行阻抗匹配的匹配电路(4);在[1]至[6]的任一项中的供电单元;以及用于控制通信的数据处理控制单元(1)。在经由天线来传输数据的情形中,数据处理控制单元将指示目标电压小于预定的阈值电压的第一信息(TGT_VOUT)供应给供电单元。在经由天线来传输电力的情形中,数据处理控制单元将指示目标电压大于预定的阈值电压的第一信息传输给供电单元。驱动电路根据来自供电单元的电压输出来生成驱动信号。
以该配置,在数据的传输/接收与电力传输之间切换时,能够通过供电单元来执行更稳定的输出电压可变控制。在传输/接收数据时,驱动信号在来自不是开关方法的第二稳压器的输出电压的基础上生成。因此,传输/接收信号不可能受到开关噪声的影响,并且它有助于实现稳定的数据通信。
[8]微控制器
在[7]的无线通信中,数据处理控制单元包括微控制器。
[9]供电控制IC
作为本发明的一种典型实施例的半导体装置(21)具有:用于生成用于控制在步降型开关式稳压器(20)中的开关电路(PW_PMOS)的通/断状态的控制信号(VGD)的开关控制单元(23);串联式稳压器;以及串联式稳压器(25)。半导体装置还包括用于根据指示待输出的目标电压的第一信息(TGT_VOUT)来控制开关控制单元和串联式稳压器的输出电压控制单元(22)。在由第一信息指示的目标电压大于预定的阈值电压的情形中,输出电压控制单元生成控制信号,使得开关式稳压器的输出电压变为目标电压并且停止来自串联式稳压器的电压供应。在目标电压小于预定的阈值电压的情形中,输出电压控制单元控制串联式稳压器使得串联式稳压器的输出电压变为目标电压并且停止开关式稳压器的电压生成。
半导体装置能够作为例如控制单元来应用,该控制单元用于执行控制以使在将由多个稳压器中的任一个生成的电压作为输出电压来输出的供电单元中的输出电压改变。以该配置,按照与[1]类似的方式,在输入/输出电位差为小的范围内,电压由开关式稳压器生成。在输入/输出电位差为大的范围内,电压由串联式稳压器生成。因此,在供电单元中能够实现更稳定的输出电压可变控制。
[10]稳压器输出的停止:稳压器的参考电压的箝位
在[9]的半导体装置中,串联式稳压器包括:用于驱动负载的输出晶体管(MP1);以及误差放大器(251),用于接收根据输出电压的反馈电压(VFB)和参考电压(VREF2)并且控制输出晶体管使得两个输入电压之间的误差减小。输出电压控制单元在所指示的目标电压大于预定的阈值电压的情形中根据比目标电压小的电压来生成参考电压,并且在所指示的目标电压小于预定的阈值电压的情形中根据目标电压来生成参考电压。
以该配置,按照与[2]类似的方式,能够容易地控制在来自第二稳压器的电压供应的停止与重启之间的切换,并且能够缩短自输出电压的电源从第一稳压器切换至第二稳压器起直到输出电压变得稳定的时间。
[11]串联式稳压器的参考电压的上限值:阈值电压
在[10]的半导体装置中,在所指示的目标电压大于预定的阈值电压的情形中,输出电压控制单元根据预定的阈值电压来生成参考电压。
以该配置,在所指示的目标电压大于预定的阈值电压的情形中,能够容易地生成停止来自第二稳压器的电压供应所依据的参考电压。
[12]两个不同的输入电压
在[9]至[11]的任一项的半导体装置中,串联式稳压器降低比开关式稳压器的输入电压(VIN1)小的电压(VIN2)并输出所生成的电压。
以该配置,能够减小串联式稳压器的电压降量,使得能够提高在从串联式稳压器供应电压时的效率。
2.实施例的细节
以下将更具体地描述实施例。
第一实施例
图2示出了第一实施例中包括的无线通信装置的无线充电系统。在该图中示出的无线充电系统100包括传输侧无线通信装置(以下称为“传输侧装置”)101和接收侧无线通信装置(以下称为“接收侧装置”)102。在无线充电系统100中,数据能够通过近场通信(NFC)在传输侧装置101与接收侧装置102之间相互传输/接收。在无线充电系统100中,电力能够由传输侧装置2以非接触(无线)方式供应给接收侧装置3。
传输侧装置101包括,例如,NFC控制单元1、供电电路2、驱动电路3、匹配电路4和天线5。NFC控制单元1对与接收侧装置102间的通信执行整体控制。例如,NFC控制单元1控制在NFC与无线电力传输之间的切换并且执行用于以NFC来传输/接收数据的各种处理。NFC控制单元1由具有NFC功能的微型计算机(但不限于此)来形成,并且包括,例如,控制电路11、存储器电路13及通信电路12。控制电路11由例如中央处理单元(CPU)来形成,并且执行用于无线供电和NFC的预定程序。控制单元11在传输电力时以及在NFC时输出指示供电电路2的输出电压VOUT的目标电压的信息TGT_VOUT(以下也称为设定电压信息),由此指示供电电路2生成适用于电力传输和NFC的输出电压VOUT,这将在后面详细地描述。存储器电路252包括,例如,ROM(只读存储器)和RAM(随机存取存储器)。在ROM中存储了例如由中央处理单元执行的程序。RAM被用作在中央处理单元中执行的运算处理的工作区。通信电路12经由天线5与接收侧装置102来执行NFC。例如,在以NFC来接收信号时,通信电路12接收由接收侧装置102通过天线5来传输的信号并且经由匹配电路4将接收信号取入NFC控制单元1。在以NFC来传输信号时,NFC控制单元1供应待传输给驱动电路3的数据,并且驱动电路3根据所接收的数据来驱动天线5,由此生成传输信号。
匹配电路4是用于执行在天线5与接收侧装置102上的天线6之间的阻抗匹配的电路,并且例如并行耦接于天线5以形成谐振电路。天线5是用于执行电力传输以及通过NFC进行的信号传输/接收的共用天线,并且是例如线圈天线。
驱动电路3生成用于驱动天线5的驱动信号。例如,驱动电路3根据在以NFC来传输信号时由通信电路12给出的待传输数据来生成驱动信号,并且在传输电力时根据待供应的电力大小来生成驱动信号。通过驱动信号,天线5被激励。驱动电路3使用由作为电源的供电电路2输出的输出电压VOUT来操作。由驱动电路3生成的驱动信号的振幅由供电电路2的输出电压VOUT的大小确定,这将在后面详细地描述。
