CN103493378B - 数据处理系统 - Google Patents

数据处理系统 Download PDF

Info

Publication number
CN103493378B
CN103493378B CN201280019587.XA CN201280019587A CN103493378B CN 103493378 B CN103493378 B CN 103493378B CN 201280019587 A CN201280019587 A CN 201280019587A CN 103493378 B CN103493378 B CN 103493378B
Authority
CN
China
Prior art keywords
data
range
circuit
change
segmentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280019587.XA
Other languages
English (en)
Other versions
CN103493378A (zh
Inventor
木村翔
矶佳实
冈村雅
冈村雅一
西本匡志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Publication of CN103493378A publication Critical patent/CN103493378A/zh
Application granted granted Critical
Publication of CN103493378B publication Critical patent/CN103493378B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • H03M1/181Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedback mode, i.e. by determining the range to be selected from one or more previous digital output values
    • H03M1/183Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedback mode, i.e. by determining the range to be selected from one or more previous digital output values the feedback signal controlling the gain of an amplifier or attenuator preceding the analogue/digital converter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • H03M1/181Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedback mode, i.e. by determining the range to be selected from one or more previous digital output values
    • H03M1/182Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedback mode, i.e. by determining the range to be selected from one or more previous digital output values the feedback signal controlling the reference levels of the analogue/digital converter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/20Increasing resolution using an n bit system to obtain n + m bits

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

本发明提供一种数据处理系统,能够提高分辨率,对转换量程的切换的跟踪性良好且转换误差小。得到对AD转换电路的分辨率扩展n(n为正整数)位的AD转换结果的数据处理系统,将AD转换电路的输入量程分割成m(2n≤m)部分,对被测定模拟信号判断基于AD转换电路而得到的AD转换结果属于哪一分割量程,将使判断出的分割量程的范围成为AD转换电路的输入量程的电压范围的放大器偏移提供给可编程增益放大器而放大,将放大后的信号在AD转换电路中进行转换,对该转换结果进行低位侧的位扩展和基于可编程增益放大器的实测增益的除法运算,并使其结果与对应的数字偏移相加而得到将位精度扩展n位的AD转换结果。

