WO2012144375A1 - データ処理システム - Google Patents

データ処理システム Download PDF

Info

Publication number
WO2012144375A1
WO2012144375A1 PCT/JP2012/059758 JP2012059758W WO2012144375A1 WO 2012144375 A1 WO2012144375 A1 WO 2012144375A1 JP 2012059758 W JP2012059758 W JP 2012059758W WO 2012144375 A1 WO2012144375 A1 WO 2012144375A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
data
conversion
circuit
voltage
Prior art date
Application number
PCT/JP2012/059758
Other languages
English (en)
French (fr)
Inventor
翔 木村
佳実 磯
岡村 雅一
匡志 西本
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to JP2013510956A priority Critical patent/JP5657783B2/ja
Priority to CN201280019587.XA priority patent/CN103493378B/zh
Priority to US14/113,213 priority patent/US8860593B2/en
Publication of WO2012144375A1 publication Critical patent/WO2012144375A1/ja
Priority to US14/458,406 priority patent/US9065467B2/en
Priority to US14/745,627 priority patent/US9337858B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • H03M1/181Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedback mode, i.e. by determining the range to be selected from one or more previous digital output values
    • H03M1/183Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedback mode, i.e. by determining the range to be selected from one or more previous digital output values the feedback signal controlling the gain of an amplifier or attenuator preceding the analogue/digital converter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • H03M1/181Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedback mode, i.e. by determining the range to be selected from one or more previous digital output values
    • H03M1/182Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedback mode, i.e. by determining the range to be selected from one or more previous digital output values the feedback signal controlling the reference levels of the analogue/digital converter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/20Increasing resolution using an n bit system to obtain n + m bits

