CN103468625B - 一种冰城链霉菌的基因阻断突变菌及其制备方法和应用 - Google Patents

一种冰城链霉菌的基因阻断突变菌及其制备方法和应用 Download PDF

Info

Publication number
CN103468625B
CN103468625B CN201310409240.2A CN201310409240A CN103468625B CN 103468625 B CN103468625 B CN 103468625B CN 201310409240 A CN201310409240 A CN 201310409240A CN 103468625 B CN103468625 B CN 103468625B
Authority
CN
China
Prior art keywords
gene
mild
nanld
homologous recombination
gene disruption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310409240.2A
Other languages
English (en)
Other versions
CN103468625A (zh
Inventor
向文胜
张继
王相晶
安静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Agricultural University
Original Assignee
Northeast Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Agricultural University filed Critical Northeast Agricultural University
Priority to CN201310409240.2A priority Critical patent/CN103468625B/zh
Publication of CN103468625A publication Critical patent/CN103468625A/zh
Application granted granted Critical
Publication of CN103468625B publication Critical patent/CN103468625B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种冰城链霉菌的基因阻断突变菌及其制备方法和应用,是以冰城链霉菌BC-109-6为出发菌株,进行milD基因和nanLD基因的阻断,构建冰城链霉菌的基因阻断突变菌,用所述基因阻断突变菌发酵生产米尔贝霉素A3/A4。本发明提高了米尔贝霉素A3/A4的产量,阻断了影响米尔贝霉素A3/A4分离纯化的杂质的生物合成,降低了生产成本,提高了经济效益。

Description

一种冰城链霉菌的基因阻断突变菌及其制备方法和应用
技术领域
本发明涉及一种冰城链霉菌的基因阻断突变菌及其制备方法和应用。
背景技术
米尔贝霉素属于十六元环大环内酯类抗生素,与阿维菌素具有相似的结构。米尔贝霉素最初由日本科学家从土壤放线菌Streptomyces hygroscopicus subsp.aureolacrimosus的发酵液中分离得到,比目前使用最广泛的生物农药阿维菌素杀螨活性略高,而对大鼠的毒性比阿维菌素低40倍。因此,米尔贝霉素被美国环保署认定为危险性小的杀虫剂,被荷兰批准成为“GNO”(作物生产中的天然产物),属于生态友好型农药,适用于有机农业害虫综合防治,被认为是当今世界上最优良的杀螨剂。米尔贝霉素已在美国、日本等43个国家和地区登记,用于苹果、柑橘、草莓、茶叶等24种植物上对阿维菌素、有机磷农药产生抗性的螨、斑潜蝇、蚜虫、粉虱的防治。在米尔贝霉素系列药物中,米尔贝霉素A3/A4具有较强的杀虫活性。因此,目前米尔贝霉素产品的商业化大多围绕米尔贝霉素A3/A4而进行。除Milbemectin(米尔贝霉素A3和A4的混合物)被用于杀螨剂外,米尔贝霉素A3/A4的肟化物Milbemycin oxime也已商品化用于兽药,可有效预防犬心丝虫症及驱除肠道内的寄生虫(蛔虫、钩虫和鞭虫)。