Description

数据处理系统
技术领域
本发明涉及具有AD(Analog to Digital)转换功能的数据处理系统,尤其涉及用于得到比AD转换电路的位精度更高的位精度(分辨率)的技术。
背景技术
在专利文献1中记载有如下技术:施加振幅与AD转换电路的最小分辨率大致相等的斜坡电压,进行多次AD转换动作,并通过具有比AD转换电路的位数更大位数的运算电路将各数字输出平均化,由此实现高精度AD转换。
在专利文献2中,通过差动放大器获取输入模拟信号和与转换量程相应的基准信号的差分,通过AD转换电路将其转换成数字信号,并通过接收该数字信号的控制装置根据与该差分相应的数字信号来控制基准信号且根据数字信号和转换量程来生成输出数字信号。与实际的AD转换电路的分辨率相比能够得到数倍转换量程的分辨率,并通过转换量程的设定方式得到需要的分辨率。
现有技术文献
专利文献
专利文献1:日本特开平5-14201号公报
专利文献2:日本特开平6-334523号公报
发明内容
本发明人就在AD转换电路的转换量程的整个区域内提高其分辨率进行了研究。在专利文献1中难以实现该目的。在专利文献2中,在AD转换电路中将转换量程的基准信号与被测定用的输入信号的差 分放大,由此提高转换位精度,但考虑到为了根据被测定信号对转换量程进行最适切换,必须对AD转换结果是否脱离转换量程进行判断来进行基准信号的切换,从而导致针对转换量程的切换的跟踪性较差,另外,也没有研究切换转换量程时的转换量程间的转换数据的连续性,而且,也没有明示差动放大电路的放大率与被放大的分辨率的关系,从而认为还需要进行各种其他研究。
本发明的目的在于提供一种数据处理系统,能够在AD转换电路的转换量程的整个区域内提高其分辨率,并且对转换量程的切换的跟踪性良好,且其转换误差小。
本发明的上述目的以及其他目的和新型特征可以根据本说明书的记载和添加的附图得以明确。
简单说明本申请所公开的发明中具有代表性方案的概要,如下所述。
即,相对于AD转换电路的分辨率得到将位精度扩展n(n为正整数)位的AD转换结果的数据处理系统,将AD转换电路的输入量程分割成m(2n≤m)部分,运算使各分割量程的连接点的电压在相邻的分割量程中彼此相同的数字偏移,对被测定模拟信号判断基于AD转换电路而得到的AD转换结果属于哪一分割量程,将使判断出的分割量程的范围成为AD转换电路的输入量程的电压范围的放大器偏移提供给可编程增益放大器而放大,将放大后的信号在AD转换电路中进行转换,对其转换结果进行低位侧的n位扩展并对扩展后的值进行基于上述可编程增益放大器的实测增益的除法运算,使其结果与对应的分割量程的数字偏移相加而得到将位精度扩展n位的AD转换结果。
发明效果
简单说明根据本申请所公开的发明中具有代表性的方案而得到的效果,如下所述。
即,能够在AD转换电路的转换量程的整个区域内提高其分辨率,并且对转换量程的切换的跟踪性良好且能够减小其转换误差。
附图说明
图1是例示本发明的第1实施方式的数据处理系统的框图。
图2是整体地例示本实施方式的AD转换原理的动作说明图。
图3是表示放大器偏移的设定例的说明图。
图4是着眼于分割量程的区间2而示出本实施方式的上述AD转换原理的说明图。
图5是着眼于分割量程的区间3而示出本实施方式的上述AD转换原理的说明图。
图6是同样地着眼于分割量程的区间3而示出本实施方式的上述AD转换原理并且示出在可编程增益放大器保持放大动作的直线性的电压范围内使区间交错的情况的说明图。
图7是同样地着眼于分割量程的区间2而示出本实施方式的上述AD转换原理并且示出在可编程增益放大器保持放大动作的直线性的电压范围内使区间交错的情况的说明图。
图8是整体地例示基于本实施方式的AD转换原理而进行的转换处理程序的流程图。
图9是例示数字偏移数据DFS2的生成处理的流程图。
图10是例示已知的数字偏移数据DFS2的高位侧数字偏移数据DFS3的生成处理的流程图。
图11是例示已知的数字偏移数据DFS2的低位侧数字偏移数据DFS1的生成处理的流程图。
图12是例示输入区间的判断处理RT3及上述AD转换处理RT4的详细情况的流程图。
图13是例示增益修正及数字偏移相加处理RT5的详细情况的流程图。
图14是例示本实施方式的AD转换动作的时序图。
图15是例示本发明的第2实施方式的数据处理系统的框图。
图16是例示被测定模拟信号的采样保持动作的动作说明图。
图17是例示使采样保持电路201保持的信息通过PGA102而在ADC113中进行AD转换的动作的动作说明图。
图18是例示增益修正及数字偏移相加处理RT5中的动作的动作说明图。
图19是例示在被测定模拟信号的中央值接近AD转换电路的输入量程的中央值时将上述AD转换电路的输入量程的分割数设定成偶数而进行AD转换处理的情况的动作说明图。
图20是以在被测定模拟信号的中央值接近AD转换电路的输入量程的中央值时将上述AD转换电路的输入量程的分割数设定成奇数例如分割成五部分而进行AD转换处理的方式进行控制时的第3实施方式的说明图。
图21是例示第4实施方式的数据处理系统的框图。
图22是例示DA转换电路集成为一个的情况下的针对PGA的增益校正的概要的说明图。
图23是例示图22的处理RT10和RT11的详细情况的动作说明图。
图24是例示处理RT12的详细情况的动作说明图。
图25是例示处理RT13及RT14的详细情况的动作说明图。
图26是例示处理RT15的详细情况的动作说明图。
图27是例示计算区间3的数字偏移时的流程中的A及B部分的详细情况的动作说明图。
图28是例示计算区间3的数字偏移时的流程中的C部分的详细情况的动作说明图。
具体实施方式
1.实施方式的概要
首先,对本申请所公开的发明中具有代表性的实施方式说明概要。在对代表性的实施方式进行的概要说明中,标以括号而参照的附图中的附图标记只不过是例示其包含在标以括号的构成要素的概念 中。
〔1〕<按ADC的分割输入量程进行输入的放大、AD转换、位扩展>
本发明的代表性实施方式的数据处理系统100、200、300为得到对AD转换电路的分辨率进行了n(n为正整数)位扩展的AD转换结果的系统,具有AD转换电路113、可编程增益放大器102、以及控制电路110、110A、110B。上述控制电路将上述AD转换电路的输入量程分割成m(2n≤m)部分,准备使各分割量程的连接点的电压在相邻的分割量程中彼此相同的数字偏移,对被测定模拟信号判断基于上述AD转换电路而得到的AD转换结果属于哪一分割量程,将使判断出的分割量程的电压范围成为上述AD转换电路的输入量程的电压范围的放大器偏移和增益的指定提供给上述可编程增益放大器而放大,将放大后的信号在上述AD转换电路中进行转换,对该转换结果进行n位扩展和基于上述可编程增益放大器的实测增益的值的除法运算,并和与此对应的分割量程的数字偏移相加而得到将位精度扩展n位的AD转换结果。
由此,根据对AD转换电路的输入量程的分割数m,能够在满足2n≤m的关系的范围内最终得到将位精度扩展n位的AD转换结果。此时,由于将用于使判断出的分割量程的范围成为AD转换电路的输入量程的电压范围的放大器偏移和增益的指定提供给可编程增益放大器而进行放大,所以可编程增益放大器以增益2n或在其附近进行放大。此时,按AD转换电路的分割输入量程进行输入的放大、AD转换、以及n位扩展,由此能够对可编程增益放大器的增益误差进行修正。而且,提供分割量程的最小值的数字偏移和在其低位相邻的分割量程的最大值相同。因此,能够在AD转换电路的转换量程的整个区域内相对于高分辨率的AD转换结果实现转换误差小的高转换精度。而且,即使在选择转换量程时也不通过可编程增益放大器进行放大而只要在AD转换电路中进行一次AD转换来判断即可,因此,在切换转换量程时也能够得到良好的跟踪性。
〔2〕<增益误差的获取>
在项1的数据处理系统中,从上述控制电路提供给上述可编程增益放大器的增益为目的增益2n,基于上述控制电路而进行的n位扩展是对AD转换结果的低位进行的0扩展。
由此,能够容易地使可编程增益放大器的增益误差抵消。
〔3〕<实测增益的获取>
在项2的数据处理系统中,上述控制电路对上述可编程增益放大器设定上述2n来作为目的增益,根据将基于设定后的可编程增益放大器而得到的模拟信号的放大输出在AD转换电路中转换后的数字值、与此时向可编程增益放大器供给的模拟信号的生成用的数字值之差而获取相对于目的增益的实测增益。
由此,能够容易地获取用于使基于可编程增益放大器的放大误差抵消的可编程增益放大器的实测增益。
〔4〕<使相邻的分割量程的边界部分交错>
在项1的数据处理系统中,上述控制电路以使相邻的分割量程的边界部分交错的方式设定上述放大器偏移。
由此,能够避免使用对按照可编程增益放大器的放大特性而难以保证线性度的最小及最大输入附近的输入的放大功能,在该方面能够有助于降低AD转换误差。
〔5〕<所属的分割量程的判断>
在项1的数据处理系统中,上述控制电路根据对上述AD转换电路的各分割量程的边界电压的输入电压的AD转换数据来判断被测定电压所属的输入量程。
由此,能够容易地判断出被测定信号所属的分割量程。
〔6〕<采样保持>
在项1的数据处理系统中,还具有输入被测定模拟信号的采样保持电路201,上述控制电路110A、110B使用被上述采样保持电路采样的相同的被测定模拟信号而进行分割量程的判断、和使判断出的分割量程的电压范围成为上述AD转换电路的输入量程的电压范围的AD 转换。
由此,由于能够对相同的被测定模拟信号进行分割量程的判断和利用了该判断结果的上述AD转换,所以能够将发生误用不同的分割量程而进行AD转换的事态防患于未然。
〔7〕<使输入量程的分割数为奇数>
在项1的数据处理系统中,上述控制电路在被测定模拟信号的中央值接近AD转换电路的输入量程的中央值时将上述AD转换电路的输入量程的分割数设定成奇数而进行AD转换用的上述处理。
由此,能够抑制被测定模拟信号的中央值处于分割量程的边界附近。若其处于分割量程的边界附近,则必须在每当被测定模拟信号越过该中央值而变化时进行改变分割量程的处理,AD转换处理效率降低。
〔8〕<使放大器偏移生成用和放大器输入信号生成用的DAC分体化>
在项1的数据处理系统中,分别具有向上述可编程增益放大器输出上述放大器偏移的DA转换电路115、和选择性地向上述可编程增益放大器输出设定用模拟信号的DA转换电路114。
由此,由于能够并行地进行放大器偏移的设定和设定用模拟信号的生成,所以有助于提高获取数字偏移时的处理效率。
〔9〕<使放大器偏移生成用和放大器输入信号生成用的DAC共用化>
在项1的数据处理系统中,具有:选择性地取代上述被测定模拟信号而对设定用模拟信号进行采样保持并将其输出到上述可编程增益放大器的采样保持电路201;兼用于放大器偏移的生成和设定用模拟信号的生成的DA转换电路(图21的114);和对将在上述DA转换电路中生成的放大器偏移向上述可编程增益放大器输出的路径或将在上述DA转换电路中生成的设定用模拟信号向上述采样保持电路供给的路径进行选择的选择电路220。
由此,必须串行地进行放大器偏移的设定和设定用模拟信号的生 成,但由于DA转换电路的兼用而能够有助于缩小电路规模。
〔10〕<按ADC的分割输入量程进行输入的放大、AD转换、位扩展、由实测增益进行除法运算>
本发明的其他实施方式的数据处理系统100、200、300具有AD转换电路113、可编程增益放大器102、以及控制电路110、110A、110B。上述控制电路判断被测定模拟信号属于将上述AD转换电路的输入量程分割成m(正整数)部分后的哪一分割量程,对上述可编程增益放大器设定用于将判断出的分割量程的电压范围放大至上述AD转换电路的输入量程的电压范围的放大器偏移和目的增益2n(n为正整数,2n≤m),将基于设定后的可编程增益放大器而得到的上述被测定模拟信号的放大信号在上述AD转换电路中进行转换,对转换后的数据进行n位的位扩展并对扩展后的数据进行基于上述可编程增益放大器的实测增益的除法运算,并使除法运算结果和与该分割量程对应的分割量程的数字偏移数据相加,从而获取将位精度扩展n位的AD转换结果。
由此,根据对AD转换电路的输入量程的分割数m,能够在满足2n≤m的关系的范围内最终得到将位精度扩展n位的AD转换结果。此时,由于将用于使判断出的分割量程的范围成为AD转换电路的输入量程的电压范围的放大器偏移和增益的指定提供给可编程增益放大器而进行放大,所以可编程增益放大器以增益2n或其附近进行放大。此时,按AD转换电路的分割输入量程进行输入的放大、AD转换、n位扩展、以及基于可编程增益放大器的实测增益的除法运算,由此能够对可编程增益放大器的增益误差进行修正。因此,能够在AD转换电路的转换量程的整个区域内使可编程增益放大器的增益误差抵消且得到将位精度扩展n位的AD转换结果。而且,即使在选择转换量程时也不通过可编程增益放大器进行放大而只要在AD转换电路中进行一次AD转换来判断即可,因此,在切换转换量程时也能够得到良好的跟踪性。