Definitions

  • the present invention relates to a data processing system having an AD (Analog-to-Digital) conversion function, and more particularly to a technique for obtaining a bit accuracy (resolution) higher than the bit accuracy of an AD conversion circuit.
  • AD Analog-to-Digital
  • Patent Document 1 a ramp voltage having an amplitude substantially equal to the minimum resolution of the AD converter circuit is applied, an AD conversion operation is performed a plurality of times, and each digital output is an arithmetic circuit having a number of digits larger than the number of digits of the AD converter circuit.
  • Patent Document 2 a difference between an input analog signal and a reference signal corresponding to a conversion range is obtained by a differential amplifier, converted into a digital signal by an AD converter circuit, and converted into a difference by a control device that receives the digital signal.
  • the reference signal is controlled according to the corresponding digital signal, and the output digital signal is generated according to the digital signal and the conversion range.
  • a resolution that is several times the conversion range than the resolution of the actual AD converter circuit can be obtained, and the necessary resolution can be obtained by the method of setting the conversion range.
  • Patent Document 1 The present inventor examined increasing the resolution over the entire conversion range of the AD converter circuit.
  • Patent Document 2 it is not easy to achieve the purpose.
  • Patent Document 2 an attempt is made to increase the conversion bit accuracy by amplifying the difference between the reference signal of the conversion range and the input signal to be measured by an AD conversion circuit.
  • the conversion range is set according to the signal to be measured. In order to switch optimally, it is necessary to determine whether or not the AD conversion result swings out of the conversion range, and to switch the reference signal.
  • the object of the present invention is to increase the resolution over the entire conversion range of the AD converter circuit.
  • An object of the present invention is to provide a data processing system that has good followability with respect to switching of the conversion range and has a small conversion error.
  • a data processing system that obtains an AD conversion result obtained by extending the bit precision by n (n is a positive integer) bits with respect to the resolution of the AD conversion circuit divides the input range of the AD conversion circuit by m (2 n ⁇ m).
  • the resolution can be increased over the entire conversion range of the AD conversion circuit, the followability to switching of the conversion range is good, and the conversion error can be reduced.
  • FIG. 1 is a block diagram illustrating a data processing system according to the first embodiment of the present invention.
  • FIG. 2 is an operation explanatory diagram generally illustrating the AD conversion principle according to the present embodiment.
  • FIG. 3 is an explanatory diagram showing an example of setting an amplifier offset.
  • FIG. 4 is an explanatory diagram showing the AD conversion principle according to the present embodiment, focusing on the section 2 of the divided range.
  • FIG. 5 is an explanatory diagram showing the AD conversion principle according to the present embodiment, paying attention to the section 3 of the divided range.
  • FIG. 6 also shows the above-described AD conversion principle according to the present embodiment, paying attention to the section 3 of the divided range, and the case where the sections are crossed within the voltage range in which the programmable gain amplifier maintains the linearity of the amplification operation.
  • FIG. 7 also shows the AD conversion principle according to the present embodiment, paying attention to the section 2 of the divided range, and the case where the sections are crossed within the voltage range in which the programmable gain amplifier maintains the linearity of the amplification operation.
  • FIG. 8 is a flowchart generally illustrating a conversion processing routine based on the AD conversion principle according to the present embodiment.
  • FIG. 9 is a flowchart illustrating the generation process of the digital offset data DFS2.
  • FIG. 10 is a flowchart illustrating the generation process of the higher-order digital offset data DFS3 of the known digital offset data DFS2.
  • FIG. 11 is a flowchart illustrating the generation process of the lower digital offset data DFS1 of the known digital offset data DFS2.
  • FIG. 12 is a flowchart illustrating the details of the input section discrimination process RT3 and the AD conversion process RT4.
  • FIG. 13 is a flowchart illustrating details of gain correction and digital offset addition processing RT5.
  • FIG. 14 is a timing chart illustrating an AD conversion operation according to this embodiment.
  • FIG. 15 is a block diagram illustrating a data processing system according to the second embodiment of the invention.
  • FIG. 16 is an operation explanatory diagram illustrating the sample hold operation of the analog signal under measurement.
  • FIG. 17 is an operation explanatory diagram illustrating an operation of AD-converting the information held in the sample hold circuit 201 through the PGA 102 and the ADC 113.
  • FIG. 18 is an operation explanatory diagram illustrating the operation in gain correction and digital offset addition processing RT5.
  • FIG. 16 is an operation explanatory diagram illustrating the sample hold operation of the analog signal under measurement.
  • FIG. 17 is an operation explanatory diagram illustrating an operation of AD-converting the information held in the sample hold circuit 201 through
  • FIG. 19 is an operation explanation illustrating a case where AD conversion processing is performed by setting the number of divisions of the input range of the AD converter circuit to an even number when the median value of the analog signal to be measured is close to the median value of the input range of the AD converter circuit.
  • FIG. 20 when the median value of the analog signal to be measured is close to the median value of the input range of the AD conversion circuit, the AD conversion processing is performed by setting the number of divisions of the input range of the AD conversion circuit to an odd number, for example, 5 divisions. It is explanatory drawing which concerns on 3rd Embodiment when it controls.
  • FIG. 21 is a block diagram illustrating a data processing system according to the fourth embodiment.
  • FIG. 21 is a block diagram illustrating a data processing system according to the fourth embodiment.
  • FIG. 22 is an explanatory diagram exemplifying an outline of gain calibration for the PGA when the DA conversion circuits are integrated into one.
  • FIG. 23 is an operation explanatory diagram illustrating details of the processes RT10 and RT11 of FIG.
  • FIG. 24 is an operation explanatory diagram illustrating details of the processing RT12.
  • FIG. 25 is an operation explanatory diagram illustrating details of the processes RT13 and RT14.
  • FIG. 26 is an operation explanatory diagram illustrating details of the process RT15.
  • FIG. 27 is an operation explanatory diagram illustrating the details of the A and B portions in the flowchart when calculating the digital offset of the section 3.
  • FIG. 28 is an operation explanatory diagram illustrating the details of the portion C in the flowchart when calculating the digital offset of the section 3.
  • a data processing system (100, 200, 300) according to a typical embodiment of the present invention is a system for obtaining an AD conversion result obtained by extending n (n is a positive integer) bits with respect to the resolution of an AD conversion circuit. And an AD conversion circuit (113), a programmable gain amplifier (102), and a control circuit (110, 110A, 110B).
  • the control circuit divides the input range of the AD converter circuit by m (2 n ⁇ m), prepares a digital offset in which the voltage at the connection point of each divided range is the same, and measures the analog signal to be measured To which division range the AD conversion result by the AD conversion circuit belongs, and designating an amplifier offset and a gain in which the voltage range of the determined division range is the voltage range of the input range of the AD conversion circuit; Is applied to the programmable gain amplifier for amplification, and the amplified signal is converted by the AD conversion circuit, and the conversion result is subjected to n-bit extension and division by the value of the actual gain of the programmable gain amplifier, A digital offset of the division range corresponding to this is added to obtain an AD conversion result obtained by extending the bit accuracy by n bits.
  • the programmable gain amplifier has a gain of 2 n because amplification is performed by giving the programmable gain amplifier the amplifier offset and gain designation for setting the determined divided range range to the voltage range of the input range of the AD converter circuit. Alternatively, amplification is performed in the vicinity thereof. At this time, the gain error of the programmable gain amplifier is corrected by performing input amplification, AD conversion, and n-bit expansion for each divided input range of the AD conversion circuit.
  • the digital offset giving the minimum value of the divided range is the same as the maximum value of the divided range adjacent to the lower side. Therefore, it is possible to achieve high conversion accuracy with a small conversion error with respect to high-resolution AD conversion results over the entire conversion range of the AD conversion circuit. Furthermore, since the conversion range can be selected by performing AD conversion once by the AD conversion circuit without performing amplification by the programmable gain amplifier, good followability can be obtained when switching the conversion range.
  • the gain given from the control circuit to the programmable gain amplifier is a target gain 2 n
  • the n-bit extension by the control circuit is a 0 extension with respect to the lower bits of the AD conversion result.
  • the control circuit sets the 2n as a target gain in the programmable gain amplifier, and converts an amplified output of an analog signal by the set programmable gain amplifier by an AD converter circuit; Then, the actual gain for the target gain is acquired based on the difference from the digital value used to generate the analog signal supplied to the programmable gain amplifier at that time.
  • control circuit determines an input range to which the measured voltage belongs based on AD conversion data with respect to an input voltage of a boundary voltage of each divided range of the AD conversion circuit.
  • sample hold The data processing system according to Item 1, further including a sample hold circuit (201) for inputting an analog signal to be measured, wherein the control circuit (110A, 110B) receives the same analog signal to be measured sampled by the sample hold circuit.
  • the division range is determined and AD conversion is performed in which the voltage range of the determined division range is the voltage range of the input range of the AD conversion circuit.
  • the determination of the division range and the AD conversion using the determination result can be performed on the same analog signal to be measured. Therefore, the situation in which AD conversion is erroneously performed using different division ranges occurs. Can be prevented in advance.
  • the control circuit sets the division number of the input range of the AD converter circuit to an odd number when the median value of the analog signal to be measured is close to the median value of the input range of the AD converter circuit. The process for conversion is performed.
  • a sample hold circuit (201) that selectively samples and holds a setting analog signal instead of the measured analog signal and outputs the sample analog signal to the programmable gain amplifier, and for generating and setting an amplifier offset
  • a DA converter circuit (114 in FIG. 21) also used for generating an analog signal, and a path for outputting the amplifier offset generated by the DA converter circuit to the programmable gain amplifier, or a setting analog generated by the DA converter circuit
  • a selection circuit (220) for selecting a path for supplying a signal to the sample and hold circuit.
  • the setting of the amplifier offset and the generation of the setting analog signal must be performed in series, but the circuit scale can be reduced by sharing the DA converter circuit.
  • a data processing system (100, 200, 300) according to another embodiment of the present invention includes an AD conversion circuit (113), a programmable gain amplifier (102), and a control circuit (110, 110A, 110B).
  • the control circuit determines which divided range the analog signal under measurement belongs to which the input range of the AD converter circuit is divided by m (a positive integer), and determines the voltage range of the determined divided range of the AD converter circuit.
  • An amplifier offset and target gain 2 n (n is a positive integer, 2 n ⁇ m) for expanding the voltage range of the input range is set in the programmable gain amplifier, and the measured analog signal by the set programmable gain amplifier
  • the amplified signal is converted by the AD conversion circuit, n-bit bit expansion is performed on the converted data, and division by the actually measured gain of the programmable gain amplifier is performed on the expanded data, and the division result corresponds to the division range.
  • the division number m with respect to the input range of the AD conversion circuit, it is possible to finally obtain an AD conversion result obtained by extending the bit precision by n bits within a range satisfying the relationship of 2 n ⁇ m.
  • the amplification is given the designation of the amplifier offset and gain of the voltage range of the input range of the AD converter the scope of the discriminated divided ranges the programmable gain amplifier, programmable gain amplifier gain 2 n or a Amplification is performed in the vicinity.
  • the gain error of the programmable gain amplifier is corrected by performing input amplification, AD conversion, n-bit expansion, and division by the actually measured gain of the programmable gain amplifier for each divided input range of the AD conversion circuit.
  • the data processing system includes a first DA conversion circuit (114) and a second DA conversion circuit (115), and the control circuit controls the first to fifth processes.
  • the first process is a process of generating an arbitrary voltage in a specific divided range by the first DA converter circuit and acquiring first data obtained by converting the arbitrary voltage by the AD converter circuit.
  • the second process is a process of obtaining the second data by performing bit extension for n bits on the lower side of the first data according to the division range.
  • an arbitrary voltage of the specific division range is generated by the first DA conversion circuit, and an amplifier offset for expanding the voltage range of the division range to the voltage range of the input range of the AD conversion circuit Is generated by the second DA converter circuit, and the arbitrary voltage generated by the first DA converter circuit is amplified by the programmable gain amplifier in which the generated amplifier offset and the target gain 2 n are set, and amplified.
  • This is a process of acquiring the third data by converting the signal by the AD converter circuit.
  • the fourth process is a process of obtaining the fourth data by extending the third data to the lower side by n bits and dividing the extended data by the actually measured gain.
  • the fifth process is a process of subtracting the fourth data from the second data to obtain digital offset data of the specific division range.
  • the result of AD conversion of the voltage range of the input range amplified by the programmable gain amplifier is expanded by n bits, and the digital offset data is added to the value divided by the measured gain.
  • the obtained value and the value obtained by direct AD conversion without using the programmable gain amplifier substantially coincide with each other.
  • the sixth data is expanded by n bits to the lower side, and the expanded data is divided by the actually measured gain to obtain the seventh data obtained by adding the digital offset data of the specific division range to this It is processing.
  • the minimum voltage of the upper divided range is generated by the first DA converter circuit, and the amplifier offset for expanding the voltage range of the divided range to the voltage range of the input range of the AD converter circuit is generated.
  • the amplified signal generated by the second DA converter circuit, the minimum voltage generated by the first DA converter circuit is amplified by the programmable gain amplifier in which the generated amplifier offset and the target gain 2 n are set. Is converted by the AD converter circuit to obtain eighth data.
  • the ninth process extends the eighth data to the lower side by n bits, divides the extended data by the measured gain, and subtracts this from the seventh data to obtain the digital offset data of the upper side divided range. It is processing.
  • the calculation is performed using the known digital offset data so that the voltage at the connection point between the specific divided range for which the known digital offset data is obtained and the upper divided range adjacent thereto matches in both divided ranges.
  • the continuity between the specific division range and the upper division range adjacent thereto can be guaranteed.
  • the value obtained by adding the digital offset data to the value obtained by expanding the result of AD conversion of the voltage range of the input range amplified by the programmable gain amplifier and dividing by the measured gain the value obtained by direct AD conversion without using a programmable gain amplifier substantially matches.
  • the value AD converted in each division range is subjected to n-bit bit expansion and division by actually measured gain, the influence of the gain error of the programmable gain amplifier can be eliminated, and its continuity Can be assured with high accuracy.
  • the control circuit performs the tenth to thirteenth processes when generating the digital offset data of the lower division range of the division range.
  • the minimum voltage of the specific division range is generated by the first DA conversion circuit
  • the amplifier offset for expanding the voltage range of the division range to the voltage range of the input range of the AD conversion circuit is The minimum voltage generated by the first DA converter circuit is amplified by the programmable gain amplifier generated by the second DA converter circuit, and the generated amplifier offset and the target gain 2 n are set, and the amplified signal is obtained.
  • the tenth data is expanded by n bits to the lower side, and the expanded data is divided by the actually measured gain, and the digital offset data of a specific division range is added thereto to obtain the eleventh data. It is processing.
  • the maximum voltage of the lower divided range is generated by the first DA converter circuit, and the amplifier offset for expanding the voltage range of the divided range to the voltage range of the input range of the AD converter circuit is set.
  • the amplified signal generated by the second DA converter circuit, the maximum voltage generated by the first DA converter circuit is amplified by the programmable gain amplifier in which the generated amplifier offset and the target gain 2 n are set.
  • the twelfth data is extended by n bits to the lower side, and the extended data is divided by the actually measured gain, and this is subtracted from the eleventh data to obtain the digital offset data of the lower side divided range and It is processing to do.
  • the calculation is performed using the known reference digital offset data so that the voltage at the connection point between the specific division range for which the known digital offset data is obtained and the lower-side division range adjacent thereto matches in both division ranges. Therefore, the continuity between the specific division range and the lower side division range adjacent thereto can be guaranteed. Furthermore, in the voltage range of the divided range, the value obtained by adding the digital offset data to the value obtained by expanding the result of AD conversion of the voltage range of the input range amplified by the programmable gain amplifier and dividing by the measured gain, The value obtained by direct AD conversion without using a programmable gain amplifier substantially matches. In particular, since the value AD converted in each division range is subjected to n-bit bit expansion and division by actually measured gain, the influence of the gain error of the programmable gain amplifier can be eliminated, and its continuity Can be assured with high accuracy.
  • sample hold> The data processing system according to Item 10, further comprising a sample hold circuit (201) for inputting an analog signal under measurement, wherein the control circuit (110A, 110B) outputs the same analog signal under measurement sampled by the sample hold circuit.
  • the division range is determined and AD conversion is performed in which the voltage range of the determined division range is the voltage range of the input range of the AD conversion circuit.
  • a sample hold circuit (201) that selectively samples and holds a setting analog signal instead of the measured analog signal and outputs the sample analog signal to the programmable gain amplifier, and an amplifier offset generation and setting A DA converter circuit (114 in FIG. 21) also used for generating an analog signal, and a path for outputting the amplifier offset generated by the DA converter circuit to the programmable gain amplifier, or a setting analog generated by the DA converter circuit And a selection circuit for selecting a path for supplying a signal to the sample and hold circuit.
  • the setting of the amplifier offset and the generation of the setting analog signal must be performed in series, but the circuit scale can be reduced by sharing the DA converter circuit.
  • a data processing system (100, 200, 300) according to still another embodiment of the present invention includes an AD conversion circuit (113), a programmable gain amplifier (102), a DA conversion circuit (114, 115), Programmable gain amplifier gain calibration processing, digital offset data generation processing, input interval determination processing for the analog signal under measurement, and the interval determined for the analog signal under measurement as the voltage range of the input range of the AD converter circuit And a control circuit (110, 110A, 110B) for performing extended AD conversion processing.
  • the determination process of the input section it is determined whether the conversion result of the analog signal under measurement by the AD converter circuit belongs to which divided range obtained by dividing the voltage range of the input range of the AD converter circuit by m (positive integer). It is processing.
  • an amplifier offset for expanding the voltage range of the determined divided range to the voltage range of the input range of the AD conversion circuit and a target gain 2 n (n is a positive integer, 2 n ⁇ m) are obtained.
  • the programmable gain amplifier is set, the amplified signal of the analog signal to be measured by the set programmable gain amplifier is converted by the AD conversion circuit, and n-bit bit extension for the converted digital data and programmable for the extended data Division by the actual gain of the gain amplifier is performed, and digital offset data corresponding to the minimum value of the determined division range is added to the divided data to obtain an AD conversion result in which the bit accuracy is extended by n bits.
  • the programmable gain amplifier has a gain of 2 n because amplification is performed by giving the programmable gain amplifier the amplifier offset and gain designation for setting the determined divided range range to the voltage range of the input range of the AD converter circuit. Alternatively, amplification is performed in the vicinity thereof. At this time, the gain error of the programmable gain amplifier is corrected by performing input amplification, AD conversion, n-bit expansion, and division by the actually measured gain of the programmable gain amplifier for each divided input range of the AD conversion circuit.
  • the digital offset giving the minimum value of the divided range is the same as the maximum value of the divided range adjacent to the lower side. Therefore, it is possible to achieve high conversion accuracy with a small conversion error with respect to high-resolution AD conversion results over the entire conversion range of the AD conversion circuit. Furthermore, when the conversion range is selected, it is only necessary to perform the AD conversion once by the AD conversion circuit without performing amplification by the programmable gain amplifier, so that good followability can be obtained even when the conversion range is switched.
  • the data processing system includes a first DA converter circuit (114) and a second DA converter circuit (115) as the DA converter circuit.
  • the digital offset data generation process includes a first process to a fifth process.
  • the first processing is processing for generating an arbitrary voltage in a specific divided range by the first DA conversion circuit and acquiring first data obtained by converting the arbitrary voltage by the AD conversion circuit.
  • the second process is a process for obtaining the second data by performing n-bit bit expansion on the lower side of the first data.
  • an arbitrary voltage in the specific division range is generated by the first DA conversion circuit, and an amplifier offset for expanding the voltage range of the division range to the voltage range of the input range of the AD conversion circuit is
  • An arbitrary voltage generated by the first DA converter circuit is amplified by the programmable gain amplifier that is generated by the second DA converter circuit and the generated amplifier offset and target gain 2 n are set, and the amplified signal is
  • This is a process of obtaining the third data after being converted by the AD conversion circuit.
  • the fourth process is a process of obtaining the fourth data by extending the third data to the lower side by n bits and dividing the extended data by the actually measured gain.
  • the fifth process is a process of subtracting the fourth data from the second data to obtain digital offset data of the specific division range.
  • the result of AD conversion of the voltage range of the input range amplified by the programmable gain amplifier is expanded by n bits, and the digital offset data is added to the value divided by the measured gain.
  • the obtained value and the value obtained by direct AD conversion without using the programmable gain amplifier substantially coincide with each other.
  • the digital offset data generation processing includes generating the digital offset data of the specific division range and then generating digital offset data of the division range on the upper side of the division range. 6th to 9th processes are included.
  • the maximum voltage of the specific division range is generated by the first DA conversion circuit, and the amplifier offset for expanding the voltage range of the division range to the voltage range of the input range of the AD conversion circuit is
  • the maximum voltage generated by the first DA converter circuit is amplified by the programmable gain amplifier generated by the second DA converter circuit and the generated amplifier offset and the target gain 2 n are set, and the amplified signal is
  • This is a process of obtaining the sixth data by performing conversion by the AD conversion circuit.
  • the seventh process is a process of obtaining the seventh data by extending the sixth data to the lower side by n bits, dividing the expanded data by the actually measured gain, and adding the reference digital offset data thereto. .
  • the minimum voltage of the upper divided range is generated by the first DA converter circuit, and the amplifier offset for expanding the voltage range of the divided range to the voltage range of the input range of the AD converter circuit is generated.
  • the amplified signal generated by the second DA converter circuit, the minimum voltage generated by the first DA converter circuit is amplified by the programmable gain amplifier in which the generated amplifier offset and the target gain 2 n are set. Is converted by the AD converter circuit to obtain eighth data.
  • the ninth process extends the eighth data to the lower side by n bits, divides the extended data by the actually measured gain, and subtracts this from the seventh data to obtain the digital offset data of the upper side divided range It is a process.
  • the calculation is performed using the known digital offset data so that the voltage at the connection point between the specific divided range for which the known digital offset data is obtained and the upper divided range adjacent thereto matches in both divided ranges.
  • the continuity between the specific division range and the upper division range adjacent thereto can be guaranteed.
  • the value obtained by adding the digital offset data to the value obtained by expanding the result of AD conversion of the voltage range of the input range amplified by the programmable gain amplifier and dividing by the measured gain the value obtained by direct AD conversion without using a programmable gain amplifier substantially matches.
  • the value converted by AD in each division range is subjected to n-bit bit expansion and division by actually measured gain, the influence of the gain error of the programmable gain amplifier can be excluded from the digital offset data.
  • the continuity can be guaranteed with high accuracy.
  • the digital offset data generation processing includes generating the digital offset data of the specific division range and then generating digital offset data of the division range on the lower side of the division range.
  • the minimum voltage of the specific divided range is generated by the first DA converter circuit, and the voltage range of the divided range is changed to the voltage of the input range of the AD converter circuit.
  • An amplifier offset that expands to the range is generated by the second DA converter circuit, and the minimum voltage generated by the first DA converter circuit by the programmable gain amplifier in which the generated amplifier offset and the target gain 2 n are set.
  • the eleventh process is a process of obtaining the eleventh data by extending the tenth data to the lower side by n bits, dividing the expanded data by the actually measured gain, and adding the reference digital offset data thereto. .
  • the maximum voltage of the lower divided range is generated by the first DA converter circuit, and the amplifier offset for expanding the voltage range of the divided range to the voltage range of the input range of the AD converter circuit is set.
  • the amplified signal generated by the second DA converter circuit, the maximum voltage generated by the first DA converter circuit is amplified by the programmable gain amplifier in which the generated amplifier offset and the target gain 2 n are set.
  • the twelfth data is extended by n bits to the lower side, and the extended data is divided by the actually measured gain, and this is subtracted from the eleventh data to obtain the digital offset data of the lower side divided range and It is processing to do.
  • the calculation is performed using the known digital offset data so that the voltage at the connection point between the specific divided range for which the known digital offset data is obtained and the lower divided range adjacent thereto matches in both divided ranges. Therefore, it is possible to guarantee the continuity between the specific division range and the lower-side division range adjacent thereto. Furthermore, in the voltage range of the divided range, the value obtained by adding the digital offset data to the value obtained by expanding the result of AD conversion of the voltage range of the input range amplified by the programmable gain amplifier and dividing by the measured gain, The value obtained by direct AD conversion without using a programmable gain amplifier substantially matches. In particular, since the value converted by AD in each division range is subjected to n-bit bit expansion and division by actually measured gain, the influence of the gain error of the programmable gain amplifier can be excluded from the digital offset data. The continuity can be guaranteed with high accuracy.