冰城链霉菌Streptomyces bingchenggensis是本实验室从土壤中分离得到的米尔贝霉素产生菌。与其它米尔贝霉素产生菌Streptomyces hygroscopicus subsp.aureolacrimosus和Streptomyces griseochromogenes一样,冰城链霉菌Streptomyces bingchenggensis除了产生米尔贝霉素A3/A4外,还产生其它米尔贝霉素系列化合物及其它的次级代谢产物。通过对Streptomyces bingchenggensis进行选育,我们获得了一株米尔贝霉素A3/A4高产菌株Streptomyces bingchenggensis BC-109-6(Xiang-Jing Wang,Xiao-Chong Wang,Wen-Sheng Xiang.Improvement of milbemycin-producing Streptomyces bingchenggensis by rational screening ofultraviolet-and chemically induced mutants[J].World Journal of Microbiology and Biotechnology,2009,25:1051-1056)。虽然Streptomyces bingchenggensis BC-109-6中米尔贝霉素A3/A4的产量有了明显的提高,但其还产生杂质化合物C5-O-甲基米尔贝霉素B2、B3、β1和β2以及南昌霉素。这些杂质化合物的生物合成一方面会降低米尔贝霉素A3/A4的产量,另一方面会严重影响米尔贝霉素A3/A4的分离纯化。目前,冰城链霉菌Streptomyces bingchenggensis的全基因组测序已经完成,米尔贝霉素和南昌霉素的生物合成机制也已被阐明(Xiang-Jing Wang,Yi-Jun Yan,Bo Zhang,et al.Genome sequence of the milbemycin-producing bacteriumStreptomyces bingchenggensis[J].Journal of Bacteriology,2010,192:4526-4527)。因此,通过基因工程手段改造冰城链霉菌以提高米尔贝霉素A3/A4的产量和阻断其它杂质的生物合成对于提高产值、降低生产成本具有重要的意义。
发明内容
本发明提供一种冰城链霉菌的基因阻断突变菌BCJ36,是以冰城链霉菌BC-109-6为出发菌株,进行milD基因和nanLD基因的阻断,构建冰城链霉菌的基因阻断突变菌。
所述冰城链霉菌Streptomyces bingchenggensis是公开于Xiang-Jing Wang,Xiao-ChongWang,Wen-Sheng Xiang.Improvement of milbemycin-producing Streptomyces bingchenggensisby rational screening of ultraviolet-and chemically induced mutants[J].World Journal ofMicrobiology and Biotechnology,2009,25:1051-1056的冰城链霉菌Streptomycesbingchenggensis BC-109-6。
上述的milD基因是被敲除而阻断的,nanLD基因是被外源基因插入而阻断的,所述的外源基因优选的是硫链丝菌素抗性基因tsr。
冰城链霉菌已经进行了全基因组测序,基因组的登录号是CP002047,milD基因是GenBank数据库登录号为CP002047的第1159758位到第1160618位所示的序列,nanLD基因是GenBank数据库登录号为CP002047的第10006136位到第10009168位所示的序列,tsr基因是GenBank数据库登录号为AY667410.1的第7240位到第8516位所示的序列。
该冰城链霉菌Streptomyces bingchenggensis的基因阻断突变菌的米尔贝霉素A3/A4产量得到了提高,且杂质C5-O-甲基米尔贝霉素B2、B3、β1和β2以及南昌霉素生物合成被阻断。
本发明还提供了一种冰城链霉菌的基因阻断突变菌的制备方法,包括以下步骤:
1)构建milD基因敲除质粒,其含有milD基因同源重组左臂和milD基因同源重组右臂;
2)将步骤1)所得的milD基因敲除质粒转化宿主细胞,获得转化子;
3)将冰城链霉菌BC-109-6作为受体,与步骤2)所述的转化子进行接合转移,挑取同源重组双交换子,得到冰城链霉菌的milD基因阻断突变菌BCJ13;
4)构建nanLD基因中断质粒,其含有nanLD基因同源重组左臂、标记基因和nanLD基因同源右臂;
5)将步骤4)所得的nanLD基因中断质粒转化宿主细胞,获得转化子;
6)将冰城链霉菌的milD基因阻断突变菌作为受体,与步骤5)所述的转化子进行接合转移,挑取同源重组双交换子,即冰城链霉菌的milD基因和nanLD基因阻断突变菌BCJ36。
上述步骤1)中的milD基因同源重组左臂片段的构建引物milD-L1核苷酸序列如SEQ IDNO.1,引物milD-L2核苷酸序列如SEQ ID NO.2。
上述步骤1)milD基因同源重组右臂片段的构建引物milD-R1核苷酸序列如SEQ IDNO.3,引物milD-R2核苷酸序列如SEQ ID NO.4。
上述步骤4)中nanLD基因同源重组左臂片段的构建引物nan-L1核苷酸序列如SEQ IDNO.5,引物nan-L核苷酸序列如SEQ ID NO.6。
上述步骤4)中nanLD基因同源重组右臂片段的构建引物nan-R1核苷酸序列如SEQ IDNO.7,引物nan-R2核苷酸序列如SEQ ID NO.8。