〔11〕<作为基准的区间的数字偏移数据的生成>
项10的数据处理系统具有第1DA转换电路114及第2DA转换电路115,上述控制电路进行第1处理至第5处理的控制。第1处理为如下处理,在上述第1DA转换电路中生成特定的上述分割量程的任意电压,将其在上述AD转换电路中进行转换而得到第1数据。第2处理为如下处理,在上述第1数据的低位侧根据该分割量程进行n位的位扩展而得到第2数据。第3处理为如下处理,在上述第1DA转换电路中生成上述特定的分割量程的任意电压,并且在上述第2DA转换电路中生成用于将该分割量程的电压范围放大至上述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的上述可编程增益放大器将在上述第1DA转换电路中生成的任意电压放大,并将放大后的信号在上述AD转换电路中进行转换而得到第3数据。第4处理为如下处理,将上述第3数据在低位侧扩展n位并使扩展后的数据由上述实测增益进行除法运算而得到第4数据。第5处理为如下处理,从上述第2数据减去第4数据而得到该特定的分割量程的数字偏移数据。
由此,在特定的上述分割量程的电压范围内,将对通过可编程增益放大器而放大的输入量程的电压范围进行AD转换后的结果扩展n位并由上述实测增益进行除法运算后的值和上述数字偏移数据相加,所得到的值与不经由可编程增益放大器而直接进行AD转换后的值实质一致。
〔12〕<数字偏移数据已知区间的高位侧数字偏移数据的生成>
在项11的数据处理系统中,在生成上述特定的分割量程的数字偏移数据后,在生成该分割量程的高位侧的分割量程的数字偏移数据时,上述控制电路进行第6处理至第9处理。第6处理为如下处理,在上述第1DA转换电路中生成上述特定的分割量程的最大电压,并且在上述第2DA转换电路中生成用于将该分割量程的电压范围放大至上述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的上述可编程增益放大器将在上述第1DA转换电路中生成的最大电压放大,并将放大后的信号在上述 AD转换电路中进行转换而得到第6数据。第7处理为如下处理,将上述第6数据在低位侧扩展n位并使扩展后的数据由上述实测增益进行除法运算,使该结果与上述特定的分割量程的数字偏移数据相加而得到第7数据。第8处理为如下处理,在上述第1DA转换电路中生成上述高位侧的分割量程的最小电压,并且在上述第2DA转换电路中生成用于将该分割量程的电压范围放大至上述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的上述可编程增益放大器将在上述第1DA转换电路中生成的最小电压放大,并将放大后的信号在上述AD转换电路中进行转换而得到第8数据。第9处理为如下处理,将上述第8数据在低位侧扩展n位并使扩展后的数据由上述实测增益进行除法运算,从上述第7数据减去该结果而得到上述高位侧分割量程的数字偏移数据。
由此,由于使用已知的数字偏移数据进行运算从而使求出已知的数字偏移数据的特定分割量程和与其相邻的高位侧分割量程的连接点的电压在双方的分割量程中一致,所以能够保证特定分割量程和与其相邻的高位侧分割量程的连续性。而且在该分割量程的电压范围内,将对通过可编程增益放大器而放大的输入量程的电压范围进行AD转换后的结果扩展n位并由上述实测增益进行除法运算后的值和上述数字偏移数据相加,所得到的值与不经由可编程增益放大器而直接进行AD转换后的值实质一致。尤其是,由于对在各个分割量程进行AD转换后的值进行n位的位扩展和对该结果由实测增益进行除法运算,所以能够排除可编程增益放大器的增益误差的影响,从而能够高精度地保证其连续性。
〔13〕<数字偏移数据已知区间的低位侧数字偏移数据的生成>
在项11的数据处理系统中,在生成上述特定的分割量程的数字偏移数据后,在生成该分割量程的低位侧的分割量程的数字偏移数据时,上述控制电路进行第10处理至第13处理。第10处理为如下处理,在上述第1DA转换电路中生成上述特定的分割量程的最小电压,并且在上述第2DA转换电路中生成用于将该分割量程的电压范围放大至 上述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的上述可编程增益放大器将在上述第1DA转换电路中生成的最小电压放大,并将放大后的信号在上述AD转换电路中进行转换而得到第10数据。第11处理为如下处理,将上述第10数据在低位侧扩展n位并使扩展后的数据由上述实测增益进行除法运算,使该结果与特定的分割量程的数字偏移数据相加而得到第11数据。第12处理为如下处理,在上述第1DA转换电路中生成上述低位侧的分割量程的最大电压,并且在上述第2DA转换电路中生成用于将该分割量程的电压范围放大至上述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的上述可编程增益放大器将在上述第1DA转换电路中生成的最大电压放大,并将放大后的信号在上述AD转换电路中进行转换而得到第12数据。第13处理为如下处理,将上述第12数据在低位侧扩展n位并使扩展后的数据由上述实测增益进行除法运算,从上述第11数据减去该结果而得到上述低位侧分割量程的数字偏移数据。
由此,由于使用已知的基准数字偏移数据进行运算从而使求出已知的数字偏移数据的特定分割量程和与其相邻的低位侧分割量程的连接点的电压在双方的分割量程内一致,所以能够保证特定分割量程和与其相邻的低位侧分割量程的连续性。而且在该分割量程的电压范围内,将对通过可编程增益放大器而放大的输入量程的电压范围进行AD转换后的结果扩展n位并由上述实测增益进行除法运算后的值和上述数字偏移数据相加,所得到的值与不经由可编程增益放大器而直接进行AD转换后的值实质一致。尤其是,由于对在各个分割量程进行AD转换后的值进行n位的位扩展和对该结果由实测增益进行除法运算,所以能够排除可编程增益放大器的增益误差的影响,从而能够高精度地保证其连续性。
〔14〕<使相邻的分割量程的边界部分交错>
在项10的数据处理系统中,上述控制电路以使相邻的分割量程的边界部分交错的方式设定上述放大器偏移。
由此,能够避免使用对根据可编程增益放大器的放大特性而难以保证线性度的最小及最大输入附近的输入的放大功能,在该方面能够有助于降低AD转换误差。
〔15〕<采样保持>
在项10的数据处理系统中,还具有输入被测定模拟信号的采样保持电路201,上述控制电路110A、110B使用被上述采样保持电路采样的相同的被测定模拟信号来进行分割量程的判断、和使判断出的分割量程的电压范围成为上述AD转换电路的输入量程的电压范围的AD转换。
由此,由于能够对相同的被测定模拟信号进行分割量程的判断和使判断出的分割量程的电压范围成为上述AD转换电路的输入量程的电压范围的AD转换,所以能够将发生误用不同的分割量程而进行AD转换的事态防患于未然。
〔16〕<使输入量程的分割数为奇数>
在项10的数据处理系统中,上述控制电路在被测定模拟信号的中央值接近AD转换电路的输入量程的中央值时将上述AD转换电路的输入量程的分割数设定成奇数而进行AD转换用的上述处理。
由此,能够抑制被测定模拟信号的中央值处于分割量程的边界附近。若其处于分割量程的边界附近,则必须在每当被测定模拟信号越过该中央值而变化时进行改变分割量程的处理,AD转换处理效率降低。
〔17〕<使放大器偏移生成用和放大器输入信号生成用的DAC分体化>
在项10的数据处理系统中,分别具有向上述可编程增益放大器输出上述放大器偏移的DA转换电路115、和选择性地向上述可编程增益放大器输出设定用模拟信号的DA转换电路114。
由此,由于能够并行地进行放大器偏移的设定和设定用模拟信号的生成,所以能够有助于提高获取数字偏移时的处理效率。
〔18〕<使放大器偏移生成用和放大器输入信号生成用的DAC 共用化>
在项10的数据处理系统中,具有:选择性地取代上述被测定模拟信号而对设定用模拟信号进行采样保持并将其输出到上述可编程增益放大器的采样保持电路201;兼用于放大器偏移的生成和设定用模拟信号的生成的DA转换电路(图21的114);和对将在上述DA转换电路中生成的放大器偏移向上述可编程增益放大器输出的路径或将在上述DA转换电路中生成的设定用模拟信号向上述采样保持电路供给的路径进行选择的选择电路。
由此,必须串行地进行放大器偏移的设定和设定用模拟信号的生成,但由于DA转换电路的兼用而能够有助于缩小电路规模。
〔19〕<按ADC的分割输入量程进行输入的放大、AD转换、位扩展、由实测增益进行除法运算>
本发明的另一其他实施方式的数据处理系统100、200、300具有:AD转换电路113、可编程增益放大器102、DA转换电路114、115、和控制电路110、110A、110B,该控制电路进行上述可编程增益放大器的增益校正处理、数字偏移数据的生成处理、对被测定模拟信号的输入区间的判断处理、以及使对被测定模拟信号判断出的区间成为上述AD转换电路的输入量程的电压范围的扩展AD转换处理。上述输入区间的判断处理为如下处理:判断基于上述AD转换电路对被测定模拟信号的转换结果属于将该AD转换电路的输入量程的电压范围分割成m(正整数)部分后的哪一分割量程。上述扩展AD转换处理对上述可编程增益放大器设定将判断出的分割量程的电压范围放大至上述AD转换电路的输入量程的电压范围的放大器偏移和目的增益2n(n为正整数,2n≤m),将基于设定后的可编程增益放大器而得到的上述被测定模拟信号的放大信号在上述AD转换电路中进行转换,对转换后的数字数据进行n位的位扩展并对扩展后的数据进行基于可编程增益放大器的实测增益的除法运算,使除法运算后的数据和与上述判断出的分割量程的最小值相应的数字偏移数据相加,从而得到将位精度扩展n位的AD转换结果。
由此,根据对AD转换电路的输入量程的分割数m,能够在满足2n≤m的关系的范围内最终得到将位精度扩展n位的AD转换结果。此时,由于将用于使判断出的分割量程的范围成为AD转换电路的输入量程的电压范围的放大器偏移和增益的指定提供给可编程增益放大器而进行放大,所以可编程增益放大器以增益2n或其附近进行放大。此时,按AD转换电路的分割输入量程进行输入的放大、AD转换、n位扩展、以及基于可编程增益放大器的实测增益的除法运算,由此能够对可编程增益放大器的增益误差进行修正。而且,提供分割量程的最小值的数字偏移和在其低位相邻的分割量程的最大值相同。因此,能够在AD转换电路的转换量程的整个区域内相对于高分辨率的AD转换结果实现转换误差小的高转换精度。而且,即使在选择转换量程时也不通过可编程增益放大器进行放大而只要在AD转换电路中进行一次AD转换来判断即可,因此,在切换转换量程时也能够得到良好的跟踪性。
〔20〕<作为基准的区间的数字偏移数据的生成>
项19的数据处理系统作为上述DA转换电路而具有第1DA转换电路114及第2DA转换电路115。上述数字偏移数据的生成处理包含第1处理至第5处理。第1处理为如下处理,在上述第1DA转换电路中生成特定的上述分割量程的任意电压,将其在上述AD转换电路中进行转换而得到第1数据。第2处理为如下处理,在上述第1数据的低位侧进行n位的位扩展而得到第2数据。第3处理为如下处理,在上述第1DA转换电路中生成上述特定的分割量程的任意电压,并且在上述第2DA转换电路中生成用于将该分割量程的电压范围放大至上述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的上述可编程增益放大器将在上述第1DA转换电路中生成的任意电压放大,并将放大后的信号在上述AD转换电路中进行转换而得到第3数据。第4处理为如下处理,将上述第3数据在低位侧扩展n位并使扩展后的数据由上述实测增益进行除法运算而得到第4数据。第5处理为如下处理,从上述第2数据减去第4数据而得到该特 定的分割量程的数字偏移数据。
由此,在特定的上述分割量程的电压范围内,将对通过可编程增益放大器而放大的输入量程的电压范围进行AD转换后的结果扩展n位并由上述实测增益进行除法运算后的值和上述数字偏移数据相加,所得到的值与不经由可编程增益放大器而直接进行AD转换后的值实质一致。
〔21〕<数字偏移数据已知区间的高位侧数字偏移数据的生成>
