CN103433484B - 牛血清白蛋白-铂复合纳米材料模拟过氧化物酶及其制备方法和应用 - Google Patents

牛血清白蛋白-铂复合纳米材料模拟过氧化物酶及其制备方法和应用 Download PDF

Info

Publication number
CN103433484B
CN103433484B CN201310368447.XA CN201310368447A CN103433484B CN 103433484 B CN103433484 B CN 103433484B CN 201310368447 A CN201310368447 A CN 201310368447A CN 103433484 B CN103433484 B CN 103433484B
Authority
CN
China
Prior art keywords
serum albumin
bovine serum
platinum composite
bsa
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310368447.XA
Other languages
English (en)
Other versions
CN103433484A (zh
Inventor
陈伟
何少斌
邓豪华
刘爱林
林新华
李光文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Medical University
Original Assignee
Fujian Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Medical University filed Critical Fujian Medical University
Priority to CN201310368447.XA priority Critical patent/CN103433484B/zh
Publication of CN103433484A publication Critical patent/CN103433484A/zh
Application granted granted Critical
Publication of CN103433484B publication Critical patent/CN103433484B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

本发明公开一种牛血清白蛋白-铂复合纳米材料模拟过氧化物酶及其制备方法和应用,以牛血清白蛋白为模板,通过生物矿化作用,制备牛血清白蛋白-铂复合纳米材料模拟过氧化物酶。其牛血清白蛋白-铂复合纳米材料由下述方法制备而成的:在浓度为牛血清白蛋白水溶液中加入氯铂酸水溶液,混匀后加入氢氧化钠水溶液得混合溶液,水浴加热;将此溶液经过超滤并水洗,得到牛血清白蛋白-铂复合纳米材料水溶液;牛血清白蛋白-铂复合纳米材料具有优良的过氧化酶活性,可催化过氧化氢氧化3,3’,5,5’-四甲基联苯胺盐酸盐显色。同时该模拟酶耐酸碱、耐高温、耐高盐,具有优异的短期室温稳定性和长期室温稳定性。