本发明还提供了一种上述构建的基因阻断突变菌用于制备米尔贝霉素A3/A4。
所述应用方法,步骤如下:包括培养产米尔贝霉素A3/A4的冰城链霉菌的基因工程菌,从培养物中分离米尔贝霉素A3/A4。
本发明的有益效果如下:
1.本发明通过同源重组交换来阻断冰城链霉菌中的milD基因和nanLD基因,考察了其功能并提高了米尔贝霉素A3/A4的产量。
2.阻断了影响米尔贝霉素A3/A4分离纯化的杂质的生物合成。
3.降低了生产成本,提高了经济效益。
附图说明
图1是milD基因敲除质粒的构建示意图。
图2是nanLD基因中断质粒的构建示意图。
图3是冰城链霉菌基因阻断突变菌的构建策略示意图;
((a)milD基因阻断突变菌的构建;(b)milD基因阻断突变菌BCJ13的PCR验证,1:DNAMarker,2:以冰城链霉菌BC-109-6基因组为模板的PCR结果,3:以milD基因阻断突变菌BCJ13基因组为模板的PCR结果;(c)milD基因和nanLD基因阻断突变菌的构建;(d)milD基因和nanLD基因阻断突变菌BCJ36的PCR验证,1:DNA Marker,2:以milD基因和nanLD基因阻断突变菌BCJ36基因组为模板的PCR结果,3:以冰城链霉菌BCJ13基因组为模板的PCR结果)。
图4是出发菌株冰城链霉菌BC-109-6和冰城链霉菌基因阻断突变菌的发酵液的HPLC分析图谱;
((a)冰城链霉菌BC-109-6;(b)milD基因阻断突变菌BCJ13;(c)milD基因和nanLD基因阻断突变菌BCJ36)。
具体实施方式
下面用实施例来进一步说明本发明,但本发明并不受其限制。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。本发明中所述的“室温”是指进行试验的操作间的温度,一般为25℃。
所使用的工具酶、DNA分子量标记、胶回收试剂盒、pUC19载体均购自大连宝生物公司,使用方法参考商品说明书。
大肠杆菌E coli DH5α、ET12567,购自上海鼎国生物技术有限责任公司。
引物由大连宝生物公司合成。
冰城链霉菌BC-109-6可从东北农业大学生物化工教研室取得。
质粒pKC1139为大肠杆菌-链霉菌穿梭质粒,阿普拉霉素抗性对大肠杆菌和链霉菌均有选择作用,链霉菌复制子为温敏型,温度高于34℃不能进行自主复制(参考文献Bierman M,Logan R,O′Brien K,et al.Plasmid cloning vectors for the conjugal transfer of DNA fromEscherichia coli to Streptomyces spp[J].Gene,1992,116:43-49)。
实施例1:milD基因阻断突变菌的构建
方法:
1、milD基因敲除质粒的构建
利用引物milD-L1(5′-CCAAGCTTTTCTCCTCGGTCGCGGGTCT-3′,下划线为HindIII位点)和milD-L2(5′-GCTCTAGAGGTCATGGCACTCCGGTTGTT-3′,下划线为XbaI位点)从冰城链霉菌基因组上PCR扩增得到milD基因同源重组左臂片段。
PCR反应的总体系为25μL,以1μL的冰城链霉菌基因组DNA为模板进行反应。反应条件为:98℃ 1min;98℃ 10s;60.6℃ 15s;72℃ 1min。PCR产物上样电泳后,回收长度为985bp的目的条带。回收目的片段经HindIII和XbaI酶切后,与经HindIII和XbaI酶切后的pUC19载体连接,经测序验证后命名为pBC1577。
利用引物milD-R1(5′-GCTCTAGAGAGTGGGCGCAGATGAAC-3′,下划线为XbaI位点)和milD-R2(5′-CGGAATTCACCGCCGAGAACCACTACA-3′,下划线为EcoRI位点)从冰城链霉菌基因组上PCR扩增得到milD基因同源重组右臂片段。
PCR反应的总体系为25μL,以1μL的冰城链霉菌基因组DNA为模板进行反应。反应条件为:98℃ 1min;98℃ 10s;61℃ 15s;72℃ 1min。PCR产物上样电泳后,回收长度为1117bp的目的条带。回收目的片段经XbaI和EcoRI酶切后,与经XbaI和EcoRI酶切后的pBC1577载体连接,经测序验证后命名为pBC1397。
将pBC1397用HindIII和EcoRI进行酶切,酶切产物上样电泳后,回收长度为2.1kb的目的条带。将回收片段与经HindIII和EcoRI酶切的pKC1139进行连接,经测序验证后命名为pBC3784,即milD基因敲除质粒。milD基因敲除质粒的构建过程见图1。
2、milD基因阻断突变菌的构建