供电电路2在由电源适配器、通用串行总线(USB)等供应的输入电压VIN1的基础上生成例如作为传输侧装置101内的功能单元的工作电源的多个电压。例如,供电电路2生成作为驱动电路3的工作电源的电压VOUT以及作为NFC控制单元1的工作电源的电压VNFC。供电电路2的细节将在后面描述。
接收侧装置3包括,例如,天线6、匹配电路7、整流电路10、供电单元9、电池94和NFC控制单元8。天线6通过由传输侧装置101的天线5产生的谐振作用来生成电动势(AC信号),并且传输/接收与NFC相关的信号。匹配电路7并行地耦接于天线6,以形成谐振电路。整流电路10对经由天线6获得的AC信号整流。供电单元9在整流电路10的输出电压的基础上给作为用于小的便携式终端装置(例如,智能电话)的负载电路的电子电路(EC)103供应用于操作的供电电压,给电池94供应充电电压,给NFC控制单元8供应用于操作的供电电压等。电池94是(但不限于)单块(one-cell)电池(4.0-4.2V),并且是例如锂离子电池。供电单元9包括步降(step-down)电路91、充电控制电路92和NFC供电电路93。步降电路91降低整流电路10的输出电压。充电控制电路92在步降电路91的输出电压的基础上对电池94充电。NFC供电电路93生成用于NFC控制单元8的操作的供电电压。在NFC中的接收信号经由匹配电路7存储于NFC控制单元8内。NFC控制单元8由(但不限于)微型计算机来形成,并且包括通信电路82、存储器电路83及控制电路81。通信电路82经由天线6来执行NFC。控制电路81由中央处理单元(CPU)来形成,并且执行用于NFC的预定程序。存储器电路83包括例如ROM和RAM。在ROM中存储了由中央处理单元执行的程序。RAM被用作由中央处理单元执行的计算处理的工作区。
现在描述通过传输侧装置101进行的无线供电。
传输侧装置101通过例如在电力传输与NFC之间交替切换的同时执行通信来实现无线供电。具体地,在传输电力的情形中,在NFC控制单元1中的控制电路11将指示第一目标电压的设定电压信息TGT_VOUT供应给供电电路2,并且根据到驱动电路3的电力传输来指示驱动信号的生成。另一方面,在通过NFC来传输数据的情形中,控制电路11将指示第二目标电压的设定电压信息TGT_VOUT供应给供电电路2,并且根据待传输给驱动电路3的数据来指示驱动信号的生成。第一目标电压是例如3.5-18V的电压,并且第二目标电压是例如0.5-3.0V的电压。如上所述,驱动电路3的驱动信号的振幅根据输出电压VOUT的大小来确定。因此,在NFC时,电力相对较小的传输信号被传输给接收侧装置102,并且在传输电力时,电力相对较大的传输信号被传输给接收侧装置102。
NFC控制单元1通过NFC来获得与接收侧装置102的电池94的剩余量相关的信息(以下也称为电池剩余量信息)等。NFC控制单元1在所获得的电池剩余量信息的基础上调整待传输的电力大小。例如,在接收侧装置102的电池94的剩余量为小的情形中,NFC控制单元1控制供电电路2以便传输较大的电力。在电池94的剩余量较大的情形中,NFC控制单元1控制供电电路2以便传输较小的电力。例如,当根据由NFC获得的电池剩余量信息来确定电池94的剩余量为小时,NFC控制单元1将指示例如18V作为目标电压的设定电压信息TGT_VOUT供应给供电电路2。供电电路2生成18V的输出电压VOUT,并且驱动电路3生成与18V相应的驱动信号。以此方式,电力量大的传输信号由天线5来传输。此后,通过NFC来获取电池剩余量信息与电力传输被重复执行。当确定电池94接近于完全充电时,NFC控制单元1将指示例如3.5V作为目标电压的设定电压信息TGT_VOUT供应给供电电路2。以此方式,3.5V的输出电压VOUT由供电电路2生成,并且电力量小的传输信号由天线5来传输。通过根据以上所述的电池剩余量来调整所传输的电力量,能够有效地执行对电池94的充电控制。
现在将描述在传输侧装置101内的供电电路2。
如上所述,供电电路2生成待供应给传输侧装置101内的功能单元的多个供电电压。以下将更具体地描述与电压VOUT的生成相关的配置。
供电电路2生成由设定电压信息TGT_VOUT指示的大小的电压,并将它作为输出电压VOUT来输出。虽然不作限定,由设定电压信息TGT_VOUT指示的目标电压是例如0.5-18V的电压。因此,供电电路2根据设定电压信息TGT_VOUT在0.5-18V的范围内改变输出电压VOUT并且输出所生成的电压。
如上所述,在通过开关式稳压器根据固定输入电压(例如,20V)来生成0.5-18V的宽范围的输出电压的情形中,输入/输出电位差的波动范围变大(例如,在以上情形中,波动范围为2-19.5V),使得难以在所有输入/输出条件下稳定地控制开关式稳压器。因此,在待输出的电压(目标电压)相对较大(例如,3.5V或更大)的情形中,供电电路2通过开关式稳压器来生成输出电压VOUT。在目标电压相对较小(例如,小于3.5V)的情形中,电压由串联式稳压器生成。以下将具体地描述供电电路2的内部配置。
图3是示出供电电路2的详细配置的框图。
在该图中示出的供电电路2包括用于生成电压的多个稳压器和其他外围电路。在该图中,仅示出用于生成作为驱动电路3的工作供电电压的电压VOUT的稳压器以及与稳压器相关的外围电路。具体地,示出了开关式稳压器20、串联式稳压器25、防回流电路26和输出电压控制单元22。
在该图中示出的供电电路2内的主要部分被包含作为(但不限定于)通过已知的半导体集成电路制造技术(例如,CMOS工艺制造技术)形成于单个半导体基板(例如,硅基板)上的半导体装置。以下,该部分将称为“供电控制IC”。供电控制IC21包括,例如,串联式稳压器25、开关式稳压器控制单元23和输出电压控制单元22。供电控制IC21设置有作为外部端子的端子DIN、VLDO、IN2、COMP、FB和GD以及其他未示出的多个端子(例如,供电端子、接地端子等)。