  • the section determination process includes a process of determining an input range to which the voltage to be measured belongs based on AD conversion data with respect to an input voltage of a boundary voltage of each divided range of the AD conversion circuit.
  • FIG. 1 illustrates a data processing system according to the first embodiment of the present invention.
  • the data processing system 100 shown in the figure is configured as a system-on-chip semiconductor device formed on a single semiconductor substrate such as single crystal silicon by a complementary MOS integrated circuit manufacturing technique or the like, although not particularly limited.
  • the data processing system 100 includes a microcomputer (MCU) 101, a programmable gain amplifier (PGA) 102, and a selector (SW1) 103 that are representatively shown. Needless to say, other circuits such as a memory and an accelerator may be integrated, although not particularly shown.
  • MCU microcomputer
  • PGA programmable gain amplifier
  • SW1 selector
  • the microcomputer 101 is not particularly limited, but a central processing unit (CPU) 110 that executes a program as a control circuit, a non-volatile memory (FLASH) 111 such as a flash memory that electrically stores a program or data, and a CPU 110 RAM 112 used for the work area, AD conversion circuit (ADC) 113 for converting analog signals to digital signals, first DA conversion circuit (DAC1) 114 for converting digital signals to analog signals, and converting digital signals to analog signals A second DA conversion circuit (DAC2) 115, a digital input / output port 116, an analog input port 117, other peripheral circuit modules (PRPH) 118 such as a timer counter and a serial interface, and a selector (SW2) 119.
  • CPU central processing unit
  • FLASH non-volatile memory
  • ADC AD conversion circuit
  • DAC1 first DA conversion circuit
  • DAC2 digital input / output port
  • PRPH peripheral circuit modules
  • SW2 selector
  • the gain setting for the programmable gain amplifier 102 is performed by the CPU 110 using the signal 120.
  • the second DA conversion circuit 115 DA converts the amplifier offset data supplied from the CPU 110 and supplies the amplifier offset 121 to the programmable gain amplifier 102.
  • the second DA conversion circuit 115 converts the data supplied from the CPU 110 from DA to output.
  • the selector 103 selects the analog signal under measurement 123 to be AD converted supplied from the analog input port 117 or the signal 122 output from the first DA conversion circuit 114 and supplies the selected signal to the programmable gain amplifier 102.
  • the selector 119 selects the output of the selector 103 or the output of the programmable gain amplifier 102 and supplies it to the AD conversion circuit 113.
  • the CPU 110 refers to the data converted by the AD conversion circuit 113.
  • the CPU 110 performs switch control of the selectors 103 and 119.
  • FIG. 1 mainly shows a configuration that pays attention to a function of obtaining an AD conversion result in which the bit accuracy is expanded with respect to the resolution of the AD conversion circuit 113.
  • the AD conversion result can be obtained by increasing the resolution over the entire input range of the AD conversion circuit 113 according to the program control of the CPU 110.
  • the AD conversion function will be described in detail.
  • FIG. 2 generally illustrates the principle of AD conversion according to the present embodiment.
  • the resolution of the AD conversion circuit 113 is 10 bits.
  • the input range of the AD conversion circuit 113 (for convenience, the voltage range of the input range of the AD conversion circuit 113 is set to 0.5 V to 4.5 V) is divided into four parts accordingly. Each divided voltage range is divided into sections (0.5 V to 1.5 V, 1.5 V to 2.5 V, 2.5 V to 3.5 V, 3.5 V to 4.5 V).
  • a 12-bit digital offset (DFS1, DFS2, DFS3, DFS4) of the range is prepared in advance.
  • the programmable gain amplifier 102 is set, and the measured analog signal is amplified four times.
  • the amplified signal is converted into 10-bit data by the AD conversion circuit 113.
  • the converted 10-bit data is subjected to bit extension of 2 bits on the lower side, for example, 2-bit 0 extension, and the bit extension is performed.
  • the setting of the amplifier offset for the programmable gain amplifier 102 is focused on the section 2 divided into four with respect to the full range.
  • FIGS. 4 and 5 show the principle of AD conversion according to the present embodiment by paying attention to the section of the divided range.
  • FIG. 4 shows the programmable gain of the measured analog signal in section 2 of the divided range (in this example, the voltage range of the input range of the AD converter circuit 113 is 0 V to 5 V for convenience, and does not match the description of FIG. 2).
  • the amplifier 102 amplifies the signal by a factor of four, converts the amplified signal into 10-bit data by the AD converter circuit 113, performs 2-bit zero extension on the data and divides the expanded data by the actually measured gain.
  • the principle when the 12-bit AD conversion data with an extended bit precision is obtained by adding the digital offset DFS2 to is exemplified.
  • FIGS. 6 and 7 similarly show the principle of AD conversion according to the present embodiment, paying attention to the section of the divided range.
  • the programmable gain amplifier 102 is particularly within the voltage range in which the linearity of the amplification operation is maintained. 2 shows the case where the sections are crossed with each other, and is consistent with FIG.
  • the voltage range of the crossing section is 0.5 V for 10% of the input range.
  • the amplifier offset may be determined so that the input voltage range of section 3 from 2.5V to 3.5V is in the range of 0.5V to 4.5V.
  • the digital offset of the section 3 may be determined so that the maximum voltage of the section 2 matches the minimum voltage of the section 3, and details thereof will be described later.
  • the amplifier offset may be determined so that the input voltage range of section 2 of 1.5 V to 2.5 V is the voltage range of 0.5 V to 4.5 V of the input range of the AD converter circuit. .
  • the digital offset of the section 2 may be determined so that the maximum voltage of the section 1 matches the minimum voltage of the section 2, and details thereof will be described later.
  • FIG. 8 shows an overall AD conversion processing routine according to the present embodiment in accordance with the above principle.
  • the gain calibration process (RT1) of the programmable gain amplifier and the digital offset calculation process (RT2) are performed in advance, and then the execution stop of the AD conversion process according to the present embodiment is not instructed, and As long as there is an instruction for AD conversion, the input section discrimination process (RT3) based on the analog signal to be measured, the AD conversion process (RT4) by the AD conversion circuit for the analog signal to be measured, and the result of the AD conversion process (RT4) Gain correction and digital offset addition processing (RT5) are performed.
  • the AD conversion process (RT4) and the gain correction and digital offset addition process (RT5) constitute an extended AD conversion process in which AD conversion is performed using the determined interval for the analog signal to be measured as the voltage range of the input range of the AD conversion circuit 113. To do.
  • this discrimination process is a process of discriminating the input range to which the voltage to be measured belongs based on the AD conversion data of the voltage corresponding to the boundary voltage of each divided range of the AD conversion circuit 113.
  • This is a process of setting the amplifier 102 and AD converting the amplified signal of the analog signal under measurement by the set programmable gain amplifier 102 by the AD conversion circuit 113.
  • the gain correction and digital offset addition processing (RT5) performs 2-bit zero extension on the lower side of the 10-bit digital data converted by the AD conversion processing RT4, and uses the expanded 12-bit data as an actual gain (its purpose). divided by the gain actually measured gain to 2 n), by adding the digital offset data to comply to the minimum voltage division range corresponding to divided by 12-bit data, 12-bit conversion accuracy is expanded AD This is a process for acquiring the conversion result.
  • the digital offset generation process is a process of generating digital offset data in the reference section illustrated in FIG. 9, a process of generating higher-order digital offset data in the reference section illustrated in FIG. 10, and FIG.
  • the processing is roughly divided into the generation processing of the lower digital offset data of the reference section exemplified in FIG.
  • an arbitrary voltage for example, a voltage of 2.1 V in section 2
  • the first DA conversion circuit 114 S1
  • this is given to the AD conversion circuit 113 via the terminals a and d of the selectors 103 and 119 to acquire AD converted first data (S2), and the first processing is performed.
  • 10-bit data that is the basis of the digital offset data DFS2 is obtained.
  • the CPU 110 fetches the first data M2 (S3), performs 2-bit zero extension on the lower side of the fetched first data M2 to obtain 12-bit second data M2_eb (S4), and performs a second process. .
  • an amplifier offset for expanding the voltage range (1.5 V to 2.5 V) of the divided range to the voltage range of the input range (0.5 V to 4.5 V) of the AD converter circuit is converted to the second DA conversion.
  • the arbitrary voltage generated by the first DA converter circuit 114 is amplified by the programmable gain amplifier 102 generated by the circuit 115 (S5) and having the generated amplifier offset and the actual gain near the target gain.
  • the signal is converted by the AD conversion circuit 113 (S6), and the CPU 110 takes in the third data A2 obtained by the conversion (S7), and performs the third process.
  • the CPU 110 performs the fourth process of obtaining the fourth data A2_eb_g by performing 2-bit zero extension on the lower side of the third data A2, performing division by the actually measured gain (S8).
  • a fifth process of subtracting the fourth data A2_eb_g from the second data M2_eb to obtain the reference digital offset data DFS2 (fifth data) of the specific division range is performed (S9).
  • the digital offset data DFS2 substantially matches the value obtained by AD converting the arbitrary voltage in the voltage range of the input range of the AD conversion circuit 113 without using the programmable gain amplifier 102.
  • the value obtained by adding the digital offset data DFS2 to the value obtained by extending the result of AD conversion of the voltage range of the input range amplified by the programmable gain amplifier and dividing by the actually measured gain in the voltage range of the reference section And the value directly AD converted without going through the programmable gain amplifier substantially coincide with each other.
  • the maximum voltage of the section 2 that is the specific division range 2.5 V is generated by the first DA converter circuit 114 (S10), and the voltage range (1.5 V to 2.5 V) of the divided range (section 2) is set to the voltage of the input range of the AD converter circuit 113.
  • An amplifier offset that expands to a range (0 V to 5 V) is generated by the second DA conversion circuit 115 (S11), and the first DA conversion is performed by the programmable gain amplifier 102 in which the generated amplifier offset and target gain are set.
  • the maximum voltage of 2.5 V in section 2 generated by the circuit 114 is amplified, and the amplified signal is converted by the AD conversion circuit 113 ( 12) to get the sixth data A2max (S13), it performs a sixth process.
  • the CPU 110 performs 2-bit zero extension on the lower side of the sixth data A2max to generate temporary 12-bit data (A2max_eb) (S14), and divides this data A2max_eb by the measured gain to generate data A2max_eb_g Then, the digital offset data DFS2 is added to the data A2max_eb_g to obtain seventh data A2max_12b which is 12-bit AD conversion data (S16), and the seventh process is performed.
  • the CPU 110 generates, in the second DA conversion circuit 115, an amplifier offset that expands the voltage range (2.5 V to 3.5 V) of the upper divided range (section 3) to the input range of the AD conversion circuit.
  • the signal amplified as the minimum voltage of 2.5 V in section 3 is converted by the AD conversion circuit 113 (S18), the eighth data A3min is obtained (S19), and the eighth process is performed.
  • the added value and the value directly AD converted without going through the programmable gain amplifier substantially match.
  • the value subjected to AD conversion in each division range is subjected to n-bit bit expansion and division based on the actually measured gain, the influence of the gain error of the programmable gain amplifier 102 can be eliminated. Can be ensured with high accuracy.
  • digital offset data DFS4 may be obtained by the same processing as in FIG. 10 based on the known digital offset data DFS3, and thus detailed description thereof is omitted.
  • the minimum voltage (in the specific division range (section 2)) ( 1.5V) is generated by the first DA converter circuit 114 (S22), and the voltage range (1.5V to 2.5V) of the divided range (section 2) is set to the input range (1.5V to 2.5V) of the AD converter circuit 113.
  • An amplifier offset that expands to 0V to 5V is generated by the second DA converter circuit 115 (S23), and the first DA converter circuit 114 is generated by the programmable gain amplifier 102 in which the generated amplifier offset and target gain are set.
  • S24) and acquires the tenth data A2min (S25) performs the tenth processing.
  • the CPU 110 generates temporary 12-bit data A2min_eb obtained by performing 2-bit zero extension on the lower side of the tenth data A2min (S26), and divides the data A2min_eb by the actually measured gain to generate data A2min_eb_g (
  • the digital offset data DFS2 is added to the data A2min_eb_g to obtain eleventh data (A2min_12b) as 12-bit AD conversion data (S28), and an eleventh process is performed.
  • the CPU 110 generates the maximum voltage (1.5 V) of the lower divided range (section 1) by the first DA converter circuit 114, and at the same time the voltage range (0.5 V to 1.. 5V) is generated in the second DA converter circuit 115 in the second DA converter circuit 115 (S29), and the programmable amplifier set with the generated amplifier offset and the target gain is expanded to the input range (0V to 5V) of the AD converter circuit 113.
  • the gain amplifier 102 amplifies the maximum voltage (1.5 V) generated by the first DA converter circuit 114, converts the amplified signal by the AD converter circuit 113 (S30), and obtains twelfth data A1max. In step S31, a twelfth process is performed.
  • the CPU 110 performs 2-bit zero extension on the lower side of the twelfth data A1max, divides the measured gain, generates data A1max_eb_g (S32), and generates the generated data A1max_eb_g as the eleventh data.
  • the digital offset data DFS1 of the lower side division range (section 1) is acquired (S33), and the thirteenth process is performed.
  • the added value and the value directly AD converted without going through the programmable gain amplifier substantially match.
  • the value AD converted in each division range is subjected to n-bit bit expansion and division by actually measured gain, the influence of the gain error of the programmable gain amplifier can be eliminated, and its continuity Can be assured with high accuracy.
  • FIG. 12 illustrates details of the input section discrimination process (RT3) and the AD conversion process (RT4).
  • the selector 103 is selected as the input terminal b and the selector 119 is selected as the input terminal d (S40), and the analog signal to be measured is AD converted by the AD conversion circuit 113 (S41, S42).
  • the CPU 110 fetches the AD conversion result (S43) and determines whether the AD conversion result is larger than the boundary value between the sections 3 and 4 (S44).
  • Amplifier offset data is set (S45), and the stabilization of the conversion operation of the first DA conversion circuit 114 is awaited (S46).
  • the AD conversion result is smaller than the boundary value between the sections 3 and 4
  • the amplifier offset data of section 3 is set in the register (S48), and the stabilization of the conversion operation of the first DA conversion circuit 114 is awaited (S49).
  • the AD conversion result is smaller than the boundary value between the sections 2 and 3
  • the amplifier offset data of section 2 is set in the DA conversion register (S51), and the stabilization of the conversion operation of the first DA conversion circuit 114 is awaited (S52).
  • the amplifier offset data of the section 1 is set in the DA conversion register for amplifier offset (S53), and the first DA conversion circuit 114 Wait for stabilization of the conversion operation (S54). After each stabilization waiting time (for example, 3 ⁇ s) has elapsed, the input of the selector 119 is connected to the output of the PGA 102 (S55). Thereby, 2 n (here, gain 4) is set in the programmable gain amplifier 102 as the target gain together with the amplifier offset for expanding the voltage range of the determined divided range to the input range of the AD conversion circuit 113. A process of converting the amplified signal of the analog signal under measurement by the programmable gain amplifier 102 by the AD conversion circuit 113 is performed.
  • FIG. 13 illustrates the details of the gain correction and digital offset addition processing (RT5).
  • the CPU 110 performs zero extension of n bits (2 bits in this case) on the lower side of the digital data converted by the AD conversion circuit 113 by the AD conversion process (RT4) to generate 12-bit data AE1.
  • the data AE1 is divided by the actual gain (S61), and the result data (V1) is held and the discrimination result by the discrimination process (RT3) of the input section is referred to (S62).
  • the CPU 110 adds the digital offset of the section 4 to the calculation result data V1 if the determination result by the input section determination processing (RT3) is the section 4 (S63, S64), and the input section determination processing (RT3).
  • the digital offset of section 3 is added to the calculation result data V1 (S65, S66). If the determination result by the input section determination processing (RT3) is section 2, the calculation result data V1 is calculated. The digital offset of section 2 is added (S67, S68), and if the determination result by the input section determination processing (RT3) is section 1, the digital offset of section 1 is added to the calculation result data V1 (S69). The resulting data is held as an AD conversion result expanded to 12 bits (S70).
  • FIG. 14 illustrates a timing chart of the AD conversion operation by the AD function according to the present embodiment.
  • sampling of the analog signal to be measured for AD conversion and AD conversion operation by the AD conversion circuit 113 includes the above-described operation for determining the input section (monitoring AD conversion) and input measurement for extended AD conversion.
  • the operation (actual AD conversion) is performed in this order.
  • the divided section is determined using it (OPR1), and after the actual AD conversion, operations such as bit expansion, gain correction, and addition of a digital offset are performed (OPR2).
  • OCR1 operations such as bit expansion, gain correction, and addition of a digital offset are performed
  • the AD conversion result in which n bits are extended in a range satisfying the relationship of 2 n ⁇ m is obtained.
  • the programmable gain amplifier is based on consistency with the amplification by giving the amplifier offset from the second DA conversion circuit 115 to the programmable gain amplifier 102 so that the determined range of the divided range is the full range of the AD conversion circuit 113.
  • An amplifier 102 amplifies at a gain of 2 n or in the vicinity thereof. As a result, the resolution can be increased over the entire conversion range of the AD conversion circuit 113.
  • Embodiment 2 a process for obtaining a digital offset of each divided range by a method different from that in the first embodiment will be described.
  • the digital offset of a specific reference section substantially matches the minimum voltage of the specific section, so that the AD converter circuit 113 AD converts the minimum voltage of the specific section.
  • 12-bit data obtained by performing 2-bit zero extension on the lower side can be used as the digital offset of the reference section.
  • 2.5 V is output from the DAC 1 and AD-converted by the ADC 113 without being amplified by the PGA 102, and the following 2-bit bit extension is performed on the conversion result data, and this is used as the digital offset of the reference section.
  • the AD converter circuit 113 Since the digital offset of the upper section of the specific section substantially coincides with the maximum voltage of the specific section, the AD converter circuit 113 performs AD conversion on the minimum voltage of the specific section, and the lower side has 2 bits. Perform 0-extension and divide by the actual gain, add the digital offset data of the section based on a known reference to the result of division, and use the obtained 12-bit extended AD conversion result as the digital offset Can do. It should be noted that the digital offset of the upper section of the upper section can be obtained by the same processing based on the known digital offset of the upper section.
  • the AD converter circuit 113 AD converts the minimum voltage of the specific section to the lower side.
  • a 2-bit zero extension is performed to divide by the actual gain, and the difference between the division result and the digital offset data of the section based on a known reference can be used as the digital offset. It should be noted that the digital offset of the lower section of the lower section can be obtained by the same processing based on the known digital offset of the lower section.
  • FIG. 15 illustrates a data processing system according to the second embodiment of the present invention.
  • the data processing system 200 shown in the figure is different from the data processing system 100 shown in FIG. 1 in that a sample and hold circuit 201 is added and a CPU 110A that performs control corresponding thereto is employed.
  • the CPU 110A has a sample hold circuit 201 for inputting the analog signal to be measured 123, and the CPU 110A uses the same analog signal to be measured 123 sampled by the sample and hold circuit 201 to determine the division range and the determination result.
  • a process for the extended AD conversion used is performed.
  • the sample hold circuit 201 includes a sampling switch (SMP1) 211, a sampling capacitor (SC1) 212, an output buffer (BUF) 213, and an output selection switch (SW3) 214.
  • SMP1 sampling switch
  • SC1 sampling capacitor
  • BAF output buffer
  • SW3 output selection switch
  • FIG. 16 illustrates the sample hold operation of the analog signal under measurement. After the necessary charge signal is accumulated in the sampling capacitor 212, the sampling switch 211 is closed.
  • FIG. 17 illustrates an operation in which the information held in the sample hold circuit 201 is AD-converted by the ADC 113 through the PGA 102.
  • the AD section data (RT3) and the measured voltage AD conversion process (RT4) described with reference to FIG. 8 are performed using the AD conversion data obtained by this monitoring operation.
  • FIG. 18 illustrates operations in gain correction and digital offset addition processing (RT5).
  • RT5 gain correction and digital offset addition processing
  • the division range can be determined and the AD conversion using the determination result can be performed on the same analog signal to be measured. Occurrence of a situation where conversion is performed can be prevented in advance.
  • Embodiment 4 >>
  • the division number m can be arbitrarily determined within a range satisfying the relationship of 2 n ⁇ m.
  • the midpoint of the dynamic signal is set to half of the input voltage range of the AD converter circuit. It is generally considered to be a good idea.
  • the AD conversion method that divides the input range as described in the above embodiment if the number of divisions is an even number, the half of the input voltage range of the AD conversion circuit becomes a boundary between adjacent division ranges. In this respect, a difference in processing efficiency occurs in the AD conversion according to the present embodiment depending on whether the even number or the odd number is adopted as the division number m. This point will be described in the third embodiment.
  • the division number of the input range of the AD converter circuit 113 is set to an even number, and the AD signal according to this embodiment is set.
  • the voltage 2.5 V which is the median value of the periodic signal
  • the amplifier offset is frequently switched according to the value of the analog signal to be measured.
  • the time for waiting for the ADC 113 to stabilize becomes longer, and the conversion processing efficiency by the AD according to the present embodiment decreases.
  • the CPU 110 (110 ⁇ / b> A) allows the input of the AD converter circuit 113 when the median value of the analog signal under measurement is close to the median value of the input range of the AD converter circuit 113.
  • Control may be performed so that the AD conversion processing according to the present embodiment is performed with the number of divisions of the range set to an odd number, for example, five.
  • the AD conversion processing according to the present embodiment is performed with the number of divisions of the range set to an odd number, for example, five.
  • the input range by the converter 113 is expanded from 0.1 V to 4.9 V, for example.
  • a margin corresponding to the capability of the AD conversion circuit 113 may be taken into consideration at both ends of the input range.
  • FIG. 21 illustrates a data processing system according to the fourth embodiment.
  • the data processing system 300 shown in the figure has a sample hold circuit 201 added to the data processing system 100 of FIG. 1, and the DA conversion circuit is integrated into one DA conversion circuit (DAC1) 114.
  • the output is selectively supplied to the PGA 102 or the selector 103 via the selector 220, and the CPU 110B that performs control corresponding thereto is employed.
  • a sample hold circuit 201 that selectively samples and holds the setting analog signal 122 instead of the measured analog signal 123 and outputs the sample analog signal 122 to the programmable gain amplifier 102, and an amplifier offset generation and a setting analog signal generation
  • the DA conversion circuit (DAC1) 114 that is also used and the path for outputting the amplifier offset 121 generated by the DA conversion circuit 114 to the programmable gain amplifier 102 or the setting analog signal 122 generated by the DA conversion circuit
  • a selector 220 for selecting a path to be supplied to the sample hold circuit 201 is provided.
  • the CPU 110 ⁇ / b> B controls the selection of the selector 220 by using the DA conversion circuit 114 for generating the amplifier offset 121 and generating the setting analog signal 122.
  • the sample hold circuit 201 includes a sampling switch (SMP1) 211, a sampling capacitor (SC1) 212, an output buffer (BUF) 213, and an output selection switch (SW3) 214.
  • SMP1 sampling switch
  • SC1 sampling capacitor
  • BAF output buffer
  • SW3 output selection switch
  • the D / A converter circuit 115 that outputs the amplifier offset 121 to the programmable gain amplifier 102 and the setting analog signal 122 instead of the analog signal to be measured are programmable.
  • the DA converter circuit 114 to be output to the gain amplifier 102 is separately provided, the setting of the amplifier offset and the generation of the setting analog signal can be performed in parallel, so that the processing efficiency when acquiring the digital offset It can contribute to improvement.
  • the DA converter circuit 114 used for both the generation of the amplifier offset and the setting analog signal is employed, the setting of the amplifier offset and the generation of the setting analog signal are performed in series. However, it is possible to contribute to the reduction of the circuit scale by using the DA converter circuit.
  • the gain calibration for the PGA 102 may be performed sequentially by processing RT10 to RT16 as shown in the outline of FIG. That is, in the actual gain acquisition process illustrated in FIG. 22, the terminal of the selector 103 is set to a, the selector 220 is set to g, the analog voltage is output from the DA conversion circuit 114, and the switch 211 built in the sample hold circuit 201 is output. (SMP1) is turned on, switch 214 (SW3) is turned off, and voltage x1 is stored in capacitor 212 (SC1) (RT10).
  • the switch 211 After storing the voltage x1, the switch 211 is turned off, the switch 214 is turned on, the selector 220 is set to f, and an arbitrary voltage O (for example, 0 V) is output as the amplifier offset of the PGA 102 from the DA conversion circuit 114.
  • O for example, 0 V
  • the terminal of the selector 119 is set to d, and the voltage x1 stored in the capacitor 212 by the AD conversion circuit 113 is AD-converted through a path without the PGA 102, and an AD conversion result y1 is obtained (RT11).
  • the terminal of the selector 119 is set to c, the voltage x1 stored in the capacitor 212 by the AD conversion circuit 113 is amplified by the PGA 102, and AD conversion is performed to obtain an AD conversion result Y1 (RT12).
  • the analog voltage x2 is output from the DA conversion circuit 114, the voltage x2 is stored in the sample hold circuit 201 (RT13), the voltage x2 is stored, the switch 211 is turned off, the switch 214 is turned on, and the selector 220 is set to f.
  • the amplifier offset voltage O is output from the DA conversion circuit 114.
  • the AD conversion circuit 113 obtains the AD conversion result y2 from the voltage x2 stored in the capacitor 212 through the path without the PGA 102 (RT14), and the AD converter 113 obtains the AD conversion result Y2 from the voltage x2 amplified by the PGA 102. (TR15).
  • the actually measured gain G is calculated from the ratio between the AD conversion result in the path without the PGA 102 and the AD conversion result of the voltage amplified by the PGA 102 for the two different voltages.
  • processing is performed as x1 ⁇ x2.
  • the voltages x1 and x2 are arbitrarily selected within a range in which the voltage amplified by the PGA 102 does not exceed the input range of the AD converter circuit.
  • FIG. 23 illustrates details of the processes RT10 and RT11.
  • FIG. 24 illustrates details of the process RT12.
  • FIG. 25 illustrates details of the processes RT13 and RT14.
  • FIG. 26 illustrates details of the process RT15.
  • FIG. 27 illustrates details of the A and B portions in the flowchart when calculating the digital offset of section 3, and
  • FIG. 28 illustrates details of the C portion in the flowchart when calculating the digital offset of section 3. .
  • the calculation flow of the digital offset in other sections is not shown, but may be generated by processing according to FIG. 27 and FIG.
  • bit expansion by a control unit such as a microcomputer and division by actually measured gain may be performed not only by fixed point arithmetic but also by floating point arithmetic.
  • the order in which bit extension processing for expanding bit precision and division by measured gain is performed in digital offset generation processing, etc. is basically the order in which division after bit extension is desirable in the arithmetic system. However, it is possible to reverse by the calculation method otherwise.
  • the bit accuracy, the number of extension bits, and the number of divisions of the AD conversion circuit are not limited to the above embodiment, and can be changed as appropriate.
  • the data processing system is not limited to a one-chip semiconductor device, and can be configured with multiple chips.
  • the microcomputers (MCUs) 101, 101A, and 101B can be configured with one chip, and other circuits can be configured with external components.
  • the present invention relates to a data processing system having an AD conversion function, and can be widely applied to a technique for obtaining a bit accuracy higher than that of an AD conversion circuit.
  • Microcomputer 102 Programmable gain amplifier (PGA) 103 Selector (SW1) 110 Central processing unit (CPU) 111 Nonvolatile memory (FLASH) 112 RAM 113 AD conversion circuit (ADC) 114 1st DA converter circuit (DAC1) 115 Second DA converter circuit (DAC2) 116 Digital input / output port 117 Analog input port 118 Peripheral circuit module (PRPH) 119 Selector (SW2) 200 Data processing system 201 Sample hold circuit 110A CPU 101A microcomputer 300 data processing system 110B CPU 101B Microcomputer