将pBC3784质粒转化大肠杆菌ET12567,在含有阿普拉霉素(50μg/mL)的LB平板(参考文献萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T.分子克隆实验指南[M],第二版,北京:科学出版社,1992)上筛选转化子ET12567/pBC3784。将转化子ET12567/pBC3784接种于2mLLB液体培养基(含氯霉素25μg/mL、卡那霉素25μg/mL,阿普拉霉素25μg/mL),37℃振荡培养过夜。次日以1:100的接种量转接于新鲜的LB(含氯霉素25μg/mL、卡那霉素25μg/mL,阿普拉霉素25μg/mL)20mL,培养至OD600值0.2~0.4为佳。用50mL离心管离心去上清(Hitachi CR21G,转子R20A2,10,000r/min,15min),10mL新鲜LB洗涤细胞两次,最后用0.1倍体积LB培养基(2mL)悬浮。刮取冰城链霉菌孢子制备浓度约为108个/mL的孢子悬液,离心后沉淀换用2×YT[2×YT培养基(g/L):胰蛋白胨16g,NaCl5g,酵母提取物10g,pH7.0]培养基悬浮,取500μL于50℃水浴中热激10min。取500μL的ET12567/pBC3784加入至500μL热激后的孢子悬液中,混合并轻摇。离心去除大部分上清,悬浮残余液体涂布MS平板(参考文献Kieser T,Bibb M.Practical Streptomyces Genetics[M].Norwich:The John InnesFoundation,2000),28℃倒置培养。16~20h后在平板上铺1mL含有0.5mg的萘啶酮酸及50μg阿普拉霉素的水溶液,液体被吸收后,继续于28℃倒置培养。挑取结合子单菌落于新鲜的MS平板上富集培养,该平板含有(1mg萘啶酮酸和50μg阿普拉霉素)/(mL培养基)。
3、milD基因阻断突变菌的筛选及验证
选取较快长出孢子的上述所得的结合子进行温度诱导筛选及传代收集孢子,制备孢子悬液,以每培养皿约100个孢子涂布于MS平板(参考文献Kieser T,Bibb M.PracticalStreptomyces Genetics[M].Norwich:The John Innes Foundation,2000),该平板含有50μg阿普拉霉素/(mL培养基)的阿普拉霉素,28℃培养48~72h,观察有小菌落长出后转至39℃进行温度诱导。约7~10天后发现39℃培养下已长出大量的孢子。由于质粒pBC3784含有pKC1139来源的温度敏感型复制子,在高于34℃不能独立复制,故在39℃生长的菌落应该是质粒进入菌体后通过与同源臂的交换整合入染色体的整合子。挑取整合子于无抗性的MS平板中28℃松弛培养,连续传代,促使其发生双交换。经连续传代培养后,挑取同一个单菌落分别在有抗性与无抗性的MS平板上培养,筛选在无抗性平板生长而在抗性平板上不生长的菌落即为发生双交换或回复突变的克隆。
挑取10株以上筛选出的菌株,提取其基因组DNA进行PCR验证。上下游引物分别为milD-V1(5′-ATGCCACCCTCGGGTCCCTC-3′)和milD-V2(5′-AAGGGCGGCTACGGCTACGA-3′)。PCR反应条件为:98℃ 1min;98℃ 10s;58℃ 15s;72℃ 3min。
同源重组示意图如图3a所示。只有质粒整合到基因组上发生双交换后,以milD-V1和milD-V2为引物、突变菌基因组为模板PCR扩增,才能得到理论上milD基因已被敲除的大小为2.38kb的阳性条带。而以milD-V1和milD-V2为引物、起始菌株BC-109-6基因组为模板PCR扩增,得到的是带有milD基因、大小为3.14kb的条带。
结果:
从10株无抗性菌株中筛选得到1个双交换突变株,命名为BCJ13,双交换发生几率较低。PCR产物的电泳结果见图3b,PCR结果与理论相符。因此,菌株BCJ13为milD基因阻断突变菌。
实施例2:milD基因和nanLD基因阻断突变菌的构建
1、nanLD基因中断质粒的构建
利用引物nan-L1(5′-GCTCTAGATCGTTGCTGCGGGTCCAT-3′,下划线为XbaI位点)和nan-L2(5′-CCAAGCTTCTACCCACGCCATCAACA-3′,下划线为HindIII位点)从冰城链霉菌基因组上PCR扩增得到nanLD基因同源重组左臂片段。PCR反应的总体系为25μL,以1μL的冰城链霉菌基因组DNA为模板进行反应。反应条件为:98℃ 1min;98℃ 10s;58.5℃15s;72℃ 1min。PCR产物上样电泳后,回收长度为844bp的目的条带。回收目的片段经HindIII和XbaI酶切后,与经HindIII和XbaI酶切后的pUC19载体连接,经测序验证后命名为pBCN-1。
利用引物nan-R1(5′-CGGAATTCGGATCACGGCGAGCACCTG-3′,下划线为EcoRI位点)和nan-R2(5′-GCTCTAGACTGCCCGCCACCCTCACCTT-3′,下划线为XbaI位点)从冰城链霉菌基因组上PCR扩增得到nanLD基因同源重组右臂片段。PCR反应的总体系为25μL,以1μL的冰城链霉菌基因组DNA为模板进行反应。反应条件为:98℃ 1min;98℃ 10s;60.6℃15s;72℃ 1min。PCR产物上样电泳后,回收长度为926bp的目的条带。回收目的片段经XbaI和EcoRI酶切后,与经XbaI和EcoRI酶切后的pBCN-1载体连接,经测序验证后命名为pBCN-2。