开关式稳压器20是例如步降型开关式稳压器。虽然不作为规定,在图3中示出了非隔离的步降开关式稳压器(步降斩波型开关式稳压器)。开关式稳压器20根据由电源适配器、通用串行总线(USB)等供应的电压VIN1(例如,20V)来生成例如3.5-18V的电压。
开关式稳压器20包括,例如,开关式稳压器控制单元23和电压转换电路24。电压转换电路24将DC输入电压VIN1转换为期望大小的DC电压,并且将所生成的电压输出到节点OUT。电压转换电路24包括,例如,输入电容器CIN、开关元件PW_PMOS、二极管D1、线圈L、输出电容器COUT、电阻器R1和R2以及电容器C2。输入电容器CIN是在开关式稳压器20的输入侧的稳定电容器。输出电容器COUT是在开关式稳压器20的输出侧的稳定电容器。开关元件PW_PMOS被耦接于被供应输入电压VIN的节点与线圈L之间。开关元件PW_PMOS是例如P沟道型电力MOS晶体管。开关元件PW_PMOS通过由开关式稳压器控制单元23输出的PWM信号VGD进行通/断控制,该开关式稳压器控制单元23将在后面描述。通过该操作,在线圈L中流过的电流被控制,并且在节点OUT处生成比输入电压VIN小的电压。电阻器R1和R2是用于根据输出电压VOUT来生成反馈电压VFB的电压驱动式电阻器,并且串联地耦接于节点OUT与接地节点之间。电阻器R1和R2的连接节点与供电控制IC的端子FB耦接。开关式稳压器控制单元23和串联式稳压器25通过接收经由划分输出电压VOUT而获得的反馈电压VFB来监测节点OUT处的电压。
开关式稳压器控制单元23在反馈电压VFB的基础上生成用于控制电压转换电路24内的开关元件PW_PMOS的PWM信号VGD。具体地,开关式稳压器控制单元23由例如PWM(脉宽调制)信号发生单元230和误差放大器234构成。误差放大器234接收与由将在后面描述的输出电压控制单元22供应的待输出的目标电压对应的参考电压VREF1和反馈电压VFB,并且生成和输出控制信号VCOMP使得两个输入电压之间的误差得以减小。对于误差放大器234的输出节点,用于相位补偿的外部电容器C1经由端子COMP与之耦接。PWM信号发生单元230在由误差放大器234输出的控制信号VCOMP的基础上生成PWM信号。PWM信号发生单元230包括,例如,斜坡信号发生电路231、比较器电路232和SR锁存电路233。斜坡信号发生电路231生成预定频率的斜坡信号(锯齿波信号)RMP_OUT,并且在斜坡信号的顶点的时刻,生成并输出单触发信号SET。比较器电路232将斜坡信号RMP_OUT与控制信号VCOMP比较,并且根据比较结果来输出信号。SR锁存电路233通过置位(set)端子(S)来接收单触发信号SET,并且通过复位(reset)端子(R)来接收比较器电路232的输出信号。由SR锁存电路233的反相输出端子QB输出的信号变为PWM信号VGD。
图4是示出在PWM信号发生单元230内的电压的时序的说明图。如图所示,当斜坡信号RMP_OUT变为大于控制信号VCOMP时,PWM信号VGD被设置为高电平。此后,当斜坡信号RMP_OUT达到顶点时,单触发信号SET被输出。当控制信号VCOMP变为大于斜坡信号RMP_OUT时,PWM信号被设置为低电平。通过以此方式来生成信号,其脉宽根据作为误差放大器234的输出信号的控制信号VCOMP的大小而改变的PWM信号VGD被生成。PWM信号VGD经由设置于端子GD的前级或后级处的未示出的驱动电路等供应给开关元件PW_PMOS的栅极端子。以此方式,在节点OUT处的电压被控制以变为目标电压。
串联式稳压器25以电压降来降低供应给端子IN2的电压VIN2,并且将所生成的电压输出到节点OUT。电压VIN2是比开关式稳压器20的输入电压VIN1小的电压,并且为例如5.0V。串联式稳压器25为例如LDO(低压差)稳压器,并且由5.0V的输入电压VIN2生成例如0.5-3.0V的电压。以此方式,能够抑制在串联式稳压器25内的电力损耗。
串联式稳压器25包括,例如,误差放大器251和输出晶体管MP1。输出晶体管MP1为例如P沟道型MOS晶体管,该P沟道型MOS晶体管的源极与端子IN2耦接,而其漏极与端子VLDO耦接。对于端子IN2,供应电压VIN2。端子VLDO经由防回流电路26与节点OUT耦接。在输出电压VOUT高于电压VIN2的情形中,防回流电路26防止从节点OUT到经由输出晶体管MP1给其供应电压VIN2的节点的电流回流。防回流电路26由例如二极管D2构成,该二极管D2的阳极与端子VLDO耦接,而其阴极与节点OUT耦接。二极管D2是(但不限于)例如肖特基势垒二极管。以该配置,与将开关元件(例如,晶体管)用作防回流电路26的情形相比,用于控制开关元件等的控制信号变为不必要的。因而,防回流能够以简单的电路配置实现。
误差放大器251接收与由将在后面描述的输出电压控制单元22供应的待输出的目标电压对应的参考电压VREF2和反馈电压VFB,并且控制输出晶体管MP1的栅极电压使得两个输入电压之间的误差减小。以该配置,由输出晶体管MP1向节点OUT供应的电流大小被调整,使得输出电压VOUT变为目标电压。
输出电压控制单元22在经由端子DIN接收的设定电压信息TGT_VOUT的基础上控制开关式稳压器控制单元23和串联式稳压器25。具体地,输出电压控制单元22根据由设定电压信息TGT_VOUT指示的电压的大小来生成待供应给开关式稳压器控制单元23的参考电压VREF1以及待供应给串联式稳压器25的参考电压VREF2。
输出电压控制单元22包括,例如,数-模转换电路(DAC)220、第一控制单元(EN_CNT)221及第二控制单元(REF_CNT)222。