在项20的数据处理系统中,为了在生成上述特定的分割量程的数字偏移数据后生成该分割量程的高位侧的分割量程的数字偏移数据,上述数字偏移数据的生成处理包含第6处理至第9处理。第6处理为如下处理,在上述第1DA转换电路中生成上述特定的分割量程的最大电压,并且在上述第2DA转换电路中生成用于将该分割量程的电压范围放大至上述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的上述可编程增益放大器将在上述第1DA转换电路中生成的最大电压放大,并将放大后的信号在上述AD转换电路中进行转换而得到第6数据。第7处理为如下处理,将上述第6数据在低位侧扩展n位并使扩展后的数据由上述实测增益进行除法运算,使该结果与上述基准数字偏移数据相加而得到第7数据。第8处理为如下处理,在上述第1DA转换电路中生成上述高位侧的分割量程的最小电压,并且在上述第2DA转换电路中生成用于将该分割量程的电压范围放大至上述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的上述可编程增益放大器将在上述第1DA转换电路中生成的最小电压放大,并将放大后的信号在上述AD转换电路中进行转换而得到第8数据。第9处理为如下处理,将上述第8数据在低位侧扩展n位并使扩展后的数据由上述实测增益进行除法运算,从上述第7数据减去该结果而得到上述高位侧分割量程的数字偏移数据。
由此,由于使用已知的数字偏移数据进行运算从而使求出已知的数字偏移数据的特定分割量程和与其相邻的高位侧分割量程的连接 点的电压在双方的分割量程中一致,所以能够保证特定分割量程和与其相邻的高位侧分割量程的连续性。而且在该分割量程的电压范围内,将对通过可编程增益放大器而放大的输入量程的电压范围进行AD转换后的结果扩展n位并由上述实测增益进行除法运算后的值和上述数字偏移数据相加,所得到的值与不经由可编程增益放大器而直接进行AD转换后的值实质一致。尤其是,由于对在各个分割量程进行AD转换后的值进行n位的位扩展和对该结果由实测增益进行除法运算,所以能够从数字偏移数据排除可编程增益放大器的增益误差的影响,从而能够高精度地保证其连续性。
〔22〕<数字偏移数据已知区间的低位侧数字偏移数据的生成>
在项20的数据处理系统中,为了在生成上述特定的分割量程的数字偏移数据后生成该分割量程的低位侧的分割量程的数字偏移数据,上述数字偏移数据的生成处理包含第10处理至第13处理。第10处理为如下处理,在上述第1DA转换电路中生成上述特定的分割量程的最小电压,并且在上述第2DA转换电路中生成用于将该分割量程的电压范围放大至上述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的上述可编程增益放大器将在上述第1DA转换电路中生成的最小电压放大,并将放大后的信号在上述AD转换电路中进行转换而得到第10数据。第11处理为如下处理,将上述第10数据在低位侧扩展n位并使扩展后的数据由上述实测增益进行除法运算,使该结果与上述基准数字偏移数据相加而得到第11数据。第12处理为如下处理,在上述第1DA转换电路中生成上述低位侧的分割量程的最大电压,并且在上述第2DA转换电路中生成用于将该分割量程的电压范围放大至上述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的上述可编程增益放大器将在上述第1DA转换电路中生成的最大电压放大,并将放大后的信号在上述AD转换电路中进行转换而得到第12数据。第13处理为如下处理,将上述第12数据在低位侧扩展n位并使扩展后的数据由上述实测增益进行除法运算,从上述第11数据减去 该结果而得到上述低位侧分割量程的数字偏移数据。
由此,由于使用已知的基准数字偏移数据进行运算从而使求出已知的数字偏移数据的特定分割量程和与其相邻的低位侧分割量程的连接点的电压在双方的分割量程内一致,所以能够保证特定分割量程和与其相邻的低位侧分割量程的连续性。而且在该分割量程的电压范围内,将对通过可编程增益放大器而放大的输入量程的电压范围进行AD转换后的结果扩展n位并由上述实测增益进行除法运算后的值和上述数字偏移数据相加,所得到的值与不经由可编程增益放大器而直接进行AD转换后的值实质一致。尤其是,由于对在各个分割量程进行AD转换后的值进行n位的位扩展和对该结果由实测增益进行除法运算,所以能够从数字偏移数据排除可编程增益放大器的增益误差的影响,从而能够高精度地保证其连续性。
〔23〕<使相邻的分割量程的边界部分交错>
在项19的数据处理系统中的上述扩展AD转换处理中,在对上述可编程增益放大器设定将判断出的分割量程的电压范围放大至上述AD转换电路的输入量程的电压范围的放大器偏移时,以使相邻的分割量程的边界部分交错的方式设定上述放大器偏移。
由此,能够避免使用对根据可编程增益放大器的放大特性而难以保证线性度的最小及最大输入附近的输入的放大功能,在该方面能够有助于降低AD转换误差。
〔24〕<实测增益的获取>
在项19的数据处理系统中,上述增益校正处理包含如下处理:根据将从上述第1DA转换电路输出的模拟信号通过上述可编程增益放大器放大并在上述AD转换电路中进行转换而得到的数据、和在不将上述模拟信号通过上述可编程增益放大器放大的情况下在上述AD转换电路中进行转换而得到的数据,运算并得到上述放大电路的增益。
由此,能够容易地得到用于使基于可编程增益放大器的放大误差抵消的实测增益。
〔25〕<所属的分割量程的判断>
在项19的数据处理系统中,上述区间判断处理包含如下处理:根据对AD转换电路的各分割量程的边界电压的输入电压的AD转换数据来判断被测定电压所属的输入量程。
由此,能够容易地判断出被测定信号所属的分割量程。
2.实施方式的详细情况
进一步详细说明实施方式。
《实施方式1》
图1例示出本发明的第1实施方式的数据处理系统。虽没有特别限制,但该图所示的数据处理系统100构成为通过互补型MOS集成电路制造技术等而形成在单晶硅等的一个半导体衬底上的片上系统(System on a Chip)的半导体器件。数据处理系统100具有作为代表而示出的微型计算机(MCU)101、可编程增益放大器(PGA)102、以及选择器(SW1)103。虽然没有特别图示,但毫无疑问也可以集成有存储器和加速器等其他电路。
虽没有特别限制,但微型计算机101具有:作为控制电路而执行程序的中央处理装置(CPU)110;能够电重写地存储程序和数据的闪存器等非易失性存储器(FLASH)111;在CPU110的工作区域等中利用的RAM112;将模拟信号转换成数字信号的AD转换电路(ADC)113;将数字信号转换成模拟信号的第1DA转换电路(DAC1)114;将数字信号转换成模拟信号的第2DA转换电路(DAC2)115;数字输入输出口116;模拟输入口117;计时器和串行接口等其他周边电路模块(PRPH)118;以及选择器(SW2)119。
CPU110通过信号120而进行针对可编程增益放大器102的增益的设定。第2DA转换电路115对从CPU110供给的放大器偏移数据进行DA转换而向可编程增益放大器102供给放大器偏移121。第2DA转换电路115对从CPU110供给的数据进行DA转换并将其输出。选择器103对从模拟输入口117供给的作为AD转换对象的被测定模拟信号123或从第1DA转换电路114输出的信号122进行选择并供给 到可编程增益放大器102。选择器119对选择器103的输出或可编程增益放大器102的输出进行选择并供给到AD转换电路113。CPU110参考在AD转换电路113中进行转换而得到的数据。通过CPU110进行上述选择器103、119的开关控制。
图1主要着眼于相对于AD转换电路113的分辨率得到将其位精度扩展的AD转换结果的功能的结构。尤其能够根据CPU110的程序控制在AD转换电路113的输入量程的整个区域内提高其分辨率而得到AD转换结果。以下,详细说明其AD转换功能。
首先,说明本实施方式的AD转换的原理。
图2整体地例示出本实施方式的AD转换的原理。在此,使AD转换电路113的分辨率为10位。将转换精度扩展2位,与此相应地,将AD转换电路113的输入量程(为便于说明,使AD转换电路113的输入量程的电压范围为0.5V~4.5V)分割成四部分,按分割而成的各个电压范围即分割量程的区间(0.5V~1.5V,1.5V~2.5V,2.5V~3.5V,3.5V~4.5V)预先准备各分割量程的12位的数字偏移(DFS1、DFS2、DFS3、DFS4)。在对被测定模拟信号的AD转换动作中,在可编程增益放大器102中设定用于将被测定模拟信号所属的分割量程的区间的电压放大为AD转换电路113的输入量程的电压范围的放大器偏移和目的增益4(=22),从而将该被测定模拟信号放大至4倍。放大后的信号在AD转换电路113中转换成10位的数据,针对转换而成的10位的数据在低位侧进行2位的位扩展,例如进行2位的0扩展,对位扩展后的数据除以可编程增益放大器102的实测增益,由此,获得使该可编程增益放大器102的增益误差抵消后的该分割量程中的12位的AD转换数据。通过使该AD转换数据与对应的分割量程的12位的数字偏移(DFS1、DFS2、DFS3、DFS4)相加,能够得到位精度扩展至12位的AD转换数据。如上所述,通过对在被测定信号所属的分割量程得到的10位的AD转换数据进行2位的位扩展和由实测增益进行除法运算,能够使可编程增益放大器102的增益误差抵消,另外,各分割量程的数字偏移所确定的电压与低位侧的分割量程的最 大电压一致,能够保证分割量程的各区间中的AD转换结果的连续性。以下,详细说明上述内容。
首先,关于对可编程增益放大器102的放大器偏移的设定,如图3所例示,着眼于对整个量程分割成四部分后的区间2,当使电压Vx为区间2的最小电压时,若在使输入电压Va=Vx时、Vo=0V,并将从Vo=Va(R1+R2)/R1-VbR2/R1的关系式得到的电压Vb作为放大器偏移,则区间2的输入电压以该区间的电压范围成为AD转换电路113的输入量程的电压范围的方式放大。
例如图4及图5着眼于分割量程的区间而示出本实施方式的AD转换的原理。即,图4例示出,通过可编程增益放大器102将分割量程的区间2(在本例中为了便于说明,使AD转换电路113的输入量程的电压范围为0V~5V,不与图2的说明一致)的被测定模拟信号放大至4倍,将放大后的信号在AD转换电路113中转换成10位的数据,进行针对该数据的2位的0扩展和针对扩展后的数据由实测增益进行的除法运算,并使该结果与数字偏移DFS2相加,从而获取位精度扩展后的12位的AD转换数据时的原理。图5例示出,将分割量程的区间3(在本例中为了便于说明,使AD转换电路113的输入量程的电压范围为0V~5V,不与图2的说明一致)的被测定模拟信号放大至4倍后进行AD转换,进行针对AD转换后的10位的数据的低位侧2位的0扩展和针对扩展后的数据由实测增益进行的除法运算,并使该结果与数字偏移DFS3相加,从而获取位精度扩展后的12位的AD转换数据时的原理。
图6及图7同样地着眼于分割量程的区间而示出本实施方式的AD转换的原理,但在此特别示出在可编程增益放大器102保持放大动作的直线性的电压范围内使区间交错的情况,并与图2一致。作为可编程增益放大器102的一般特性,存在无法在最小输入电压及最大输入电压附近良好地保证放大动作的直线性的情况,为了避免增益误差增大而在相邻部分使区间交错。例如作为输入量程的10%而确保交错区间的电压范围分别为0.5V。例如在图6的区间3的例子中,只要 以使2.5V~3.5V的区间3的输入电压范围成为0.5V~4.5V的量程的方式确定放大器偏移即可。区间3的数字偏移只要以使区间2的最大电压与区间3的最小电压一致的方式确定即可,其详细情况将在后说明。在图7的区间2的例子中,只要以使1.5V~2.5V的区间2的输入电压范围成为AD转换电路的输入量程的电压范围0.5V~4.5V的方式确定放大器偏移即可。区间2的数字偏移只要以使区间1的最大电压与区间2的最小电压一致的方式确定即可,其详细情况将在后说明。
图8整体示出遵循上述原理的本实施方式的AD转换处理程序。该AD转换处理预先进行可编程增益放大器的增益校正处理(RT1)及数字偏移的计算处理(RT2),然后,只要不被指示中止执行本实施方式的AD转换处理且存在AD转换的指示,则基于被测定模拟信号进行输入区间的判断处理(RT3)、通过AD转换电路对被测定模拟信号进行AD转换处理(RT4)、以及针对AD转换处理(RT4)的结果进行增益修正及数字偏移相加处理(RT5)。AD转换处理(RT4)和增益修正及数字偏移相加处理(RT5)构成使针对被测定模拟信号判断出的区间成为AD转换电路113的输入量程的电压范围而进行AD转换的扩展AD转换处理。
上述增益校正处理(RT1)根据将设定有目的增益(2n,例如n=2而为4倍)的可编程增益放大器102的输出在AD转换电路113中进行转换后的数字值与此时向可编程增益放大器102供给的用于生成模拟信号的数字值的差分,进行获取相对于目的增益的实测增益的处理。即,根据将从上述第1DA转换电路114输出的模拟信号通过上述可编程增益放大器102放大并在上述AD转换电路113中进行转换而得到的数据、和在不将上述模拟信号通过上述可编程增益放大器113放大的情况下在上述AD转换电路113中进行转换而得到的数据,运算并获取可编程增益放大器的增益。实测增益用于扩展AD转换处理中的增益修正。
上述输入区间的判断处理(RT3)为如下处理:判断基于上述AD转换电路113的对被测定模拟信号的转换结果是否属于将该AD转换 电路113的输入量程分割成m(正整数)部分后的某一分割量程。例如,该判断处理(RT3)为根据与AD转换电路113的各分割量程的边界电压相应的电压的AD转换数据来判断被测定电压所属的输入量程的处理。
上述AD转换处理(RT4)为如下处理:与将判断出的分割量程的电压范围放大至上述AD转换电路的输入量程的电压范围的放大器偏移一起,作为目的增益而对上述可编程增益放大器102设定2n(在此n=2),并通过上述AD转换电路113对基于设定后的可编程增益放大器102而得到的上述被测定模拟信号的放大信号进行AD转换。
上述增益修正及数字偏移相加处理(RT5)为如下处理:在通过AD转换处理RT4而转换得到的10位数字数据的低位侧进行2位的0扩展,使扩展后的12位的数据由实测增益(相对于该目的增益2n的实测的增益)进行除法运算,并使除法运算得到的12位的数据和与对应的分割量程的最小电压相应的数字偏移数据相加,从而获取扩展有12位的转换精度的AD转换结果。
数字偏移生成处理(RT2)大致为图9所例示的作为基准的区间的数字偏移数据的生成处理、图10所例示的作为基准的区间的高位侧数字偏移数据的生成处理、以及图11所例示的作为基准的区间的低位侧数字偏移数据的生成处理。
在图9所例示的数字偏移数据DFS2的生成处理中,首先,进行第1处理,即在上述第1DA转换电路114中生成特定的上述分割量程的任意电压(例如区间2的电压2.1V)(S1),将其经由选择器103、119的端子a、d提供给上述AD转换电路113而获取AD转换后的第1数据(S2)。由此,得到作为数字偏移数据DFS2的基础的10位的数据。CPU110进行第2处理,即读取该第1数据M2(S3),在所读取的第1数据M2的低位侧进行2位的0扩展而获取12位的第2数据M2-eb(S4)。然后,进行第3处理,即在上述第2DA转换电路115中生成将该分割量程的电压范围(1.5V~2.5V)放大至上述AD转换电路的输入量程(0.5V~4.5V)的电压范围的放大器偏移(S5), 通过具有所生成的放大器偏移和处于目的增益附近的实测增益的上述可编程增益放大器102将在上述第1DA转换电路114中生成的上述任意电压放大,将放大后的信号在上述AD转换电路113中进行转换(S6),通过CPU110读取转换得到的第3数据A2(S7)。CPU110进行第4处理(S8),即在上述第3数据A2的低位侧进行2位的0扩展,由上述实测增益进行除法运算而获取第4数据A2-eb-g。最后,进行第5处理(S9),即从上述第2数据M2-eb减去第4数据A2-eb-g而获取该特定的分割量程的基准数字偏移数据DFS2(第5数据)。
根据图9的处理,数字偏移数据DFS2与不经由可编程增益放大器102而在AD转换电路113的输入量程的电压范围内将上述任意电压进行AD转换后的值实质一致。而且,在作为基准的区间的电压范围内,将对通过可编程增益放大器而放大的输入量程的电压范围进行AD转换后的结果扩展n位并由上述实测增益进行除法运算后的值和数字偏移数据DFS2相加,所得到的值与不经由可编程增益放大器而直接进行AD转换后的值实质一致。
在图10所例示的位于区间2的高位侧的区间3的数字偏移数据DFS3的生成处理中,在生成上述数字偏移数据DFS2后,首先,进行第6处理,即在上述第1DA转换电路114中生成上述特定的分割量程的区间2的最大电压2.5V(S10),并且在上述第2DA转换电路115中生成将该分割量程(区间2)的电压范围(1.5V~2.5V)放大至上述AD转换电路113的输入量程的电压范围(0V~5V)的放大器偏移(S11),通过设定有所生成的放大器偏移和目的增益的上述可编程增益放大器102将在上述第1DA转换电路114中生成的区间2的最大电压2.5V放大,并将放大后的信号在上述AD转换电路113中进行转换(S12)而得到第6数据A2max(S13)。CPU110进行第7处理,即在第6数据A2max的低位侧进行2位的0扩展而生成临时的12位的数据(A2max-eb)(S14),使该数据A2max-eb由上述实测增益进行除法运算而生成数据A2max-eb-g(S15),并使该数 据A2max-eb-g与上述数字偏移数据DFS2相加而获取作为12位的AD转换数据的第7数据A2max-12b(S16)。
然后,CPU110进行第8处理,即在上述第2DA转换电路115中生成将上述高位侧分割量程(区间3)的电压范围(2.5V~3.5V)放大至上述AD转换电路的输入量程的放大器偏移(S17),在上述AD转换电路113中对作为区间3的最小电压2.5V而放大后的信号进行转换(S18),从而获取第8数据A3min(S19)。最后,进行第9处理,即在第8数据A3min的低位侧进行2位的0扩展,由上述实测增益进行除法运算而生成数据A3min-eb-g(S20),从上述第7数据A2max-12b减去生成的数据A3min-eb-g而获取上述高位侧分割量程(区间3)的数字偏移数据DFS3(第9数据)(S21)。
由此,能够确保区间2的AD转换数据与区间3的AD转换数据的连续性。即,通过上述处理,由于使用已知的数字偏移数据DFS2进行运算从而使求出已知的数字偏移数据DFS2的特定分割量程(区间2)和与其相邻的高位侧分割量程(区间3)的连接点的电压(2.5V)在双方的分割量程内一致,所以能够保证特定分割量程(区间2)和与其相邻的高位侧分割量程(区间3)的连续性。换言之,在高位侧分割量程的电压范围内,将对通过可编程增益放大器而放大的输入量程的电压范围进行AD转换后的结果扩展n位并由上述实测增益进行除法运算后的值与上述数字偏移数据DFS3相加,所得到的值与不经由可编程增益放大器而直接进行AD转换后的值实质一致。尤其是,由于对在各个分割量程进行AD转换后的值进行n位的位扩展和针对该结果由实测增益进行的除法运算,所以能够排除可编程增益放大器102的增益误差的影响,从而能够高精度地保证其连续性。
此外,数字偏移数据DFS4只要根据已知的数字偏移数据DFS3通过与图10相同的处理求出即可,因此省略其详细说明。
在图11所例示的已知的数字偏移数据DFS2的低位侧数字偏移数据DFS1的生成处理中,在生成上述数字偏移数据DFS2后,首先,进行第10处理,即在上述第1DA转换电路114中生成上述特定的分 割量程(区间2)的最小电压(1.5V)(S22),并且在上述第2DA转换电路115中生成将该分割量程(区间2)的电压范围(1.5V~2.5V)放大至上述AD转换电路113的输入量程(0V~5V)的放大器偏移(S23),通过设定有所生成的放大器偏移和目的增益的上述可编程增益放大器102将在上述第1DA转换电路114中生成的最小电压2.5V放大,并将放大后的信号在上述AD转换电路113中进行转换(S24)而得到第10数据A2min(S25)。CPU110进行第11处理,即生成在第10数据A2min的低位侧进行2位的0扩展而得到的临时的12位的数据A2min-eb(S26),并且使该数据A2min-eb由上述实测增益进行除法运算而生成数据A2min-eb-g(S27),使该数据A2min-eb-g与上述数字偏移数据DFS2相加而得到作为12位的AD转换数据的第11数据(A2min-12b)(S28)。
然后,CPU110进行第12处理,即在上述第1DA转换电路114中生成上述低位侧的分割量程(区间1)的最大电压(1.5V),并且在上述第2DA转换电路115中生成将该分割量程的电压范围(0.5V~1.5V)放大至上述AD转换电路113的输入量程(0V~5V)的放大器偏移(S29),通过设定有所生成的放大器偏移和目的增益的上述可编程增益放大器102将在上述第1DA转换电路114中生成的最大电压(1.5V)放大,并将放大后的信号在上述AD转换电路113中进行转换(S30)而得到第12数据A1max(S31)。最后,CPU110进行第13处理,即在上述第12数据A1max的低位侧进行2位的0扩展,由上述实测增益进行除法运算而生成数据A1max-eb-g(S32),从上述第11数据A2min-12b减去生成的数据A1max-eb-g而得到上述低位侧分割量程(区间1)的数字偏移数据DFS1(S33)。
由此,能够确保区间2的AD转换数据与区间1的AD转换数据的连续性。即,通过上述处理,由于使用已知的数字偏移数据DFS2进行运算从而使求出已知的数字偏移数据DFS2的特定分割量程(区间2)和与其相邻的低位侧分割量程(区间1)的连接点的电压(1.5V)在双方的分割量程内一致,所以能够确保特定分割量程(区间2)和 与其相邻的低位侧分割量程(区间1)的连续性。换言之,在低位侧分割量程的电压范围内,将对通过可编程增益放大器而放大的输入量程的电压范围AD转换后的结果扩展n位并由上述实测增益进行除法运算后的值与上述数字偏移数据DFS1相加,所得到的值与不经由可编程增益放大器而直接进行AD转换后的值实质一致。尤其是,由于对在各个分割量程内进行AD转换后的值进行n位的位扩展和针对该结果由实测增益进行的除法运算,所以能够排除可编程增益放大器的增益误差的影响,从而能够高精度地保证其连续性。
图12例示出上述输入区间的判断处理(RT3)及上述AD转换处理(RT4)的详细情况。使选择器103选择输入端子b,使选择器119选择输入端子d(S40),在AD转换电路113中对被测定模拟信号进行AD转换(S41、S42)。CPU110读取该AD转换结果(S43),并判断该AD转换结果是否大于区间3与区间4的边界值(S44),若大于,则对放大器偏移用的DA转换寄存器设定区间4的放大器偏移数据(S45),并等待第1DA转换电路114的转换动作的稳定(S46)。当该AD转换结果小于区间3与区间4的边界值时,判断该AD转换结果是否大于区间2与区间3的边界值(S47),若大于,则对放大器偏移用的DA转换寄存器设定区间3的放大器偏移数据(S48),并等待第1DA转换电路114的转换动作的稳定(S49)。同样地,当该AD转换结果小于区间2与区间3的边界值时,判断该AD转换结果是否大于区间1与区间2的边界值(S50),若大于,则对放大器偏移用的DA转换寄存器设定区间2的放大器偏移数据(S51),并等待第1DA转换电路114的转换动作的稳定(S52)。同样地,当该AD转换结果小于区间1与区间2的边界值时,对放大器偏移用的DA转换寄存器设定区间1的放大器偏移数据(S53),并等待第1DA转换电路114的转换动作的稳定(S54)。在经过各自的稳定等待时间(例如3μs)后,使选择器119的输入与PGA102的输出连接(S55)。由此,与将判断出的分割量程的电压范围放大至上述AD转换电路113的输入量程的放大器偏移一起,作为目的增益而对上述可编程增 益放大器102设定2n(在此增益为4),并通过上述AD转换电路113对基于设定后的可编程增益放大器102而得到的上述被测定模拟信号的放大信号进行转换处理。
图13例示出上述增益修正及数字偏移相加处理(RT5)的详细情况。CPU110对通过上述AD转换处理(RT4)在AD转换电路113中转换得到的数字数据,在其低位侧进行n位(在此为2位)的0扩展而生成12位的数据AE1(S60),并且对该数据AE1除以实测增益(S61),保持运算结果的数据(V1)并参照基于上述输入区间的判断处理(RT3)而得到的判断结果(S62)。若基于上述输入区间的判断处理(RT3)而得到的判断结果为区间4,则CPU110使运算结果数据V1与区间4的数字偏移相加(S63、S64),若基于上述输入区间的判断处理(RT3)而得到的判断结果为区间3,则CPU110使运算结果数据V1与区间3的数字偏移相加(S65、S66),若基于上述输入区间的判断处理(RT3)而得到的判断结果为区间2,则CPU110使运算结果数据V1与区间2的数字偏移相加(S67、S68),若基于上述输入区间的判断处理(RT3)而得到的判断结果为区间1,则CPU110使运算结果数据V1与区间1的数字偏移相加(S69),相加结果的数据保持为扩展至12位的AD转换结果(S70)。
图14例示出通过本实施方式的AD功能而进行的AD转换动作的时序图。如图所示,用于通过AD转换电路113而进行AD转换的被测定模拟信号的采样和AD转换动作按照上述输入区间判断用的动作(监控AD转换)、和扩展AD转换用的输入测定动作(正式AD转换)的顺序进行。在监控AD转换后,使用该结果进行分割区间的判断(OPR1),在正式AD转换后,进行位扩展、增益修正、以及数字偏移的附加等操作(OPR2)。例如在一次采样和转换中耗费2μs,能够在总计30μs中得到基于本实施方式的AD转换的扩展至12位的AD转换结果,因此,能够比普通的ΔΣAD转换器更高速地进行处理。
根据以上说明的第1实施方式,能够根据对AD转换电路113的输入量程的分割数m而在满足2n≤m的关系的范围内最终得到n位的 位扩展后的AD转换结果。此时,通过与从第2DA转换电路115向可编程增益放大器102提供使判断出的分割量程的范围成为AD转换电路113的整个量程的放大器偏移并进行放大的情况的一致性,可编程增益放大器102以增益2n或在其附近进行放大。由此,能够在AD转换电路113的转换量程的整个区域内提高其分辨率。即使在选择转换量程时,也不通过可编程增益放大器102进行放大而只要在AD转换电路113中进行一次AD转换来判断即可,因此,针对转换量程的切换也能够得到良好的跟踪性。而且,在各个分割量程的数字偏移中,由于分割量程的连接点的值在双方的分割量程中为同一值,所以能够在AD转换电路113的转换量程的整个区域内相对于高分辨率的AD转换结果减小转换误差。另外,由于对将分割量程的输入在AD转换电路113的输入量程的电压范围内进行AD转换而得到的数字数据进行位扩展,并使扩展后的数据由实测增益进行除法运算,所以能够排除可编程增益放大器的增益误差的影响。
《实施方式2》
在实施方式2中,说明通过与实施方式1不同的方法而求出各个分割量程的数字偏移的处理。在此虽然没有特别图示,但能够是,例如,由于作为特定基准的区间的数字偏移与特定区间的最小电压实质一致,所以将特定区间的最小电压在AD转换电路113中进行AD转换,并使在低位侧进行2位的0扩展后的12位的数据成为作为基准的区间的数字偏移。例如从DAC1输出2.5V且在不通过PGA102进行放大的情况下通过ADC113进行AD转换,对转换结果数据进行下述2位的位扩展,从而使其成为作为基准的区间的数字偏移。
由于上述特定区间的高位侧区间的数字偏移与上述特定区间的最大电压实质一致,所以能够将特定区间的最小电压在AD转换电路113中进行AD转换,在低位侧进行2位的0扩展并由实测增益进行除法运算,使该除法运算结果与已知的作为基准的区间的数字偏移数据相加,由此将所得到的12位的扩展AD转换结果作为其数字偏移。此外,能够根据该高位侧区间的已知的数字偏移通过相同的处理得到 该高位侧区间的更高位侧区间的数字偏移。
由于上述特定区间的低位侧区间的数字偏移与上述特定区间的最小电压的差分实质一致,所以能够将特定区间的最小电压在AD转换电路113中进行AD转换,在低位侧进行2位的0扩展并由实测增益进行除法运算,将该除法运算结果与已知的作为基准的区间的数字偏移数据的差分作为该数字偏移。此外,能够根据该低位侧区间的已知的数字偏移通过相同的处理得到该低位侧区间的更低位侧区间的数字偏移。
根据实施方式2的处理,能够有助于提高获取数字偏移的处理效率。
《实施方式3》
图15例示出本发明的第2实施方式的数据处理系统。该图所示的数据处理系统200与图1的数据处理系统100相比不同点在于:增加了采样保持电路201,采用了进行与其相应的控制的CPU110A。即,具有输入被测定模拟信号123的采样保持电路201,CPU110A使用被上述采样保持电路201采样的相同的被测定模拟信号123来进行分割量程的判断和利用了该判断结果的上述扩展AD转换用的处理。采样保持电路201具有采样开关(SMP1)211、采样电容(SC1)212、输出缓冲器(BUF)213及输出选择开关(SW3)214而构成。关于其他结构,对与图1相同的构成要素标注相同附图标记并省略其详细说明。
图16例示出被测定模拟信号的采样保持动作。在采样电容212中存储需要的电荷信号后,闭合采样开关211。
图17例示出使保持于采样保持电路201的信息通过PGA102而在ADC113中进行AD转换的动作。使用通过该监控动作而得到的AD转换数据进行在图8中说明的输入区间的判断处理(RT3)及被测定电压AD转换处理(RT4)。
图18例示出增益修正及数字偏移相加处理(RT5)中的动作。在该动作中只要从采样电容212接收被测定信号即可,不需要重新从外 部输入被测定模拟信号。
根据第2实施方式,由于能够对相同的被测定模拟信号进行分割量程的判断和利用了该判断结果的上述AD转换,所以能够将发生误用不同的分割量程而进行AD转换的事态防患于未然。
《实施方式4》
在上述实施方式的说明中使输入量程的分割数m为4而进行了说明。即,当使基于本实施方式的AD而得到的AD转换结果的扩展位数n=2时,分割数为2n=22。理论上,分割数m能够在满足2n≤m的关系的范围内任意确定。
此时,为了对在周期信号中作为代表的动态信号最大限度地利用AD转换电路的性能(分辨率),通常认为使动态信号的中点为AD转换电路的输入电压范围的二分之一不失为上策。在如上述实施方式所说明那样将输入量程分割的AD转换方式的情况下,当使分割数为偶数时,AD转换电路的输入电压范围的二分之一处成为相邻的分割量程的边界。在该方面,由于采用偶数或奇数的某一种来作为分割数m,所以在本实施方式的AD转换中产生处理效率的差。在第3实施方式中就该方面进行说明。
图19例示出在被测定模拟信号的中央值接近AD转换电路113的输入量程的中央值时将上述AD转换电路113的输入量程的分割数设定成偶数而进行本实施方式的AD转换处理的情况。通过图19得以明确,周期信号的中央值的电压2.5V成为区间2与区间3的边界电压。该情况下,在上述的实施方式的AD转换动作中,一个周期信号的值属于相邻的不同区间2、区间3双方,其结果为,必须根据被测定模拟信号的值来频繁地进行放大器偏移的切换,由此ADC113的稳定等待时间延长,基于本实施方式的AD的转换处理效率降低。
为了避免该情况,如图20所例示那样,CPU110(110A)只要以在被测定模拟信号的中央值接近AD转换电路113的输入量程的中央值时将上述AD转换电路113的输入量程的分割数设定成奇数例如分割成五部分而进行本实施方式的AD转换处理的方式进行控制即可。由此,能够抑制被测定模拟信号123的中央值处于分割量程的边界附近。因此,容易将被测定模拟信号的变化范围收纳于一个区间,不需要每当被测定模拟信号越过该中央值而变化时进行改变分割量程的处理,能够提高扩展上述位精度的AD转换处理的效率。
尤其在图20的例子中,各分割量程的电压范围与上述实施方式1同样地为1V,相对于扩展位数n=2使可编程增益放大器102的目的增益保持为22,基于AD转换器113的输入量程扩展为例如从0.1V至4.9V。总之,只要在输入量程的两端部分考虑与AD转换电路113的能力相应的富余即可。
《实施方式5》
图21例示出第4实施方式的数据处理系统。该图所示的数据处理系统300与图1的数据处理系统100相比不同点在于:增加了采样保持电路201,并且DA转换电路集成为一个DA转换电路(DAC1)114,DA转换电路114的输出能够经由选择器220而选择性地供给到PGA102或选择器103,采用进行与此相应的控制的CPU110B。即,设有:选择性地取代上述被测定模拟信号123而对设定用模拟信号122进行采样保持并将其输出到上述可编程增益放大器102的采样保持电路201;兼用于放大器偏移的生成和设定用模拟信号的生成的DA转换电路(DAC1)114;和选择器220,其选择将在上述DA转换电路114中生成的放大器偏移121向上述可编程增益放大器102输出的路径或将在上述DA转换电路中生成的设定用模拟信号122向上述采样保持电路201供给的路径。CPU110B通过上述放大器偏移121的生成和设定用模拟信号122的生成而分开使用DA转换电路114来进行选择器220的选择控制。采样保持电路201具有采样开关(SMP1)211、采样电容(SC1)212、输出缓冲器(BUF)213及输出选择开关(SW3)214而构成。关于其他结构,对与图1相同的构成要素标注相同附图标记并省略其详细说明。
如第1及第2实施方式所说明那样在分别具有向可编程增益放大器102输出放大器偏移121的DA转换电路115、和选择性地取代上述被测定模拟信号而将设定用模拟信号122向上述可编程增益放大器102输出的DA转换电路114的情况下,由于能够并行地进行放大器偏移的设定和设定用模拟信号的生成,所以能够有助于提高获取数字偏移时的处理效率。另一方面,如第4实施方式所述,在采用兼用于放大器偏移的生成和设定用模拟信号的生成的DA转换电路114的情况下,必须串行地进行放大器偏移的设定和设定用模拟信号的生成,但通过DA转换电路的兼用能够有助于缩小电路规模。
通过将DA转换电路集成为一个,对PGA102的增益校正只要例如如图22的概要所示那样按顺序进行处理RT10至RT16即可。即,在图22所例示的实测增益获取处理中,使选择器103的端子为a,使选择器220为g,通过DA转换电路114输出模拟电压x1,使内置于采样保持电路201的开关211(SMP1)接通,使开关214(SW3)断开,在电容212(SC1)中保存电压x1(RT10)。在保存电压x1后,使开关211断开,使开关214接通,将选择器220设定为b,通过DA转换电路114输出任意电压O(例如0V)来作为PGA102的放大器偏移。
使选择器119的端子为d,通过AD转换电路113在没有PGA102的路径上对保存于电容212的电压x1进行AD转换,得到AD转换结果y1(RT11)。然后使选择器119的端子为c,通过AD转换电路113在PGA102中将保存于电容212的电压x1放大,进行AD转换而得到AD转换结果Y1(RT12)。
同样地通过DA转换电路114输出模拟电压x2,在采样保持电路201中保存电压x2(RT13),在保存电压x2后,使开关211断开,使开关214接通,将选择器220设定为b,通过DA转换电路114输出上述放大器偏移电压O。
通过AD转换电路113在没有PGA102的路径上对存储于电容212的电压x2进行AD转换而获取AD转换结果y2(RT14),然后通过AD转换器113对PGA102所放大的电压x2进行AD转换而得到结果Y2(RT15)。
最后CPU110B根据G=(Y2-Y1)/(y2-y1)对PGA102的实测增益G进行运算而获取实测增益(RT16)。像这样,针对不同的两个电压根据没有PGA102的路径上的AD转换结果和由PGA102放大的电压的AD转换结果的比率计算出实测增益G。
此外,在上述内容中使x1<x2而进行处理。另外,x1及x2的电压能够在通过PGA102而放大后的电压不超过AD转换电路的输入量程的范围内任意选择。
图23例示出处理RT10和RT11的详细情况。图24例示出处理RT12的详细情况。图25例示出处理RT13和RT14的详细情况。图26例示出处理RT15的详细情况。图27例示出计算区间3的数字偏移时的流程图中的A及B部分的详细情况,图28例示出计算区间3的数字偏移时的流程图中的C部分的详细情况。关于其他区间的数字偏移的计算流程省略了图示,但只要通过参照图27及图28的处理而生成即可。
以上根据实施方式具体说明了本发明人所完成的发明,但本发明不限定于此,毫无疑问在不脱离其要旨的范围内能够进行各种变更。
例如,通过微型计算机这样的控制部而进行的位扩展和由实测增益进行除法运算的处理不仅可以通过固定小数点运算而进行,也可以通过浮动小数点运算而进行。在数字偏移的生成处理等中进行用于扩展位精度的位扩展处理和由实测增益进行除法运算的顺序基本在进行位扩展后进行除法运算,在运算法则方面优选的情况需要按该顺序进行,但根据运算方法若不为该情况也可以相反。AD转换电路的位精度、扩展位数、区间的分割数不限定于上述实施方式,能够适当变更。另外,数据处理系统不限定于单芯片的半导体器件,也能够由多芯片构成。例如也能够使微型计算机(MCU)101、101A、101B由单芯片构成,并使其他电路由外置部件构成。
上述各个实施方式也能够相互组合而构成。
工业实用性
本发明涉及具有AD转换功能的数据处理系统,尤其能够在用于 得到比AD转换电路的位精度更高的位精度的技术中广泛适用。
附图标记说明
100 数据处理系统
101 微型计算机(MCU)
102 可编程增益放大器(PGA)
103 选择器(SW1)
110 中央处理装置(CPU)
111 非易失性存储器(FLASH)
112 RAM
113 AD转换电路(ADC)
114 第1DA转换电路(DAC1)
115 第2DA转换电路(DAC2)
116 数字输入输出口
117 模拟输入口
118 周边电路模块(PRPH)
119 选择器(SW2)
200 数据处理系统
201 采样保持电路
110A CPU
101A 微型计算机
300 数据处理系统
110B CPU
101B 微型计算机

Claims (25)

1.一种数据处理系统,用于得到对AD转换电路的分辨率扩展n位的AD转换结果,其中,n为正整数,其中,
具有AD转换电路、可编程增益放大器、以及控制电路,
所述控制电路将所述AD转换电路的输入量程分割成m部分,准备使各分割量程的连接点的电压在相邻的分割量程中彼此相同的数字偏移,对被测定模拟信号判断基于所述AD转换电路而得到的AD转换结果属于哪一分割量程,将使判断出的分割量程的电压范围成为所述AD转换电路的输入量程的电压范围的放大器偏移和增益的指定提供给所述可编程增益放大器而放大,将放大后的信号在所述AD转换电路中进行转换,对该转换结果进行n位扩展和基于所述可编程增益放大器的实测增益的除法运算,并和与此对应的分割量程的数字偏移相加而得到将位精度扩展n位的AD转换结果,其中,2n≤m。
2.如权利要求1所述的数据处理系统,其中,
从所述控制电路提供给所述可编程增益放大器的增益的指示为2n
由所述控制电路进行的n位扩展是对AD转换结果的低位进行的0扩展。
3.如权利要求2所述的数据处理系统,其中,
所述控制电路对所述可编程增益放大器设定所述2n来作为目的增益,根据将基于设定后的可编程增益放大器而得到的模拟信号的放大输出在AD转换电路中转换后的数字值、与此时向可编程增益放大器供给的模拟信号的生成用的数字值之差,得到相对于目的增益的实测增益。
4.如权利要求1所述的数据处理系统,其中,
所述控制电路以使相邻的分割量程的边界部分交错的方式设定所述放大器偏移。
5.如权利要求1所述的数据处理系统,其中,
所述控制电路根据对所述AD转换电路的各分割量程的边界电压的输入电压的AD转换结果数据来判断被测定电压所属的输入量程。
6.如权利要求1所述的数据处理系统,其中,
还具有输入被测定模拟信号的采样保持电路,
所述控制电路使用被所述采样保持电路采样的相同的被测定模拟信号而进行分割量程的判断、和使判断出的分割量程的电压范围成为所述AD转换电路的输入量程的电压范围的AD转换。
7.如权利要求1所述的数据处理系统,其中,
所述控制电路在被测定模拟信号的中央值接近AD转换电路的输入量程的中央值时将所述AD转换电路的输入量程的分割数设定成奇数而进行AD转换用的处理。
8.如权利要求1所述的数据处理系统,其中,
分别具有向所述可编程增益放大器输出所述放大器偏移的DA转换电路、和选择性地向所述可编程增益放大器输出设定用模拟信号的DA转换电路。
9.如权利要求1所述的数据处理系统,其中,
具有:选择性地取代所述被测定模拟信号而对设定用模拟信号进行采样保持并将其输出到所述可编程增益放大器的采样保持电路;兼用于放大器偏移的生成和设定用模拟信号的生成的DA转换电路;和选择电路,其选择将在所述DA转换电路中生成的放大器偏移向所述可编程增益放大器输出的路径或将在所述DA转换电路中生成的设定用模拟信号向所述采样保持电路供给的路径。
10.一种数据处理系统,具有AD转换电路、可编程增益放大器、以及控制电路,其中,
所述控制电路判断被测定模拟信号属于将所述AD转换电路的输入量程分割成m部分后的哪一分割量程,对所述可编程增益放大器设定用于将判断出的分割量程的电压范围放大至所述AD转换电路的输入量程的电压范围的放大器偏移和目的增益2n,将基于设定后的可编程增益放大器而得到的所述被测定模拟信号的放大信号在所述AD转换电路中进行转换,对转换后的数据进行n位的位扩展并对扩展后的数据进行基于所述可编程增益放大器的实测增益的除法运算,使除法运算结果与该分割量程的数字偏移数据相加而得到将位精度扩展n位的AD转换结果,其中m为正整数,n为正整数且2n≤m。
11.如权利要求10所述的数据处理系统,其中,
具有第1DA转换电路及第2DA转换电路,
所述控制电路对如下处理进行控制:
第1处理,在所述第1DA转换电路中生成特定的所述分割量程的任意电压,将特定的所述分割量程的任意电压在所述AD转换电路中进行转换而得到第1数据;
第2处理,在所述第1数据的低位侧进行n位的位扩展而得到第2数据;
第3处理,在所述第1DA转换电路中生成所述特定的分割量程的任意电压,并且在所述第2DA转换电路中生成用于将该分割量程的电压范围放大至所述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的所述可编程增益放大器将在所述第1DA转换电路中生成的任意电压放大,并将放大后的信号在所述AD转换电路中进行转换而得到第3数据;
第4处理,将所述第3数据在低位侧扩展n位并使扩展后的数据由所述实测增益进行除法运算而得到第4数据;和
第5处理,从所述第2数据减去第4数据而得到该特定的分割量程的数字偏移数据。
12.如权利要求11所述的数据处理系统,其中,
所述控制电路在生成所述特定的分割量程的数字偏移数据后,在生成该分割量程的高位侧的分割量程的数字偏移数据时,对如下处理进行控制:
第6处理,在所述第1DA转换电路中生成所述特定的分割量程的最大电压,并且在所述第2DA转换电路中生成用于将该分割量程的电压范围放大至所述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的所述可编程增益放大器将在所述第1DA转换电路中生成的最大电压放大,并将放大后的信号在所述AD转换电路中进行转换而得到第6数据;
第7处理,将所述第6数据在低位侧扩展n位并使扩展后的数据由所述实测增益进行除法运算,使该结果与所述数字偏移数据相加而得到第7数据;
第8处理,在所述第1DA转换电路中生成所述高位侧的分割量程的最小电压,并且在所述第2DA转换电路中生成用于将该分割量程的电压范围放大至所述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的所述可编程增益放大器将在所述第1DA转换电路中生成的最小电压放大,并将放大后的信号在所述AD转换电路中进行转换而得到第8数据;和
第9处理,将所述第8数据在低位侧扩展n位并使扩展后的数据由所述实测增益进行除法运算,从所述第7数据减去该结果而得到所述高位侧分割量程的数字偏移数据。
13.如权利要求11所述的数据处理系统,其中,
所述控制电路在生成所述特定的分割量程的数字偏移数据后,在生成该分割量程的低位侧的分割量程的数字偏移数据时,对如下处理进行控制:
第10处理,在所述第1DA转换电路中生成所述特定的分割量程的最小电压,并且在所述第2DA转换电路中生成用于将该分割量程的电压范围放大至所述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的所述可编程增益放大器将在所述第1DA转换电路中生成的最小电压放大,并将放大后的信号在所述AD转换电路中进行转换而得到第10数据;
第11处理,将所述第10数据在低位侧扩展n位并使扩展后的数据由所述实测增益进行除法运算,使该结果与所述数字偏移数据相加而得到第11数据;
第12处理,在所述第1DA转换电路中生成所述低位侧的分割量程的最大电压,并且在所述第2DA转换电路中生成用于将该分割量程的电压范围放大至所述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和理想2n的所述可编程增益放大器将在所述第1DA转换电路中生成的最大电压放大,并将放大后的信号在所述AD转换电路中进行转换而得到第12数据;和
第13处理,将所述第12数据在低位侧扩展n位并使扩展后的数据由所述实测增益进行除法运算,从所述第11数据减去该结果而得到所述低位侧分割量程的数字偏移数据。
14.如权利要求10所述的数据处理系统,其中,
所述控制电路以使相邻的分割量程的边界部分交错的方式设定所述放大器偏移。
15.如权利要求10所述的数据处理系统,其中,
还具有输入被测定模拟信号的采样保持电路,
所述控制电路使用被所述采样保持电路采样的相同的被测定模拟信号来进行分割量程的判断、和使判断出的分割量程的电压范围成为所述AD转换电路的输入量程的电压范围的AD转换。
16.如权利要求10所述的数据处理系统,其中,
所述控制电路在被测定模拟信号的中央值接近AD转换电路的输入量程的中央值时将所述AD转换电路的输入量程的分割数设定成奇数而进行AD转换用的处理。
17.如权利要求10所述的数据处理系统,其中,
分别具有向所述可编程增益放大器输出所述放大器偏移的DA转换电路、和选择性地向所述可编程增益放大器输出设定用模拟信号的DA转换电路。
18.如权利要求10所述的数据处理系统,其中,
具有:选择性地取代所述被测定模拟信号而对设定用模拟信号进行采样保持并将其输出到所述可编程增益放大器的采样保持电路;兼用于放大器偏移的生成和设定用模拟信号的生成的DA转换电路;和选择电路,其选择将在所述DA转换电路中生成的放大器偏移向所述可编程增益放大器输出的路径或将在所述DA转换电路中生成的设定用模拟信号向所述采样保持电路供给的路径。
19.一种数据处理系统,具有:AD转换电路、可编程增益放大器、DA转换电路、和控制电路,该控制电路进行所述可编程增益放大器的增益校正处理、数字偏移数据的生成处理、对被测定模拟信号的输入区间的判断处理、以及使对被测定模拟信号判断出的区间成为所述AD转换电路的输入量程的电压范围的扩展AD转换处理,其中,
所述输入区间的判断处理为如下处理:判断基于所述AD转换电路对被测定模拟信号的转换结果属于将该AD转换电路的输入量程的电压范围分割成m部分后的哪一分割量程,其中,m为正整数,
所述扩展AD转换处理中,对所述可编程增益放大器设定将判断出的分割量程的电压范围放大至所述AD转换电路的输入量程的电压范围的放大器偏移和目的增益2n,将基于设定后的可编程增益放大器而得到的所述被测定模拟信号的放大信号在所述AD转换电路中进行转换,对转换后的数字数据进行n位的位扩展并对扩展后的数据进行基于可编程增益放大器的实测增益的除法运算,使除法运算后的数据和与所述判断出的分割量程的起点相应的数字偏移数据相加,得到将位精度扩展n位的AD转换结果,其中,n为正整数,2n≤m。
20.如权利要求19所述的数据处理系统,其中,
作为所述DA转换电路而具有第1DA转换电路及第2DA转换电路,
所述数字偏移数据的生成处理包括:
第1处理,在所述第1DA转换电路中生成特定的所述分割量程的任意电压,将其在所述AD转换电路中进行转换而得到第1数据;
第2处理,在所述第1数据的低位侧进行n位的位扩展而得到第2数据;
第3处理,在所述第1DA转换电路中生成所述特定的分割量程的任意电压,并且在所述第2DA转换电路中生成用于将该分割量程的电压范围放大至所述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的所述可编程增益放大器将在所述第1DA转换电路中生成的任意电压放大,并将放大后的信号在所述AD转换电路中进行转换而得到第3数据;
第4处理,将所述第3数据在低位侧扩展n位并使扩展后的数据由所述实测增益进行除法运算而得到第4数据;和
第5处理,从所述第2数据减去第4数据而得到该特定的分割量程的数字偏移数据。
21.如权利要求20所述的数据处理系统,其中,
为了在生成所述特定的分割量程的数字偏移数据后生成该分割量程的高位侧的分割量程的数字偏移数据,所述数字偏移数据的生成处理包括:
第6处理,在所述第1DA转换电路中生成所述特定的分割量程的最大电压,并且在所述第2DA转换电路中生成用于将该分割量程的电压范围放大至所述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的所述可编程增益放大器将在所述第1DA转换电路中生成的最大电压放大,并将放大后的信号在所述AD转换电路中进行转换而得到第6数据;
第7处理,将所述第6数据在低位侧扩展n位并使扩展后的数据由所述实测增益进行除法运算,使该结果与所述数字偏移数据相加而得到第7数据;
第8处理,在所述第1DA转换电路中生成所述高位侧的分割量程的最小电压,并且在所述第2DA转换电路中生成用于将该分割量程的电压范围放大至所述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的所述可编程增益放大器将在所述第1DA转换电路中生成的最小电压放大,并将放大后的信号在所述AD转换电路中进行转换而得到第8数据;和
第9处理,将所述第8数据在低位侧扩展n位并使扩展后的数据由所述实测增益进行除法运算,从所述第7数据减去该结果而得到所述高位侧分割量程的数字偏移数据。
22.如权利要求20所述的数据处理系统,其中,
为了在生成所述特定的分割量程的数字偏移数据后生成该分割量程的低位侧的分割量程的数字偏移数据,所述数字偏移数据的生成处理包括:
第10处理,在所述第1DA转换电路中生成所述特定的分割量程的最小电压,并且在所述第2DA转换电路中生成用于将该分割量程的电压范围放大至所述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的所述可编程增益放大器将在所述第1DA转换电路中生成的最小电压放大,并将放大后的信号在所述AD转换电路中进行转换而得到第10数据;
第11处理,将所述第10数据在低位侧扩展n位并使扩展后的数据由所述实测增益进行除法运算,使该结果与所述数字偏移数据相加而得到第11数据;
第12处理,在所述第1DA转换电路中生成所述低位侧的分割量程的最大电压,并且在所述第2DA转换电路中生成用于将该分割量程的电压范围放大至所述AD转换电路的输入量程的电压范围的放大器偏移,通过设定有所生成的放大器偏移和目的增益2n的所述可编程增益放大器将在所述第1DA转换电路中生成的最大电压放大,并将放大后的信号在所述AD转换电路中进行转换而得到第12数据;和
第13处理,将所述第12数据在低位侧扩展n位并使扩展后的数据由所述实测增益进行除法运算,从所述第11数据减去该结果而得到所述低位侧分割量程的数字偏移数据。
23.如权利要求19所述的数据处理系统,其中,
在所述扩展AD转换处理中,在对所述可编程增益放大器设定将判断出的分割量程的电压范围放大至所述AD转换电路的输入量程的电压范围的放大器偏移时,以使相邻的分割量程的边界部分交错的方式设定所述放大器偏移。
24.如权利要求20所述的数据处理系统,其中,
所述增益校正处理包括如下处理:根据将从所述第1DA转换电路输出的模拟信号通过所述可编程增益放大器放大并在所述AD转换电路中进行转换而得到的数据、和将所述模拟信号不通过所述可编程增益放大器放大而在所述AD转换电路中进行转换所得到的数据,运算并得到所述可编程增益放大器的增益。
25.如权利要求19所述的数据处理系统,其中,
所述输入区间的判断处理包括如下处理:根据对所述AD转换电路的各分割量程的边界电压的输入电压的AD转换数据来判断被测定电压所属的输入量程。
CN201280019587.XA 2011-04-22 2012-04-10 数据处理系统 Active CN103493378B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011-095819 2011-04-22
JP2011095819 2011-04-22
PCT/JP2012/059758 WO2012144375A1 (ja) 2011-04-22 2012-04-10 データ処理システム

Publications (2)

Publication Number Publication Date
CN103493378A CN103493378A (zh) 2014-01-01
CN103493378B true CN103493378B (zh) 2016-10-12

Family

ID=47041487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280019587.XA Active CN103493378B (zh) 2011-04-22 2012-04-10 数据处理系统

Country Status (4)

Country Link
US (3) US8860593B2 (zh)
JP (1) JP5657783B2 (zh)
CN (1) CN103493378B (zh)
WO (1) WO2012144375A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5657783B2 (ja) * 2011-04-22 2015-01-21 ルネサスエレクトロニクス株式会社 データ処理システム
EP2936687A1 (en) * 2012-12-18 2015-10-28 Apator Miitors ApS Utility meter controlling the conversion range of an adc
US8970418B1 (en) * 2013-08-19 2015-03-03 Analog Devices, Inc. High output power digital-to-analog converter system
US10056924B2 (en) 2013-08-19 2018-08-21 Analog Devices, Inc. High output power digital-to-analog converter system
CN103995226B (zh) * 2013-12-27 2017-01-04 杭州长川科技股份有限公司 用于提高模拟集成电路测试系统精度的方法
US9706269B2 (en) * 2015-07-24 2017-07-11 Hong Kong Applied Science and Technology Research Institute Company, Limited Self-powered and battery-assisted CMOS wireless bio-sensing IC platform
JP6486237B2 (ja) * 2015-08-06 2019-03-20 アズビル株式会社 Ad変換装置
US10079989B2 (en) 2015-12-15 2018-09-18 Ricoh Company, Ltd. Image capturing device
US10098684B2 (en) * 2016-04-06 2018-10-16 Biosense Webster (Israel) Ltd. Uncalibrated thermocouple system
US9774343B1 (en) * 2016-07-13 2017-09-26 The Boeing Company Method and apparatus for improving the resolution of digitally sampled analog data
CN108736851B (zh) * 2017-04-19 2022-06-28 中芯国际集成电路制造(上海)有限公司 一种可编程增益放大器及电子装置
EP3392767B1 (en) * 2017-04-21 2022-11-09 Aerobits Sp. z o.o. A method for real time processing of fast analogue signals and a system for application thereof
JP2019005323A (ja) * 2017-06-27 2019-01-17 ルネサスエレクトロニクス株式会社 身長測定装置、ヘルスケア機器および回転ゲート
CN107976647A (zh) * 2018-01-24 2018-05-01 镇江市计量实验工厂 一种高压高阻检定仪智能校准装置
CN111193510A (zh) * 2018-11-14 2020-05-22 华为技术有限公司 数据转换装置、系统及方法
KR102180180B1 (ko) * 2019-07-19 2020-11-18 엘지전자 주식회사 분해능 제어 장치 및 분해능 제어 방법
KR102217903B1 (ko) * 2019-11-19 2021-02-19 엘아이지넥스원 주식회사 신호 계측 회로를 이용한 신호 계측 장치 및 방법
DE102020102647A1 (de) 2020-02-03 2021-08-05 Hanon Systems Anordnung und Verfahren zur Erzeugung eines Verstärkungssignals für Messverstärker
CN112234991B (zh) * 2020-09-18 2024-05-17 芯创智(北京)微电子有限公司 一种高精度增量型模数转换器及其转换方法
CN112994636B (zh) * 2021-02-04 2024-03-29 珠海市丰润自动化科技有限公司 消除自重的方法、存储介质及终端
EP4099572A1 (en) * 2021-05-31 2022-12-07 Infineon Technologies AG Environmental sensor
CN113659987B (zh) * 2021-08-20 2023-07-11 合肥御微半导体技术有限公司 一种信号处理装置及其方法
CN117632854B (zh) * 2023-11-29 2024-08-06 上海合芯数字科技有限公司 数据处理方法、装置以及设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422643A (en) * 1993-02-24 1995-06-06 Antel Optronics Inc. High dynamic range digitizer
US6252536B1 (en) * 1999-03-31 2001-06-26 Cirrus Logic, Inc. Dynamic range extender apparatus, system, and method for digital image receiver system
US6791484B1 (en) * 2003-07-18 2004-09-14 National Semiconductor Corporation Method and apparatus of system offset calibration with overranging ADC
TWI250749B (en) * 2002-12-24 2006-03-01 Realtek Semiconductor Corp QAM receiver having joint gain, carrier recovery and equalization adaptation system and method thereof
TW200704154A (en) * 2005-07-12 2007-01-16 Pixart Imaging Inc Reading circuit of image sensor and analog/digital conversion method thereof
TW200830727A (en) * 2006-07-24 2008-07-16 Qualcomm Inc Saturation detection for analog-to-digital converter
US7643573B2 (en) * 2006-03-17 2010-01-05 Cirrus Logic, Inc. Power management in a data acquisition system
CN102422538A (zh) * 2009-05-29 2012-04-18 三菱电机株式会社 模拟单元

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127429A (ja) * 1982-01-25 1983-07-29 Hitachi Ltd A/d変換拡張方式
JPH04370801A (ja) * 1991-06-19 1992-12-24 Matsushita Electric Ind Co Ltd アナログ信号検出装置
JPH0514201A (ja) 1991-06-27 1993-01-22 Tdk Corp A/d変換装置
JPH06334523A (ja) 1993-05-20 1994-12-02 Jeco Co Ltd アナログ−ディジタル変換装置
US7142486B2 (en) * 2001-04-02 2006-11-28 Ricoh Company, Ltd. Signal processing method and signal processing apparatus
US6720902B2 (en) * 2001-06-08 2004-04-13 Amersham Biosciences (Su) Corp High dynamic range digital converter
US6975251B2 (en) * 2002-06-20 2005-12-13 Dakota Technologies, Inc. System for digitizing transient signals with waveform accumulator
US7215266B2 (en) * 2004-05-21 2007-05-08 Wionics Research Hybrid DC offset cancellation scheme for wireless receiver
US7405683B1 (en) * 2004-05-27 2008-07-29 Cypress Semiconductor Corporation Extending the dynamic range in an energy measurement device
JP2006121146A (ja) * 2004-10-19 2006-05-11 Renesas Technology Corp 無線受信機のフィルタ制御方法および装置およびそれを用いた無線受信機用集積回路
GB2446844B (en) * 2006-12-05 2011-05-25 Wolfson Microelectronics Plc Callibration circuit and asociated method
FR2938081B1 (fr) * 2008-10-31 2020-09-11 Thales Sa Procede de correction des decentrages en amplitude et en phase d'un modulateur sigma-delta et modulateur mettant en oeuvre le procede
JP5465965B2 (ja) * 2009-03-31 2014-04-09 ルネサスエレクトロニクス株式会社 データ処理装置及びデータ処理システム
JP5657783B2 (ja) * 2011-04-22 2015-01-21 ルネサスエレクトロニクス株式会社 データ処理システム
JP5779511B2 (ja) * 2012-01-20 2015-09-16 ルネサスエレクトロニクス株式会社 半導体集積回路装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422643A (en) * 1993-02-24 1995-06-06 Antel Optronics Inc. High dynamic range digitizer
US6252536B1 (en) * 1999-03-31 2001-06-26 Cirrus Logic, Inc. Dynamic range extender apparatus, system, and method for digital image receiver system
TWI250749B (en) * 2002-12-24 2006-03-01 Realtek Semiconductor Corp QAM receiver having joint gain, carrier recovery and equalization adaptation system and method thereof
US6791484B1 (en) * 2003-07-18 2004-09-14 National Semiconductor Corporation Method and apparatus of system offset calibration with overranging ADC
TW200704154A (en) * 2005-07-12 2007-01-16 Pixart Imaging Inc Reading circuit of image sensor and analog/digital conversion method thereof
US7643573B2 (en) * 2006-03-17 2010-01-05 Cirrus Logic, Inc. Power management in a data acquisition system
TW200830727A (en) * 2006-07-24 2008-07-16 Qualcomm Inc Saturation detection for analog-to-digital converter
CN102422538A (zh) * 2009-05-29 2012-04-18 三菱电机株式会社 模拟单元

Also Published As

Publication number Publication date
US9337858B2 (en) 2016-05-10
US8860593B2 (en) 2014-10-14
JP5657783B2 (ja) 2015-01-21
US20150288377A1 (en) 2015-10-08
US20140055291A1 (en) 2014-02-27
US9065467B2 (en) 2015-06-23
US20140347199A1 (en) 2014-11-27
CN103493378A (zh) 2014-01-01
JPWO2012144375A1 (ja) 2014-07-28
WO2012144375A1 (ja) 2012-10-26

Similar Documents

Publication Publication Date Title
CN103493378B (zh) 数据处理系统
CN103946672B (zh) 物理量传感器或其装置的输出值修正方法及装置
CN109376867B (zh) 两量子比特逻辑门的处理方法及装置
CN103531227A (zh) 具有电流控制器和降低的功率需求的存储器装置及方法
CN104391919A (zh) 智能电网地理可视化实现系统及方法
US20180300287A1 (en) Information processing device and control method therefor
US20190244098A1 (en) Optimization system, optimization apparatus, and optimization system control method
US20070185699A1 (en) IBIS correction tool, IBIS correction method, and waveform simulation device
CN102208132A (zh) 交通量预测装置、交通量预测方法和程序
CN102185610A (zh) Ad转换装置及控制方法
CN104081164A (zh) 信号处理装置
CN101726371A (zh) Pdm输出型温度传感器
TWI233496B (en) Reference voltage generating device, semiconductor integrated circuit including the same, and testing device and method for semiconductor integrated circuit
CN105354781A (zh) 农村空心化程度预警系统
CN101964660B (zh) 一种自校正模拟量输出电路
JP2017083303A (ja) 半導体装置およびセル電圧の測定方法
CN103604984A (zh) 一种基于最小二乘法提高ad采集精度的方法
JPH10145231A (ja) A/d変換装置及びd/a変換装置におけるデータ補正方法
CN102007687B (zh) 振幅控制电路、极化调制发送电路以及极化调制方法
JP2002117389A (ja) 情報処理装置
CN209514618U (zh) 动态偏置模拟向量-矩阵乘法运算电路
CN102150153A (zh) 具有基本处理器的数据处理电路,包括该电路的阵列的数据处理组件以及包括该组件的矩阵传感器
CN214409261U (zh) 一种电流测量校准系统
CN103777069B (zh) 多组电源功率量测系统及其操作方法
CN204697045U (zh) 气敏传感器的数据读出电路和检测装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Tokyo, Japan, Japan

Applicant after: Renesas Electronics Corporation

Address before: Kanagawa

Applicant before: Renesas Electronics Corporation

COR Change of bibliographic data
C14 Grant of patent or utility model
GR01 Patent grant