利用引物tsr1(5′-GCTCTAGAGGTCGCGGTCGGTGGTGA-3′,下划线为XbaI位点)和tsr2(5′-GCTCTAGAGACGATGAAGCCGTGGAAC-3′,下划线为XbaI位点)以质粒pHZ358(参考文献Sun Y,Zhou X,Liu J,et al.′Streptomyces nanchangensis′,a producer of theinsecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin,contains multiple polyketide gene clusters[J]..Microbiology,2002,148:361–371)为模板PCR扩增得到硫链丝菌素抗性基因盒tsr。PCR反应的总体系为25μL,以1μL的质粒pHZ358为模板进行反应。反应条件为:98℃ 1min;98℃ 10s;57.1℃ 15s;72℃ 75s。PCR产物上样电泳后,回收长度为1.29kb的目的条带。回收目的片段经XbaI酶切后,与经XbaI酶切后的pBCN-2载体连接,经测序验证后命名为pBCN-3。
将pBCN-3进行HindIII/EcoRI酶切,酶切产物上样电泳后,回收长度为3.06kb的目的条带,将回收片段与经HindIII/EcoRI酶切的pKC1139载体连接,经测序验证后命名为pBC8559,即nanLD基因中断质粒。nanLD基因中断质粒的构建过程见图2。
2、milD基因和nanLD基因阻断突变菌的构建
将pBC8559质粒转化大肠杆菌ET12567,在含有阿普拉霉素(50μg/mL)的LB平板(参考文献萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T.分子克隆实验指南[M],第二版,北京:科学出版社,1992)上筛选转化子ET12567/pBC8559。将转化子ET12567/pBC8559接种于2mLLB液体培养基(含氯霉素25μg/mL、卡那霉素25μg/mL,阿普拉霉素25μg/mL),37℃振荡培养过夜。次日以1:100的接种量转接于新鲜的LB(含氯霉素25μg/mL、卡那霉素25μg/mL,阿普拉霉素25μg/mL)20mL,培养至OD600值0.2~0.4为佳。用50mL离心管离心去上清(Hitachi CR21G,转子R20A2,10,000r/min,15min),10mL新鲜LB洗涤细胞两次,最后用0.1倍体积LB培养基(2mL)悬浮。刮取冰城链霉菌BCJ13孢子制备浓度约为108个/mL的孢子悬液,离心后沉淀换用2×YT[2×YT培养基(g/L):胰蛋白胨16g,NaCl5g,酵母提取物10g,pH7.0]培养基悬浮,取500μL于50℃水浴中热激10min。取500μL的ET12567/pBC8559加入至500μL热激后的孢子悬液中,混合并轻摇。离心去除大部分上清,悬浮残余液体涂布MS平板(参考文献Kieser T,Bibb M.Practical Streptomyces Genetics[M].Norwich:The JohnInnes Foundation,2000),28℃倒置培养。16~20h后在平板上铺1mL含有0.5mg的萘啶酮酸及50μg阿普拉霉素的水溶液,液体被吸收后,继续于28℃倒置培养。挑取结合子单菌落于新鲜的MS平板上富集培养,该平板含有(1mg萘啶酮酸和50μg阿普拉霉素)/(mL培养基)。
3、milD基因和nanLD基因阻断突变菌的筛选及验证
选取较快长出孢子的上述所得的结合子进行温度诱导筛选及传代收集孢子,制备孢子悬液,以每培养皿约100个孢子涂布于MS平板(参考文献Kieser T,Bibb M.PracticalStreptomyces Genetics[M].Norwich:The John Innes Foundation,2000),该平板含有50μg阿普拉霉素/(mL培养基)的阿普拉霉素和15μg硫链丝菌素/(mL培养基)的硫链丝菌素,28℃培养48~72h,观察有小菌落长出后转至39℃进行温度诱导。约7~10天后发现39℃培养下已长出大量的孢子。由于质粒pBC8559含有pKC1139来源的温度敏感型复制子,在高于34℃不能独立复制,故在39℃生长的菌落应该是质粒进入菌体后通过与同源臂的交换整合入染色体的整合子。挑取整合子于无阿普拉霉素抗性而有硫链丝菌素抗性的MS平板中28℃松弛培养,连续传代,促使其发生双交换。经连续传代培养后,挑取同一个单菌落分别在有硫链丝菌素抗性与有阿普拉霉素抗性的MS平板上培养,筛选在有硫链丝菌素抗性平板生长而在有阿普拉霉素抗性平板上不生长的菌落即为发生双交换或回复突变的克隆。
挑取10株以上筛选出的菌株,提取其基因组DNA进行PCR验证。上下游引物分别为nanD-V1(5′-ACTCCGCGTCGAAGTCCCC-3′)和nanD-V2(5′-GCGGTTTTGCGATTCAGGTAT-3′)。PCR反应条件为:98℃ 1min;98℃ 10s;59℃ 15s;72℃ 3min。