数-模转换电路(DAC)220将经由端子DIN接收的设定电压信息TGT_VOUT转换为模拟信号。设定电压信息TGT_VOUT包括例如表示用于输出电压VOUT的目标电压的参考电压的信息,并且该信息是例如5位的数字值。由数-模转换电路220转换的模拟信号被作为参考电压VREF1供应给第一及第二控制单元221和222,并且还供应给开关式稳压器控制单元23内的误差放大器234。
第一控制单元221在参考电压VREF1的大小的基础上控制开关式稳压器20的电压生成及停止。第一控制单元221由例如比较器电路构成。例如,在参考电压VREF1大于预定的阈值电压VTH的情形中,第一控制单元221将开关式稳压器20设置成启用状态。在参考电压VREF1小于预定的阈值电压VTH的情形中,第一控制单元221将开关式稳压器20设置成禁用状态。
预定的阈值电压VTH是用于在由开关式稳压器20生成输出电压VOUT与由串联式稳压器25生成输出电压VOUT之间切换的参考电压。虽然不作为限定,但是在该实施例中,假定预定的阈值电压VTH被设定为与在目标电压为3.0V时的参考电压VREF1相等的电压。例如,在接收到与3.5-18V的目标电压对应的参考电压VREF1的情形中,输入参考电压VREF1变为大于阈值电压VTH,使得第一控制单元221将开关式稳压器20设置为启用状态。另一方面,在接收到与0.5-3V的目标电压对应的参考电压VREF1的情形中,输入参考电压VREF1变为小于阈值电压VTH,使得第一控制单元221将开关式稳压器20设置成禁用状态。
用于在开关式稳压器20的启用状态与禁用状态之间切换的控制方法不受限定。图3示出了一种用于通过第一控制单元221来控制设置于开关式稳压器控制单元23内的误差放大器234的输出节点与接地节点之间的N通道型MOS晶体管MN1的通/断状态的方法。开关式稳压器20的禁用状态是,例如,电压转换电路24的开关元件PW_PMOS变为关断状态。
第二控制单元222在参考电压VREF1的大小的基础上生成串联式稳压器25的误差放大器251的参考电压VREF2。具体地,在参考电压VREF1大于预定的阈值电压VTH的情形中,第二控制单元222生成并输出比参考电压VREF1小的参考电压VREF2。在参考电压VREF1小于预定的阈值电压VTH的情形中,第二控制单元222将参考电压VREF1作为参考电压VREF2来输出。例如,在接收到与3.5-18V的目标电压对应的参考电压VREF1的情形中,第二控制单元222生成并输出与预定的阈值电压VTH(3.0V)对应的参考电压VREF2。在接收到与0.5-3.0V的目标电压对应的参考电压VREF1的情形中,第二控制单元222将所接收到的参考电压VREF1作为参考电压VREF2来输出。以此方式,在0.5-3.0V的目标电压被指示的情形中,串联式稳压器25被控制使得输出电压VOUT变为目标电压。在3.5-18V的目标电压被指示的情形中,根据预定的阈值电压VTH来控制输出电压VOUT以使其变为目标电压(=3.0V)。
图5是表示关于输出电压VOUT的目标电压的参考电压VREF1和VREF2的说明图。在该图中,附图标记400表示输出电压VOUT的目标电压,附图标记401表示根据参考电压VREF2生成的输出电压的大小,而附图标记402表示根据参考电压VREF1生成的输出电压VOUT的大小。
如图所示,在其中目标电压为0.5-3.0V的范围402中,生成用以使输出电压VOUT变为0.5-3.0V的参考电压VREF1和VREF2。在范围403中,如上所述,参考电压VREF1小于预定的阈值电压VTH,开关式稳压器20被设置为禁用状态,并且输出电压VOUT由串联式稳压器25生成。在其中目标电压为3.5V或更高的范围中,如附图标记402所示,生成用以使与目标电压相应的输出电压VOUT变为3.5V或更高的参考电压VREF1。另一方面,如附图标记401所示,参考电压VREF2是与预定的阈值电压VTH(3.0V)对应的箝位电压。
通过输出电压控制单元22的控制,开关式稳压器20和串联式稳压器25进行如下操作。
例如,在0.5-3.0V的目标电压被指示的情形中,误差放大器234的输出电压VCOMP由第一控制单元221箝位于0V,并且在电压转换电路24内的开关元件PW_PMOS的开关被停止(关断状态)。因此,停止由开关式稳压器20生成输出电压VOUT。在此时,与目标电压对应的参考电压VREF2被供应给串联式稳压器25,使得0.5-3.0V范围内的输出电压VOUT由串联式稳压器25生成。另一方面,当目标电压为3.5V或更高时,误差放大器234的操作限制由第一控制单元221取消,并且允许由开关式稳压器20生成输出电压VOUT。在此时,施加于串联式稳压器25的参考电压VREF2被箝位于与预定的阈值电压VTH(3.0V)对应的电压(无论所指示的目标电压如何),误差放大器251控制输出晶体管MP1使得在反馈电压VFB与参考电压VREF2之间的误差变为零。例如,在8.0V被指示为目标电压的情形中,8.0V的输出电压VOUT由开关式稳压器20生成。与输出电压VOUT(8.0V)对应的反馈电压VFB经由端子FB供应给串联式稳压器25的误差放大器251。由于指示3.0V的参考电压VREF2被接收,因而误差放大器251控制输出晶体管MP1的栅极电压使得输出电压VOUT从8.0V变为3.0V。具体地,晶体管MP1的栅极电压被增大,以便抑制从输出晶体管MP1到节点OUT的电流供应。例如,栅极电压被增大,使得在晶体管MP1的栅极与源极之间的电压变为零。通过该操作,来自晶体管MP1的电流供应被停止,使得由串联式稳压器25对节点OUT的电压供应基本上被停止,并且输出电压VOUT通过开关式稳压器20来保持。在此时,虽然输出电压VOUT(8.0V)大于串联式稳压器25的供电电压VIN2(5.0V),但防回流电路26存在于端子VLDO与节点OUT之间,从而防止了经由输出晶体管MP2到供电电压VIN2的电流回流。