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

 分解能を高くすることができ、変換レンジの切り替えに対する追従性が良好で、変換誤差が小さなデータ処理システムを提供する。 AD変換回路の分解能に対してn(nは正の整数)ビット拡張したAD変換結果を得るデータ処理システムは、AD変換回路の入力レンジをm(2≦m)分割し、被測定アナログ信号に対してAD変換回路によるAD変換結果が何れの分割レンジに属するかを判別し、判別した分割レンジの範囲をAD変換回路の入力レンジの電圧範囲とするアンプオフセットをプログラマブルゲインアンプに与えて増幅し、増幅された信号をAD変換回路で変換し、その変換結果に対する下位側のビット拡張とプログラマブルゲインアンプの実測ゲインによる除算とを行なった結果に、対応するデジタルオフセットを加算して、ビット精度をnビット拡張したAD変換結果を取得する。

Description

データ処理システム
 本発明は、AD(Analog to Digital)変換機能を有するデータ処理システムに関し、特にAD変換回路のビット精度よりも高いビット精度(分解能)を得るための技術に関する。
 特許文献1にはAD変換回路の最小分解能にほぼ等しい振幅の傾斜電圧を加え、複数回のAD変換動作を行い、各デジタル出力を、AD変換回路の桁数よりも大きな桁数を持つ演算回路によって平均化することにより、高精度AD変換を実現しようとする技術の記載がある。
 特許文献2には差動増幅器により入力アナログ信号と変換レンジに応じた基準信号との差分を取得し、これをAD変換回路によりデジタル信号に変換し、そのデジタル信号を受け取る制御装置によりその差分に応じたデジタル信号に応じて基準信号を制御すると共にデジタル信号と変換レンジとに応じて出力デジタル信号を生成する。実際のAD変換回路の分解能よりも変換レンジ数倍の分解能を得ることができ、変換レンジの設定の仕方により必要な分解能を得るものである。
特開平5-14201号公報 特開平6-334523号公報
 本発明者はAD変換回路の変換レンジの全域にわたってその分解能を高くすることについて検討した。特許文献1ではその目的を達することは容易ではない。特許文献2では変換レンジの基準信号と被測定用の入力信号との差分をAD変換回路で増幅することによって変換ビット精度を高くしようとするものであるが、被測定信号に応じて変換レンジを最適に切り替えるにはAD変換結果が変換レンジを振り切るか否かの判別を行って基準信号の切り替えを行わなければならず、変換レンジの切り替えに対する追従性が悪いと考えられ、また、変換レンジが切り替えられたときの変換レンジ間での変換データの連続性についても検討されておらず、さらには差動増幅回路の増幅率と拡大される分解能との関係についても明示されず、種々の検討がその他に必要になると考えられる。
 本発明の目的は、AD変換回路の変換レンジの全域にわたってその分解能を高くすることができると共に、
変換レンジの切り替えに対する追従性が良好であって、その変換誤差が小さなデータ処理システムを提供することにある。
 本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
 本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。
 すなわち、AD変換回路の分解能に対してビット精度をn(nは正の整数)ビット拡張したAD変換結果を得るデータ処理システムは、AD変換回路の入力レンジをm(2≦m)分割し、各分割レンジの接続点の電圧が隣接するもの同士で同一となるデジタルオフセットを演算し、被測定アナログ信号に対してAD変換回路によるAD変換結果が何れの分割レンジに属するかを判別し、判別した分割レンジの範囲をAD変換回路の入力レンジの電圧範囲とするアンプオフセットをプログラマブルゲインアンプに与えて増幅し、増幅された信号をAD変換回路で変換し、その変換結果に対する下位側のnビット拡張と拡張された値に対する前記プログラマブルゲインアンプの実測ゲインによる除算とを行なった結果に、対応する分割レンジのデジタルオフセットを加算して、ビット精度をnビット拡張したAD変換結果を取得する。
 本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。
 すなわち、AD変換回路の変換レンジの全域にわたってその分解能を高くすることができると共に、変換レンジの切り替えに対する追従性が良好であって、その変換誤差を小さくすることができる。
図1は本発明の第1の実施の形態に係るデータ処理システムを例示するブロック図である。 図2は本実施の形態に係るAD変換原理を全体的に例示する動作説明図である。 図3はアンプオフセットの設定例を示す説明図である。 図4は本実施の形態に係る上記AD変換原理を分割レンジの区間2に着目して示した説明図である。 図5は本実施の形態に係る上記AD変換原理を分割レンジの区間3に着目して示した説明図である。 図6は同じく本実施の形態に係る上記AD変換原理を分割レンジの区間3に着目して示すと共にプログラマブルゲインアンプが増幅動作の直線性を保つ電圧範囲内で区間を交錯させるようにした場合について示した説明図である。 図7は同じく本実施の形態に係る上記AD変換原理を分割レンジの区間2に着目して示すと共にプログラマブルゲインアンプが増幅動作の直線性を保つ電圧範囲内で区間を交錯させるようにした場合について示した説明図である。 図8は本実施の形態に係るAD変換原理による変換処理ルーチンを全体的に例示するフローチャートである。 図9はデジタルオフセットデータDFS2の生成処理を例示するフローチャートである。 図10は既知のデジタルオフセットデータDFS2の上位側デジタルオフセットデータDFS3の生成処理を例示するフローチャートである。 図11は既知のデジタルオフセットデータDFS2の下位側デジタルオフセットデータDFS1の生成処理を例示するフローチャートである。 図12は入力区間の判別処理RT3及び前記AD変換処理RT4の詳細を例示するフローチャートである。 図13はゲイン補正及びデジタルオフセット加算処理RT5の詳細を例示するフローチャートである。 図14は本実施の形態に係るAD変換動作を例示するタイミングチャートである。 図15は本発明の第2の実施の形態に係るデータ処理システムを例示するブロック図である。 図16は被測定アナログ信号のサンプルホールド動作を例示する動作説明図である。 図17はサンプルホールド回路201にホールドされた情報をPGA102をスルーしてADC113でAD変換する動作を例示する動作説明図である。 図18はゲイン補正及びデジタルオフセット加算処理RT5における動作を例示する動作説明図である。 図19は被測定アナログ信号の中央値がAD変換回路の入力レンジの中央値に近いとき前記AD変換回路の入力レンジの分割数を偶数に設定してAD変換処理を行う場合を例示する動作説明図である。 図20は被測定アナログ信号の中央値がAD変換回路の入力レンジの中央値に近いとき前記AD変換回路の入力レンジの分割数を奇数例えば5分割に設定してADの変換処理を行うように制御したときの第3の実施の形態に係る説明図である。 図21は第4の実施の形態に係るデータ処理システムを例示するブロック図である。 図22はDA変換回路が1個に集約された場合におけるPGAに対するゲイン校正の概要を例示する説明図である。 図23は図22の処理RT10とRT11の詳細を例示する動作説明図である。 図24は処理RT12の詳細を例示する動作説明図である。 図25は処理RT13及びRT14の詳細を例示する動作説明図である。 図26は処理RT15の詳細を例示する動作説明図である。 図27は区間3のデジタルオフセットを算出するときのフローチャートにおけるA及びB部分の詳細を例示する動作説明図である。 図28には区間3のデジタルオフセットを算出するときのフローチャートにおけるC部分の詳細を例示する動作説明図である。
1.実施の形態の概要
 先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。代表的な実施の形態についての概要説明で括弧を付して参照する図面中の参照符号はそれが付された構成要素の概念に含まれるものを例示するに過ぎない。
 〔1〕<ADCの分割入力レンジ毎に入力の増幅、AD変換、ビット拡張を行なう>
 本発明の代表的な実施の形態に係るデータ処理システム(100,200,300)は、AD変換回路の分解能に対してn(nは正の整数)ビット拡張したAD変換結果を得るシステムであって、AD変換回路(113)、プログラマブルゲインアンプ(102)、及び制御回路(110,110A,110B)を有する。前記制御回路は、前記AD変換回路の入力レンジをm(2≦m)分割し、各分割レンジの接続点の電圧が隣接するもの同士で同一となるデジタルオフセットを用意し、被測定アナログ信号に対して前記AD変換回路によるAD変換結果が何れの分割レンジに属するかを判別し、判別した分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲とするアンプオフセットとゲインの指定とを前記プログラマブルゲインアンプに与えて増幅し、増幅された信号を前記AD変換回路で変換し、その変換結果に対してnビット拡張と前記プログラマブルゲインアンプの実測ゲインの値による除算とを行なって、これに対応する分割レンジのデジタルオフセットを加算してビット精度をnビット拡張したAD変換結果とする。
 これにより、AD変換回路の入力レンジに対する分割数mに応じて、2≦mの関係を満足する範囲でビット精度をnビット拡張したAD変換結果を最終的に得ることができる。このときと、判別された分割レンジの範囲をAD変換回路の入力レンジの電圧範囲とするためのアンプオフセットとゲインの指定をプログラマブルゲインアンプに与えて増幅を行うので、プログラマブルゲインアンプはゲイン2若しくはその近傍で増幅を行うことになる。このとき、AD変換回路の分割入力レンジ毎に入力の増幅、AD変換、及びnビット拡張を行なうことによって、プログラマブルゲインアンプのゲイン誤差に対する補正が行なわれる。更に分割レンジの最小の値を与えるデジタルオフセットはその下位に隣接する分割レンジの最大の値と同一である。従って、AD変換回路の変換レンジの全域にわたる高分解能のAD変換結果に対して変換誤差の小さな高い変換精度を実現することができる。更に、変換レンジの選択に際してもプログラマブルゲインアンプによる増幅を行わずにAD変換回路でAD変換を1回行って判別すればよいから、変換レンジの切り替えに際して良好な追従性が得られる。
 〔2〕<ゲイン誤差の取得>
 項1のデータ処理システムにおいて、前記制御回路から前記プログラマブルゲインアンプに与えられるゲインは目的ゲイン2であり、前記制御回路によるnビット拡張はAD変換結果の下位ビットに対する0拡張である。
 これにより、プログラマブルゲインアンプのゲイン誤差を容易に相殺することができる。
 〔3〕<実測ゲインの取得>
 項2のデータ処理システムにおいて、前記制御回路は、目的ゲインとして前記2を前記プログラマブルゲインアンプに設定し、設定されたプログラマブルゲインアンプによるアナログ信号の増幅出力をAD変換回路で変換したデジタル値と、そのときプログラマブルゲインアンプに供給するアナログ信号の生成に用いたデジタル値との差に基づいて目的ゲインに対する実測ゲインを取得する。
 これにより、プログラマブルゲインアンプによる増幅誤差を相殺するために用いるプログラマブルゲインアンプの実測ゲインを容易に取得することができる。
 〔4〕<隣接する分割レンジの境界部分を交錯させる>
 項1のデータ処理システムにおいて、前記制御回路は、隣接する分割レンジの境界部分を交錯させるように前記アンプオフセットを設定する。
 これにより、プログラマブルゲインアンプの増幅特性に従ってリニアリティーを保証することが難しい最小及び最大入力近傍の入力に対する増幅機能を用いないようにすることができ、この点でAD変換誤差の低減に資することができる。
 〔5〕<属する分割レンジの判別>
 項1のデータ処理システムにおいて、前記制御回路は、前記AD変換回路の各分割レンジの境界電圧の入力電圧に対するAD変換データに基づいて被測定電圧が属する入力レンジを判別する。
 これにより、被測定信号が属する分割レンジを容易に判別することができるようになる。
 〔6〕<サンプルホールド>
 項1のデータ処理システムにおいて、被測定アナログ信号を入力するサンプルホールド回路(201)をさらに有し、前記制御回路(110A,110B)は、前記サンプルホールド回路にサンプリングされた同じ被測定アナログ信号を用いて、分割レンジの判別と、判別された分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲とするAD変換とを行う。
 これにより、分割レンジの判別と、その判別結果を利用した前記AD変換とを同じ被測定アナログ信号に対して行うことができるから、誤って異なる分割レンジを用いてAD変換が行われる事態の発生を未然に防止することができる。
 〔7〕<入力レンジの分割数を奇数とする>
 項1のデータ処理システムにおいて、前記制御回路は、被測定アナログ信号の中央値がAD変換回路の入力レンジの中央値に近いとき前記AD変換回路の入力レンジの分割数を奇数に設定してAD変換のための前記処理を行う。
 これにより、被測定アナログ信号の中央値が分割レンジの境界近傍になることを抑制する事ができる。それが分割レンジの境界近傍になると被測定アナログ信号がその中央値を越えて変化するたびに分割レンジを変更する処理を行わなければならなくなり、AD変換処理効率が低下する。
 〔8〕<アンプオフセット生成用とアンプ入力信号生成用のDACを個別化>
 項1のデータ処理システムにおいて、前記プログラマブルゲインアンプに前記アンプオフセットを出力するDA変換回路(115)と、選択的に前記プログラマブルゲインアンプに設定用アナログ信号を出力するDA変換回路(114)とを別々に持つ。
 これにより、アンプオフセットの設定と設定用アナログ信号の生成とを並列的に行うことができるから、デジタルオフセットを取得するときの処理効率の向上に資することができる。
 〔9〕<アンプオフセット生成用とアンプ入力信号生成用のDACを共通化>
 項1のデータ処理システムにおいて、選択的に前記被測定アナログ信号に代えて設定用アナログ信号をサンプルホールドして前記プログラマブルゲインアンプに出力するサンプルホールド回路(201)と、アンプオフセットの生成と設定用アナログ信号の生成に兼用されるDA変換回路(図21の114)と、前記DA変換回路で生成されたアンプオフセットを前記プログラマブルゲインアンプに出力する経路又は前記DA変換回路で生成された設定用アナログ信号を前記サンプルホールド回路に供給する経路を選択する選択回路(220)とを有する。
 これにより、アンプオフセットの設定と設定用アナログ信号の生成とを直列的に行わなければならないがDA変換回路の兼用によって回路規模の縮小に資することができる。
 〔10〕<ADCの分割入力レンジ毎に入力の増幅、AD変換、ビット拡張、実測ゲインで除算を行う>
 本発明の別の実施の形態に係るデータ処理システム(100,200,300)は、AD変換回路(113)、プログラマブルゲインアンプ(102)、及び制御回路(110,110A,110B)を有する。前記制御回路は、被測定アナログ信号が前記AD変換回路の入力レンジをm(正の整数)分割した何れの分割レンジに属するかを判別し、判別した分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するためのアンプオフセットと目的ゲイン2(nは正の整数、2≦m)を前記プログラマブルゲインアンプに設定し、設定されたプログラマブルゲインアンプによる前記被測定アナログ信号の増幅信号を前記AD変換回路で変換し、変換されたデータに対するnビットのビット拡張と拡張されたデータに対する前記プログラマブルゲインアンプの実測ゲインによる除算とを行い、除算結果に当該分割レンジに対応する分割レンジのデジタルオフセットデータを加算して、ビット精度をnビット拡張したAD変換結果とする。
 これにより、AD変換回路の入力レンジに対する分割数mに応じて、2≦mの関係を満足する範囲でビット精度をnビット拡張したAD変換結果を最終的に得ることができる。このときと、判別された分割レンジの範囲をAD変換回路の入力レンジの電圧範囲とするアンプオフセットとゲインの指定をプログラマブルゲインアンプに与えて増幅を行うので、プログラマブルゲインアンプはゲイン2若しくはその近傍で増幅を行うことになる。このとき、AD変換回路の分割入力レンジ毎に入力の増幅、AD変換、nビット拡張、及びプログラマブルゲインアンプの実測ゲインで除算を行なうことによって、プログラマブルゲインアンプのゲイン誤差に対する補正が行なわれる。従って、AD変換回路の変換レンジの全域にわたりプログラマブルゲインアンプのゲイン誤差が相殺され且つビット精度がnビット拡張されたAD変換結果を得ることができる。更に、変換レンジの選択に際してもプログラマブルゲインアンプによる増幅を行わずにAD変換回路でAD変換を1回行って判別すればよいから、変換レンジの切り替えに際しても良好な追従性が得られる。
 〔11〕<基準となる区間のデジタルオフセットデータの生成>
 項10のデータ処理システムは第1のDA変換回路(114)及び第2のDA変換回路(115)を有し、前記制御回路は第1処理乃至第5処理の制御を行う。第1処理は、特定の前記分割レンジの任意電圧を前記第1のDA変換回路で生成し、これを前記AD変換回路で変換した第1データを取得する処理である。第2処理は、前記第1データの下位側に当該分割レンジに応じてnビット分のビット拡張を行って第2データを取得する処理である。第3処理は、前記特定の分割レンジの任意電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するためのアンプオフセットを前記第2のDA変換回路で生成し、生成されたアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成した任意電圧を増幅し、増幅された信号を前記AD変換回路で変換して第3データを取得する処理である。第4処理は、前記第3データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算して第4データを取得する処理である。第5処理は、前記第2データから第4データを減算して当該特定の分割レンジのデジタルオフセットデータを取得する処理である。
 これにより、特定の前記分割レンジの電圧範囲において、プログラマブルゲインアンプにより増幅された入力レンジの電圧範囲をAD変換した結果をnビット拡張して前記実測ゲインで除算した値に前記デジタルオフセットデータを加算した値と、プログラマブルゲインアンプを介さず直接AD変換した値とは、実質的に一致するようになる。
 〔12〕<デジタルオフセットデータ既知区間の上位側デジタルオフセットデータの生成>
 項11のデータ処理システムにおいて、前記特定の分割レンジのデジタルオフセットデータを生成した後に、当該分割レンジの上位側の分割レンジのデジタルオフセットデータを生成するとき前記制御回路は第6処理乃至第9処理を行う。第6処理は、前記特定の分割レンジの最大電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するためのアンプオフセットを前記第2のDA変換回路で生成し、生成したアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成された最大電圧を増幅し、増幅された信号を前記AD変換回路で変換して第6データを取得する処理である。第7処理は、前記第6データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算してこれに前記特定の分割レンジのデジタルオフセットデータを加算した第7データを取得する処理である。第8処理は、前記上位側の分割レンジの最小電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットを前記第2のDA変換回路で生成し、生成したアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成された最小電圧を増幅し、増幅された信号を前記AD変換回路で変換して第8データを取得する処理である。第9処理は前記第8データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算し、これを前記第7データから減算して前記上位側分割レンジのデジタルオフセットデータとする処理である。
 これにより、既知のデジタルオフセットデータを求めた特定分割レンジとこれに隣接する上位側分割レンジとの接続点の電圧が双方の分割レンジで一致するように既知のデジタルオフセットデータを用いて演算されるから、特定分割レンジとこれに隣接する上位側分割レンジとの連続性を保証することができる。さらに当該分割レンジの電圧範囲において、プログラマブルゲインアンプにより増幅された入力レンジの電圧範囲をAD変換した結果をnビット拡張して前記実測ゲインで除算した値に前記デジタルオフセットデータを加算した値と、プログラマブルゲインアンプを介さず直接AD変換した値とは、実質的に一致する。特に、それぞれの分割レンジでAD変換された値に対してはnビットのビット拡張とそれに対する実測ゲインによる除算を行なうので、プログラマブルゲインアンプのゲイン誤差の影響を排除することができ、その連続性を高精度に保証することができる。
 〔13〕<デジタルオフセットデータ既知区間の下位側デジタルオフセットデータの生成>
 項11のデータ処理システムにおいて、前記特定の分割レンジのデジタルオフセットデータを生成した後に、当該分割レンジの下位側の分割レンジのデジタルオフセットデータを生成するとき前記制御回路は第10乃至第13処理を行う。第10処理は、前記特定の分割レンジの最小電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットを前記第2のDA変換回路で生成し、生成したアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成された最小電圧を増幅し、増幅された信号を前記AD変換回路で変換して第10データを取得する処理である。第11処理は、前記第10データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算し、これに特定の分割レンジのデジタルオフセットデータを加算して第11データを取得する処理である。第12処理は、前記下位側の分割レンジの最大電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットを前記第2のDA変換回路で生成し、生成したアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成された最大電圧を増幅し、増幅された信号を前記AD変換回路で変換して第12データを取得する処理である。第13処理は、前記第12データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算し、これを前記第11データから減算して前記下位側分割レンジのデジタルオフセットデータとする処理である。
 これにより、既知のデジタルオフセットデータを求めた特定分割レンジとこれに隣接する下位側分割レンジとの接続点の電圧が双方の分割レンジで一致するように既知の基準デジタルオフセットデータを用いて演算されるから、特定分割レンジとこれに隣接する下位側分割レンジとの連続性を保証することができる。さらに当該分割レンジの電圧範囲において、プログラマブルゲインアンプにより増幅された入力レンジの電圧範囲をAD変換した結果をnビット拡張して前記実測ゲインで除算した値に前記デジタルオフセットデータを加算した値と、プログラマブルゲインアンプを介さず直接AD変換した値とは、実質的に一致する。特に、それぞれの分割レンジでAD変換された値に対してはnビットのビット拡張とそれに対する実測ゲインによる除算を行なうので、プログラマブルゲインアンプのゲイン誤差の影響を排除することができ、その連続性を高精度に保証することができる。
 〔14〕<隣接する分割レンジの境界部分を交錯させる>
 項10のデータ処理システムにおいて、前記制御回路は隣接する分割レンジの境界部分を交錯させるように前記アンプオフセットを設定する。
 これにより、プログラマブルゲインアンプの増幅特性に従ってリニアリティーを保証することが難しい最小及び最大入力近傍の入力に対する増幅機能を用いないようにすることができ、この点でAD変換誤差の低減に資することができる。
 〔15〕<サンプルホールド>
 項10のデータ処理システムにおいて、被測定アナログ信号を入力するサンプルホールド回路(201)をさらに有し、前記制御回路(110A,110B)は、前記サンプルホールド回路にサンプリングされた同じ被測定アナログ信号を用いて、分割レンジの判別と、判別された分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲とするAD変換とを行う。
 これにより、分割レンジの判別と、判別された分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲とするAD変換とを同じ被測定アナログ信号に対して行うことができるから、誤って異なる分割レンジを用いてAD変換が行われる事態の発生を未然に防止することができる。
 〔16〕<入力レンジの分割数を奇数とする>
 項10のデータ処理システムにおいて、前記制御回路は、被測定アナログ信号の中央値がAD変換回路の入力レンジの中央値に近いとき前記AD変換回路の入力レンジの分割数を奇数に設定してAD変換のための前記処理を行う。