同源重组示意图如图3c所示。只有质粒整合到基因组上发生双交换后,以nanD-V1和nanD-V2为引物、突变菌基因组为模板PCR扩增,才能得到理论上nanLD基因已被硫链丝菌素抗性基因盒tsr代替的大小为1.95kb的阳性条带。而以nanD-V1和nanD-V2为引物、起始菌株BCJ13基因组为模板PCR扩增,得到的是带有nanLD基因、大小为3.39kb的条带。
结果:
从10株无抗性菌株中筛选得到4个双交换突变株,命名为BCJ36,双交换发生几率较低。PCR产物的电泳结果见图3d,PCR结果与理论相符。因此,菌株BCJ36为milD基因和nanLD基因阻断突变菌。
实施例3:起始菌株BC-109-6、基因阻断突变菌BCJ13和BCJ36的发酵分析
方法:
挑取菌株于高氏一号斜面28℃培养,培养6天后,接种于种子培养基(蔗糖10.0,酵母提取物5.0,蛋白胨3.5,脱脂奶粉1.0,K2HPO4 0.5(g/1000mL),pH7.0),然后置于28℃,250r/min条件下培养42h。取2.0mL的种子培养液转接于25mL的发酵培养基(蔗糖80.0,黄豆饼粉20.0,脱脂奶粉1.0,CaCO3 3.0,K2HPO4 1.0,FeSO4·7H2O 0.1(g/1000mL),pH7.2)中,28℃,250r/min培养8天。发酵液与等体积的甲醇混合浸泡12h,离心后取上清液做HPLC分析。HPLC条件,流动相A:乙腈:水:甲醇=350:50:100,流动相B:甲醇,梯度洗脱:15min内流动相B的浓度从0升至100%,流速:1.0mL/min,柱温:25℃,检测波长:242nm,进样量:10μL,分析柱:NOVA-PAKR C18(3.9×150mm,5μm,Waters,Milford,MA)。
结果:
milD基因阻断突变菌BCJ13、milD基因和nanLD基因阻断突变菌BCJ36、起始菌株冰城链霉菌BC-109-6的发酵液的HPLC分析结果如图4所示,可见:milD基因的敲除可中断C5-O-甲基米尔贝霉素B2、B3、β1和β2的生物合成,且米尔贝霉素A3/A4的产量有显著的提高,单位产量达2237±54μg/mL,进一步阻断nanLD基因可中断南昌霉素的生物合成,且米尔贝霉素A3/A4的产量有进一步的提高,单位产量达2312±47μg/mL,比起始菌株冰城链霉菌BC-109-6米尔贝霉素A3/A4的产量(1326±37μg/mL)提高了74%。

Claims (9)

1.一种冰城链霉菌的基因阻断突变菌,其特征在于,以冰城链霉菌BC-109-6为出发菌株,进行milD基因和nanLD基因的阻断,构建冰城链霉菌的基因阻断突变菌;所述的milD基因是被敲除而阻断的,nanLD基因是被外源基因插入而阻断的,所述的外源基因是硫链丝菌素基因tsr。
2.根据权利要求1所述基因阻断突变菌,其特征在于,对冰城链霉菌BC-109-6进行改造,包括以下步骤:
1)构建milD基因敲除质粒,其含有milD基因同源重组左臂和milD基因同源重组右臂;
2)将步骤1)所得的milD基因敲除质粒转化宿主细胞,获得转化子;
3)将冰城链霉菌BC-109-6作为受体,与步骤2)所述的转化子进行接合转移,挑取同源重组双交换子,即冰城链霉菌的milD基因阻断突变菌;
4)通过插入外源基因硫链丝菌素基因tsr构建nanLD基因中断质粒,其含有nanLD基因同源重组左臂和nanLD基因同源右臂;
5)将步骤4)所得的nanLD基因中断质粒转化宿主细胞,获得转化子;
6)将冰城链霉菌的milD基因阻断突变菌作为受体,与步骤5)所述的转化子进行接合转移,挑取同源重组双交换子,得到冰城链霉菌的milD基因和nanLD基因阻断突变菌。
3.根据权利要求1所述基因阻断突变菌的制备方法,其特征在于,包括以下步骤:
1)构建milD基因敲除质粒,其含有milD基因同源重组左臂和milD基因同源重组右臂;
2)将步骤1)所得的milD基因敲除质粒转化宿主细胞,获得转化子;
3)将冰城链霉菌BC-109-6作为受体,与步骤2)所述的转化子进行接合转移,挑取同源重组双交换子,即冰城链霉菌的milD基因阻断突变菌;
4)通过插入外源基因硫链丝菌素基因tsr构建nanLD基因中断质粒,其含有nanLD基因同源重组左臂和nanLD基因同源右臂;
5)将步骤4)所得的nanLD基因中断质粒转化宿主细胞,获得转化子;
6)将冰城链霉菌的milD基因阻断突变菌作为受体,与步骤5)所述的转化子进行接合转移,挑取同源重组双交换子,得到冰城链霉菌的milD基因和nanLD基因阻断突变菌。
4.根据权利要求3所述方法,其特征在于,所述步骤1)中的milD基因同源重组左臂片段的构建引物milD-L1核苷酸序列如SEQ ID NO.1,引物milD-L2核苷酸序列如SEQ IDNO.2。
5.根据权利要求3所述方法,其特征在于,所述步骤1)milD基因同源重组右臂片段的构建引物milD-R1核苷酸序列如SEQ ID NO.3,引物milD-R2核苷酸序列如SEQ ID NO.4。