图6是示出在以无线供电系统100进行无线供电时的通信时序的说明图。
如图所示,首先,在时刻t0,NFC控制单元1指示供电电路2生成范围为0.5-3.0V的输出电压VOUT以开始NFC。待指示为0.5-3.0V的电压预先通过例如接收侧装置102的天线6和其他外围电路的配置等来确定。在此时,开关式稳压器20被设置为禁用状态,并且输出电压VOUT由串联式稳压器25生成。在输出电压VOUT达到所指示的目标电压之后,例如,NFC在时刻t1开始。因此,在NFC期间,输出电压VOUT由串联式稳压器25生成。因此,由开关式稳压器20导致的开关噪声不可能被传输到传输/接收信号,并且通信不可能被中断,并且NFC的稳定性能够被提高。通过NFC,例如,电池剩余量信息和其他信息在接收侧装置102与传输侧装置101之间传输/接收。此后,在时刻t2,NFC被停止并且被转换为与电力传输相关的通信。NFC控制单元1在电池剩余量信息的基础上获取接收侧装置102的电池94的剩余量,并且根据剩余量确定传输的电力大小。NFC控制单元11指示供电电路2根据所确定的电力量来生成电压为3.5-18V的输出电压VOUT。以此方式,如上所述,由串联式稳压器25输出的电压被停止,并且输出电压VOUT由开关式稳压器20生成。在输出电压VOUT达到所指示的目标电压之后,例如,电力传输在时刻t3开始,并且在接收侧装置102内的电池94被充电。此后,在时刻t4,电力传输被临时中断,并且被转换为NFC。具体地,NFC控制单元1指示供电电路2来生成范围为0.5-3.0V的输出电压VOUT。当输出电压VOUT达到目标电压时,例如,NFC在时刻t5开始。自电力传输停止起直到NFC开始的时段500主要由自开关式稳压器20的电压生成被切换至串联式稳压器25的电压生成起直到输出电压VOUT变稳定的时间确定。如上所述,传输侧装置101的供电电路2在电力被传输时不停止串联式稳压器25的操作(例如,不停止误差放大器251的操作),但是将比所指示的目标电压小的参考电压VREF2供应给误差放大器251,由此保持其中串联式稳压器25基本上对输出电压VOUT不施加影响的状态。因此,与停止串联式稳压器25的操作的情形相比,能够缩短自电压生成被切换至串联式稳压器25的电压生成起直到输出电压VOUT变稳定的时间。因而,能够缩短自电力传输停止起直到NFC开始的时段500,并且它有助于缩短为无线供电所需的总体时间。
在第一实施例的供电电路2中,在其中开关式稳压器的输入/输出电位差变小的范围中,电压由开关式稳压器生成。在开关式稳压器的输入/输出电位差变大的范围中,电压由串联式稳压器生成。因此,与由开关式稳压器在所有输入/输出条件下生成电压的情形相比,能够实现对输出电压VOUT更稳定的可变控制。由于输出电压VOUT在NFC时由串联式稳压器25生成,因而传输/接收信号不可能不受开关噪声影响,从而能够执行稳定化的数据通信。
虽然由本发明的发明人在此完成的发明已经基于实施例进行了具体描述,但是很明显,本发明并不限定于上文,而是能够在不脱离本发明的要旨的情况下进行各种改变。
例如,已经描述了为了在开关式稳压器20的电压生成与串联式稳压器25的电压生成之间的切换而将阈值电压VTH设置为与在目标电压被设置为3.0V时的参考电压VREF1相等的电压的情形,但是本发明并不限定于该情形。例如,阈值电压VTH的大小可以根据其中可能开关式稳压器20的稳定操作的输入/输出电压差来改变。例如,在开关式稳压器20于其中进行稳定操作的输入/输出电压差的范围比上述实施例的实例的范围窄的情形中,足以将阈值电压VTH设置为更高的电压(例如,与在目标电压为4.5V时的参考电压VREF1相等的电压)。
在开关式稳压器20与串联式稳压器25之间切换的条件和在电力传输与NFC之间切换的条件并不总是必须匹配。例如,在将阈值电压VTH设置为4.5V的情形中,串联式稳压器25的输出电压VOUT生成在0.5-4.5V内执行,而开关式稳压器20的输出电压VOUT生成在5.0-18V内执行。另一方面,NFC通过范围为0.5-3.0V的输出电压VOUT来执行,而电力通过范围为3.5-18V的输出电压VOUT来传输。即使如同以上所描述的那样使稳压器切换条件和通信切换条件变为不同的,也能够实现对输出电压VOUT的稳定的可变控制。在NFC时,输出电压由串联式稳压器生成,使得同样能实现稳定化的数据通信。
虽然通过无线供电对电池94充电的情形已经在第一实施例中进行了描述,但是本发明并不限定于该情形。所传输的电力可以被用来驱动另一个装置(例如,电子电路(EC)103)。在该情形中,传输侧装置101可以接收例如用于确定NFC的必要电力大小的信息,并且在该信息的基础上确定与待传输的电力大小相应的输出电压VOUT。
虽然步降斩波型开关式稳压器已经被描述为开关式稳压器20的实例,但是本发明并不限定于该稳压器,而是可以使用别的类型的开关式稳压器。例如,可以使用绝缘型开关式稳压器。
虽然供应与开关式稳压器20的输入电压VIN1不同的电压VIN2的情形已经被描述为串联式稳压器25的供电电压,但是在串联式稳压器25的电力损耗允许时,电压VIN1可以被用作串联式稳压器25的供电电压。
虽然将误差放大器234的输出电压箝位于接地电压(0V)的实例被描述为用于将开关式稳压器20设置为启用状态的方法,但是也可以采用别的方法,只要能够停止电压转换电路24的开关。例如,待施加于误差放大器234的参考电压可以被箝位于0V。
虽然已经描述了防回流电路26由二极管D2构成的电路配置,但是也可以采用别的电路配置,只要能够防止电流回流。
在单个半导体基板上形成为供电控制IC21的功能单元的范围并不限定于图3所示的范围。例如,开关元件PW_PMOS和二极管D2可以设置于供电控制IC21之内,或者电阻器R1和R2、电容器C2等可以设置于其内。