 これにより、被測定アナログ信号の中央値が分割レンジの境界近傍になることを抑制する事ができる。それが分割レンジの境界近傍になると被測定アナログ信号がその中央値を越えて変化するたびに分割レンジを変更する処理を行わなければならなくなり、AD変換処理効率が低下する。
 〔17〕<アンプオフセット生成用とアンプ入力信号生成用のDACを個別化>
 項10のデータ処理システムにおいて、前記プログラマブルゲインアンプに前記アンプオフセットを出力するDA変換回路(115)と、選択的に前記プログラマブルゲインアンプに設定用アナログ信号を出力するDA変換回路(114)とを別々に持つ。
 これにより、アンプオフセットの設定と設定用アナログ信号の生成とを並列的に行うことができるから、デジタルオフセットを取得するときの処理効率の向上に資することができる。
 〔18〕<アンプオフセット生成用とアンプ入力信号生成用のDACを共通化>
 項10のデータ処理システムにおいて、選択的に前記被測定アナログ信号に代えて設定用アナログ信号をサンプルホールドして前記プログラマブルゲインアンプに出力するサンプルホールド回路(201)と、アンプオフセットの生成と設定用アナログ信号の生成に兼用されるDA変換回路(図21の114)と、前記DA変換回路で生成されたアンプオフセットを前記プログラマブルゲインアンプに出力する経路又は前記DA変換回路で生成された設定用アナログ信号を前記サンプルホールド回路に供給する経路を選択する選択回路とを有する。
 これにより、アンプオフセットの設定と設定用アナログ信号の生成とを直列的に行わなければならないがDA変換回路の兼用によって回路規模の縮小に資することができる。
 〔19〕<ADCの分割入力レンジ毎に入力の増幅、AD変換、ビット拡張、実測ゲインで除算を行う>
 本発明の更に別の実施の形態に係るデータ処理システム(100,200,300)は、AD変換回路(113)と、プログラマブルゲインアンプ(102)と、DA変換回路(114,115)と、前記プログラマブルゲインアンプのゲイン校正処理、デジタルオフセットデータの生成処理、被測定アナログ信号に対する入力区間の判別処理、及び被測定アナログ信号に対して判別された区間を前記AD変換回路の入力レンジの電圧範囲とする拡張AD変換処理を行う制御回路(110,110A,110B)とを有する。前記入力区間の判別処理は、前記AD変換回路による被測定アナログ信号に対する変換結果が当該AD変換回路の入力レンジの電圧範囲をm(正の整数)分割した何れの分割レンジに属するかを判別する処理である。前記拡張AD変換処理は、判別された分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットと目的ゲイン2(nは正の整数、2≦m)とを前記プログラマブルゲインアンプに設定し、設定されたプログラマブルゲインアンプによる前記被測定アナログ信号の増幅信号を前記AD変換回路で変換し、変換されたデジタルデータに対するnビットのビット拡張と拡張されたデータに対するプログラマブルゲインアンプの実測ゲインによる除算を行い、除算されたデータに、前記判別された分割レンジの最小値に応ずるデジタルオフセットデータを加算して、ビット精度をnビット拡張したAD変換結果とする。
 これにより、AD変換回路の入力レンジに対する分割数mに応じて、2≦mの関係を満足する範囲でビット精度をnビット拡張したAD変換結果を最終的に得ることができる。このときと、判別された分割レンジの範囲をAD変換回路の入力レンジの電圧範囲とするためのアンプオフセットとゲインの指定をプログラマブルゲインアンプに与えて増幅を行うので、プログラマブルゲインアンプはゲイン2若しくはその近傍で増幅を行うことになる。このとき、AD変換回路の分割入力レンジ毎に入力の増幅、AD変換、nビット拡張、及びプログラマブルゲインアンプの実測ゲインで除算を行なうことによって、プログラマブルゲインアンプのゲイン誤差に対する補正が行なわれる。更に分割レンジの最小の値を与えるデジタルオフセットはその下位に隣接する分割レンジの最大の値と同一である。従って、AD変換回路の変換レンジの全域にわたる高分解能のAD変換結果に対して変換誤差の小さな高い変換精度を実現することができる。更に、変換レンジの選択に際してもプログラマブルゲインアンプによる増幅を行わずにAD変換回路でAD変換を1回行って判別すればよいから、変換レンジの切り替えに際しても良好な追従性が得られる。
 〔20〕<基準となる区間のデジタルオフセットデータの生成>
 項19のデータ処理システムは前記DA変換回路として第1のDA変換回路(114)及び第2のDA変換回路(115)を有する。前記デジタルオフセットデータの生成処理は第1処理乃至第5処理を含む。第1処理は、特定の前記分割レンジの任意電圧を前記第1のDA変換回路で生成し、これを前記AD変換回路で変換した第1データを取得する処理である。第2処理は、前記第1データの下位側にnビットのビット拡張を行って第2データを取得する処理である。第3処理は、前記特定の分割レンジの任意電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットを前記第2のDA変換回路で生成し、生成されたアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成した任意電圧を増幅し、増幅された信号を前記AD変換回路で変換して第3データを取得する処理である。第4処理は、前記第3データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算して第4データを取得する処理である。第5処理は、前記第2データから第4データを減算して当該特定の分割レンジのデジタルオフセットデータを取得する処理である。
 これにより、特定の前記分割レンジの電圧範囲において、プログラマブルゲインアンプにより増幅された入力レンジの電圧範囲をAD変換した結果をnビット拡張して前記実測ゲインで除算した値に前記デジタルオフセットデータを加算した値と、プログラマブルゲインアンプを介さず直接AD変換した値とは、実質的に一致するようになる。
 〔21〕<デジタルオフセットデータ既知区間の上位側デジタルオフセットデータの生成>
 項20のデータ処理システムにおいて、前記デジタルオフセットデータの生成処理は、前記特定の分割レンジのデジタルオフセットデータを生成した後に、当該分割レンジの上位側の分割レンジのデジタルオフセットデータを生成するために第6乃至第9処理を含む。第6処理は、前記特定の分割レンジの最大電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットを前記第2のDA変換回路で生成し、生成したアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成された最大電圧を増幅し、増幅された信号を前記AD変換回路で変換して第6データを取得する処理である。第7処理は、前記第6データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算してこれに前記基準デジタルオフセットデータを加算して第7データを取得する処理である。第8処理は、前記上位側の分割レンジの最小電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットを前記第2のDA変換回路で生成し、生成したアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成された最小電圧を増幅し、増幅された信号を前記AD変換回路で変換して第8データを取得する処理である。第9処理は、前記第8データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算して、これを前記第7データから減算して前記上位側分割レンジのデジタルオフセットデータとする処理である。
 これにより、既知のデジタルオフセットデータを求めた特定分割レンジとこれに隣接する上位側分割レンジとの接続点の電圧が双方の分割レンジで一致するように既知のデジタルオフセットデータを用いて演算されるから、特定分割レンジとこれに隣接する上位側分割レンジとの連続性を保証することができる。さらに当該分割レンジの電圧範囲において、プログラマブルゲインアンプにより増幅された入力レンジの電圧範囲をAD変換した結果をnビット拡張して前記実測ゲインで除算した値に前記デジタルオフセットデータを加算した値と、プログラマブルゲインアンプを介さず直接AD変換した値とは、実質的に一致する。特に、それぞれの分割レンジでAD変換された値に対してはnビットのビット拡張とそれに対する実測ゲインによる除算を行なうので、プログラマブルゲインアンプのゲイン誤差の影響をデジタルオフセットデータから排除することができ、その連続性を高精度に保証することができる。
 〔22〕<デジタルオフセットデータ既知区間の下位側デジタルオフセットデータの生成>
 項20のデータ処理システムにおいて、前記デジタルオフセットデータの生成処理は、前記特定の分割レンジのデジタルオフセットデータを生成した後に、当該分割レンジの下位側の分割レンジのデジタルオフセットデータを生成するために第10乃至第13処理を含む、第10処理は、前記特定の分割レンジの最小電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットを前記第2のDA変換回路で生成し、生成したアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成された最小電圧を増幅し、増幅された信号を前記AD変換回路で変換して第10データを取得する処理である。第11処理は、前記第10データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算し、これに前記基準デジタルオフセットデータを加算して第11データを取得する処理である。第12処理は、前記下位側の分割レンジの最大電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットを前記第2のDA変換回路で生成し、生成したアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成された最大電圧を増幅し、増幅された信号を前記AD変換回路で変換して第12データを取得する処理である。第13処理は、前記第12データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算し、これを前記第11データから減算して前記下位側分割レンジのデジタルオフセットデータとする処理である。
 これにより、既知のデジタルオフセットデータを求めた特定分割レンジとこれに隣接する下位側分割レンジとの接続点の電圧が双方の分割レンジで一致するように既知のデジタルオフセットデータを用いて演算されるから、特定分割レンジとこれに隣接する下位側分割レンジとの連続性を保証することができる。さらに当該分割レンジの電圧範囲において、プログラマブルゲインアンプにより増幅された入力レンジの電圧範囲をAD変換した結果をnビット拡張して前記実測ゲインで除算した値に前記デジタルオフセットデータを加算した値と、プログラマブルゲインアンプを介さず直接AD変換した値とは、実質的に一致する。特に、それぞれの分割レンジでAD変換された値に対してはnビットのビット拡張とそれに対する実測ゲインによる除算を行なうので、プログラマブルゲインアンプのゲイン誤差の影響をデジタルオフセットデータから排除することができ、その連続性を高精度に保証することができる。
 〔23〕<隣接する分割レンジの境界部分を交錯させる>
 項19のデータ処理システムにおける前記拡張AD変換処理において、判別された分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットを前記プログラマブルゲインアンプに設定するとき、隣接する分割レンジの境界部分を交錯させるように前記アンプオフセットを設定する。
 これにより、プログラマブルゲインアンプの増幅特性に従ってリニアリティーを保証することが難しい最小及び最大入力近傍の入力に対する増幅機能を用いないようにすることができ、この点でAD変換誤差の低減に資することができる。
 〔24〕<実測ゲインの取得>
 項19のデータ処理システムにおいて、前記ゲイン校正処理は、前記第1のDA変換回路から出力したアナログ信号を前記プログラマブルゲインアンプで増幅して前記AD変換回路で変換して得られるデータと、前記アナログ信号を前記プログラマブルゲインアンプで増幅せずに前記AD変換回路で変換して得られるデータとに基づいて、前記増幅回路のゲインを演算し取得する処理を含む。
 これにより、プログラマブルゲインアンプによる増幅誤差を相殺するために用いる実測ゲインを容易に取得することができる。
 〔25〕<属する分割レンジの判別>
 項19のデータ処理システムにおいて、前記区間判別処理は、AD変換回路の各分割レンジの境界電圧の入力電圧に対するAD変換データに基づいて被測定電圧が属する入力レンジを判別する処理を含む。
 これにより、被測定信号が属する分割レンジを容易に判別することができるようになる。
 2.実施の形態の詳細
 実施の形態について更に詳述する。
 《実施の形態1》
 図1には本発明の第1の実施の形態に係るデータ処理システムが例示される。同図に示されるデータ処理システム100は、特に制限されないが、相補型MOS集積回路製造技術などにより単結晶シリコンなどの1個の半導体基板に形成されたシステムオンチップの半導体装置として構成される。データ処理システム100は、代表的に示されたマイクロコンピュータ(MCU)101、プログラマブルゲインアンプ(PGA)102、及びセレクタ(SW1)103を有する。特に図示はしないがメモリやアクセラレータなどのその他の回路が集積されていて良いことはいうまでもない。
 マイクロコンピュータ101は、特に制限されないが、制御回路としてプログラムを実行する中央処理装置(CPU)110、電気的に書き換え可能にプログラムやデータを格納するフラッシュメモリなどの不揮発性メモリ(FLASH)111、CPU110のワーク領域などに利用されるRAM112、アナログ信号をデジタル信号に変換するAD変換回路(ADC)113、デジタル信号をアナログ信号に変換する第1DA変換回路(DAC1)114、デジタル信号をアナログ信号に変換する第2DA変換回路(DAC2)115、デジタル入出力ポート116、アナログ入力ポート117、タイマカウンタやシリアルインタフェースなどのその他の周辺回路モジュール(PRPH)118、及びセレクタ(SW2)119を備える。
 プログラマブルゲインアンプ102に対するゲインの設定はCPU110が信号120で行う。第2DA変換回路115はCPU110から供給されるアンプオフセットデータをDA変換してプログラマブルゲインアンプ102にアンプオフセット121を供給する。第2DA変換回路115はCPU110から供給されるデータをDA変換して出力する。セレクタ103はアナログ入力ポート117から供給されるAD変換対象とされる被測定アナログ信号123又は第1DA変換回路114から出力される信号122を選択してプログラマブルゲインアンプ102に供給する。セレクタ119はセレクタ103の出力又はプログラマブルゲインアンプ102の出力を選択してAD変換回路113に供給する。AD変換回路113で変換されたデータはCPU110が参照する。前記セレクタ103,119のスイッチ制御はCPU110が行う。
 図1にはAD変換回路113の分解能に対してそのビット精度を拡張したAD変換結果を得る機能に着目した構成を主にしている。特に、CPU110のプログラム制御に従ってAD変換回路113の入力レンジの全域にわたってその分解能を高くしてAD変換結果を得ることができるようにしたものである。以下、そのAD変換機能について詳述する。
 先ず、本実施の形態に係るAD変換の原理を説明する。
 図2には本実施の形態に係るAD変換の原理が全体的に例示される。ここではAD変換回路113の分解能を10ビットとする。変換精度を2ビット拡張するものとし、それに応じて、AD変換回路113の入力レンジ(便宜上、AD変換回路113の入力レンジの電圧範囲を0.5V~4.5Vとする)を4分割し、分割された夫々の電圧範囲である分割レンジの区間(0.5V~1.5V,1.5V~2.5V、2.5V~3.5V、3.5V~4.5V)毎に各分割レンジの12ビットのデジタルオフセット(DFS1,DFS2,DFS3,DFS4)を予め用意する。被計測アナログ信号に対するAD変換動作では、被計測アナログ信号が属する分割レンジの区間の電圧をAD変換回路113の入力レンジの電圧範囲に増幅するためのアンプオフセットと目的ゲイン4(=2)をプログラマブルゲインアンプ102に設定して、その被測定アナログ信号を4倍に増幅する。増幅された信号はAD変換回路113で10ビットのデータに変換され、変換された10ビットのデータに対して下位側に2ビットのビット拡張、例えば2ビットの0拡張を行い、ビット拡張されたデータに対してプログラマブルゲインアンプ102の実測ゲインで除算することによって、当該プログラマブルゲインアンプ102のゲイン誤差を相殺した当該分割レンジにおける12ビットのAD変換データを取得する。このAD変換データに、対応する分割レンジの12ビットのデジタルオフセット(DFS1,DFS2,DFS3,DFS4)を加算することによって、ビット精度が12ビットに拡張されたAD変換データが得られる。上述の如く被計測信号が属する分割レンジで得られる10ビットのAD変換データに対しては2ビットのビット拡張と実測ゲインによる除算によりプログラマブルゲインアンプ102のゲイン誤差が相殺され、また、各分割レンジのデジタルオフセットで決まる電圧は下位側の分割レンジの最大の電圧に一致するようにされていて、分割レンジの各区間におけるAD変換結果の連続性が保証されるようになっている。以下、それらについて詳述する。
 先ず、プログラマブルゲインアンプ102に対するアンプオフセットの設定は図3に例示されるように、フルレンジに対して4分割された区間2に着目すると、電圧Vxを区間2の最小電圧とすると、入力電圧Va=VxのときVo=0Vになるように、Vo=Va(R1+R2)/R1-VbR2/R1の関係式から得られる電圧Vbをアンプオフセットとすれば、区間2の入力電圧は、その区間の電圧範囲がAD変換回路113の入力レンジの電圧範囲となるように増幅される。
 本実施の形態に係るAD変換の原理を分割レンジの区間に着目して示すと例えば図4及び図5のようになる。即ち、図4には、分割レンジの区間2(この例では便宜上AD変換回路113の入力レンジの電圧範囲を0V~5Vとしており図2の説明とは整合しない)の被測定アナログ信号をプログラマブルゲインアンプ102で4倍に増幅し、増幅された信号をAD変換回路113で10ビットのデータに変換し、そのデータに対する2ビットの0拡張と拡張されたデータに対する実測ゲインによる除算とを行い、これにデジタルオフセットDFS2を加算して、ビット精度が拡張された12ビットのAD変換データを取得するときの原理が例示される。図5には分割レンジの区間3(この例では便宜上AD変換回路113の入力レンジの電圧範囲を0V~5Vとしており図2の説明とは整合しない)の被測定アナログ信号を4倍に増幅してAD変換し、AD変換された10ビットのデータに対する下位側2ビットの0拡張と拡張されたデータに対する実測ゲインによる除算とを行なう、これにデジタルオフセットDFS3を加算して、ビット精度が拡張された12ビットのAD変換データを取得するときの原理が例示される。
 図6及び図7には同じく本実施の形態に係るAD変換の原理を分割レンジの区間に着目して示してあるが、ここでは特にプログラマブルゲインアンプ102が増幅動作の直線性を保つ電圧範囲内で区間を交錯させるようにした場合について示し、図2と整合している。プログラマブルゲインアンプ102の一般的な特性として最小入力電圧及び最大入力電圧の近傍では増幅動作の直線性を良好に保証できない場合があり、ゲイン誤差が大きくならないように、隣接部分で区間を交錯させる。例えば入力レンジの10%として交錯区間の電圧範囲をそれぞれ0.5V確保している。例えば図6の区間3の例では、2.5V~3.5Vの区間3の入力電圧範囲が0.5V~4.5Vのレンジになるようにアンプオフセットを決めればよい。区間3のデジタルオフセットは、区間2の最大の電圧が区間3の最小の電圧に一致するように決定されればよく、その詳細は後で説明する。図7の区間2の例では、1.5V~2.5Vの区間2の入力電圧範囲がAD変換回路の入力レンジの電圧範囲0.5V~4.5Vになるようにアンプオフセットを決めればよい。区間2のデジタルオフセットは、区間1の最大の電圧が区間2の最小の電圧に一致するように決定されればよく、その詳細は後で説明する。
 図8には上記原理に則った本実施の形態に係るAD変換処理ルーチンが全体的に示される。このAD変換処理は、プログラマブルゲインアンプのゲイン校正処理(RT1)及びデジタルオフセットの算出処理(RT2)を予め行ない、その後、本実施の形態に係るAD変換処理の実行中止が指示されず、かつ、AD変換の指示がある限りにおいて、被測定アナログ信号に基づく入力区間の判別処理(RT3)、被測定アナログ信号に対するAD変換回路によるAD変換処理(RT4)、及びAD変換処理(RT4)の結果に対するゲイン補正及びデジタルオフセット加算処理(RT5)が行われる。AD変換処理(RT4)とゲイン補正及びデジタルオフセット加算処理(RT5)は、被測定アナログ信号に対する判別された区間をAD変換回路113の入力レンジの電圧範囲としてAD変換を行う拡張AD変換処理を構成する。
 前記ゲイン校正処理(RT1)は、目的ゲイン(2、例えばn=2で4倍)を設定したプログラマブルゲインアンプ102の出力をAD変換回路113で変換したデジタル値と、そのときプログラマブルゲインアンプ102に供給するアナログ信号の生成に用いたデジタル値との差分から目的ゲインに対する実測ゲインを取得する処理を行う。即ち、前記第1のDA変換回路114から出力したアナログ信号を前記プログラマブルゲインアンプ102で増幅して前記AD変換回路113で変換して得られるデータと、前記アナログ信号を前記プログラマブルゲインアンプ113で増幅せずに前記AD変換回路113で変換して得られるデータとに基づいてプログラマブルゲインアンプのゲインを演算して取得する。実測ゲインは拡張AD変換処理におけるゲイン補正に用いる。
 前記入力区間の判別処理(RT3)は、前記AD変換回路113による被測定アナログ信号に対する変換結果が当該AD変換回路113の入力レンジをm(正の整数)分割した何れの分割レンジに属するかを判別する処理である。例えばこの判別処理(RT3)は、AD変換回路113の各分割レンジの境界電圧に応ずる電圧のAD変換データに基づいて被測定電圧が属する入力レンジを判別する処理とされる。
 前記AD変換処理(RT4)は、判別された分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットと共に目的ゲインとして2(ここではn=2)を前記プログラマブルゲインアンプ102に設定し、設定されたプログラマブルゲインアンプ102による前記被測定アナログ信号の増幅信号を前記AD変換回路113によってAD変換する処理である。
 前記ゲイン補正及びデジタルオフセット加算処理(RT5)は、AD変換処理RT4で変換された10ビットデジタルデータの下位側に2ビットの0拡張を行い、拡張された12ビットのデータを実測ゲイン(その目的ゲイン2に対して実測されたゲイン)で除算し、除算された12ビットのデータに対応する分割レンジの最小電圧に応ずるデジタルオフセットデータを加算して、12ビットの変換精度が拡張されたAD変換結果を取得する処理である。
 デジタルオフセット生成処理(RT2)は、図9に例示される基準となる区間のデジタルオフセットデータの生成処理、図10に例示される基準となる区間の上位側デジタルオフセットデータの生成処理、及び図11に例示される基準となる区間の下位側デジタルオフセットデータの生成処理に大別される。
 図9に例示されるデジタルオフセットデータDFS2の生成処理では、まず、特定の前記分割レンジの任意電圧(例えば区間2の電圧2.1V)を前記第1のDA変換回路114で生成し(S1)、これをセレクタ103,119の端子a,dを介して前記AD変換回路113に与えてAD変換した第1データを取得する(S2)、第1処理を行う。これにより、デジタルオフセットデータDFS2のもとになる10ビットのデータを得る。CPU110はこの第1データM2を取り込み(S3)、取り込んだ第1データM2の下位側に2ビットの0拡張を行って12ビットの第2データM2_ebを取得する(S4)、第2処理を行う。次に、当該分割レンジの電圧範囲(1.5V~2.5V)を前記AD変換回路の入力レンジ(0.5V~4.5V)の電圧範囲に拡大するアンプオフセットを前記第2のDA変換回路115で生成し(S5)、生成されたアンプオフセットと目的ゲイン近傍である実測ゲインを持つ前記プログラマブルゲインアンプ102で前記第1のDA変換回路114で生成した前記任意電圧を増幅し、増幅された信号を前記AD変換回路113で変換し(S6)、変換して得られた第3データA2をCPU110が取り込む(S7)、第3処理を行う。CPU110は前記第3データA2の下位側に2ビットの0拡張を行って、前記実測ゲインで除算を行い、第4データA2_eb_gを取得する第4処理を行う(S8)。最後に、前記第2データM2_ebから第4データA2_eb_gを減算して当該特定の分割レンジの基準デジタルオフセットデータDFS2(第5データ)を取得する第5処理を行う(S9)。
 図9の処理によれば、デジタルオフセットデータDFS2はプログラマブルゲインアンプ102を介さずAD変換回路113の入力レンジの電圧範囲で前記任意電圧をAD変換した値と実質的に一致するようになる。そして、基準とした区間の電圧範囲において、プログラマブルゲインアンプにより増幅された入力レンジの電圧範囲をAD変換した結果をnビット拡張して前記実測ゲインで除算した値にデジタルオフセットデータDFS2を加算した値と、プログラマブルゲインアンプを介さず直接AD変換した値とは、実質的に一致するようになる。
 図10に例示される区間2の上位側である区間3のデジタルオフセットデータDFS3の生成処理では、前記デジタルオフセットデータDFS2が生成された後に、まず、前記特定の分割レンジである区間2の最大電圧2.5Vを前記第1のDA変換回路114で生成する(S10)と共に、当該分割レンジ(区間2)の電圧範囲(1.5V~2.5V)を前記AD変換回路113の入力レンジの電圧範囲(0V~5V)に拡大するアンプオフセットを前記第2のDA変換回路115で生成し(S11)、生成したアンプオフセットと目的ゲインとを設定した前記プログラマブルゲインアンプ102で前記第1のDA変換回路114で生成された区間2の最大電圧2.5Vを増幅し、増幅された信号を前記AD変換回路113で変換して(S12)第6データA2maxを取得する(S13)、第6処理を行う。CPU110は第6データA2maxの下位側に2ビットの0拡張を行なって仮の12ビットのデータ(A2max_eb)を生成し(S14)、このデータA2max_ebに前記実測ゲインで除算を行ってデータA2max_eb_gを生成し(S15)、このデータA2max_eb_gに、前記デジタルオフセットデータDFS2を加算して12ビットのAD変換データである第7データA2max_12bを取得する(S16)、第7処理を行う。
 そしてCPU110は、前記上位側分割レンジ(区間3)の電圧範囲(2.5V~3.5V)を前記AD変換回路の入力レンジに拡大するアンプオフセットを前記第2のDA変換回路115で生成し(S17)、区間3の最小電圧2.5Vとして増幅された信号を前記AD変換回路113で変換して(S18)、第8データA3minを取得する(S19)、第8処理を行う。最後に、第8データA3minの下位側に2ビットの0拡張を行って、前記実測ゲインで除算を行ってデータA3min_eb_gを生成し(S20)、生成したデータA3min_eb_gを、前記第7データA2max_12bから減算して、前記上位側分割レンジ(区間3)のデジタルオフセットデータDFS3(第9データ)を取得する(S21)、第9処理を行う。
 これにより、区間2のAD変換データと区間3のAD変換データの連続性が確保される。すなわち、上記処理により、既知のデジタルオフセットデータDFS2を求めた特定分割レンジ(区間2)とこれに隣接する上位側分割レンジ(区間3)との接続点の電圧(2.5V)が双方の分割レンジで一致するように既知のデジタルオフセットデータDFS2を用いて演算されるから、特定分割レンジ(区間2)とこれに隣接する上位側分割レンジ(区間3)との連続性を保証することができる。換言すれば、上位側分割レンジの電圧範囲において、プログラマブルゲインアンプにより増幅された入力レンジの電圧範囲をAD変換した結果をnビット拡張して前記実測ゲインで除算した値に前記デジタルオフセットデータDFS3を加算した値と、プログラマブルゲインアンプを介さず直接AD変換した値とは、実質的に一致する。特に、それぞれの分割レンジでAD変換された値に対してはnビットのビット拡張とそれに対する実測ゲインによる除算を行なうので、プログラマブルゲインアンプ102のゲイン誤差の影響を排除することができ、その連続性を高精度に保証することができる。
 なお、デジタルオフセットデータDFS4は、既知のデジタルオフセットデータDFS3を基に図10と同様の処理で求めればよいため、その詳細な説明は省略する。
 図11に例示される既知のデジタルオフセットデータDFS2の下位側デジタルオフセットデータDFS1の生成処理では、前記デジタルオフセットデータDFS2が生成された後に、まず、前記特定の分割レンジ(区間2)の最小電圧(1.5V)を前記第1のDA変換回路114で生成すると共に(S22)、当該分割レンジ(区間2)の電圧範囲(1.5V~2.5V)を前記AD変換回路113の入力レンジ(0V~5V)に拡大するアンプオフセットを前記第2のDA変換回路115で生成し(S23)、生成したアンプオフセットと目的ゲインとを設定した前記プログラマブルゲインアンプ102で前記第1のDA変換回路114で生成された最小電圧2.5Vを増幅し、増幅された信号を前記AD変換回路113で変換して(S24)第10データA2minを取得する(S25)第10処理を行う。CPU110は第10データA2minの下位側に2ビットの0拡張を行った仮の12ビットのデータA2min_ebを生成すると共に(S26)、このデータA2min_ebを前記実測ゲインで除算し、データA2min_eb_gを生成し(S27)、このデータA2min_eb_gに、前記デジタルオフセットデータDFS2を加算して12ビットのAD変換データである第11データ(A2min_12b)を取得する(S28)、第11処理を行う。
 次にCPU110は、前記下位側の分割レンジ(区間1)の最大電圧(1.5V)を前記第1のDA変換回路114で生成すると共に、当該分割レンジの電圧範囲(0.5V~1.5V)を前記AD変換回路113の入力レンジ(0V~5V)に拡大するアンプオフセットを前記第2のDA変換回路115で生成し(S29)、生成したアンプオフセットと目的ゲインとを設定した前記プログラマブルゲインアンプ102で前記第1のDA変換回路114で生成された最大電圧(1.5V)を増幅し、増幅された信号を前記AD変換回路113で変換して(S30)第12データA1maxを取得する(S31)、第12処理を行う。最後にCPU110は、前記第12データA1maxの下位側に2ビットの0拡張を行って、前記実測ゲインで除算を行い、データA1max_eb_gを生成し(S32)、生成したデータA1max_eb_gを、前記第11データA2min_12bから減算して、前記下位側分割レンジ(区間1)のデジタルオフセットデータDFS1を取得する(S33)、第13処理を行う。
 これにより、区間2のAD変換データと区間1のAD変換データの連続性が確保される。すなわち、上記処理により、既知のデジタルオフセットデータDFS2を求めた特定分割レンジ(区間2)とこれに隣接する下位側分割レンジ(区間1)との接続点の電圧(1.5V)が双方の分割レンジで一致するように既知のデジタルオフセットデータDFS2を用いて演算されるから、特定分割レンジ(区間2)とこれに隣接する下位側分割レンジ(区間1)との連続性を保証することができる。換言すれば、下位側分割レンジの電圧範囲において、プログラマブルゲインアンプにより増幅された入力レンジの電圧範囲をAD変換した結果をnビット拡張して前記実測ゲインで除算した値に前記デジタルオフセットデータDFS1を加算した値と、プログラマブルゲインアンプを介さず直接AD変換した値とは、実質的に一致する。特に、それぞれの分割レンジでAD変換された値に対してはnビットのビット拡張とそれに対する実測ゲインによる除算を行なうので、プログラマブルゲインアンプのゲイン誤差の影響を排除することができ、その連続性を高精度に保証することができる。
 図12には前記入力区間の判別処理(RT3)及び前記AD変換処理(RT4)の詳細が例示される。セレクタ103を入力端子b、セレクタ119を入力端子dに選択して(S40)、AD変換回路113で被計測アナログ信号をAD変換する(S41,S42)。CPU110はそのAD変換結果を取り込んで(S43)、そのAD変換結果が区間3と4の境界値よりも大きいかを判別し(S44)、大きければ、アンプオフセット用のDA変換レジスタに区間4のアンプオフセットデータを設定し(S45)、第1のDA変換回路114の変換動作の安定を待つ(S46)。そのAD変換結果が区間3と4の境界値よりも小さいときは、そのAD変換結果が区間2と3の境界値よりも大きいかを判別し(S47)、大きければ、アンプオフセット用のDA変換レジスタに区間3のアンプオフセットデータを設定し(S48)、第1のDA変換回路114の変換動作の安定を待つ(S49)。同様に、そのAD変換結果が区間2と3の境界値よりも小さいときは、そのAD変換結果が区間1と2の境界値よりも大きいかを判別し(S50)、大きければ、アンプオフセット用のDA変換レジスタに区間2のアンプオフセットデータを設定し(S51)、第1のDA変換回路114の変換動作の安定を待つ(S52)。同様に、そのAD変換結果が区間1と2の境界値よりも小さいときは、アンプオフセット用のDA変換レジスタに区間1のアンプオフセットデータを設定し(S53)、第1のDA変換回路114の変換動作の安定を待つ(S54)。それぞれの安定待ち時間(例えば3μs)経過後に、セレクタ119の入力をPGA102の出力に接続する(S55)。これにより、判別された分割レンジの電圧範囲を前記AD変換回路113の入力レンジに拡大するアンプオフセットと共に目的ゲインとして2(ここではゲイン4)が前記プログラマブルゲインアンプ102に設定され、設定されたプログラマブルゲインアンプ102による前記被測定アナログ信号の増幅信号を前記AD変換回路113で変換する処理が行われる。
 図13には前記ゲイン補正及びデジタルオフセット加算処理(RT5)の詳細が例示される。CPU110は、前記AD変換処理(RT4)によってAD変換回路113で変換されたデジタルデータに対してその下位側にnビット(ここでは2ビット)の0拡張を行って12ビットのデータAE1を生成すると共に(S60)、そのデータAE1に対して実測ゲインで除算を行い(S61)、演算結果のデータ(V1)を保持すると共に前記入力区間の判別処理(RT3)による判別結果を参照する(S62)。CPU110は、前記入力区間の判別処理(RT3)による判別結果が区間4であれば演算結果データV1に区間4のデジタルオフセットを加算し(S63,S64)、前記入力区間の判別処理(RT3)による判別結果が区間3であれば演算結果データV1に区間3のデジタルオフセットを加算し(S65,S66)、前記入力区間の判別処理(RT3)による判別結果が区間2であれば演算結果データV1に区間2のデジタルオフセットを加算し(S67,S68)、前記入力区間の判別処理(RT3)による判別結果が区間1であれば演算結果データV1に区間1のデジタルオフセットを加算し(S69)、加算結果のデータが12ビットに拡張されたAD変換結果として保持される(S70)。
 図14には、本実施の形態に係るAD機能によるAD変換動作のタイミングチャートが例示される。図に示されるようにAD変換回路113によるAD変換のための被測定アナログ信号のサンプリングとAD変換動作は、上記入力区間判別用の動作(モニタリングAD変換)と、拡張AD変換のための入力測定動作(本番AD変換)の順に行われる。モニタリングAD変換の後にそれを用いて分割区間の判別が行われ(OPR1)、本番AD変換の後にビット拡張、ゲイン補正、及びデジタルオフセットの付加などの操作が行われる(OPR2)。例えば1回のサンプリングと変換に2μs費やし、併せて30μsで本実施の形態に係るAD変換による12ビットに拡張されたAD変換結果を得ることができるので、一般的なΔΣADコンバータより、高速に処理ができる。
 以上説明した第1の実施の形態によれば、AD変換回路113の入力レンジに対する分割数mに応じて、2≦mの関係を満足する範囲でnビットのビット拡張されたAD変換結果を最終的に得ることができる。このとき、判別された分割レンジの範囲をAD変換回路113のフルレンジとするアンプオフセットを第2のDA変換回路115からプログラマブルゲインアンプ102に与えて増幅を行うこととの整合性より、プログラマブルゲインアンプ102はゲイン2若しくはその近傍で増幅を行う。これにより、AD変換回路113の変換レンジの全域にわたってその分解能を高くすることができる。変換レンジの選択に際してもプログラマブルゲインアンプ102による増幅を行わずにAD変換回路113でAD変換を1回行って判別すればよいため、変換レンジの切り替えに対しても良好な追従性を得ることができる。更に、夫々の分割レンジのデジタルオフセットには、分割レンジの接続点の値が双方の分割レンジで同一となる値が得られるため、AD変換回路113の変換レンジの全域にわたる高分解能のAD変換結果に対して変換誤差を小さくすることができる。また、分割レンジの入力をAD変換回路113の入力レンジの電圧範囲でAD変換したデジタルデータに対してビット拡張を行い、拡張したデータを実測ゲインで除算するから、プログラマブルゲインアンプのゲイン誤差の影響を排除することができる。
 《実施の形態2》
 実施の形態2では実施の形態1とは異なる方法によって夫々の分割レンジのデジタルオフセットを求める処理について説明する。ここでは特に図示はしないが、たとえば、特定の基準となる区間のデジタルオフセットは、特定の区間の最小電圧と実質的に一致することから、特定区間の最小電圧をAD変換回路113でAD変換し、下位側に2ビットの0拡張を行った12ビットのデータを基準となる区間のデジタルオフセットとすることができる。例えば2.5VをDAC1から出力しPGA102で増幅することなくADC113でAD変換し、変換結果データに下記2ビットのビット拡張を行なって、これを基準となる区間のデジタルオフセットとする。
 前記特定の区間の上位側区間のデジタルオフセットは、前記特定の区間の最大電圧と実質的に一致することから、特定区間の最小電圧をAD変換回路113でAD変換し、下位側に2ビットの0拡張を行なって実測ゲインによる除算を行ない、その除算結果に、既知の基準とした区間のデジタルオフセットデータを加算し、これによって得られた12ビットの拡張AD変換結果をそのデジタルオフセットとすることができる。尚、当該上位側区間に対して更にその上位側区間のデジタルオフセットについても当該上位側区間の既知のデジタルオフセットに基づいて同様の処理によって得ることができる。
 前記特定の区間の下位側区間のデジタルオフセットは、前記特定の区間の最小電圧との差分に実質的に一致することから、特定区間の最小電圧をAD変換回路113でAD変換し、下位側に2ビットの0拡張を行なって実測ゲインによる除算を行ない、その除算結果と既知の基準とした区間のデジタルオフセットデータとの差分をそのデジタルオフセットとすることができる。尚、当該下位側区間に対して更にその下位側区間のデジタルオフセットについても当該下位側区間の既知のデジタルオフセットに基づいて同様の処理によって得ることができる。
 実施の形態2の処理によれば、デジタルオフセットを取得する処理効率の向上に資することができる。
《実施の形態3》
 図15には本発明の第2の実施の形態に係るデータ処理システムが例示される。同図に示されるデータ処理システム200は図1のデータ処理システム100に比べてサンプルホールド回路201が追加され、それに応じた制御を行うCPU110Aを採用した点が相違される。即ち、被測定アナログ信号123を入力するサンプルホールド回路201を有し、CPU110Aは、前記サンプルホールド回路201にサンプリングされた同じ被測定アナログ信号123を用いて、分割レンジの判別と、その判別結果を利用した前記拡張AD変換のための処理を行う。サンプルホールド回路201はサンプリングスイッチ(SMP1)211、サンプリング容量(SC1)212、出力バッファ(BUF)213、及び出力選択スイッチ(SW3)214を備えて構成される。その他の構成について図1と同じ構成要素については同一参照符号を付してその詳細な説明を省略する。
 図16には被測定アナログ信号のサンプルホールド動作が例示される。サンプリング容量212に必要な電荷信号を蓄積した後、サンプリングスイッチ211が閉じられる。
 図17にはサンプルホールド回路201にホールドされた情報をPGA102をスルーしてADC113でAD変換する動作が例示される。このモニタリング動作によって得られたAD変換データを用いて図8で説明した入力区間の判別処理(RT3)及び被測定電圧AD変換処理(RT4)が行われる。
 図18にはゲイン補正及びデジタルオフセット加算処理(RT5)における動作が例示される。この動作において被測定信号はサンプル容量212から受け取ればよく、改めて外部から被測定アナログ信号を入力することを要しない。
 第2の実施の形態によれば、分割レンジの判別と、その判別結果を利用した前記AD変換とを同じ被測定アナログ信号に対して行うことができるから、誤って異なる分割レンジを用いてAD変換が行われる事態の発生を未然に防止することができる。
 《実施の形態4》
 上記実施の形態の説明では入力レンジの分割数mを4として説明した。即ち、本実施の形態に係るADによるAD変換結果の拡張ビット数n=2としたとき、分割数を2=2とした。理論上、分割数mは2≦mの関係を満足する範囲で任意に決定することができる。
 このとき、周期信号に代表されるような動的信号に対してAD変換回路の性能(分解能)を最大限に活用するには動的信号の中点をAD変換回路の入力電圧範囲の半分にすることが得策と一般に考えられる。上記実施の形態で説明したように入力レンジを分割するAD変換方式の場合、分割数を偶数にするとAD変換回路の入力電圧範囲の半分のところが隣接する分割レンジの境界になる。この点で、分割数mとして偶数または奇数の何れを採用するかによって本実施の形態に係るADの変換に処理効率の差を生ずることになる。第3の実施の形態ではこの点について説明する。
 図19には被測定アナログ信号の中央値がAD変換回路113の入力レンジの中央値に近いとき前記AD変換回路113の入力レンジの分割数を偶数に設定して本実施の形態に係るADの変換処理を行う場合が例示される。図より明らかなように周期信号の中央値の電圧2.5Vが区間2と区間3の境界の電圧になる。この場合、上述した実施の形態によるAD変換動作において一つの周期信号の値が隣接する異なる区間2,3の双方に属する結果、被計測アナログ信号の値に応じて頻繁にアンプオフセットの切換えを行わなければならず、それによるADC113の安定を待つ時間が長くなり、本実施の形態に係るADによる変換処理効率が低下する。
 これを回避するには、図20に例示されるように、CPU110(110A)は、被測定アナログ信号の中央値がAD変換回路113の入力レンジの中央値に近いとき前記AD変換回路113の入力レンジの分割数を奇数例えば5分割に設定して本実施の形態に係るADの変換処理を行うように制御すればよい。これにより、被測定アナログ信号123の中央値が分割レンジの境界近傍になることを抑制する事ができる。したがって、被計測アナログ信号の変化の範囲を一つの区間に納めることが容易になり、被測定アナログ信号がその中央値を越えて変化するたびに分割レンジを変更する処理を行うことを要せず、上記ビット精度を拡張したAD変換処理の効率を向上させることができる。
 特に図20の例では、各分割レンジの電圧範囲は上記実施の形態1と同様に1Vであり、拡張ビット数n=2に対してプログラマブルゲインアンプ102の目的ゲインを2のままとし、AD変換器113による入力レンジが例えば0.1Vから4.9Vのように広がっている。要するに、入力レンジの両端の部分でAD変換回路113の能力に応じたマージンを考慮すればよい。
 《実施の形態5》
 図21には第4の実施の形態に係るデータ処理システムが例示される。同図に示されるデータ処理システム300は図1のデータ処理システム100に比べてサンプルホールド回路201が追加され、且つDA変換回路が一つのDA変換回路(DAC1)114に集約され、DA変換回路114の出力がセレクタ220を介して選択的にPGA102又はセレクタ103に供給可能にされ、それに応じた制御を行うCPU110Bを採用した点が相違される。即ち、選択的に前記被測定アナログ信号123に代えて設定用アナログ信号122をサンプルホールドして前記プログラマブルゲインアンプ102に出力するサンプルホールド回路201と、アンプオフセットの生成と設定用アナログ信号の生成に兼用されるDA変換回路(DAC1)114と、前記DA変換回路114で生成されたアンプオフセット121を前記プログラマブルゲインアンプ102に出力する経路又は前記DA変換回路で生成された設定用アナログ信号122を前記サンプルホールド回路201に供給する経路を選択するセレクタ220とが設けられる。CPU110Bは、前記アンプオフセット121の生成と設定用アナログ信号122の生成とでDA変換回路114を使い分けセレクタ220の選択制御を行う。サンプルホールド回路201はサンプリングスイッチ(SMP1)211、サンプリング容量(SC1)212、出力バッファ(BUF)213、及び出力選択スイッチ(SW3)214を備えて構成される。その他の構成について図1と同じ構成要素については同一参照符号を付してその詳細な説明を省略する。
 第1及び第2の実施の形態で説明したようにプログラマブルゲインアンプ102にアンプオフセット121を出力するDA変換回路115と、選択的に前記被測定アナログ信号に代えて設定用アナログ信号122を前記プログラマブルゲインアンプ102に出力するDA変換回路114とを別々に持つ場合には、アンプオフセットの設定と設定用アナログ信号の生成とを並列的に行うことができるため、デジタルオフセットを取得するときの処理効率の向上に資することができる。一方、第4の実施の形態の如く、アンプオフセットの生成と設定用アナログ信号の生成に兼用されるDA変換回路114を採用する場合にはアンプオフセットの設定と設定用アナログ信号の生成とを直列的に行わなければならないがDA変換回路の兼用によって回路規模の縮小に資することができる。
 DA変換回路が1個に集約されたことにより、PGA102に対するゲイン校正は例えば図22の概要に示されるように処理RT10乃至RT16を順次行えばよい。すなわち、図22に例示される実測ゲイン取得処理では、セレクタ103の端子をa、セレクタ220をgとし、DA変換回路114よりアナログ電圧をx1の出力し、サンプルホールド回路201に内蔵されたスイッチ211(SMP1)をオン、スイッチ214(SW3)をオフとし、容量212(SC1)に電圧x1を保存する(RT10)。電圧x1保存後、スイッチ211をオフ、スイッチ214をオンとし、セレクタ220をfに設定し、DA変換回路114よりPGA102のアンプオフセットとして任意の電圧O(例えば0V)を出力する。
 セレクタ119の端子をdとし、AD変換回路113で容量212に保存された電圧x1をPGA102の無い経路でAD変換し、AD変換結果y1を得る(RT11)。次にセレクタ119の端子をcとし、AD変換回路113で容量212に保存された電圧x1をPGA102で増幅し、AD変換しAD変換結果Y1を得る(RT12)。
 同様にDA変換回路114よりアナログ電圧x2を出力し、サンプルホールド回路201で電圧x2を保存し(RT13)、電圧x2保存後、スイッチ211をオフ、スイッチ214をオン、セレクタ220をfに設定し、DA変換回路114より前記アンプオフセット電圧Oを出力する。
 容量212に蓄積された電圧x2をPGA102の無い経路でAD変換回路113によりAD変換結果y2を取得し(RT14)、次にPGA102で増幅した電圧x2をAD変換器113によりAD変換結果Y2を得る(TR15)。
 最後にCPU110BはPGA102の実測ゲインGをG=(Y2-Y1)/(y2-y1)により演算し、実測ゲインを取得する(RT16)。このように異なる2つの電圧についてPGA102の無い経路でのAD変換結果とPGA102により増幅した電圧のAD変換結果の比率から実測ゲインGを算出する。
 尚、上記ではx1<x2として処理が行なわれる。また、x1及びx2の電圧は、PGA102で増幅後の電圧がAD変換回路の入力レンジが超えない範囲で任意に選択される。
 図23には処理RT10とRT11の詳細が例示される。図24には処理RT12の詳細が例示される。図25には処理RT13とRT14の詳細が例示される。図26には処理RT15の詳細が例示される。図27には区間3のデジタルオフセットを算出するときのフローチャートにおけるA及びB部分の詳細が例示され、図28には区間3のデジタルオフセットを算出するときのフローチャートにおけるC部分の詳細が例示される。その他の区間のデジタルオフセットの算出フローについては図示を省略するが図27及び図28に準じた処理によって生成すればよい。
 以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
 例えば、マイクロコンピュータのような制御部によるビット拡張や実測ゲインによる除算の処理は固定小数点演算だけでなく浮動小数点演算で行ってもよい。デジタルオフセットの生成処理などにおいてビット精度を広げるためのビット拡張処理と実測ゲインによる除算とを行なう順番は基本的にビット拡張を行なってから除算を行なうことが演算制度上望ましい場合には其の順番で行なうことが必要であるが、演算手法によりそうでなければ逆にすることも可能である。AD変換回路のビット精度、拡張ビット数、区間の分割数については上記実施の形態に限定されず、適宜変更可能である。また、データ処理システムは1チップの半導体装置に限定されず、マルチチップで構成することも可能である。例えばマイクロコンピュータ(MCU)101,101A,101Bを1チップで構成し、その他の回路を外付け部品で構成することも可能である。
 上記それぞれの実施の形態は相互に組み合わせて構成することも可能である。
 本発明は、AD変換機能を有するデータ処理システムに関し、特にAD変換回路のビット精度よりも高いビット精度を得るための技術に広く適用することができる。
 100 データ処理システム
 101 マイクロコンピュータ(MCU)
 102 プログラマブルゲインアンプ(PGA)
 103 セレクタ(SW1)
 110 中央処理装置(CPU)
 111 不揮発性メモリ(FLASH)
 112 RAM
 113 AD変換回路(ADC)
 114 第1DA変換回路(DAC1)
 115 第2DA変換回路(DAC2)
 116 デジタル入出力ポート
 117 アナログ入力ポート
 118 周辺回路モジュール(PRPH)
 119 セレクタ(SW2)
 200 データ処理システム
 201 サンプルホールド回路
 110A CPU
 101A マイクロコンピュータ
 300 データ処理システム
 110B CPU
 101B マイクロコンピュータ

Claims (25)

  1.  AD変換回路の分解能に対してn(nは正の整数)ビット拡張したAD変換結果を得るデータ処理システムであって、
     AD変換回路、プログラマブルゲインアンプ、及び制御回路を有し、
     前記制御回路は、前記AD変換回路の入力レンジをm(2≦m)分割し、各分割レンジの接続点の電圧が隣接するもの同士で同一となるデジタルオフセットを用意し、被測定アナログ信号に対して前記AD変換回路によるAD変換結果が何れの分割レンジに属するかを判別し、判別した分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲とするアンプオフセットとゲインの指定とを前記プログラマブルゲインアンプに与えて増幅し、増幅された信号を前記AD変換回路で変換し、その変換結果に対してnビット拡張と前記プログラマブルゲインアンプの実測ゲインによる除算とを行なって、これに対応する分割レンジのデジタルオフセットを加算してビット精度をnビット拡張したAD変換結果とする、データ処理システム。
  2.  前記制御回路から前記プログラマブルゲインアンプに与えられるゲインの指示は2であり、
     前記制御回路によるnビット拡張はAD変換結果の下位ビットに対する0拡張である、請求項1記載のデータ処理システム。
  3.  前記制御回路は、目的ゲインとして前記2を前記プログラマブルゲインアンプに設定し、設定されたプログラマブルゲインアンプによるアナログ信号の増幅出力をAD変換回路で変換したデジタル値と、そのときプログラマブルゲインアンプに供給するアナログ信号の生成に用いたデジタル値との差に基づいて目的ゲインに対する実測ゲインを取得する、請求項2記載のデータ処理システム。
  4.  前記制御回路は、隣接する分割レンジの境界部分を交錯させるように前記アンプオフセットを設定する、請求項1記載のデータ処理システム。
  5.  前記制御回路は、前記AD変換回路の各分割レンジの境界電圧の入力電圧に対するAD変換結果データに基づいて被測定電圧が属する入力レンジを判別する、請求項1記載のデータ処理システム。
  6.  被測定アナログ信号を入力するサンプルホールド回路をさらに有し、
     前記制御回路は、前記サンプルホールド回路にサンプリングされた同じ被測定アナログ信号を用いて、分割レンジの判別と、判別された分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲とするAD変換とを行う、請求項1記載のデータ処理システム。
  7.  前記制御回路は、被測定アナログ信号の中央値がAD変換回路の入力レンジの中央値に近いとき前記AD変換回路の入力レンジの分割数を奇数に設定してAD変換のための前記処理を行う、請求項1記載のデータ処理システム。
  8.  前記プログラマブルゲインアンプに前記アンプオフセットを出力するDA変換回路と、選択的に前記プログラマブルゲインアンプに設定用アナログ信号を出力するDA変換回路とを別々に持つ、請求項1記載のデータ処理システム。
  9.  選択的に前記被測定アナログ信号に代えて設定用アナログ信号をサンプルホールドして前記プログラマブルゲインアンプに出力するサンプルホールド回路と、アンプオフセットの生成と設定用アナログ信号の生成に兼用されるDA変換回路と、前記DA変換回路で生成されたアンプオフセットを前記プログラマブルゲインアンプに出力する経路又は前記DA変換回路で生成された設定用アナログ信号を前記サンプルホールド回路に供給する経路を選択する選択回路と、を有する請求項1記載のデータ処理システム。
  10.  AD変換回路、プログラマブルゲインアンプ、及び制御回路を有するデータ処理システムであって、
     前記制御回路は、被測定アナログ信号が前記AD変換回路の入力レンジをm(正の整数)分割した何れの分割レンジに属するかを判別し、判別した分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するためのアンプオフセットと目的ゲイン2(nは正の整数、2≦m)を前記プログラマブルゲインアンプに設定し、設定されたプログラマブルゲインアンプによる前記被測定アナログ信号の増幅信号を前記AD変換回路で変換し、変換されたデータに対するnビットのビット拡張と拡張されたデータに対する前記プログラマブルゲインアンプの実測ゲインによる除算とを行い、除算結果に当該分割レンジのデジタルオフセットデータを加算して、ビット精度をnビット拡張したAD変換結果とする、データ処理システム。
  11.  第1のDA変換回路及び第2のDA変換回路を有し、
     前記制御回路は、特定の前記分割レンジの任意電圧を前記第1のDA変換回路で生成し、これを前記AD変換回路で変換した第1データを取得する第1処理と、
     前記第1データの下位側にnビットのビット拡張を行って第2データを取得する第2処理と、
     前記特定の分割レンジの任意電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するためのアンプオフセットを前記第2のDA変換回路で生成し、生成されたアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成した任意電圧を増幅し、増幅された信号を前記AD変換回路で変換して第3データを取得する第3処理と、
     前記第3データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算して第4データを取得する第4処理と、
     前記第2データから第4データを減算して当該特定の分割レンジのデジタルオフセットデータを取得する第5処理とを制御する、請求項10記載のデータ処理システム。
  12.  前記制御回路は、前記特定の分割レンジのデジタルオフセットデータを生成した後に、当該分割レンジの上位側の分割レンジのデジタルオフセットデータを生成するとき、
     前記特定の分割レンジの最大電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するためのアンプオフセットを前記第2のDA変換回路で生成し、生成したアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成された最大電圧を増幅し、増幅された信号を前記AD変換回路で変換して第6データを取得する第6処理と、
     前記第6データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算してこれに前記デジタルオフセットデータを加算した第7データを取得する第7処理と、
     前記上位側の分割レンジの最小電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するためのアンプオフセットを前記第2のDA変換回路で生成し、生成したアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成された最小電圧を増幅し、増幅された信号を前記AD変換回路で変換して第8データを取得する第8処理と、
     前記第8データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算し、これを前記第7データから減算して前記上位側分割レンジのデジタルオフセットデータとする第9処理とを制御する、請求項11記載のデータ処理システム。
  13.  前記制御回路は、前記特定の分割レンジのデジタルオフセットデータを生成した後に、当該分割レンジの下位側の分割レンジのデジタルオフセットデータを生成するとき、
     前記特定の分割レンジの最小電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットを前記第2のDA変換回路で生成し、生成したアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成された最小電圧を増幅し、増幅された信号を前記AD変換回路で変換して第10データを取得する第10処理と、
     前記第10データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算し、これに前記デジタルオフセットデータを加算して第11データを取得する第11処理と、
     前記下位側の分割レンジの最大電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットを前記第2のDA変換回路で生成し、生成したアンプオフセットと理想2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成された最大電圧を増幅し、増幅された信号を前記AD変換回路で変換して第12データを取得する第12処理と、
     前記第12データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算し、これを前記第11データから減算して前記下位側分割レンジのデジタルオフセットデータとする第13処理とを制御する、請求項11記載のデータ処理システム。
  14.  前記制御回路は、隣接する分割レンジの境界部分を交錯させるように前記アンプオフセットを設定する、請求項10記載のデータ処理システム。
  15.  被測定アナログ信号を入力するサンプルホールド回路をさらに有し、
     前記制御回路は、前記サンプルホールド回路にサンプリングされた同じ被測定アナログ信号を用いて、分割レンジの判別と、判別された分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲とするAD変換とを行う、請求項10記載のデータ処理システム。
  16.  前記制御回路は、被測定アナログ信号の中央値がAD変換回路の入力レンジの中央値に近いとき前記AD変換回路の入力レンジの分割数を奇数に設定してAD変換のための前記処理を行う、請求項10記載のデータ処理システム。
  17.  前記プログラマブルゲインアンプに前記アンプオフセットを出力するDA変換回路と、選択的に前記プログラマブルゲインアンプに設定用アナログ信号を出力するDA変換回路とを別々に持つ、請求項10記載のデータ処理システム。
  18.  選択的に前記被測定アナログ信号に代えて設定用アナログ信号をサンプルホールドして前記プログラマブルゲインアンプに出力するサンプルホールド回路と、アンプオフセットの生成と設定用アナログ信号の生成に兼用されるDA変換回路と、前記DA変換回路で生成されたアンプオフセットを前記プログラマブルゲインアンプに出力する経路又は前記DA変換回路で生成された設定用アナログ信号を前記サンプルホールド回路に供給する経路を選択する選択回路と、を有する請求項10記載のデータ処理システム。
  19.  AD変換回路と、プログラマブルゲインアンプと、DA変換回路と、前記プログラマブルゲインアンプのゲイン校正処理、デジタルオフセットデータの生成処理、被測定アナログ信号に対する入力区間の判別処理、及び被測定アナログ信号に対して判別された区間を前記AD変換回路の入力レンジの電圧範囲とする拡張AD変換処理を行う制御回路とを有するデータ処理システムであって、
     前記入力区間の判別処理は、前記AD変換回路による被測定アナログ信号に対する変換結果が当該AD変換回路の入力レンジの電圧範囲をm(正の整数)分割した何れの分割レンジに属するかを判別する処理であり、
     前記拡張AD変換処理は、判別された分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットと目的ゲイン2(nは正の整数、2≦m)とを前記プログラマブルゲインアンプに設定し、設定されたプログラマブルゲインアンプによる前記被測定アナログ信号の増幅信号を前記AD変換回路で変換し、変換されたデジタルデータに対するnビットのビット拡張と拡張されたデータに対するプログラマブルゲインアンプの実測ゲインによる除算を行い、除算されたデータに、前記判別された分割レンジの起点に応ずるデジタルオフセットデータを加算して、ビット精度をnビット拡張したAD変換結果とする、データ処理システム。
  20.  前記DA変換回路として第1のDA変換回路及び第2のDA変換回路を有し、
     前記デジタルオフセットデータの生成処理は、
     特定の前記分割レンジの任意電圧を前記第1のDA変換回路で生成し、これを前記AD変換回路で変換した第1データを取得する第1処理と、
     前記第1データの下位側にnビットのビット拡張を行って第2データを取得する第2処理と、
     前記特定の分割レンジの任意電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットを前記第2のDA変換回路で生成し、生成されたアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成した任意電圧を増幅し、増幅された信号を前記AD変換回路で変換して第3データを取得する第3処理と、
     前記第3データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算して第4データを取得する第4処理と、
     前記第2データから第4データを減算して当該特定の分割レンジのデジタルオフセットデータを取得する第5処理とを含む、請求項19記載のデータ処理システム。
  21.  前記デジタルオフセットデータの生成処理は、前記特定の分割レンジのデジタルオフセットデータを生成した後に、当該分割レンジの上位側の分割レンジのデジタルオフセットデータを生成するため、
     前記特定の分割レンジの最大電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットを前記第2のDA変換回路で生成し、生成したアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成された最大電圧を増幅し、増幅された信号を前記AD変換回路で変換して第6データを取得する第6処理と、
     前記第6データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算してこれに前記デジタルオフセットデータを加算して第7データを取得する第7処理と、
     前記上位側の分割レンジの最小電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットを前記第2のDA変換回路で生成し、生成したアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成された最小電圧を増幅し、増幅された信号を前記AD変換回路で変換して第8データを取得する第8処理と、
     前記第8データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算して、これを前記第7データから減算して前記上位側分割レンジのデジタルオフセットデータとする第9処理とを含む、請求項20記載のデータ処理システム。
  22.  前記デジタルオフセットデータの生成処理は、前記特定の分割レンジのデジタルオフセットデータを生成した後に、当該分割レンジの下位側の分割レンジのデジタルオフセットデータを生成するため、
     前記特定の分割レンジの最小電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットを前記第2のDA変換回路で生成し、生成したアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成された最小電圧を増幅し、増幅された信号を前記AD変換回路で変換して第10データを取得する第10処理と、
     前記第10データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算し、これに前記デジタルオフセットデータを加算して第11データを取得する第11処理と、
     前記下位側の分割レンジの最大電圧を前記第1のDA変換回路で生成すると共に、当該分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットを前記第2のDA変換回路で生成し、生成したアンプオフセットと目的ゲイン2とを設定した前記プログラマブルゲインアンプで前記第1のDA変換回路で生成された最大電圧を増幅し、増幅された信号を前記AD変換回路で変換して第12データを取得する第12処理と、
     前記第12データを下位側にnビット拡張し且つ拡張されたデータを前記実測ゲインで除算し、これを前記第11データから減算して前記下位側分割レンジのデジタルオフセットデータとする第13処理とを含む、請求項20記載のデータ処理システム。
  23.  前記拡張AD変換処理において、判別された分割レンジの電圧範囲を前記AD変換回路の入力レンジの電圧範囲に拡大するアンプオフセットを前記プログラマブルゲインアンプに設定するとき、隣接する分割レンジの境界部分を交錯させるように前記アンプオフセットを設定する、請求項19記載のデータ処理システム。
  24.  前記ゲイン校正処理は、前記第1のDA変換回路から出力したアナログ信号を前記プログラマブルゲインアンプで増幅して前記AD変換回路で変換して得られるデータと、前記アナログ信号を前記プログラマブルゲインアンプで増幅せずに前記AD変換回路で変換して得られるデータとに基づいて、前記増幅回路のゲインを演算し取得する処理を含む、請求項19記載のデータ処理システム。
  25.  前記区間判別処理は、前記AD変換回路の各分割レンジの境界電圧の入力電圧に対するAD変換データに基づいて被測定電圧が属する入力レンジを判別する処理を含む、請求項19記載のデータ処理システム。
PCT/JP2012/059758 2011-04-22 2012-04-10 データ処理システム WO2012144375A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013510956A JP5657783B2 (ja) 2011-04-22 2012-04-10 データ処理システム
CN201280019587.XA CN103493378B (zh) 2011-04-22 2012-04-10 数据处理系统
US14/113,213 US8860593B2 (en) 2011-04-22 2012-04-10 Data processing system
US14/458,406 US9065467B2 (en) 2011-04-22 2014-08-13 Data processing system
US14/745,627 US9337858B2 (en) 2011-04-22 2015-06-22 Data processing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011095819 2011-04-22
JP2011-095819 2011-04-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/113,213 A-371-Of-International US8860593B2 (en) 2011-04-22 2012-04-10 Data processing system
US14/458,406 Continuation US9065467B2 (en) 2011-04-22 2014-08-13 Data processing system

Publications (1)

Publication Number Publication Date
WO2012144375A1 true WO2012144375A1 (ja) 2012-10-26

Family

ID=47041487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059758 WO2012144375A1 (ja) 2011-04-22 2012-04-10 データ処理システム

Country Status (4)

Country Link
US (3) US8860593B2 (ja)
JP (1) JP5657783B2 (ja)
CN (1) CN103493378B (ja)
WO (1) WO2012144375A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103995226A (zh) * 2013-12-27 2014-08-20 杭州长川科技有限公司 用于提高模拟集成电路测试系统精度的方法
EP2936687A1 (en) * 2012-12-18 2015-10-28 Apator Miitors ApS Utility meter controlling the conversion range of an adc
JP2017034624A (ja) * 2015-08-06 2017-02-09 アズビル株式会社 Ad変換装置
KR102217903B1 (ko) * 2019-11-19 2021-02-19 엘아이지넥스원 주식회사 신호 계측 회로를 이용한 신호 계측 장치 및 방법

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860593B2 (en) * 2011-04-22 2014-10-14 Renesas Electric Corporation Data processing system
US10056924B2 (en) 2013-08-19 2018-08-21 Analog Devices, Inc. High output power digital-to-analog converter system
US8970418B1 (en) * 2013-08-19 2015-03-03 Analog Devices, Inc. High output power digital-to-analog converter system
US9706269B2 (en) * 2015-07-24 2017-07-11 Hong Kong Applied Science and Technology Research Institute Company, Limited Self-powered and battery-assisted CMOS wireless bio-sensing IC platform
US10079989B2 (en) 2015-12-15 2018-09-18 Ricoh Company, Ltd. Image capturing device
US9774343B1 (en) * 2016-07-13 2017-09-26 The Boeing Company Method and apparatus for improving the resolution of digitally sampled analog data
CN108736851B (zh) * 2017-04-19 2022-06-28 中芯国际集成电路制造(上海)有限公司 一种可编程增益放大器及电子装置
PL3392767T3 (pl) * 2017-04-21 2023-04-03 Aerobits Sp. z o.o. Sposób przetwarzania szybkich sygnałów analogowych w czasie rzeczywistym i układ do stosowania tego sposobu
JP2019005323A (ja) * 2017-06-27 2019-01-17 ルネサスエレクトロニクス株式会社 身長測定装置、ヘルスケア機器および回転ゲート
CN107976647A (zh) * 2018-01-24 2018-05-01 镇江市计量实验工厂 一种高压高阻检定仪智能校准装置
CN111193510A (zh) * 2018-11-14 2020-05-22 华为技术有限公司 数据转换装置、系统及方法
KR102180180B1 (ko) * 2019-07-19 2020-11-18 엘지전자 주식회사 분해능 제어 장치 및 분해능 제어 방법
DE102020102647A1 (de) 2020-02-03 2021-08-05 Hanon Systems Anordnung und Verfahren zur Erzeugung eines Verstärkungssignals für Messverstärker
CN112234991B (zh) * 2020-09-18 2024-05-17 芯创智(北京)微电子有限公司 一种高精度增量型模数转换器及其转换方法
CN112994636B (zh) * 2021-02-04 2024-03-29 珠海市丰润自动化科技有限公司 消除自重的方法、存储介质及终端
EP4099572A1 (en) 2021-05-31 2022-12-07 Infineon Technologies AG Environmental sensor
CN113659987B (zh) * 2021-08-20 2023-07-11 合肥御微半导体技术有限公司 一种信号处理装置及其方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127429A (ja) * 1982-01-25 1983-07-29 Hitachi Ltd A/d変換拡張方式
JPH04370801A (ja) * 1991-06-19 1992-12-24 Matsushita Electric Ind Co Ltd アナログ信号検出装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514201A (ja) 1991-06-27 1993-01-22 Tdk Corp A/d変換装置
US5422643A (en) * 1993-02-24 1995-06-06 Antel Optronics Inc. High dynamic range digitizer
JPH06334523A (ja) 1993-05-20 1994-12-02 Jeco Co Ltd アナログ−ディジタル変換装置
US6252536B1 (en) * 1999-03-31 2001-06-26 Cirrus Logic, Inc. Dynamic range extender apparatus, system, and method for digital image receiver system
US7142486B2 (en) * 2001-04-02 2006-11-28 Ricoh Company, Ltd. Signal processing method and signal processing apparatus
US6720902B2 (en) * 2001-06-08 2004-04-13 Amersham Biosciences (Su) Corp High dynamic range digital converter
US6975251B2 (en) * 2002-06-20 2005-12-13 Dakota Technologies, Inc. System for digitizing transient signals with waveform accumulator
US7085328B2 (en) * 2002-12-24 2006-08-01 Realtek Semiconductor Corp. QAM receiver having joint gain, carrier recovery and equalization adaptation system
US6791484B1 (en) * 2003-07-18 2004-09-14 National Semiconductor Corporation Method and apparatus of system offset calibration with overranging ADC
US7215266B2 (en) * 2004-05-21 2007-05-08 Wionics Research Hybrid DC offset cancellation scheme for wireless receiver
US7405683B1 (en) * 2004-05-27 2008-07-29 Cypress Semiconductor Corporation Extending the dynamic range in an energy measurement device
JP2006121146A (ja) * 2004-10-19 2006-05-11 Renesas Technology Corp 無線受信機のフィルタ制御方法および装置およびそれを用いた無線受信機用集積回路
TW200704154A (en) * 2005-07-12 2007-01-16 Pixart Imaging Inc Reading circuit of image sensor and analog/digital conversion method thereof
US7643573B2 (en) * 2006-03-17 2010-01-05 Cirrus Logic, Inc. Power management in a data acquisition system
US7656327B2 (en) * 2006-07-24 2010-02-02 Qualcomm, Incorporated Saturation detection for analog-to-digital converter
GB2446844B (en) * 2006-12-05 2011-05-25 Wolfson Microelectronics Plc Callibration circuit and asociated method
FR2938081B1 (fr) * 2008-10-31 2020-09-11 Thales Sa Procede de correction des decentrages en amplitude et en phase d'un modulateur sigma-delta et modulateur mettant en oeuvre le procede
JP5465965B2 (ja) * 2009-03-31 2014-04-09 ルネサスエレクトロニクス株式会社 データ処理装置及びデータ処理システム
WO2010137168A1 (ja) * 2009-05-29 2010-12-02 三菱電機株式会社 アナログユニット
US8860593B2 (en) * 2011-04-22 2014-10-14 Renesas Electric Corporation Data processing system
JP5779511B2 (ja) * 2012-01-20 2015-09-16 ルネサスエレクトロニクス株式会社 半導体集積回路装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127429A (ja) * 1982-01-25 1983-07-29 Hitachi Ltd A/d変換拡張方式
JPH04370801A (ja) * 1991-06-19 1992-12-24 Matsushita Electric Ind Co Ltd アナログ信号検出装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2936687A1 (en) * 2012-12-18 2015-10-28 Apator Miitors ApS Utility meter controlling the conversion range of an adc
CN103995226A (zh) * 2013-12-27 2014-08-20 杭州长川科技有限公司 用于提高模拟集成电路测试系统精度的方法
JP2017034624A (ja) * 2015-08-06 2017-02-09 アズビル株式会社 Ad変換装置
KR102217903B1 (ko) * 2019-11-19 2021-02-19 엘아이지넥스원 주식회사 신호 계측 회로를 이용한 신호 계측 장치 및 방법

Also Published As

Publication number Publication date
US9065467B2 (en) 2015-06-23
JP5657783B2 (ja) 2015-01-21
US9337858B2 (en) 2016-05-10
JPWO2012144375A1 (ja) 2014-07-28
US8860593B2 (en) 2014-10-14
CN103493378A (zh) 2014-01-01
US20140055291A1 (en) 2014-02-27
CN103493378B (zh) 2016-10-12
US20150288377A1 (en) 2015-10-08
US20140347199A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
JP5657783B2 (ja) データ処理システム
JP4153026B2 (ja) Ad変換器およびad変換方法
US9369137B2 (en) Clock generation circuit, successive comparison A/D converter, and integrated circuit device
US7893860B2 (en) Successive approximation register analog-digital converter and method of driving the same
US9362938B2 (en) Error measurement and calibration of analog to digital converters
KR102636356B1 (ko) 감소된 커패시터 어레이 dac를 이용한 sar adc에서의 오프셋 보정을 위한 방법 및 장치
US8207882B1 (en) Analog-to-digital converter (ADC) having a folding stage and multiple ADC stages
US20140354458A1 (en) Sar analog-to-digital conversion method and sar analog-to-digital conversion circuit
JP6407528B2 (ja) 半導体装置
JP4120889B2 (ja) ディジタル的に自己校正するパイプラインadc及びその方法
JP4684028B2 (ja) パイプラインa/d変換器
TW201713045A (zh) 用於提高之解析度之混合信號自動增益控制
JP2009246752A (ja) パイプラインa/d変換器
KR20160084685A (ko) Cds를 적용한 sar 방식의 adc 장치 및 샘플링 방법
JP5973893B2 (ja) サブレンジング型a/d変換器
US6700523B2 (en) Analog to digital converter selecting reference voltages in accordance with feedback from prior stages
JP4529650B2 (ja) 逐次比較型ad変換器
JP2008092195A (ja) 半導体集積回路、自動誤差計算プログラム及び自動誤差計算方法
KR20150072972A (ko) 타이밍 켈리브레이션을 이용한 인터폴레이션을 위한 아날로그 디지털 변환기
CN110620583B (zh) 逐次逼近式模拟数字转换器和其校正方法
US6816096B2 (en) Response-based analog-to-digital conversion apparatus and method
JP5190014B2 (ja) 積分型ad変換回路およびad変換方法
JP2006304365A (ja) Ad変換器の故障検出装置
KR102242402B1 (ko) 아날로그 신호를 복수의 비트의 디지털 정보로 변환하는 방법
KR101175230B1 (ko) 아날로그 디지탈 변환 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013510956

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14113213

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774485

Country of ref document: EP

Kind code of ref document: A1