6.根据权利要求3所述方法,其特征在于,所述步骤4)中nanLD基因同源重组左臂片段的构建引物nan-L1核苷酸序列如SEQ ID NO.5,引物nan-L核苷酸序列如SEQ ID NO.6。
7.根据权利要求3所述方法,其特征在于,所述步骤4)中nanLD基因同源重组右臂片段的构建引物nan-R1核苷酸序列如SEQ ID NO.7,引物nan-R2核苷酸序列如SEQ ID NO.8。
8.一种发酵生产米尔贝霉素A3/A4的方法,其特征在于,以权利要求1所述冰城链霉菌的基因阻断突变菌发酵生产米尔贝霉素A3/A4。
9.一种发酵生产米尔贝霉素A3/A4的方法,其特征在于,具体步骤如下:
1)构建milD基因敲除质粒,其含有milD基因同源重组左臂和milD基因同源重组右臂;
2)将步骤1)所得的milD基因敲除质粒转化宿主细胞,获得转化子;
3)将冰城链霉菌BC-109-6作为受体,与步骤2)所述的转化子进行接合转移,挑取同源重组双交换子,即冰城链霉菌的milD基因阻断突变菌;
4)通过插入外源基因硫链丝菌素基因tsr构建nanLD基因中断质粒,其含有nanLD基因同源重组左臂和nanLD基因同源右臂;
5)将步骤4)所得的nanLD基因中断质粒转化宿主细胞,获得转化子;
6)将冰城链霉菌的milD基因阻断突变菌作为受体,与步骤5)所述的转化子进行接合转移,挑取同源重组双交换子,得到冰城链霉菌的milD基因和nanLD基因阻断突变菌;
7)以冰城链霉菌的milD基因和nanLD基因阻断突变菌发酵生产米尔贝霉素A3/A4。
CN201310409240.2A 2013-09-10 2013-09-10 一种冰城链霉菌的基因阻断突变菌及其制备方法和应用 Active CN103468625B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310409240.2A CN103468625B (zh) 2013-09-10 2013-09-10 一种冰城链霉菌的基因阻断突变菌及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310409240.2A CN103468625B (zh) 2013-09-10 2013-09-10 一种冰城链霉菌的基因阻断突变菌及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN103468625A CN103468625A (zh) 2013-12-25
CN103468625B true CN103468625B (zh) 2015-05-13

Family

ID=49793668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310409240.2A Active CN103468625B (zh) 2013-09-10 2013-09-10 一种冰城链霉菌的基因阻断突变菌及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN103468625B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105087711B (zh) * 2014-10-20 2018-06-05 杭州辰西生物科技有限公司 一种链霉菌发酵生产米尔贝霉素用发酵培养基及发酵培养方法
CN105087710B (zh) * 2014-10-20 2018-04-27 杭州辰西生物科技有限公司 一种链霉菌发酵生产米尔贝霉素的方法及其发酵培养基
CN104497003A (zh) * 2014-11-27 2015-04-08 北大医药重庆大新药业股份有限公司 一种高纯度米尔贝霉素的制备方法
CN104557967B (zh) * 2014-12-24 2016-06-15 北大医药重庆大新药业股份有限公司 一种高纯度米尔贝霉素的生产方法
CN106148215B (zh) * 2015-03-27 2019-06-14 浙江海正药业股份有限公司 一种链霉菌及其生产米尔贝霉素a4的方法
CN106119314A (zh) * 2016-07-01 2016-11-16 宁夏泰瑞制药股份有限公司 一种冰城链霉菌发酵生产米尔贝霉素的培养基和培养方法
CN106191077B (zh) * 2016-07-19 2019-07-02 中国农业科学院植物保护研究所 一种米尔贝霉素正调控基因milR及其过表达基因工程菌、制备方法和应用
CN106754608B (zh) * 2017-03-21 2020-08-11 浙江海正药业股份有限公司 生产米尔贝霉素的重组链霉菌及其制备方法和应用
CN109022516A (zh) * 2018-05-31 2018-12-18 四川大学 一种提高米尔贝链霉菌抗生素产量的方法