Description

牛血清白蛋白-铂复合纳米材料模拟过氧化物酶及其制备方法和应用
技术领域
本发明涉及具有模拟过氧化物酶特性的牛血清白蛋白-铂复合纳米材料及其制备方法和应用,属于纳米技术和仿生技术领域。
背景技术
酶是生物体内非常重要,具有催化活性的蛋白质,它催化效率高、专一性强、反应条件温和,生物体的生长、发育、繁殖等生命活动都离不开酶的催化作用。然而天然酶来源有限,提纯困难,价格昂贵。同时,天然酶容易受到多种物理、化学因素的影响而失去活性,所以在实际应用中对实验的操作条件较为苛刻,使其应用受到了极大的限制。近年来,人工模拟酶的研究开发与应用受到了人们的广泛关注。
过氧化物酶可以高效地催化氧化过氧化氢,而过氧化氢又是生物反应中一种重要的中间物质,所以对过氧化氢以及相关生化物质的精确测定具有重要的意义。过氧化物模拟酶所涉及的物质包括四氧化三铁纳米粒子,血红蛋白,氯化血红素,金属卟啉,金属酞菁等。其中,纳米人工模拟酶具有制备简单、经济、快捷、耐高温和耐酸碱、性质稳定等诸多优势,在模拟生物酶方面显示出极其诱人的应用前景。
本发明提供了一种基于牛血清白蛋白-铂复合纳米材料的高活性、高稳定性模拟过氧化物酶。
发明内容
本发明的目的是以牛血清白蛋白为模板,通过生物矿化作用,制备牛血清白蛋白-铂复合纳米材料,利用纳米尺度金属铂内核的优良催化特性模拟过氧化物酶及其制备方法和应用,利用牛血清白蛋白外壳对模拟酶活性中心起到稳定作用。
为了实现上述目的,本发明采用以下技术方案:
(一)本发明所述的一种牛血清白蛋白-铂复合纳米材料模拟过氧化物酶,由下述方法制备而成的:在牛血清白蛋白水溶液中加入氯铂酸水溶液,混匀后加入氢氧化钠水溶液得混合溶液,水浴加热,混合溶液在加热反应后其氯铂酸的三个吸收峰消失(此时说明氯铂酸全部反应);将此溶液经过超滤并水洗,得到铂纳米粒子-牛血清白蛋白核壳结构水溶液;模拟过氧化酶活性特征为:在磷酸盐缓冲液中依次加入过氧化氢、3,3’,5,5’-四甲基联苯胺盐酸盐和牛血清白蛋白-铂复合纳米材料水溶液,混合后温浴,溶液由无色变为蓝色,在652 nm处有一吸收峰。
本发明上述的牛血清白蛋白-铂复合纳米材料的制备中的各组分的配比按本领域常规方法可以完成的。但本发明的优选的牛血清白蛋白-铂复合纳米材料的制备由以下方法制备:在5 ml 50 mg/ml的牛血清白蛋白水溶液中加入16 mmol/L氯铂酸溶液5 ml和1.5 mol/L氢氧化钠溶液0.5 ml,混匀后水浴80 ℃下反应2 h。反应后溶液装入截止分子量为3k的超滤管,6000 r/min离心超滤,并水洗3次。
模拟过氧化酶活性特征优选测试步骤为在2780 μL  pH=4.5,20 mmol/L的磷酸盐缓冲液中依次加入1 ml浓度为2 mol/L的过氧化氢、0.2 ml浓度为16 mmol/L的3,3’,5,5’-四甲基联苯胺盐酸盐和20 μL浓度为0.36 mmol/L的牛血清白蛋白-铂复合纳米材料水溶液,混合后45 ℃温浴10分钟,溶液由无色变为蓝色。
所述的牛血清白蛋白-铂复合纳米材料水溶液可以通过冷冻干燥得到牛血清白蛋白-铂复合纳米材料粉末。以上过程中使用的所有玻璃器皿均经过王水浸泡,并用双蒸水彻底清洗,晾干。
本发明所述的牛血清白蛋白-铂复合纳米材料模拟过氧化物酶的制备方法,包括如下步骤:在牛血清白蛋白水溶液中加入氯铂酸水溶液,混匀后加入氢氧化钠水溶液得混合溶液,水浴加热,混合溶液在加热反应后其氯铂酸的三个吸收峰消失;将此溶液经过超滤并水洗,得到铂纳米粒子-牛血清白蛋白核壳结构水溶液。
(二)本发明的牛血清白蛋白-铂复合纳米材料的过氧化物酶活性
本发明所述的一种牛血清白蛋白-铂复合纳米材料模拟过氧化物酶,能催化过氧化氢氧化3,3’,5,5’-四甲基联苯胺盐酸盐显色。具体地说,通过牛血清白蛋白-铂复合纳米材料催化过氧化物酶底物3,3’,5,5’-四甲基联苯胺盐酸盐产生蓝色底物,验证和比较其过氧化物酶活性。在磷酸盐缓冲液中依次加入过氧化氢、3,3’,5,5’-四甲基联苯胺盐酸盐和牛血清白蛋白-铂复合纳米材料水溶液,混合后温浴10分钟,目视观察颜色的变化或测定652 nm波长处的吸光度值(A652)。根据溶液颜色或通过吸光度值标准曲线进行比较过氧化酶活性。
本发明的牛血清白蛋白-铂复合纳米材料模拟过氧化物酶催化过氧化氢氧化3,3’,5,5’-四甲基联苯胺盐酸盐生成蓝色产物,该产物在652 nm处有最大吸收峰或者牛血清白蛋白-铂复合纳米材料催化过氧化氢氧化3,3’,5,5’-四甲基联苯胺盐酸盐的活性在pH=4.5、45 ℃时达到最大。
本发明的牛血清白蛋白-铂复合纳米材料模拟过氧化物酶对3,3’,5,5’-四甲基联苯胺盐酸盐的米氏常数为0.054 mmol/L,对过氧化氢的米氏常数为14.18 mmol/L。
本发明的牛血清白蛋白-铂复合纳米材料模拟过氧化物酶在4~95 ℃温度下保存2小时后催化活性均无明显变化,具有良好的稳定性或者在pH 2~12保存2小时后催化活性均无明显变化,具有良好的稳定性。
本发明的牛血清白蛋白-铂复合纳米材料模拟过氧化物酶在2 mol/L氯化钠溶液中保存2小时后催化活性仍无明显变化,具有良好的稳定性或者具有良好的短期室温稳定性,在24小时内催化活性无明显变化。
本发明的牛血清白蛋白-铂复合纳米材料模拟过氧化物酶具有良好的短期室温稳定性,在24小时内催化活性无明显变化。具有良好的长期稳定性,在室温下保存30天后,相对催化活性可达到98.9%。
本发明的优点:
(1)本发明所使用的制备方法简便快速,无需还原剂。
(2)本发明中的牛血清白蛋白-铂复合纳米材料具有良好的过氧化物酶活性。
(3)本发明中的牛血清白蛋白-铂复合纳米材料稳定性好,过氧化物酶活性受贮存温度、pH值和离子强度的影响小。
 (4)本发明具有良好的长期稳定性,在室温下保存30天后,相对催化活性可达到98.9%。
附图说明
图1为牛血清白蛋白-铂复合纳米材料催化过氧化氢氧化3,3’,5,5’-四甲基联苯胺盐酸盐显色体系的紫外吸收光谱图。
图2为牛血清白蛋白-铂复合纳米材料终浓度对催化反应体系的影响图。
图3为pH值对牛血清白蛋白-铂复合纳米材料催化过氧化氢氧化3,3’,5,5’-四甲基联苯胺盐酸盐显色体系的影响图。
图4为温浴温度对牛血清白蛋白-铂复合纳米材料催化过氧化氢氧化3,3’,5,5’-四甲基联苯胺盐酸盐显色体系的影响图。
图5为牛血清白蛋白-铂复合纳米材料对于3,3’,5,5’-四甲基联苯胺盐酸盐的稳态动力学曲线图。
图6为牛血清白蛋白-铂复合纳米材料对于过氧化氢的稳态动力学曲线图。
图7为保存温度对牛血清白蛋白-铂复合纳米材料催化活性的影响图。
图8为保存pH值对牛血清白蛋白-铂复合纳米材料催化活性的影响图。
图9为保存盐浓度对牛血清白蛋白-铂复合纳米材料催化活性的影响图。
图10为牛血清白蛋白-铂复合纳米材料的短期室温稳定性曲线图。
具体实施方式
实例1:
在5 ml 50 mg/ml的牛血清白蛋白水溶液中加入16 mmol/L氯铂酸溶液5 ml和1.5 mol/L氢氧化钠溶液0.5 ml,混匀后水浴80 ℃下反应2 h。反应后溶液装入截止分子量为3k的超滤管,6000 r/min离心超滤,并水洗3次。超滤后所得溶液冷冻干燥得到牛血清白蛋白-铂复合纳米材料粉末。
实例2:
在2780 μL磷酸盐缓冲液(pH=4.5,20 mmol/L)中依次加入1 ml浓度为2 mol/L的过氧化氢、0.2 ml浓度为16 mmol/L的3,3’,5,5’-四甲基联苯胺盐酸盐和20 μL浓度为0.36 mmol/L的牛血清白蛋白-铂复合纳米材料水溶液,混合后45 ℃温浴10分钟,溶液由无色变为蓝色,在652 nm处有一吸收峰(图1)。
实例3:
在2780 μL磷酸盐缓冲液(pH=4.5,20 mmol/L)中依次加入1 ml浓度为2 mol/L的过氧化氢、0.2 ml浓度为16 mmol/L的3,3’,5,5’-四甲基联苯胺盐酸盐和20 μL不同浓度的牛血清白蛋白-铂复合纳米材料水溶液,混合后45 ℃温浴10分钟,测定652 nm波长处吸光度。由图2可见,显色产物的吸光度随着牛血清白蛋白-铂复合纳米材料终浓度增大而增大。
实例4:
在2780 μL不同pH值的磷酸盐缓冲液(20 mmol/L)中依次加入1 ml浓度为2 mol/L的过氧化氢、0.2 ml浓度为16 mmol/L的3,3’,5,5’-四甲基联苯胺盐酸盐和20 μL浓度为0.36 mmol/L的牛血清白蛋白-铂复合纳米材料水溶液,混合后45 ℃温浴10分钟,测定652 nm波长处吸光度。由图3可见,牛血清白蛋白-铂复合纳米材料的相对催化活性在pH=4.5时达到最大。
实例5:
在2780 μL磷酸盐缓冲液(pH=4.5,20 mmol/L)中依次加入1 ml浓度为2 mol/L的过氧化氢、0.2 ml浓度为16 mmol/L的3,3’,5,5’-四甲基联苯胺盐酸盐和20 μL浓度为0.36 mmol/L的牛血清白蛋白-铂复合纳米材料水溶液,混合后在不同温度下温浴10分钟,测定652 nm波长处吸光度。由图4可见,牛血清白蛋白-铂复合纳米材料的相对催化活性在温度为45 ℃时达到最大。
实例6:
在2780 μL磷酸盐缓冲液(pH=4.5,20 mmol/L)中依次加入1 ml不同浓度的过氧化氢、0.2 ml浓度为16 mmol/L的3,3’,5,5’-四甲基联苯胺盐酸盐(TMB)和20 μL浓度为0.36 mmol/L的牛血清白蛋白-铂复合纳米材料水溶液,混合后45 ℃温浴1分钟,测定652 nm波长处的吸光度值。通过米氏方程拟合,可以得出牛血清白蛋白-铂复合纳米材料对TMB的米氏常数为0.054 mmol/L(图5)。
实例7:
在2780 μL磷酸盐缓冲液(pH=4.5,20 mmol/L)中依次加入1 ml浓度为2 mol/L的过氧化氢、0.2 ml不同浓度的3,3’,5,5’-四甲基联苯胺盐酸盐和20 μL浓度为0.36 mmol/L的牛血清白蛋白-铂复合纳米材料水溶液,混合后45 ℃温浴1分钟,测定652 nm波长处的吸光度值。通过米氏方程拟合,可以得出牛血清白蛋白-铂复合纳米材料对过氧化氢的米氏常数为14.18 mmol/L(图6)。
实例8:
将牛血清白蛋白-铂复合纳米材料水溶液置于不同温度下保存2小时后,测定保存温度对其相对催化活性的影响。在2780 μL磷酸盐缓冲液(pH=4.5,20 mmol/L)中依次加入1 ml浓度为2 mol/L的过氧化氢、0.2 ml浓度为16 mmol/L的3,3’,5,5’-四甲基联苯胺盐酸盐和20 μL浓度为0.36 mmol/L的牛血清白蛋白-铂复合纳米材料水溶液,混合后45 ℃温浴10分钟,测定652 nm波长处的吸光度值。由图7可见,牛血清白蛋白-铂复合纳米材料在4~95 ℃温度下保存2小时后催化活性均无明显变化,具有良好的稳定性。
实例9:
将牛血清白蛋白-铂复合纳米材料水溶液置于不同pH条件下保存2小时后,测定保存温度对其相对催化活性的影响。在2780 μL磷酸盐缓冲液(pH=4.5,20 mmol/L)中依次加入1 ml浓度为2 mol/L的过氧化氢、0.2 ml浓度为16 mmol/L的3,3’,5,5’-四甲基联苯胺盐酸盐和20 μL浓度为0.36 mmol/L的牛血清白蛋白-铂复合纳米材料水溶液,混合后45 ℃温浴10分钟,测定652 nm波长处的吸光度值。由图8可见,牛血清白蛋白-铂复合纳米材料在pH 2~12保存2小时后催化活性均无明显变化,具有良好的稳定性。
实例10:
将牛血清白蛋白-铂复合纳米材料水溶液置于不同浓度氯化钠条件下保存2小时后,测定保存温度对其相对催化活性的影响。在2780 μL磷酸盐缓冲液(pH=4.5,20 mmol/L)中依次加入1 ml浓度为2 mol/L的过氧化氢、0.2 ml浓度为16 mmol/L的3,3’,5,5’-四甲基联苯胺盐酸盐和20 μL浓度为0.36 mmol/L的牛血清白蛋白-铂复合纳米材料水溶液,混合后45 ℃温浴10分钟,测定652 nm波长处的吸光度值。由图9可见,牛血清白蛋白-铂复合纳米材料在高达2 mol/L氯化钠溶液中保存2小时后催化活性仍无明显变化,具有良好的稳定性。
实例11:
将牛血清白蛋白-铂复合纳米材料水溶液置于室温下保存不同时间后,测定其相对催化活性。在2780 μL磷酸盐缓冲液(pH=4.5,20 mmol/L)中依次加入1 ml浓度为2 mol/L的过氧化氢、0.2 ml浓度为16 mmol/L的3,3’,5,5’-四甲基联苯胺盐酸盐和20 μL浓度为0.36 mmol/L的牛血清白蛋白-铂复合纳米材料水溶液,混合后45 ℃温浴10分钟,测定652 nm波长处的吸光度值。由图10可见,牛血清白蛋白-铂复合纳米材料具有良好的短期室温稳定性,在24小时内催化活性无明显变化。
实例12:
将牛血清白蛋白-铂复合纳米材料水溶液置于室温下保存30天后,测定其相对催化活性。在2780 μL磷酸盐缓冲液(pH=4.5,20 mmol/L)中依次加入1 ml浓度为2 mol/L的过氧化氢、0.2 ml浓度为16 mmol/L的3,3’,5,5’-四甲基联苯胺盐酸盐和20 μL浓度为0.36 mmol/L的牛血清白蛋白-铂复合纳米材料水溶液,混合后45 ℃温浴10分钟,测定652 nm波长处的吸光度值。结果表明牛血清白蛋白-铂复合纳米材料具有良好的长期稳定性,在室温下保存30天后,相对催化活性可达到98.9%。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改,等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种牛血清白蛋白-铂复合纳米材料模拟过氧化物酶,其牛血清白蛋白-铂复合纳米材料是由下述方法制备而成的:在5 ml 50 mg/ml的牛血清白蛋白水溶液中加入16 mmol/L氯铂酸溶液5 ml和1.5 mol/L氢氧化钠溶液0.5 ml,混匀后水浴80 ℃下反应2 h;反应后溶液装入截止分子量为3k的超滤管,6000 r/min离心超滤,并水洗3次,得到牛血清白蛋白-铂复合纳米材料水溶液;模拟过氧化酶活性特征为:在磷酸盐缓冲液中依次加入过氧化氢、3,3’,5,5’-四甲基联苯胺盐酸盐和牛血清白蛋白-铂复合纳米材料水溶液,混合后温浴,溶液由无色变为蓝色,在652 nm处有一吸收峰。
2.根据权利要求1所述的一种牛血清白蛋白-铂复合纳米材料模拟过氧化物酶,其特征是在2780 μL  pH=4.5,20 mmol/L的磷酸盐缓冲液中依次加入1 ml浓度为2 mol/L的过氧化氢、0.2 ml浓度为16 mmol/L的3,3’,5,5’-四甲基联苯胺盐酸盐和20 μL浓度为0.36 mmol/L的牛血清白蛋白-铂复合纳米材料水溶液,混合后45 ℃温浴10分钟,溶液由无色变为蓝色。
3.一种牛血清白蛋白-铂复合纳米材料模拟过氧化物酶的制备方法,包括如下步骤:在5 ml 50 mg/ml的牛血清白蛋白水溶液中加入16 mmol/L氯铂酸溶液5 ml和1.5 mol/L氢氧化钠溶液0.5 ml,混匀后水浴80 ℃下反应2 h;反应后溶液装入截止分子量为3k的超滤管,6000 r/min离心超滤,并水洗3次,得到铂纳米粒子-牛血清白蛋白核壳结构水溶液。
4.权利要求1或2所述的一种牛血清白蛋白-铂复合纳米材料模拟过氧化物酶,在催化过氧化氢氧化3,3’,5,5’-四甲基联苯胺盐酸盐显色中的应用。
5.根据权利要求4所述的应用,其特征是催化过氧化氢氧化3,3’,5,5’-四甲基联苯胺盐酸盐生成蓝色产物,该产物在652 nm处有最大吸收峰;牛血清白蛋白-铂复合纳米材料催化过氧化氢氧化3,3’,5,5’-四甲基联苯胺盐酸盐的活性在pH=4.5、45 ℃时达到最大。
6.根据权利要求4或5所述的应用,其特征是牛血清白蛋白-铂复合纳米材料对3,3’,5,5’-四甲基联苯胺盐酸盐的米氏常数为0.054 mmol/L,对过氧化氢的米氏常数为14.18 mmol/L。
7.根据权利要求4或5所述的应用,其特征是在4~95 ℃温度下或者在pH 2~12保存2小时后催化活性均无明显变化,具有良好的稳定性。
8.根据权利要求4或5所述的应用,其特征是在2 mol/L氯化钠溶液中保存2小时后催化活性仍无明显变化,具有良好的稳定性。
9.根据权利要求4或5所述的应用,其特征是具有良好的短期室温稳定性,在24小时内催化活性无明显变化;具有良好的长期稳定性,在室温下保存30天后,相对催化活性可达到98.9%。
CN201310368447.XA 2013-08-22 2013-08-22 牛血清白蛋白-铂复合纳米材料模拟过氧化物酶及其制备方法和应用 Expired - Fee Related CN103433484B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310368447.XA CN103433484B (zh) 2013-08-22 2013-08-22 牛血清白蛋白-铂复合纳米材料模拟过氧化物酶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310368447.XA CN103433484B (zh) 2013-08-22 2013-08-22 牛血清白蛋白-铂复合纳米材料模拟过氧化物酶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN103433484A CN103433484A (zh) 2013-12-11
CN103433484B true CN103433484B (zh) 2015-06-17

Family

ID=49687248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310368447.XA Expired - Fee Related CN103433484B (zh) 2013-08-22 2013-08-22 牛血清白蛋白-铂复合纳米材料模拟过氧化物酶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN103433484B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954615B (zh) * 2014-05-13 2016-08-24 福建医科大学 基于牛血清白蛋白-铂复合纳米材料测定胆碱的方法
CN103954616B (zh) * 2014-05-13 2016-04-13 福建医科大学 基于牛血清白蛋白-纳米铂模拟过氧化物酶测定乙酰胆碱的方法
CN105665012B (zh) * 2016-01-13 2018-01-26 济南大学 一种铁‑蛋白复合物过氧化物模拟酶及其检测过氧化氢的方法
CN105675598B (zh) * 2016-01-20 2018-11-02 曲阜师范大学 一种基于血红素和纳米金簇的蛋白模拟酶制备方法及应用
CN105728036B (zh) * 2016-01-29 2018-03-09 福建医科大学 牛血清白蛋白‑铂/铋复合纳米材料模拟过氧化物酶
CN105665739B (zh) * 2016-01-29 2017-07-11 福建医科大学 铋‑牛血清白蛋白‑铂纳米复合材料及其制备方法
CN105572065B (zh) * 2016-01-29 2018-08-21 福建医科大学 基于铂铋纳米模拟过氧化物酶的葡萄糖检测试剂盒
CN105628700B (zh) * 2016-01-29 2018-09-11 福建医科大学 基于铋-牛血清白蛋白-纳米铂的过氧化氢检测试剂盒
CN105548059B (zh) * 2016-01-29 2018-08-24 福建医科大学 叶酸-牛血清白蛋白-铂铋纳米复合材料
CN105561953A (zh) * 2016-01-29 2016-05-11 南京理工大学 一种复合吸附剂pani-cmc及其在染料废水处理中的应用
CN107159883B (zh) * 2017-05-01 2019-03-29 福建医科大学 壳聚糖-铂纳米粒子模拟氧化酶
CN107824800B (zh) * 2017-11-01 2020-06-09 石河子大学 一种海胆状纳米金粒子的制备方法及标记蛋白质的方法
CN109126902B (zh) * 2018-09-18 2021-05-14 吉林大学 一种金属纳米簇模拟酶的固定化方法
CN109342420B (zh) * 2018-12-07 2021-09-24 上海工程技术大学 Fe3O4@C一维纳米线的应用
CN111215141A (zh) * 2020-01-14 2020-06-02 深圳大学 一种纳米酶及其制备方法和应用
CN113244965A (zh) * 2020-02-12 2021-08-13 福建医科大学 一种由牛血清白蛋白介导合成的二氧化钌纳米粒子及其过氧化物模拟酶活性
CN111239125A (zh) * 2020-03-06 2020-06-05 中国药科大学 一种利用二硫化铂的葡萄糖比色检测法
CN113070485B (zh) * 2021-03-23 2022-10-04 中国药科大学 一种荧光金纳米立方体的合成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1238946A1 (en) * 1999-11-18 2002-09-11 Phild Co., Ltd. Production method of ultrafine gold particle-dissolved water and device therefor
CN102020308A (zh) * 2010-10-25 2011-04-20 福建医科大学 纳米氧化铜模拟酶及其作为过氧化物模拟酶测定过氧化氢的方法
CN102241767A (zh) * 2011-06-22 2011-11-16 河南省医药科学研究院 一种牛血清白蛋白提取方法
CN102768207A (zh) * 2012-08-01 2012-11-07 福建医科大学 基于纳米金模拟过氧化物酶的三聚氰胺测定方法
CN102914512A (zh) * 2012-10-29 2013-02-06 福建医科大学 以裸纳米金为模拟过氧化物酶的甲胎蛋白测定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3862594B2 (ja) * 2002-05-01 2006-12-27 日本電信電話株式会社 水素吸蔵材料の活性化方法
JP2005226114A (ja) * 2004-02-12 2005-08-25 Nasu Denki Tekko Co Ltd 水素吸蔵合金粉末の製造方法、及び当該製造方法により得られる水素吸蔵合金粉末

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1238946A1 (en) * 1999-11-18 2002-09-11 Phild Co., Ltd. Production method of ultrafine gold particle-dissolved water and device therefor
CN102020308A (zh) * 2010-10-25 2011-04-20 福建医科大学 纳米氧化铜模拟酶及其作为过氧化物模拟酶测定过氧化氢的方法
CN102241767A (zh) * 2011-06-22 2011-11-16 河南省医药科学研究院 一种牛血清白蛋白提取方法
CN102768207A (zh) * 2012-08-01 2012-11-07 福建医科大学 基于纳米金模拟过氧化物酶的三聚氰胺测定方法
CN102914512A (zh) * 2012-10-29 2013-02-06 福建医科大学 以裸纳米金为模拟过氧化物酶的甲胎蛋白测定方法

Also Published As

Publication number Publication date
CN103433484A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
CN103433484B (zh) 牛血清白蛋白-铂复合纳米材料模拟过氧化物酶及其制备方法和应用
Maity et al. Use of the confined spaces of apo-ferritin and virus capsids as nanoreactors for catalytic reactions
CN103551143A (zh) 多孔铂-氧化石墨烯复合纳米材料模拟过氧化物酶
CN104634779B (zh) 基于纳米金模拟过氧化物酶的脲酶及其抑制剂的测定方法
CN107445212A (zh) 一种磁性Fe3O4@CeO2复合纳米微粒的制备方法及其应用
CN104209506B (zh) 铂纳米粒子-牛血清白蛋白核壳结构及其制备方法
CN103558170B (zh) 叶酸-多孔铂-氧化石墨烯复合纳米材料及其检测肿瘤细胞
CN107159883B (zh) 壳聚糖-铂纳米粒子模拟氧化酶
CN104777117B (zh) 基于氧化石墨烯‑纳米铂复合材料测定半胱氨酸的方法
CN105728036A (zh) 牛血清白蛋白-铂/铋复合纳米材料模拟过氧化物酶
Sarmiento et al. Speciation of the vanadium (III) complexes with 1, 10-phenanthroline, 2, 2′-bipyridine, and 8-hydroxyquinoline
Mourzina et al. Electrochemical properties and biomimetic activity of water-soluble meso-substituted Mn (III) porphyrin complexes in the electrocatalytic reduction of hydrogen peroxide
CN105572065B (zh) 基于铂铋纳米模拟过氧化物酶的葡萄糖检测试剂盒
Liu et al. Cucurbit [8] uril-based supramolecular nanocapsules with a multienzyme-cascade antioxidative effect
Li et al. “Three-in-one” nanocomposites as multifunctional nanozymes for ultrasensitive ratiometric fluorescence detection of alkaline phosphatase
EP2961840B1 (en) Preparation of stabilized catalase enzymes using polyvinyl alcohol
CN107144662A (zh) 氧化石墨烯铂纳米复合材料为探针的谷胱甘肽检测试剂盒
CN105665739B (zh) 铋‑牛血清白蛋白‑铂纳米复合材料及其制备方法
Doran et al. In–Vitro Development and Characterisation of a Superoxide Dismutase‐Based Biosensor.
US20150151974A1 (en) Method for preparing zinc-histidine self-assembly biomimetric complex, zinc-histidine self-assembly complex prepared by said method, and method for reducing carbon dioxide using said zinc-histidine self-assembly complex
Guo et al. Unusual peroxidase activity of a myoglobin mutant with two distal histidines
CN104153185B (zh) 氯过氧化物酶催化氧化毛发脱色剂和脱色的方法及应用
CN103954615B (zh) 基于牛血清白蛋白-铂复合纳米材料测定胆碱的方法
CN104013575B (zh) 一种透明质酸功能化虾青素纳米乳制剂及其制备方法
CN105717097A (zh) 基于牛血清白蛋白-纳米铂/铋的硫离子检测试剂盒

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150617

Termination date: 20210822

CF01 Termination of patent right due to non-payment of annual fee