Claims (7)

1.一种能够改变动态的输出电压的供电单元,包括:
第一节点,用于输出所述输出电压;
第一稳压器,用于通过开关方法来降低输入电压并且将所生成的电压输出到所述第一节点;
第二稳压器,用于以电压降来降低所述输入电压并且将所生成的电压输出到所述第一节点;以及
输出电压控制单元,用于根据指示所述输出电压的目标电压的第一信息来控制所述第一稳压器及第二稳压器,
其中在由所述第一信息指示的所述目标电压大于预定的阈值电压的情形中,所述输出电压控制单元控制所述第一稳压器使得所述第一节点的电压变为所述目标电压并且停止来自所述第二稳压器的电压供应,并且在所述目标电压小于所述预定的阈值电压的情形中,所述输出电压控制单元控制所述第二稳压器使得所述第一节点的电压变为所述目标电压并且停止来自所述第一稳压器的电压供应,
其中所述第二稳压器包括:
输出晶体管,用于给所述第一节点供应电流;以及
误差放大器,用于接收反馈电压和以所述第一节点的电压为基础的参考电压并且控制所述输出晶体管的电流供应使得两个输入电压之间的误差减小,并且
所述输出电压控制单元在所述指示的目标电压大于所述预定的阈值电压的情形中根据比所述目标电压小的电压来生成所述参考电压,并且在所述指示的目标电压小于所述预定的阈值电压的情形中根据所述目标电压来生成所述参考电压。
2.根据权利要求1所述的供电单元,
其中所述第一稳压器降低第一输入电压并输出所生成的电压,并且
所述第二稳压器降低比所述第一输入电压小的第二输入电压并输出所生成的电压。
3.根据权利要求2所述的供电单元,
其中所述第二稳压器经由沿正向偏置的二极管将电压输出到所述第一节点。
4.根据权利要求1所述的供电单元,
其中在所述指示的目标电压大于所述预定的阈值电压的情形中,所述输出电压控制单元根据所述预定的阈值电压来生成所述参考电压。
5.一种半导体装置,包括:
开关控制单元,生成用于控制在步降型开关式稳压器中的开关电路的通/断状态的控制信号;
串联式稳压器;以及
输出电压控制单元,用于根据指示待输出的目标电压的第一信息来控制所述开关控制单元和所述串联式稳压器,
其中在由所述第一信息指示的所述目标电压大于预定的阈值电压的情形中,所述输出电压控制单元生成所述控制信号使得所述开关式稳压器的输出电压变为所述目标电压并且停止来自所述串联式稳压器的电压供应,并且在所述目标电压小于所述预定的阈值电压的情形中,所述输出电压控制单元生成所述控制信号以控制所述串联式稳压器使得所述串联式稳压器的输出电压变为所述目标电压并且停止所述开关式稳压器的电压生成,
其中所述串联式稳压器包括:
用于驱动负载的输出晶体管;以及
误差放大器,用于接收根据所述输出电压的反馈电压和参考电压并且控制所述输出晶体管使得两个输入电压之间的误差减小,并且
所述输出电压控制单元在所述指示的目标电压大于所述预定的阈值电压的情形中根据比所述目标电压小的电压来生成所述参考电压,并且在所述指示的目标电压小于所述预定的阈值电压的情形中根据所述目标电压来生成所述参考电压。
6.根据权利要求5所述的半导体装置,
其中在所述指示的目标电压大于所述预定的阈值电压的情形中,所述输出电压控制单元根据所述预定的阈值电压来生成所述参考电压。
7.根据权利要求5所述的半导体装置,
其中所述串联式稳压器降低比所述开关式稳压器的输入电压小的电压并输出所生成的电压。
CN201310365279.9A 2012-08-22 2013-08-21 供电单元、半导体装置与无线通信装置 Expired - Fee Related CN103633841B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-183027 2012-08-22
JP2012183027A JP6004836B2 (ja) 2012-08-22 2012-08-22 電源装置、半導体装置、及びワイヤレス通信装置

Publications (2)

Publication Number Publication Date
CN103633841A CN103633841A (zh) 2014-03-12
CN103633841B true CN103633841B (zh) 2017-10-27

Family

ID=50148419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310365279.9A Expired - Fee Related CN103633841B (zh) 2012-08-22 2013-08-21 供电单元、半导体装置与无线通信装置

Country Status (4)

Country Link
US (2) US9164521B2 (zh)
JP (1) JP6004836B2 (zh)
KR (1) KR20140025280A (zh)
CN (1) CN103633841B (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9337902B2 (en) * 2008-03-17 2016-05-10 Powermat Technologies Ltd. System and method for providing wireless power transfer functionality to an electrical device
JP5483030B2 (ja) 2008-03-17 2014-05-07 パワーマット テクノロジーズ リミテッド 誘導伝送システム
US9331750B2 (en) * 2008-03-17 2016-05-03 Powermat Technologies Ltd. Wireless power receiver and host control interface thereof
US8981598B2 (en) 2008-07-02 2015-03-17 Powermat Technologies Ltd. Energy efficient inductive power transmission system and method
US11979201B2 (en) 2008-07-02 2024-05-07 Powermat Technologies Ltd. System and method for coded communication signals regulating inductive power transmissions
US10698432B2 (en) * 2013-03-13 2020-06-30 Intel Corporation Dual loop digital low drop regulator and current sharing control apparatus for distributable voltage regulators
JP6334219B2 (ja) * 2014-03-18 2018-05-30 ローム株式会社 アンテナ駆動装置
US9502756B2 (en) * 2013-09-19 2016-11-22 Rohm Co., Ltd. Antenna driving device
JP2015169949A (ja) * 2014-03-04 2015-09-28 株式会社東芝 無線通信装置
JP6248779B2 (ja) * 2014-04-18 2017-12-20 富士通セミコンダクター株式会社 電源切り替え回路、半導体集積回路、無線装置、無線システム及び電源切り替え方法
US11095216B2 (en) * 2014-05-30 2021-08-17 Qualcomm Incorporated On-chip dual-supply multi-mode CMOS regulators
JP6410182B2 (ja) * 2015-03-03 2018-10-24 パナソニックIpマネジメント株式会社 Led駆動装置、照明装置及び照明器具
CN104701999B (zh) 2015-03-27 2017-12-26 南京矽力杰半导体技术有限公司 谐振型非接触供电装置、电能发射端和控制方法
JP6556519B2 (ja) * 2015-06-23 2019-08-07 ローム株式会社 スイッチング電源回路、液晶駆動装置、液晶表示装置
JP6791722B2 (ja) * 2015-11-30 2020-11-25 ローム株式会社 電源レギュレータ
WO2019073629A1 (ja) 2017-10-12 2019-04-18 株式会社村田製作所 高周波電源装置
JP7057667B2 (ja) * 2017-12-28 2022-04-20 キヤノン株式会社 電子機器、制御方法およびプログラム
JP6592126B2 (ja) 2018-02-09 2019-10-16 華邦電子股▲ふん▼有限公司Winbond Electronics Corp. ビット線電源供給装置
JP7043139B2 (ja) * 2018-06-25 2022-03-29 エイブリック株式会社 逆流防止回路及び電源回路
KR102656703B1 (ko) * 2019-01-03 2024-04-11 삼성전자주식회사 전원 변조기 및 이를 포함하는 무선 통신 장치
CN110708096B (zh) * 2019-09-20 2024-06-14 广州小鸡快跑网络科技有限公司 智能外设以及nfc供电方法
CN111614254B (zh) * 2020-04-29 2021-12-31 荣耀终端有限公司 供电电路
KR102428555B1 (ko) * 2020-06-16 2022-08-04 어보브반도체 주식회사 전자 기기의 고속 웨이크-업을 위한 직류-직류 변환 장치 및 그 동작 방법
CN112692843A (zh) * 2020-12-15 2021-04-23 大国重器自动化设备(山东)股份有限公司 一种人工智能消毒机器人
WO2023162681A1 (ja) * 2022-02-24 2023-08-31 国立大学法人東京工業大学 合成回路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136591A (zh) * 2006-09-01 2008-03-05 株式会社理光 电源装置及其操作控制方法
CN102082449A (zh) * 2009-11-30 2011-06-01 美国博通公司 一种电池和电池电路模块

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001103740A (ja) * 1999-09-30 2001-04-13 Oki Electric Ind Co Ltd 電源回路
JP2001211640A (ja) * 2000-01-20 2001-08-03 Hitachi Ltd 電子装置と半導体集積回路及び情報処理システム
JP3541826B2 (ja) * 2001-09-21 2004-07-14 セイコーエプソン株式会社 電源回路及びその制御方法
JP4100997B2 (ja) * 2002-08-23 2008-06-11 株式会社リコー 電源供給装置及びその電源供給方法
JP3691500B2 (ja) * 2003-10-29 2005-09-07 松下電器産業株式会社 スイッチング電源装置
JP4455079B2 (ja) * 2004-01-30 2010-04-21 富士通マイクロエレクトロニクス株式会社 電源回路
US20050242791A1 (en) * 2004-04-30 2005-11-03 Intel Corporation High-speed, dual-loop push-pull voltage regulator
GB0501115D0 (en) * 2005-01-19 2005-02-23 Innovision Res & Tech Plc Combined power coupling and rf communication apparatus
JP2007288974A (ja) * 2006-04-19 2007-11-01 Matsushita Electric Ind Co Ltd 電源装置及び電源供給方法
JP5090202B2 (ja) * 2008-02-19 2012-12-05 株式会社リコー 電源回路
JP2010011650A (ja) * 2008-06-27 2010-01-14 Seiko Epson Corp 送電制御装置、送電装置、電子機器、及び送電制御方法
US7795915B2 (en) * 2008-08-04 2010-09-14 Chil Semiconductor Corporation Multi-level signaling
US8427300B2 (en) * 2009-02-20 2013-04-23 Redwood Systems, Inc. Transmission of power and data with frequency modulation
US8072092B2 (en) * 2009-07-24 2011-12-06 C.E. Niehoff & Co. System and method for sequentional electrical power delivery from two generators in a vehicle electrical system
US8410637B2 (en) * 2009-11-30 2013-04-02 Broadcom Corporation Wireless power system with selectable control channel protocols
JP2011250166A (ja) * 2010-05-27 2011-12-08 Panasonic Corp 送信回路、通信機器、及び、送信方法
JP2012050208A (ja) * 2010-08-25 2012-03-08 Canon Inc 電力供給回路及び該回路を備えた機器
JP2012147648A (ja) * 2011-01-14 2012-08-02 Sony Corp 電源制御装置および電源制御方法
US9367072B2 (en) * 2012-11-08 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. AC-DC converters and method with soft-start scheme for AC-DC converters

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136591A (zh) * 2006-09-01 2008-03-05 株式会社理光 电源装置及其操作控制方法
CN102082449A (zh) * 2009-11-30 2011-06-01 美国博通公司 一种电池和电池电路模块

Also Published As

Publication number Publication date
US20160111891A1 (en) 2016-04-21
US20140057575A1 (en) 2014-02-27
US9164521B2 (en) 2015-10-20
CN103633841A (zh) 2014-03-12
JP2014042389A (ja) 2014-03-06
KR20140025280A (ko) 2014-03-04
JP6004836B2 (ja) 2016-10-12

Similar Documents

Publication Publication Date Title
CN103633841B (zh) 供电单元、半导体装置与无线通信装置
US9825485B2 (en) Wireless power transmitter and wireless power receiver
CN109874374B (zh) 压控电荷泵和电池充电器
US9997946B2 (en) Battery charging system with feedback control
US9893627B1 (en) Current controlled resonant tank circuit
US20160268834A1 (en) Wireless power receiver with dynamically configurable power path
US8508208B2 (en) Buck-boost regulator with converter bypass function
US9214824B2 (en) Charging control circuit
CN112803610B (zh) 待充电设备、系统以及无线充电方法、存储介质
US20180138735A1 (en) Battery charger power control
JP2015012761A (ja) 受電装置及び非接触給電システム
DE112020007356T5 (de) Simo-dc-dc-wandler
US10673270B2 (en) Low-heat wireless power receiving device and method
US9531270B2 (en) Power management circuit and method
CN203205946U (zh) 一种充电管理电路和系统
CN106549471B (zh) 功率管理电路
EP3145050A1 (en) Wireless power receiver with dynamically configurable power path
US20190341797A1 (en) Inductive Power Transfer System
JPH1014127A (ja) バッテリーで電力供給される装置用のサプライ電圧レギュレーターとして自己整列する多機能バッテリー充電器
CN103199593A (zh) 一种充电管理电路和系统
US20080258687A1 (en) High Efficiency PWM Switching Mode with High Accuracy Linear Mode Li-Ion Battery Charger
US20110074359A1 (en) Self contained power source
US20240072574A1 (en) Wireless charging method and apparatus, and storage medium
US20130241660A1 (en) Buck Up Power Converter
CN203491731U (zh) 充电控制电路及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Tokyo, Japan

Applicant after: Renesas Electronics Corporation

Address before: Kanagawa, Japan

Applicant before: Renesas Electronics Corporation

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171027

Termination date: 20190821

CF01 Termination of patent right due to non-payment of annual fee