CN111197020B (zh) * 2020-01-13 2021-08-17 中国农业科学院植物保护研究所 一种生产米尔贝霉素的重组菌及其构建方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101100651A (zh) * 2007-05-28 2008-01-09 东北农业大学 链霉菌属菌株及其应用方法
CN101619067A (zh) * 2009-03-25 2010-01-06 东北农业大学 大环内酯类化合物及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101100651A (zh) * 2007-05-28 2008-01-09 东北农业大学 链霉菌属菌株及其应用方法
CN101619067A (zh) * 2009-03-25 2010-01-06 东北农业大学 大环内酯类化合物及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
improvement of milbemycin-producing streptomyces bingchenggensis by rational screening of ultraviolet-and chemically induced mutants;xiangjing wang et al.;《world journal of microbiology and biotechnology》;20091231;第25卷;1051-1056 *
nsdA基因和bldA基因的中断对冰城链霉菌形态分化及次级代谢的影响;郭锁莲;《中国优秀硕士学位论文全文数据库 基础科学辑》;20100315;全文 *
冰城链霉菌C5-O-methyltransferase基因克隆、表达及体外功能分析;孙晓琳;《中国优秀硕士学位论文全文数据库 基础科学辑》;20110515;全文 *

Also Published As

Publication number Publication date
CN103468625A (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
CN103468625B (zh) 一种冰城链霉菌的基因阻断突变菌及其制备方法和应用
CN102219815B (zh) 六种台勾霉素类化合物及其制备方法和在制备抗菌药物中的应用
CN106191077B (zh) 一种米尔贝霉素正调控基因milR及其过表达基因工程菌、制备方法和应用
JP2000515390A (ja) 新規ポリケチド誘導体およびそれを製造するための組換え方法
CN104974974A (zh) 一株刺糖多孢菌多杀菌素高产工程菌株及其应用
CN102030791B (zh) 四种台勾霉素类化合物及其制备方法和在制备抗菌药物中的应用
CN103789339B (zh) 一种产5‑酮基米尔贝霉素的链霉菌及生产5‑酮基米尔贝霉素的方法
KR101542243B1 (ko) 이소발레릴 스피라마이신 i을 생산하는 유전학적으로 공학처리된 균주 wsj­ia
CN103215281B (zh) 一种格瑞克霉素和p-1894b的生物合成基因簇及其应用
CN106399213A (zh) 一种抗生素溶杆菌基因敲除系统及其构建方法和应用
US9631195B2 (en) Identification and characterization of the spinactin biosysnthesis gene cluster from spinosyn producing saccharopolyspora spinosa
CN106636141B (zh) 一种罗博卢酮的生物合成基因簇及其应用
CN104073507A (zh) 一种斑鸠霉素的生物合成基因簇及其应用
CN103834605A (zh) 一种阿维菌素产生菌及其制备方法和应用
CN102911957B (zh) 灰绿霉素和绿灰霉素的生物合成基因簇及其应用
CN103013865A (zh) 一种棒状链霉菌的工程菌株及其制备方法与应用
CN108660101B (zh) 表达天维菌素b的重组微生物、制备方法及其用途
CN104928313B (zh) 阿维链霉菌rex基因在提高阿维菌素产量中的应用
CN103820362A (zh) 一种生物合成庆大霉素x2工程菌的构建及其应用
CN102993168B (zh) 链黑菌素类似化合物及其制备方法、用途
CN102010846B (zh) 一种天蓝淡红链霉菌的基因阻断突变菌及其制备方法
CN102277310B (zh) 表达抗生素基因簇的载体宿主系统及其应用
CN102453708A (zh) 一种提高天蓝淡红链霉菌柔红霉素产量的方法
CN101440357A (zh) 积累井冈霉亚基胺a的基因工程菌株及其构建方法
CN105367637B (zh) 调控武夷菌素产生菌生长表型的蛋白及其编码基因与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant