CN103432637A - 旋转式血泵 - Google Patents
旋转式血泵 Download PDFInfo
- Publication number
- CN103432637A CN103432637A CN2013102858510A CN201310285851A CN103432637A CN 103432637 A CN103432637 A CN 103432637A CN 2013102858510 A CN2013102858510 A CN 2013102858510A CN 201310285851 A CN201310285851 A CN 201310285851A CN 103432637 A CN103432637 A CN 103432637A
- Authority
- CN
- China
- Prior art keywords
- impeller
- blood pump
- pump
- rotary blood
- rotary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/165—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
- A61M60/178—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/066—Floating-units
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/148—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/205—Non-positive displacement blood pumps
- A61M60/216—Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
- A61M60/226—Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
- A61M60/232—Centrifugal pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/40—Details relating to driving
- A61M60/403—Details relating to driving for non-positive displacement blood pumps
- A61M60/422—Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/50—Details relating to control
- A61M60/592—Communication of patient or blood pump data to distant operators for treatment purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/802—Constructional details other than related to driving of non-positive displacement blood pumps
- A61M60/818—Bearings
- A61M60/82—Magnetic bearings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/802—Constructional details other than related to driving of non-positive displacement blood pumps
- A61M60/818—Bearings
- A61M60/824—Hydrodynamic or fluid film bearings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/871—Energy supply devices; Converters therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/0606—Canned motor pumps
- F04D13/0633—Details of the bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/0666—Units comprising pumps and their driving means the pump being electrically driven the motor being of the plane gap type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/04—Shafts or bearings, or assemblies thereof
- F04D29/041—Axial thrust balancing
- F04D29/0413—Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/04—Shafts or bearings, or assemblies thereof
- F04D29/046—Bearings
- F04D29/047—Bearings hydrostatic; hydrodynamic
- F04D29/0473—Bearings hydrostatic; hydrodynamic for radial pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/04—Shafts or bearings, or assemblies thereof
- F04D29/046—Bearings
- F04D29/048—Bearings magnetic; electromagnetic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/056—Bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/18—Rotors
- F04D29/22—Rotors specially for centrifugal pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/18—Rotors
- F04D29/22—Rotors specially for centrifugal pumps
- F04D29/2238—Special flow patterns
- F04D29/2255—Special flow patterns flow-channels with a special cross-section contour, e.g. ejecting, throttling or diffusing effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/426—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D7/00—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
- F04D7/02—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
- F04D7/04—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S415/00—Rotary kinetic fluid motors or pumps
- Y10S415/90—Rotary blood pump
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Heart & Thoracic Surgery (AREA)
- General Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Electromagnetism (AREA)
- Vascular Medicine (AREA)
- External Artificial Organs (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
一种旋转式血泵,包括限定泵室的壳体。所述泵室具有血液进口和切向血液出口。一个以上的电机定子设在所述泵室外部。可旋转叶轮在所述泵室内,并用于使进入所述泵室的血液运动到血液出口。所述叶轮具有一个以上的磁性区。通过与一个以上的电机定子的磁耦合使所述叶轮的旋转在径向上受到限制,并且通过所述叶轮上的一个以上的液力推力轴承面使所述叶轮的旋转在轴向上受到限制。
Description
本申请是申请日为2007年1月12日、发明名称为“旋转式血泵”的申请号为200780003014.7专利申请的分案申请。
技术领域
本发明涉及旋转式泵,更具体而言,涉及离心式旋转血泵以及使用这种泵进行治疗性支持的方法,其中所述泵内的叶轮在无磨损液力轴承和磁轴承上旋转,从而通过使所述叶轮仅与所述泵内的血液体积接触,就允许血液从泵进口运动到泵出口。
背景技术
在心血管医学中,心室辅助装置作为心脏移植的桥梁或作为终期治疗形式来支持晚期心脏病患者的临床应用已成为可接受的临床实践。据估计,多于35,000个患有晚期心脏衰竭的病人是心脏支持疗法的候选者。
心室辅助装置可以使用血泵为患者的血液提供动量,从而将血液推向更高压力。心室辅助装置的一个例子是左心室辅助装置(LVAD)。LVAD与患者心脏的左心室连接,在那里含氧血液通过LVAD的血液进口进入LVAD。然后,LVAD为血液提供动量。通过将LVAD的血液出口与患者的主动脉连接,泵送的血液可以重新进入患者的循环系统。
迄今为止,心室辅助装置例如LVAD使用正位移泵和旋转式泵。正位移泵通过减小第一室的容积,同时增大第二室的容积,而将血液吸入第二室中,从而迫使血液从第一室进入第二室。这种泵通常设有只允许沿一个方向流动的止回阀,并且通常很大,而且容易机械磨损。人类的心脏是正位移泵的一个天然例子。旋转式泵通过泵内叶轮的旋转迫动血液。已知类型的泵经使用推动血液的螺旋桨型叶轮叶片而利用叶轮为血液提供动量。
旋转式血泵可以是离心式的或轴向式的。在离心式血泵中,血液沿着泵的旋转轴进入泵并垂直于旋转轴退出泵。在轴向式血泵中,血液沿着泵的旋转轴进入泵并沿旋转轴退出泵。
传统上,旋转式血泵包括由主轴和与主轴连接的叶轮构成的转子。机械轴承用来在轴向和径向上稳定转子,因此使叶轮可以保持自由而平稳旋转,同时在轴向和径向上受到限制。血液体积内的机械轴承已成为血栓的来源。此外,由于使用机械轴承必须使主轴突出而超出泵室,因而要求密封以防止血液从泵室逸出。这也成为血栓和有时溶血的来源,以及过早磨损的来源。
由于密封可能会导致血液的血栓和可能过早磨损,因而在旋转式血泵中密封机械轴的使用已经被表明不是最佳的。为使血栓的风险和无效密封最小化,已经研发了无密封的旋转式血泵。例如,在本文中引入作为参考的Wampler的美国专利No.5,695,471和Davis等人的美国专利No.6,846,168(‘168专利)均涉及无密封的旋转式血泵。在这种无密封的旋转式血泵中,经使用磁力和/或流体力,可以使转子和/或叶轮悬浮。
用于使泵室内的叶轮悬浮的磁力和/或流体力可以用来稳定叶轮,使其旋转并同时防止轴向或径向的过度运动。通过磁轴承和液力轴承,可以实现叶轮的无磨损稳定化。按此方式,磁力形成磁轴承,流体力形成液力轴承。
已经研发了几种形式的磁轴承。在一种形式中,永久磁铁形式的被动磁轴承可以同时嵌在转子和泵壳体中,以提供可以使叶轮在泵壳内的位置保持悬浮的磁耦合。这种同时嵌在转子和泵壳中的永久磁铁提供可以使叶轮在泵壳内保持悬浮的排斥力。由于没有使用控制来保持叶轮在适宜的中心位置,因而这种磁轴承被称作被动磁轴承。尽管被动磁轴承可以在一个方向上(例如在径向方向上)有效地保持叶轮悬浮,但是已经表明,单独这种被动磁力轴承不能保持叶轮同时在轴向和径向悬浮。
例如,在泵壳体中或其上,可以使用电磁铁形式的主动磁轴承,使其与叶轮磁耦合并驱动叶轮。电磁铁的电力可以视需要变化,以响应于位移调节磁场,从而可以使叶轮保持在适当位置。例如,还可以在泵壳中使用电磁铁,以提供排斥磁力。由于磁场被主动控制以保持适当的叶轮位置,因而这些轴承被称作主动磁轴承。
由于主动磁轴承的复杂性,因而已经研发了同时使用被动磁轴承和液力轴承的旋转式血泵,用于在无密封的旋转式血泵中使叶轮悬浮。例如,在本文中引入作为参考的Wampler等人的美国专利No.6,234,772(‘772专利)涉及一种具有被动磁轴承和液力轴承的无密封的旋转式血泵。在‘772专利中,通过叶轮主轴内的一系列磁盘和泵壳内的相应一系列磁环使得能够径向悬浮。在‘168专利中,通过经叶轮中心的孔突出的心轴内的一系列磁环使得能够径向悬浮。在叶轮内设有相应的一系列磁盘,由此叶轮在旋转中绕心轴悬浮。在‘772专利中,通过叶轮上的一组液力推力轴承面使得能够轴向悬浮。
仍然需要更小和更有效的旋转式血泵。尤其是,仍然需要无磨损的离心式泵,其具有液力轴承并且泵内的连续流体流路得以改善,从而进一步减少被泵送血液中溶血和血栓的风险。通过研发具有液力轴承和被动磁轴承的更完善的旋转式血泵叶轮,旋转式血泵的物理尺寸、性能和效率可以改进到能够提供一致和可靠的治疗性支持的程度。
发明内容
一种用于在心包空间内植入的离心式旋转血泵,它包括限定泵室的壳体。所述泵室具有轴向血液进口和限定血液出口的切向涡壳。一个以上的磁性电机定子设在所述泵室外部。可旋转叶轮在所述泵室内,并用于对进入所述泵室的血液增压以使其在所述血液出口退出。所述叶轮具有一个以上的磁性区。作用在所述叶轮上的被动和主动磁通量源所产生的磁力以及设在所述叶轮上表面上的一个以上的液力推力轴承,使所述叶轮在旋转时在径向和轴向上悬浮。所述壳体组件可以具有上或前壳和后或下壳,当组装时它们形成基本上圆柱形的泵室和具有切向血液流出口的涡壳。在一个实施例中,当组装时,所述壳体限定基本上圆柱形的泵室。相对较短的流入插管与所述上壳一体形成,并用于插进心脏的心室。所述流出口垂直于所述流入插管的轴。所述血液流入插管可以是直的、曲的或被弯曲成促进所述血泵装入患者的胸腔或改进血液流动特性。
驱动泵的电磁电机由血液流动区外的固定的电磁定子部和所述泵室内的邻近可旋转叶轮构成,所述可旋转叶轮用于在所述泵室内产生流体压力,从而使血液从流入口运动到流出口。在一个实施例中,所述电机是双定子轴向磁通间隙设计,其中所述叶轮位于所述泵室内并在分开的电机定子之间。上电机定子邻近所述上或前壳或位于其上,下电机定子邻近所述下或后壳。每个电机定子包括配置在基本上圆形铁芯元件上的多个电线圈或绕组,用于与所述叶轮的相应磁性区有效地电磁耦合以使所述叶轮在所述泵室内旋转。所述上电机定子可以比所述下电机定子更接近所述叶轮,以在所述叶轮上赋予轴向磁性预载荷,从而抵抗对所述下电机定子的叶轮的磁性影响。在一些情况下,出于相同目的,单个定子置于所述上壳上或与其邻近。在一个实施例中,每个电机定子与所述叶轮的旋转轴同轴。所述叶轮和每个电机定子具有基本上圆形的水平截面,并可以具有基本上相同的直径,从而有助于泵运转过程中所述旋转叶轮的径向刚度。通过伸长的柔性圆筒中收容的多个电缆将电力输送到所述线圈绕组。在一个实施例中,所述柔性圆筒由硅树脂制成,并可以具有聚氨酯护鞘。所述柔性圆筒中具有多个管腔,每个管腔均收容电缆。在一个实施例中,有6个这种管腔。
所述叶轮具有基本上圆形的周边,并可以由铁磁物质形成。铁磁物质可以是严格铁磁性的材料和亚铁磁性的材料。适合的铁磁物质可以是例如压缩粘结的钕或Alnico(铝-镍合金)。铁磁叶轮允许所需结构的叶轮的各区域磁化。可以用有机聚合物如Parylene(聚对二甲苯)或硅树脂的共形保护性聚合物涂料处理铁磁叶轮,以通过在转子周围形成密封而防止氧化。在其上,可以在所述共形的聚合物涂层上涂布硬质光滑的保护性涂料,以防止磨耗和磨损。这种涂料可以包括氮化铬、氮化钛或其他市售涂料,如ME92、Med Co2000或DLC。适合的铁磁物质是生物可相容的,例如,可以使用铂-钴合金。如果所述磁铁材料是生物可相容的,那么不需要用生物可相容的材料涂布所述叶轮。在一个实施例中,所述叶轮由具有平和曲侧壁面的多个凸起的实心或中空主体构成,所述各主体绕所述叶轮外围分开。所述各主体的外围侧壁沿径向方向凸出,其曲率半径与所述叶轮的总体圆周相应。所述平面是平坦的,并且两个直侧壁是不等长的。所述不等长的侧壁从所述主体的凸出外围侧壁向内延伸并以约90度的角相交。所述各叶轮主体呈相似形状。在每种情况下,它们的体积从所述两个直侧壁的相交点向它们的凸出外围侧壁增大。所述叶轮是中央开放的,从而限定到达所述泵室的底壁的轴向血液流道。所述叶轮主体的相交侧壁被形成圆形,以使血栓和溶血最小。所述各叶轮主体被其间的流体流路分开,而所述流体流路由所述凸起主体的侧壁限定。所述叶轮主体可以被磁化以与所述电机定子施加的磁力相互作用,从而允许所述叶轮在所述泵室内旋转。当所述泵运转时,所述叶轮在磁力和液力作用下在径向和轴向悬浮而不与所述泵壳体接触。通过至少一个所述凸起主体的上突出面上形成的与所述上泵壳的内表面邻近的至少一个倾斜或斜削的表面区,在所述泵运转过程中,产生在一个方向作用的液力轴向推力。在一些实施例中,这种轴承面中的一个可以形成在每个上突出面上,使得根据需要可以使用多个这样的斜削表面区。每个这样的斜削表面区限定液力轴承面。随着所述叶轮旋转,血液在所述轴承面的相对较低压力的前端处与所述轴承面配合,并被所述倾斜轴承面压向所述上泵壳的内表面,从而产生较高压力的退出端或尾端,这样使轴向作用在所述叶轮上的流体压力增大。侧板可以形成在所述斜削表面区的内和外侧上以防止流体漏出。减压面可以形成在所述叶轮上并在各倾斜轴承面下游且邻近所述退出端。所述减压面倾斜并从所述倾斜轴承面分岔,从而形成较低的流体压力区,这样允许血液被导入所述叶轮的各凸起主体之间的所述几个流体流路之一。所述叶轮的底部被与所述泵室的底壁平行的基本上平坦、光滑的圆盘所覆盖。邻近各叶轮主体之间的各流路具有基本上一致的圆周宽度。一个叶轮主体的较长侧壁对着交叉的邻近叶轮主体的较短侧壁,并在其间限定流体流路。所述较长和较短的侧壁限定所述各流体流路的侧面。在本实施例中,各流路的纵向轴和与其邻近的任一侧流路的纵向轴所成角度被限定为约90度。
可选择地,所述叶轮主体可以形成作为中空钛壳。每个这样的壳限定可以装配永久磁铁的内腔。每个插入的磁铁通过帽元件或通过覆盖所述叶轮底部的圆盘收容在其相关的腔室内。在任一种情况下,所述帽或圆盘被密封到所述壳,例如通过激光焊接。所述中空壳之间的实心壁可以包括多个钻孔,以改进所述叶轮的重量并提供均匀旋转。在泵运转过程中,被动磁轴承对绕所述壳体内的中心柱旋转但不与所述柱接触的所述叶轮提供径向叶轮支承。在一个实施例中,通过相应永久磁铁提供的磁矢量的排斥力产生所述叶轮的磁轴承。在泵运转过程中,位于所述叶轮内一个以上的这种永久磁铁产生的磁矢量用于抵抗由位于所述叶轮绕其旋转但不接触的所述中心柱内的一个以上的永久磁铁所产生的磁矢量。这种配置为旋转叶轮提供径向刚度,并在所述叶轮和所述中心柱之间留下开放空间,所述空间限定通过所述叶轮的几个流体流路中另一个的一部分。
在一个实施例中,所述叶轮内的磁铁和所述中心柱内的磁铁之间的轴向排列是可调节的,以提供沿轴向方向作用在所述叶轮上的磁性预载荷排斥力,从而抵抗因液力推力而施加在所述叶轮上的轴向力。所述磁性预载荷使得能够避免所述叶轮在其底面和所述下泵壳的内表面之间的接触。这样确保产生绕着所述叶轮的另一个血液流路,它使得所述泵室内的流体压力能够将运动的血液保持在所述叶轮之下,因为血液从所述叶轮之下向上运动通过所述叶轮和所述叶轮绕其旋转的中心柱之间的环形空间。如果发生明显的震动事件,所述磁性预载荷还可以充分地使所述叶轮回复到其初始位置。电机电磁力还可以提供补充的轴向磁性预载荷以及补充的径向叶轮支承。磁性预载荷使得能够避免所述叶轮在其底面和所述下泵壳的内表面之间的接触。在运转过程中,由所述叶轮主体的上突出面上的液力推力轴承面产生的轴向力使所述叶轮远离所述壳体的上壁运动,但允许在所述叶轮的下突出面和所述壳体的下壁之间产生血液流路。所述泵室内的流体压力将运动的血液保持在所述叶轮之下。随着所述叶轮的旋转,血液可以从所述叶轮之下向上运动通过所述叶轮的开放中心。
在一个实施例中,所述电机定子与所述叶轮同心并具有基本上相同的直径,使得所述电机定子和所述叶轮的磁性区之间的磁性相互作用有助于产生径向叶轮刚度。还可以通过将电机定子置于所述上泵壳上并与所述叶轮紧邻来提供所述叶轮上的轴向预载荷。在双电机定子实施方案中,可以通过将所述上电机定子设置成比所述下电机定子更接近所述叶轮来提供所述叶轮上的轴向预载荷。由于沿轴向的反方向作用在所述叶轮上的平衡力以及所述叶轮的独特结构,在泵运转过程中,所述叶轮可有效地动态悬浮在所述泵壳体的上壳和下壳之间。因此,血液被迫使绕着所述叶轮运动并通过所述泵室,而不会产生溶血或血栓。应该理解,可以通过永久磁铁、通过电磁电路或通过这两种磁力来源的组合来提供磁力。由于沿轴向的反方向作用在所述叶轮上的预载荷和液力以及所述叶轮的独特结构,在泵运转过程中,所述叶轮可有效地动态悬浮在所述泵壳体的上壳和下壳之间。因此,血液被迫使绕着所述叶轮运动并通过所述泵室,而不会产生溶血或血栓。应该理解,可以通过永久磁铁、通过电磁电路、通过磁化过程或通过这些磁通量场来源的组合来提供磁力。
操作方法包括将短的流入插管顶部式植入心脏的左心室,通过在不与叶轮机械接触下使所述叶轮在泵室内旋转而对泵室内流入的血液流体增压,使旋转的叶轮悬浮在所述泵室内而使其完全浸没在流入的血液流体中,使所述流入的血液流体穿过所述叶轮内和其周围的至少三个流路,由此所述泵室内的压力使所述血液从所述泵室的流入口连续流到流出口,并将流出的血液通过管状移植物导向主动脉。
附图说明
为进一步理解本发明,可以参照附图,从中将易于理解本发明的本质优点和附加优点,在附图中:
图1是根据本发明实施例的旋转式血泵的分解图;
图2是根据本发明实施例的叶轮外表面区的立体图;
图3是图2所示的包括液力轴承面的叶轮外表面区域的剖视立体图;
图4是图2所示的叶轮下侧的立体图;
图5是根据本发明实施例的已装配的旋转式血泵的剖视图;
图6是根据本发明实施例的被动磁轴承结构一部分的部视图;
图7是根据本发明实施例的用于支承和驱动叶轮的磁组件的分解图;
图8是根据本发明实施例的电机定子的俯视平面图;
图9是根据本发明实施例的植入的旋转式血泵的系统图;
图10是根据本发明实施例的与收容电缆的柔性圆筒连接的旋转式血泵的俯视平面图;以及
图11是本发明柔性圆筒的截面图,用来说明在其中收容电缆的多个管腔。
具体实施方式
在描述于附图中阐明的本发明实施例时,为描述清楚使用特定术语。然而,本发明的公开内容并不局限于所选择的特定术语,应该理解的是,每个特定元件包括以相似方式操作的所有技术等同物。
现在参照图1,图1示出具有泵壳体的旋转式血泵10,其中,该泵壳体由基本上圆形的前或上泵壳1和基本上圆形等直径的后或下泵壳2构成,下泵壳2与上泵壳1连接在一起从而在它们之间形成封闭泵室。上和下泵壳的结构使得装配的泵壳体于其内限定基本上圆柱形的泵室3(图5)。在一个实施例中,该泵室具有45立方厘米的排出容积。上泵壳1可以具有多个外围定位孔4,用于接收从下泵壳2的外围突出的相应的多个定位销6。在装配旋转式血泵10时,定位孔4和定位销6的构造确保上泵壳1和下泵壳2在正确的位置上连接。例如可以使用螺丝或化学密封剂来密封上泵壳1和下泵壳2之间的接触区域。
在图1所示的实施例中,血液经适于顶部式插入心室的轴向流入插管7供到泵。插管7与该上泵壳连接或者可以与该上泵壳成为一体,并且与泵10的泵室3流体连通。如图5的剖视图所示,流入插管7的实施例属于两件设计,由外圆筒部8和同轴内圆筒部9构成。可以适合的密封方式将流入插管7的外圆筒部8焊接到上泵壳1的外表面上。在安装和运转泵的时候,内圆筒部9限定血液的进口通道11。如图1所示,圆筒部8和圆筒部9可以在该插管的外端12处通过激光焊接到一起。在一个实施例中,外圆筒部8的外径为约0.81英寸,内圆筒部9的内径为约0.50英寸。
在一个实施例中,泵室与涡壳或扩散部流体连通,以防止在泵运转过程中随着血压增加而导致叶轮沿径向方向的位置改变。上泵壳1和下泵壳2一起通过一对互补的上和下半圆部14和16来限定扩散部,其中,上和下半圆部14和16分别形成作为上和下泵壳的一部分。半圆部14和16一起限定短的开口端圆柱形扩散管。该扩散部完全绕着泵的圆周延伸并在切向出口13处终止(图5)。在一个实施例中,扩散部的截面沿其长度从进口端扩大,并在出口13处达到最大。血液沿基本上垂直于流入插管7纵向轴的方向经出口13流出泵室3,已发现这种结构在解剖学上有利于将泵置于心包空间内。如图9所示,在安装泵和运转泵的时候,出口13与流出移植物17相连接,其中,移植物17与主动脉18连接。在一个实施例中,泵壳体或壳以及插管可以由钛、生物可相容的钛合金或生物可相容的陶瓷材料制成。泵结构可以由钛或其合金加工制成。可选择地,包括插管在内的泵结构可以完全由陶瓷材料形成。
可以借助于在靠近上泵壳1的插管外圆面中形成的外围环形凹槽19来完成插管7到心室的密封(图5)。该环形凹槽设有环形O形圈,从而对例如在共同拥有的美国专利6,732,501中所记载类型的心室连接器的缝合环[图未示]提供防漏密封。根据另一个实施例,不需要外围环形凹槽,并且围绕插管的O形圈可以并入缝合环中以确保防漏密封。
参照图1,电机转子或泵叶轮22位于上泵壳1和下泵壳2之间的泵室3内。叶轮22具有圆形截面,其直径可以为1英寸或1.25英寸。叶轮22设有中心孔23。中心柱或心轴24与下泵壳2连接,并且在装配泵时按照下面详细说明的方式经叶轮孔23从其轴向中心伸出,以支承叶轮的旋转。中心柱24设有外围下凸缘26,通过下凸缘26将下环形陶瓷盘27保持在下泵壳2的内表面。在一个实施例中,中心柱24的外径和叶轮孔23的直径之间的间隙为0.019英寸~0.029英寸。中心柱24的顶部形成为锥形面28。在泵运转过程中,中心柱的锥形面28的主体部分伸出并超过叶轮孔23。在一个实施例中,圆锥的曲率半径是相对恒定的0.389英寸。圆锥的尖端不必需尖锐点,在一个实施例中,接合半径为0.010英寸。
在操作中,从心室进入插管7的血液通过旋转的叶轮轴向流过中心柱24的锥形面进入相配合的泵室3。从插管7进入泵室3的血液从流出该插管的轴向流被再次引导成在其中浸没叶轮22的径向流。根据下面详细说明的旋转叶轮的结构,旋转的叶轮将血液径向加压成旋转运动,并在该泵室外周处的扩散部运动到出口13。
上泵壳1可以包括用于向泵的电动电机供应电能的电源和控制电缆的电馈通连接器和插头的上半部29。下泵壳2可以包括电插头的相应下半部31。当装配泵的时候,上半部29和下半部31连接形成插头,馈通电线经插头与电磁电机定子连接。在一个实施例中,馈通电线是铂。可以使用聚醚醚酮(PEEK)插头将馈通电线与外部驱动电缆连接。插头可以由诸如PEEK或适合的塑料(如Tecothane或聚砜)等材料制成。插头也可以由医用级环氧树脂制成。参照图10,PEEK前泵插头的上半部29通过应变消除部81与电缆连接。该应变消除部与其长度可以根据需要到达适合的外部电源的伸长柔性圆筒82连接,其中适合的外部电源可以是控制器(图未示)的输出。用于连接电源的连接器和锁闭插销装置83与管82的远端连接。柔性圆筒适于收容用于向泵传送电力的多根电缆。在一个实施例中,柔性圆筒由硅树脂制成。柔性圆筒可以被薄的聚氨酯护鞘(图未示)覆盖,以防过度磨损。本领域技术人员应该理解,对于柔性圆筒可以使用诸如聚氨酯等其他生物可相容的材料,而不会背离本发明的范围。参照图11,柔性圆筒82包括具有圆形横截面的多个管腔84,每根电缆穿过各管腔84。在一个实施例中,存在6个这样的管腔,它们绕圆筒中心分开并接近圆筒外围,总体呈圆形结构。每个管腔的中心相隔大约60°。在一个实施例中,柔性圆筒的直径为约0.138英寸,每个管腔的直径为约0.034英寸。可以使用这样的管腔来容纳直径约0.029英寸的电缆。因为单根电缆不能摩擦,所以电缆管82内单独管腔的使用有利于抗过度疲劳。此外,当电缆需要更换时,由于一次可以更换一根电缆而使泵的停止时间最小,所以能够进行原位更换。可以在邻近远端连接器和锁闭插销装置83处使用应变消除机构86。
现在参照图2,图2更详细地示出叶轮22。在本实施例中,叶轮具有基本上圆形的截面,并且具有在其上圆周排列的多个相同的基本上中空的凸起主体32。每个凸起的叶轮主体32在水平面上具有总体上直角三角形的截面,其中弯曲的斜边限定了叶轮的圆周的一部分。在一个实施例中,存在4个这样的凸起的叶轮主体,它们的中间位置相隔大约90度。
通过适于使血液从叶轮的中心部流向周围泵室的流槽或通道33将各凸起的叶轮主体32分开。在一个实施例中,每个流槽33的宽度为约0.150英寸。通过平行于叶轮直径延伸但偏离叶轮直径的不等长度的垂直平面侧壁33a和33b来限定流槽33。在一个实施例中,最接近叶轮直径的侧壁,例如图2中的侧壁33a,偏离直径约0.164英寸。每个流槽33都具有向下倾斜的底面33c,倾斜的底面33c构成与水平面形成约32度角度的倾斜斜面。流槽33在叶轮圆周处的流出点相隔大约90度。每个斜面33c在纵向上与任一侧流槽的相应纵向轴成直角。
进入流入插管7的血液用的主要流道冲击中心柱24的锥形面28,并且流经流槽或通道33而填充泵室。正如所说明的,旋转的叶轮使泵室内的流体压力增加,从而导致血液从流入口11连续运动到流出口13。
每个叶轮主体32的上表面设有限定轴向液力轴承面的弯曲和斜削的或倾斜的斜面34。在一个实施例中,每个斜面34沿顺时针方向从相对较低的流体压力入口区36向上盘旋到相对较高的流体压力出口区37。轴承面34相对于水平面的倾斜角小于1度。当叶轮22旋转时,侧壁33a限定前边缘,使得随着施加到邻近的上泵壳1内表面上的力增大,流过液力轴承面的血液被压缩,因此轴向向下净压力被施加到每个凸起的叶轮主体的上突出面上。在操作中,在轴承面34和邻近壳体表面之间的血液层的厚度是流体粘度、叶轮转速和叶轮轴承的几何形状的函数。随着流体粘度的增加,流体层厚度增加。随着转速增加,流体层厚度增加,并且由于叶轮上的轴向净液压和部分地因下述的磁性预载荷使叶轮悬浮于泵室内的事实,所以从每个轴承面34到相邻上壳面的距离可以随着转速和流体粘度而改变。然而,在一个实施例中,该距离的范围是0.003英寸~0.020英寸。
每个凸起的叶轮主体32还可以具有形成轴承面34下游的减压面38的楔形区域。减压面38确保液压可控制和可预测的降低,从而使血液切应力和溶血现象降到最低。此外,每个减压面有助于限定血液在泵室内的次要流道,由此流出轴承面34的血液再被带出并穿过相邻减压面而进入挨着的下游叶轮流槽或通道33,并从那里进入限定泵室的扩散部的侧向环形空间。
在每个叶轮主体上表面上的相对平面区域限定在每个轴承面34的退出端37和相关减压面38之间的基本上平坦的桥接面39。在一个实施例中,每个桥接面39的宽度在最窄处为约0.050英寸,并且合理公差为±0.028英寸。在这样的实施例中,减压面38相对于水平面的倾斜角可以为2~4度。
现在参照图3,图3示出一个液力轴承面34的立体图。每个轴承面从进入区36到退出区37具有大约一致的宽度,其中,进口区36限定具有基本上垂直的前侧壁(例如流槽33的侧壁33a(图2))的接合边缘41。在一个实施例中,接合边缘41相对陡峭,其最大曲率半径小于0.010英寸,并可以小至0.005英寸以下。正如所说明的,每个轴承面34以相对于水平面小于1度的角度从进入端36向上倾斜,并在大约平坦的桥接面39处终止。
在一个实施例中,每个轴承面34在相对的两边沿其长度分别由内侧板43和外侧板44限制。外侧板的外表面限定叶轮外围表面的一部分。在操作中,内侧板43和外侧板44有效地将流体从轴承面的侧面的漏出减到最少,因此有助于保持与轴承面配合的血液,从而使流体层厚度最大和使流体切应力最小。侧板还用于导引血液流向轴承面的退出端37,血液从退出端37流经减压面38并进入挨着的下游流槽33。每个侧板43和44的顶面是相对平面或平坦的,在一个实施例中,每个侧板宽度不小于0.020英寸。每个侧板43和44的顶面可以比轴承面34的进入端36高约0.230英寸。在轴承面的退出端37处,侧板43和44的顶面和轴承面可以合并成平坦的桥接面39。
在一个实施例中,在每个凸起的叶轮主体32上形成有在内侧板43里面的面向内和向下倾斜的弯曲部46。每个弯曲部46的轴向下降距离为约0.012英寸,倾斜角为约8°。弯曲部46有助于使血液偏离中心柱24的锥形面28而流向叶轮的中心部,然后从中心部流入形成在叶轮主体32之间的流槽33。
上泵壳1的内表面设有与下泵壳2的内表面上的下陶瓷盘27相似的上环形陶瓷盘(图未示)。上陶瓷盘用于使泵启动时的摩擦最小。在插管7的内圆筒部9的内端处形成的环形凸缘40用于将上陶瓷盘保持在适当的位置(图5)。陶瓷盘减少电机定子(下面说明)和叶轮内的转子磁铁之间的电损耗,并为叶轮顶面上的液力推力轴承提供非常平的表面。当叶轮静止时,它靠在上陶瓷盘的表面上。当叶轮启动期间赋予叶轮转速时,叶轮升起而离开上陶瓷盘,并且如下面所述变得完全悬浮。可以用氮化钛涂布叶轮,以使泵启动和停止过程中的磨损最小。
叶轮可以是由磁性的各向同性合金制成的一体结构。上述类型的一件式叶轮材料可以是生物可相容的,从而避免必须对叶轮或子组件进行涂布。适合的磁性的各向同性生物可相容材料的例子是大约77.6%的铂(按重量计)和22.4%的钴(按重量计)的合金。这种一件式叶轮可以比由多个部件形成的叶轮更容易和更低成本地制造。每个凸起的叶轮主体32可以具有磁化部。这种叶轮的磁化可以通过本领域已知的技术进行,如暴露于相对较强的磁场中。在一个实施例中,每个叶轮主体的凸起的突出面可以被磁化以提供磁极。叶轮的磁极与电机定子69(图5)提供的磁极磁耦合,因此使得一个或两个定子能够提供使叶轮在泵室内旋转的磁性驱动力并提供磁性轴向和径向支承。在一个实施例中,每隔一个的上突出面被磁化成相同磁极,而在其间的突出面被磁化成具有相反磁极。例如,如果上突出面具有北极,那么其两侧的突出面具有南极。磁极的特定排列可以根据需要决定,而不背离本发明的范围。应该理解,驱动叶轮的电机定子线圈以与叶轮上使用的磁极互补的形式来提供磁极。
现在参照图4,图4示出叶轮22下侧的立体图,其中,每个凸起的叶轮主体32被挖空,以限定多个内腔或凹穴47。在横截面上,每个凹穴47在尺寸和形状上与限定其边界的凸起的叶轮主体基本相应。每个这样的凸起的叶轮主体的上突出面均包括限定它下面的内腔顶部的液力轴承面。在一个实施例中,每个凹穴的外弯曲边界与叶轮同心,并且相对于叶轮中心的包围角度约56.5度。每个这样的凹穴相对于叶轮中心的内半径为约0.4英寸,外半径为约0.665英寸。各凹穴绕叶轮外围相隔约90度。正如下面详细说明的,凹穴47适于容纳形成叶轮的电机驱动系统一部分的转子磁铁。凹穴47被多个基本上等尺寸的向内突出的壁元件48隔开,该壁元件与叶轮一体形成并限定基本上水平的下表面或架板49,该架板在弯曲边缘部51处沿径向向内终止。在一个实施例中,存在4个这样的壁元件,其中每个均位于两个凹穴之间。每个壁元件和凹穴均沿直径对着相应的壁元件或凹穴。边缘部51限定基本上垂直面向内并基本上与叶轮的圆周同心的弯曲面52的边界。
中空圆筒53轴向向内突出并限定叶轮的中心孔23。在一个实施例中,该中心孔的直径为约0.437英寸。当装配泵时,中心柱24延伸穿过圆筒53进入泵室。在一个实施例中,圆筒53的内径和中心柱24的外径之间的径向间隙为约0.022英寸。
在中空圆筒53和弯曲面52之间形成有环形腔室或空间54。在本实施例中,环形腔室54的内径为约0.437英寸,外径为约0.575英寸,正如下面详细说明的,适于容纳被动磁轴承元件。
每个壁元件48可以设有一个以上的平衡孔或钻孔56,形成钻孔是为了确保在泵运转过程中叶轮的平衡和均匀旋转。在一个实施例中,每个壁元件设有沿叶轮半径并排配置的深度不等和大约等直径的两个平衡孔的组。在本实施例中,最靠近叶轮中心的平衡孔的深度为约0.10英寸,而最外平衡孔的深度为约0.25英寸。每组孔沿直径对着另一组孔,由此,相对的两组孔中最外孔之间的直径距离为约1.22英寸,两组中最内孔之间的直径距离为约1.02英寸。
参照图5,图5示出根据本发明实施例的已装配的旋转式血泵的剖视图。上壳1与具有进口通道11的流入插管7连接。通过半圆管状延伸部14和16的连接形成流出口13。中心柱24经下壳2的底部向上伸出进入泵室。
参照图5和图6,在一个实施例中,叶轮悬浮系统利用被动磁轴承提供相对于中心柱24的径向叶轮支承。被动磁轴承是可调节的,从而提供轴向的定向磁性预载荷,磁性预载荷被上述与各叶轮叶片32有关的液力推力轴承产生的力抵抗。在一个实施例中,通过封装在中心柱24内的永久轴承磁铁57的磁堆56形成被动磁轴承的一部分。磁堆56可以由相互置于其上并沿泵叶轮22的旋转轴同轴排列的三个环形永久磁铁57组成。每个环形磁铁57的轴向高度小于0.10英寸,外径为约0.34英寸。
在一个实施例中,参照图6,三个中心柱轴承磁铁57的每一个均可以提供轴向方向的磁矢量,例如北极在上、南极在下(N-S)或者南极在上、北极在下(S-N)。因此,中心柱轴承磁铁57的磁堆可以交替磁化,使得磁堆内磁铁的磁极根据需要可以是N-S、S-N、N-S或者S-N、N-S、S-N,由此磁堆56的每个环形磁铁57产生的磁力沿轴向方向作用并排斥它的相邻磁铁。
由于在各磁铁之间存在排斥力,因此可以通过与轴向安置的中心柱杆58的配合,按照它们的同轴关系固定磁铁或以其他机械方式保持磁铁。为确保环形磁铁保持在适当的位置,每个磁铁可以在磁铁的顶部和底部设置薄的环形间隔件或垫圈59,最上面的间隔件在突出的圆形凸缘61的下面配合,该圆形凸缘靠近中心柱杆58的顶部处形成并有助于保持磁铁同轴排列。间隔件59还可用于减少由堆积的磁铁相接近引起的退磁。在一个实施例中,每个这样的间隔件的厚度均小于0.015英寸。可选择地,根据需要,间隔件可以用作磁通集中器,用于改向和沿径向集中由磁铁57产生的磁通量。针对在中心柱24内形成磁堆56的永久磁铁的磁矢量,可以采用其他实施例而不背离本发明的范围。例如,N-S方向可以是径向的,其中北极在左边而南极在右边。
通过放置在叶轮内并围绕圆筒53的环形永久磁铁63的另一个磁堆62形成叶轮的被动磁铁轴承的其他部分。磁堆62可以由三个环形永久磁铁63组成。如图6所示,每个叶轮轴承磁铁63具有轴向方向的磁矢量,例如,北极在上、南极在下(N-S)或者南极在上、北极在下(S-N)。在一个实施例中,叶轮磁铁63的磁堆的磁极排列对应于中心柱轴承磁铁57的磁堆的磁极排列。因此,如果中心柱轴承磁铁57的磁堆的磁矢量方向是N-S、S-N、N-S,那么叶轮磁铁63的相邻磁堆62的磁矢量也可以是N-S、S-N、N-S。只要存在足够的径向磁通量集中,磁矢量的这种排列和其他排列将在对应的磁堆56和62之间产生排斥力,因此,在运转过程中,在旋转的叶轮和它的固定中心柱之间建立径向作用的磁轴承。在一个实施例中,叶轮内的环形磁铁63的内径和外径分别为约0.44英寸和0.52英寸,叶轮内的环形磁铁63和中心柱24内的环形磁铁57之间的径向距离为约0.050英寸。
参照图5,在一个实施例中,可以调整中心柱磁堆56相对于叶轮磁堆62的轴向排列,从而提供使叶轮偏向上壳1的经选择的轴向预载力。在一个实施例中,中心柱24上的凸缘26使中心柱保持在相对于下泵壳2的适当位置。中心柱杆58向上延伸穿过中心柱,并且通过与杆58的下端螺纹配合的适合调节螺丝66而可以在中心柱内轴向移动。适合的螺纹密度可以是每英寸64个螺纹。
调节螺丝设有在叶轮的下面配合的螺帽67,用于调节中心柱杆58的轴向位置,从而使叶轮和中心柱轴承磁铁对准。因此,中心柱杆58可以向下移动,例如,相对于叶轮磁堆62向下移动中心柱磁堆56,如图5和图6所示。当未对准的相应磁堆56和62达到如图5和图6所示的大约对准时,很显然在叶轮磁堆的N-S、S-N、N-S磁矢量和中心柱磁堆的N-S、S-N、N-S磁矢量之间的排斥力提供了使叶轮偏向上泵壳1并且有助于保持叶轮在上壳的内表面附近运转的预载荷轴向力。当建立起所需的磁铁对准时,可以将螺帽67焊接到中心柱上,从而形成密封并防止调节螺丝意外的移动。因此,将调节螺丝在下泵壳2的外表面处密封。可以采用适于调节磁堆56的轴向位置的其他机械结构而不背离本发明的范围。
当运转泵时,由轴承磁铁的相应磁堆之间的偏移而产生的轴向向上的磁性预载荷力被由叶轮上表面上的液力推力轴承产生的轴向向下的力平衡。因此,叶轮可以在轴向和径向悬浮并浸没在填充泵室的血液内。内和外磁铁轴承组件56和62一起工作,以提供主要的径向和轴向刚度,从而避免磨损并确保存在流经泵的血液的另一个开放流路。该流路始于在叶轮下面对从叶轮流槽33流出的流体进行收集的壳体,然后向上穿过由上述被动磁轴承保持的中心柱和叶轮之间的环形间隙,从那里血液再被带出经叶轮流槽33进入上述主要流道。仅当叶轮在上壳1内表面附近运转时,上述叶轮液力推力轴承才提供轴向刚度。
如上所述,本发明的泵可以包括用于驱动叶轮的三相双定子轴向磁通间隙电机。双定子电机的优点在于,如果一个定子不能工作,那么可以使用另一个定子使叶轮旋转。在一个实施例中,下定子比上定子更远离叶轮22,从而不会减少由于与上定子的磁性相互作用而产生的叶轮的净轴向预载荷。参照图5和图7,叶轮设有4个驱动磁铁68的组。在叶轮下侧的叶轮凸起部32内形成的一个凹穴或腔室47(图4)内容纳一个驱动磁铁68。通过合适的环形基板70将驱动磁铁68封装在叶轮内。
如图5所示,一个定子位于叶轮上方并在上泵壳1上,另一个定子位于叶轮下方并在下泵壳2上。每个定子包括多个电机驱动绕组69和背铁环71。电机驱动绕组69由导线的线圈构成,并且可以具有圆形截面或根据需要可以具有其他合适的截面结构。在图8示出的一个实施例中,线圈具有圆形截面并且每个定子由在对应背环外侧上放置的6个线圈组成。线圈放置在背环上,使得线圈轴垂直于环表面。正如本领域技术人员所理解的,电机驱动线圈69产生与叶轮驱动磁铁68的磁场相互作用而使叶轮旋转的电磁场。背铁环71用于提高驱动磁铁产生的磁通量。电机定子线圈产生的磁力还向叶轮提供次要径向叶轮和轴向磁性预载荷支承。结果是,叶轮在正常运转过程中在径向和轴向上处于动态平衡。应该理解,仅仅需要一个定子来运转本发明的泵电机。由于如果一个定子组件不能工作,则另一个可以运转电机,因而优选两个定子组件,但是运转能耗会增加。
在定子罩72和73内容纳各定子。每个定子罩与相应泵壳密封,在一个实施例中,定子罩最接近电机驱动磁铁68处的薄壁厚度小于0.007英寸。薄壁允许在叶轮和定子之间使用陶瓷盘。每个定子罩具有密封的馈通结构,用于与联在一起的外部插头或连接器29和31电连接。
图9示出根据本发明公开实施例的植入的旋转式血泵。流入插管7以顶部插入患者心脏76的左心室14。血液输送移植物或管17将旋转式血泵的血液出口与患者的主动脉18连接。电源和控制电缆77可以与具有电源79的控制器78连接。控制器78和电源79可以植入患者的体内或由患者佩戴。使用控制器为临床医生提供关于如何操作该装置的信息,提供运行状态和警告条件,并可以根据需要控制叶轮转速。例如,通过使用脉动驱动波形和在驱动脉冲为零时测量转子的反电动势,可以控制叶轮转速。在共同拥有的国际申请No.PCT/US00/40325(国际公布号为WO01/05023A1)中提出了这种技术,在此引入该申请作为参考。
上述具体实施例是说明性的,基于这些实施例可以在不背离公开内容的精神或所附权利要求范围的情况下引入多种变化。例如,在公开内容和所附权利要求的范围内,不同说明性实施例的要素和/或特征可以相互组合和/或相互代替。
Claims (21)
1.一种旋转式血泵,包括:
限定圆柱形泵室的壳体,所述壳体具有连接在一起的上壳和下壳;
在所述泵室内的轴上的可旋转叶轮,所述叶轮具有圆形的周边并具有多个凸起的主体,各所述主体被其间的流体流路绕所述叶轮的外围分开,各所述主体的外围侧壁凸出,其曲率半径与所述叶轮的总体圆周相应;
各所述凸起的主体的上表面在所述叶轮旋转时邻近所述上壳,在向上的轴方向上倾斜的倾斜表面区形成在至少一个所述凸起的主体邻近所述叶轮的周边的所述上表面上,并限定液力轴承面,所述液力轴承面具有较低压力的入口端或前端以及较高压力的退出端或尾端,使轴向向下作用在所述叶轮上的压力在所述叶轮旋转时增大;以及
各所述液力轴承面的所述较高压力的退出端邻近下游减压面的较高压力的入口端,所述下游减压面形成在邻近所述叶轮的所述上凸出面上,所述减压面在向下轴向上倾斜并从所述液力轴承面分岔,从而在所述叶轮旋转时形成较低压力的退出端,所述减压面的所述较高压力的入口端通过其间的平坦的桥接面区与所述液力轴承面的较高压力的退出端分开。
2.如权利要求1所述的旋转式血泵,其中各所述凸起的主体具有以约90度的角相交的两个不等长的直侧壁。
3.如权利要求2所述的旋转式血泵,其中叶轮的所述凸起的主体中较长的侧壁对着交叉的邻近叶轮的所述凸起的主体的较短侧壁,并在其间限定流体流路。
4.如权利要求1所述的旋转式血泵,其中所述液力轴承面相对于水平面的倾斜角小于1度。
5.如权利要求1所述的旋转式血泵,其中所述平坦的桥接面的宽度在最窄处为约0.050英寸。
6.如权利要求4所述的旋转式血泵,其中,各所述减压面的倾斜角度大于各相关液力轴承面的倾斜角度。
7.如权利要求6所述的旋转式血泵,其中所述减压面相对于水平面倾斜2~4度。
8.如权利要求1所述的旋转式血泵,其中每个所述凸起的主体的所述上表面设置有液力轴承面和相关的减压面。
9.如权利要求1所述的旋转式血泵,其中一个或多个所述凸起的主体构造为用于磁化。
10.如权利要求9所述的旋转式血泵,其中一个或多个所述凸起的主体适于提供磁极,以与电机定子耦合。
11.如权利要求10所述的旋转式血泵,其中交替所述凸起的主体适于产生一个磁极,而调制所述凸起的主体适于产生相反磁极。
12.如权利要求1所述的旋转式血泵,其中每个所述液力轴承面包括面向内和向下倾斜的内侧凹部。
13.如权利要求12所述的旋转式血泵,其中每个所述向下倾斜部的轴向下降距离为约0.012英寸,向下倾斜角为约8°。
14.如权利要求1所述的旋转式血泵,其中一体结构的铁磁性叶轮由大约77.6%重量的铂和22.4%重量的钴的合金制成。
15.一种旋转式血泵,包括:
限定基本上为圆柱形泵室的壳体;
在所述泵室内的可旋转的中心孔叶轮,所述叶轮具有圆形截面以及形成为中空钛壳的多个凸起的主体,各所述中空钛壳中的腔室可装配有永久磁铁,所述凸起的主体在其中夹着实心壁绕所述叶轮的外围相隔约90度,每一壁元件限定每一对相邻腔室的径向边界并包括一个或多个平衡孔或钻孔,以改进所述叶轮的重量并确保所述叶轮在所述血泵操作时均匀旋转。
16.如权利要求15所述的旋转式血泵血泵,其中每一所述平衡孔沿直径对着含有另一所述平衡孔的壁元件。
17.如权利要求16所述的旋转式血泵血泵,其中径向最外的所述平衡孔之间的直径距离为约1.22英寸。
18.如权利要求16所述的旋转式血泵血泵,其中径向最内的所述平衡孔之间的直径距离为约1.02英寸。
19.如权利要求15所述的旋转式血泵血泵,其中所述平衡孔具有大约相等的直径。
20.如权利要求15所述的旋转式血泵血泵,其中每一所述平衡孔的纵向轴基本上平行于所述叶轮的旋转轴延伸。
21.如权利要求15所述的旋转式血泵血泵,其中每一所述腔室部分由一对所述实心壁限制。
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US75889206P | 2006-01-13 | 2006-01-13 | |
US75879506P | 2006-01-13 | 2006-01-13 | |
US75879306P | 2006-01-13 | 2006-01-13 | |
US75879406P | 2006-01-13 | 2006-01-13 | |
US60/758,892 | 2006-01-13 | ||
US60/758,794 | 2006-01-13 | ||
US60/758,795 | 2006-01-13 | ||
US60/758,793 | 2006-01-13 | ||
CN2007800030147A CN101371041B (zh) | 2006-01-13 | 2007-01-12 | 旋转式血泵 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007800030147A Division CN101371041B (zh) | 2006-01-13 | 2007-01-12 | 旋转式血泵 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103432637A true CN103432637A (zh) | 2013-12-11 |
CN103432637B CN103432637B (zh) | 2016-12-28 |
Family
ID=38288115
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007800030147A Active CN101371041B (zh) | 2006-01-13 | 2007-01-12 | 旋转式血泵 |
CN201310285851.0A Active CN103432637B (zh) | 2006-01-13 | 2007-01-12 | 旋转式血泵 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007800030147A Active CN101371041B (zh) | 2006-01-13 | 2007-01-12 | 旋转式血泵 |
Country Status (9)
Country | Link |
---|---|
US (9) | US7976271B2 (zh) |
EP (3) | EP3954901A1 (zh) |
JP (3) | JP5155186B2 (zh) |
KR (1) | KR101356414B1 (zh) |
CN (2) | CN101371041B (zh) |
AU (1) | AU2007207782B2 (zh) |
CA (1) | CA2636418A1 (zh) |
IL (1) | IL192649A (zh) |
WO (1) | WO2007084339A2 (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104740704A (zh) * | 2015-04-21 | 2015-07-01 | 傅风荣 | 一种治疗心血管疾病的医疗器械微动力泵 |
CN106062411A (zh) * | 2014-02-19 | 2016-10-26 | 伯杰橡胶金属有限责任公司 | 用于轴向减振的液力轴承的喷嘴盘 |
US10722631B2 (en) | 2018-02-01 | 2020-07-28 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
WO2021073420A1 (zh) * | 2019-10-18 | 2021-04-22 | 上海微创心力医疗科技有限公司 | 叶轮组件及悬浮式血泵 |
US11185677B2 (en) | 2017-06-07 | 2021-11-30 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US11511103B2 (en) | 2017-11-13 | 2022-11-29 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US11654275B2 (en) | 2019-07-22 | 2023-05-23 | Shifamed Holdings, Llc | Intravascular blood pumps with struts and methods of use and manufacture |
US11724089B2 (en) | 2019-09-25 | 2023-08-15 | Shifamed Holdings, Llc | Intravascular blood pump systems and methods of use and control thereof |
US11964145B2 (en) | 2019-07-12 | 2024-04-23 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of manufacture and use |
US12102815B2 (en) | 2019-09-25 | 2024-10-01 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible pump housings |
US12121713B2 (en) | 2020-09-25 | 2024-10-22 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible blood conduits |
Families Citing this family (253)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7416525B2 (en) | 2003-09-18 | 2008-08-26 | Myrakelle, Llc | Rotary blood pump |
EP3954901A1 (en) | 2006-01-13 | 2022-02-16 | HeartWare, Inc. | Rotary blood pump |
US8672611B2 (en) | 2006-01-13 | 2014-03-18 | Heartware, Inc. | Stabilizing drive for contactless rotary blood pump impeller |
KR20090074110A (ko) * | 2006-03-31 | 2009-07-06 | 오퀴스 메디컬 코포레이션 | 회전식 혈액펌프 |
US7779692B2 (en) * | 2006-05-17 | 2010-08-24 | The Board Of Regents Of The University Of Texas System | Method for estimating strain, strain ratios and displacements in a target body |
ES2710526T3 (es) * | 2008-06-13 | 2019-04-25 | Weir Minerals Australia Ltd | Carcasa de bomba con revestimiento lateral ajustable |
US8523539B2 (en) * | 2008-06-19 | 2013-09-03 | The Board Of Regents Of The University Of Texas Systems | Centrifugal pump |
JP5171953B2 (ja) * | 2008-06-23 | 2013-03-27 | テルモ株式会社 | 血液ポンプ装置 |
ITPN20080051A1 (it) * | 2008-06-24 | 2009-12-25 | Mate S A S | Macchina operatrice, in particolare una motopompa a motore assiale |
HUE056076T2 (hu) * | 2008-10-10 | 2022-01-28 | Medicaltree Patent Ltd | Szívsegítõ készülék és rendszer |
CN102239334B (zh) | 2008-12-08 | 2015-03-04 | 胸腔科技有限公司 | 离心式泵装置 |
EP2386030B1 (de) * | 2009-01-09 | 2018-06-20 | Sulzer Management AG | Zentrifugalpumpe mit einer vorrichtung zur entfernung von partikeln |
JP5378010B2 (ja) | 2009-03-05 | 2013-12-25 | ソラテック コーポレーション | 遠心式ポンプ装置 |
US8770945B2 (en) | 2009-03-06 | 2014-07-08 | Thoratec Corporation | Centrifugal pump apparatus |
US8296913B2 (en) * | 2009-03-30 | 2012-10-30 | The Boeing Company | Thermally switched ferromagnetic latching support system |
US9782527B2 (en) | 2009-05-27 | 2017-10-10 | Tc1 Llc | Monitoring of redundant conductors |
CN101695591B (zh) * | 2009-10-10 | 2012-01-25 | 浙江大学 | 一种混合式被动悬浮离心血泵 |
US8562508B2 (en) | 2009-12-30 | 2013-10-22 | Thoratec Corporation | Mobility-enhancing blood pump system |
KR100948632B1 (ko) * | 2010-01-06 | 2010-03-24 | 이상빈 | 실린더 펌프 |
JP5443197B2 (ja) | 2010-02-16 | 2014-03-19 | ソラテック コーポレーション | 遠心式ポンプ装置 |
JP5572832B2 (ja) | 2010-03-26 | 2014-08-20 | ソーラテック コーポレイション | 遠心式血液ポンプ装置 |
DE102010024650A1 (de) | 2010-05-04 | 2011-11-10 | Medos Medizintechnik Ag | Blutpumpe mit einem Rotor |
WO2011160056A1 (en) * | 2010-06-18 | 2011-12-22 | Heartware, Inc. | Hydrodynamic chamfer thrust bearing |
JP5540153B2 (ja) | 2010-06-22 | 2014-07-02 | ソラテック コーポレーション | ポンプの圧力−流量特性を改変するための装置 |
JP5681403B2 (ja) | 2010-07-12 | 2015-03-11 | ソーラテック コーポレイション | 遠心式ポンプ装置 |
WO2012012552A1 (en) | 2010-07-22 | 2012-01-26 | Thoratec Corporation | Controlling implanted blood pumps |
US9091271B2 (en) | 2010-08-20 | 2015-07-28 | Thoratec Corporation | Implantable blood pump |
USD669585S1 (en) | 2010-08-20 | 2012-10-23 | Thoratec Corporation | Implantable blood pump |
EP2612036B1 (de) * | 2010-09-01 | 2019-11-06 | Levitronix GmbH | Rotationspumpe |
JP5577506B2 (ja) | 2010-09-14 | 2014-08-27 | ソーラテック コーポレイション | 遠心式ポンプ装置 |
EP2618863B1 (en) | 2010-09-24 | 2016-11-09 | Thoratec Corporation | Generating artificial pulse |
US9227001B2 (en) | 2010-10-07 | 2016-01-05 | Everheart Systems Inc. | High efficiency blood pump |
WO2012051454A2 (en) | 2010-10-13 | 2012-04-19 | Thoratec Corporation | Pumping blood |
US9170056B2 (en) * | 2010-12-03 | 2015-10-27 | International Business Machines Corporation | Duplex flexible heat exchanger |
EP2693609B1 (en) | 2011-03-28 | 2017-05-03 | Thoratec Corporation | Rotation and drive device and centrifugal pump device using same |
JP5835984B2 (ja) * | 2011-07-25 | 2015-12-24 | 日本電産サンキョー株式会社 | ポンプ装置 |
DE112012004282T5 (de) | 2011-10-13 | 2014-07-03 | Thoratec Corporation | Pumpe und verfahren zum halbaxialpumpen von blut |
EP3269406B1 (en) | 2011-12-03 | 2020-11-18 | Indiana University Research and Technology Corporation | Cavopulmonary viscous impeller assist device and method |
US8905729B2 (en) | 2011-12-30 | 2014-12-09 | Peopleflo Manufacturing, Inc. | Rotodynamic pump with electro-magnet coupling inside the impeller |
US8905728B2 (en) | 2011-12-30 | 2014-12-09 | Peopleflo Manufacturing, Inc. | Rotodynamic pump with permanent magnet coupling inside the impeller |
JP6083929B2 (ja) | 2012-01-18 | 2017-02-22 | ソーラテック コーポレイション | 遠心式ポンプ装置 |
WO2013112550A1 (en) * | 2012-01-24 | 2013-08-01 | Thoratec Corporation | Driveline cable assembly |
DE102012201252A1 (de) * | 2012-01-30 | 2013-08-01 | Siemens Aktiengesellschaft | Längslagerscheibe für einen Strömungsmaschinenrotor |
WO2013134319A1 (en) | 2012-03-05 | 2013-09-12 | Justin Aron Callaway | Modular implantable medical pump |
WO2013145134A1 (ja) | 2012-03-27 | 2013-10-03 | 株式会社サンメディカル技術研究所 | 補助人工心臓ポンプ |
WO2013145135A1 (ja) * | 2012-03-27 | 2013-10-03 | 株式会社サンメディカル技術研究所 | 補助人工心臓システム |
WO2014000753A1 (en) * | 2012-06-28 | 2014-01-03 | Rheinisch-Westfälische Technische Hochschule Aachen | Centrifugal blood pump apparatus |
CN103566419A (zh) * | 2012-08-09 | 2014-02-12 | 北京精密机电控制设备研究所 | 一种磁液悬浮离心叶轮 |
EP2890419B1 (en) | 2012-08-31 | 2019-07-31 | Tc1 Llc | Start-up algorithm for an implantable blood pump |
US9492599B2 (en) | 2012-08-31 | 2016-11-15 | Thoratec Corporation | Hall sensor mounting in an implantable blood pump |
AU2013312527A1 (en) | 2012-09-05 | 2015-04-09 | Heartware, Inc. | Vad integrated flow sensor |
EP2719403B1 (en) * | 2012-10-12 | 2016-09-28 | Abiomed Europe GmbH | Centrifugal blood pump |
US10857274B2 (en) | 2012-11-06 | 2020-12-08 | Queen Mary University Of London | Mechanical circulatory support device with centrifugal impeller designed for implantation in the descending aorta |
US9371826B2 (en) | 2013-01-24 | 2016-06-21 | Thoratec Corporation | Impeller position compensation using field oriented control |
US9556873B2 (en) | 2013-02-27 | 2017-01-31 | Tc1 Llc | Startup sequence for centrifugal pump with levitated impeller |
US10294944B2 (en) * | 2013-03-08 | 2019-05-21 | Everheart Systems Inc. | Flow thru mechanical blood pump bearings |
US9144638B2 (en) | 2013-03-14 | 2015-09-29 | Thoratec Corporation | Blood pump rotor bearings |
MX367784B (es) * | 2013-03-15 | 2019-09-06 | Implantica Patent Ltd | Implante operable que comprende un motor eléctrico y un sistema de engranajes. |
US9713663B2 (en) | 2013-04-30 | 2017-07-25 | Tc1 Llc | Cardiac pump with speed adapted for ventricle unloading |
US10052420B2 (en) | 2013-04-30 | 2018-08-21 | Tc1 Llc | Heart beat identification and pump speed synchronization |
WO2014187466A1 (en) * | 2013-05-23 | 2014-11-27 | Rheinisch-Westfälische Technische Hochschule Aachen | Impeller of a centrifugal pump apparatus |
CN103341220B (zh) * | 2013-07-22 | 2015-07-22 | 福州大学 | 一种无阀容积式心脏泵 |
US11085450B2 (en) * | 2013-10-18 | 2021-08-10 | Regal Beloit America, Inc. | Pump having a housing with internal and external planar surfaces defining a cavity with an axial flux motor driven impeller secured therein |
CN103591028B (zh) * | 2013-10-23 | 2016-08-24 | 北京精密机电控制设备研究所 | 一种用于治疗心脏功能衰竭的心尖植入式离心泵 |
CN103585683B (zh) * | 2013-10-23 | 2015-09-23 | 北京航天控制仪器研究所 | 一种可植入式左心室辅助系统 |
US9689402B2 (en) | 2014-03-20 | 2017-06-27 | Flowserve Management Company | Centrifugal pump impellor with novel balancing holes that improve pump efficiency |
WO2015160995A1 (en) | 2014-04-15 | 2015-10-22 | Thoratec Corporation | Ventricular assist devices |
WO2015160994A1 (en) | 2014-04-15 | 2015-10-22 | Thoratec Corporation | Methods and systems for upgrading ventricle assist devices |
EP3131600B1 (en) | 2014-04-15 | 2021-06-16 | Tc1 Llc | Methods and systems for providing battery feedback to patient |
WO2015160992A1 (en) | 2014-04-15 | 2015-10-22 | Thoratec Corporation | Methods and systems for lvad operation during communication losses |
US9526818B2 (en) | 2014-04-15 | 2016-12-27 | Thoratec Corporation | Protective cap for driveline cable connector |
US9694123B2 (en) | 2014-04-15 | 2017-07-04 | Tc1 Llc | Methods and systems for controlling a blood pump |
GB2527059A (en) * | 2014-06-10 | 2015-12-16 | Calon Cardio Technology Ltd | Cardiac pump |
US10030664B2 (en) | 2014-06-17 | 2018-07-24 | Ch Biomedical (Usa) Inc. | Centrifugal blood pump impeller and flow path |
CN107073183A (zh) | 2014-06-18 | 2017-08-18 | 心脏器械股份有限公司 | 用于识别抽吸事件的方法和设备 |
US9623161B2 (en) | 2014-08-26 | 2017-04-18 | Tc1 Llc | Blood pump and method of suction detection |
JP6228713B1 (ja) | 2014-09-03 | 2017-11-08 | ティーシー1 エルエルシー | 三重螺旋ドライブラインケーブルならびに組立および使用の方法 |
JP6512792B2 (ja) * | 2014-11-06 | 2019-05-15 | 株式会社荏原製作所 | 磁気浮上型ポンプ |
WO2016086137A1 (en) | 2014-11-26 | 2016-06-02 | Thoratec Corporation | Pump and method for mixed flow blood pumping |
JP2017538519A (ja) | 2014-12-17 | 2017-12-28 | ハートウェア、インコーポレイテッド | 植込み可能なコネクタ |
US9775974B2 (en) | 2015-01-22 | 2017-10-03 | Medtronic Xomed, Inc. | Corrosion-resistant magnetic article |
US9931493B2 (en) | 2015-01-22 | 2018-04-03 | Medtronic Xomed, Inc. | Corrosion-resistant magnetic article |
WO2016130846A1 (en) | 2015-02-11 | 2016-08-18 | Thoratec Corporation | Heart beat identification and pump speed synchronization |
EP3256185B1 (en) | 2015-02-12 | 2019-10-30 | Tc1 Llc | System and method for controlling the position of a levitated rotor |
US10371152B2 (en) | 2015-02-12 | 2019-08-06 | Tc1 Llc | Alternating pump gaps |
WO2016130989A1 (en) | 2015-02-13 | 2016-08-18 | Thoratec Corporation | Impeller suspension mechanism for heart pump |
EP3256063B1 (en) | 2015-02-13 | 2019-08-28 | Heartware, Inc. | Combined tunneling tools |
JP2016188590A (ja) * | 2015-03-30 | 2016-11-04 | Ntn株式会社 | 遠心式ポンプ装置 |
EP3294367A4 (en) | 2015-05-15 | 2019-01-16 | Tc1 Llc | BLOOD PUMP WITH IMPROVED AXIAL FLOW |
US10702641B2 (en) | 2015-06-29 | 2020-07-07 | Tc1 Llc | Ventricular assist devices having a hollow rotor and methods of use |
EP3324840A4 (en) | 2015-07-20 | 2019-03-20 | Tc1 Llc | MEASURING TEST STRIPS FOR FLOW ESTIMATION |
US9901666B2 (en) | 2015-07-20 | 2018-02-27 | Tc1 Llc | Flow estimation using hall-effect sensors for measuring impeller eccentricity |
WO2017015476A1 (en) | 2015-07-21 | 2017-01-26 | Thoratec Corporation | Cantilevered rotor pump and methods for axial flow blood pumping |
US10177627B2 (en) | 2015-08-06 | 2019-01-08 | Massachusetts Institute Of Technology | Homopolar, flux-biased hysteresis bearingless motor |
EP3135933B1 (en) * | 2015-08-25 | 2019-05-01 | ReinHeart GmbH | Active magnetic bearing |
EP3340925B1 (en) | 2015-08-28 | 2020-09-23 | Tc1 Llc | Blood pump controllers and methods of use for improved energy efficiency |
CA2999986A1 (en) | 2015-09-25 | 2017-03-30 | Procyrion, Inc. | Non-occluding intravascular blood pump providing reduced hemolysis |
WO2017070571A2 (en) | 2015-10-23 | 2017-04-27 | Landers James P | Devices, systems and methods for sample detection |
US10368757B2 (en) | 2015-11-02 | 2019-08-06 | Heartware, Inc. | Methods and systems for adverse event prediction using pump operating data |
US10117983B2 (en) | 2015-11-16 | 2018-11-06 | Tc1 Llc | Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device |
EP3377136B1 (en) | 2015-11-20 | 2020-05-06 | Tc1 Llc | Energy management of blood pump controllers |
EP3377133B1 (en) | 2015-11-20 | 2021-07-14 | Tc1 Llc | System architecture that allows patient replacement of vad controller/interface module without disconnection of old module |
EP3377135B1 (en) | 2015-11-20 | 2020-05-06 | Tc1 Llc | Blood pump controllers having daisy-chained batteries |
EP3677226B1 (en) | 2015-11-20 | 2021-12-22 | Tc1 Llc | Improved connectors and cables for use with ventricle assist systems |
PL3173108T3 (pl) | 2015-11-30 | 2018-12-31 | Fundacja Rozwoju Kardiochirurgii Im. Prof. Zbigniewa Religi | Wirnik z kanałami krytymi dla odśrodkowej wszczepialnej pompy wspomagania serca |
EP3173110A1 (en) | 2015-11-30 | 2017-05-31 | Fundacja Rozwoju Kardiochirurgii Im. Prof. Zbigniewa Religi | Rotary pump suspension system arrangement, especially of implantable centrifugal heart assist pump |
US10426879B2 (en) | 2015-12-14 | 2019-10-01 | Heartware, Inc. | Blood pump with restart lockout |
US10493190B2 (en) | 2015-12-28 | 2019-12-03 | Heartware, Inc. | VAD controller tester |
WO2017117185A1 (en) | 2015-12-28 | 2017-07-06 | Heartware, Inc. | Pump motor control with adaptive startup |
WO2017120453A1 (en) | 2016-01-06 | 2017-07-13 | Bivacor Inc. | Heart pump with impeller axial position control |
EP3411091B1 (en) | 2016-02-04 | 2020-12-30 | Heartware, Inc. | Pump capacity work index |
EP3436105B1 (en) | 2016-03-30 | 2021-04-28 | Heartware, Inc. | Flanged heart tissue blocker |
US10525179B2 (en) * | 2016-03-31 | 2020-01-07 | Heartware, Inc. | Crenellated inflow cannula |
CN108883218B (zh) | 2016-04-01 | 2020-10-16 | 心脏器械股份有限公司 | 具有径向偏置转子的轴流式血液泵 |
US9985374B2 (en) | 2016-05-06 | 2018-05-29 | Tc1 Llc | Compliant implantable connector and methods of use and manufacture |
US11131308B2 (en) * | 2016-06-06 | 2021-09-28 | National Oilwell Vareo, L.P. | Elastic and sealing elements in multi-stage pumps |
US10428828B2 (en) * | 2016-06-20 | 2019-10-01 | Terumo Cardiovascular Systems Corporation | Centrifugal pumps for medical uses |
US10377097B2 (en) * | 2016-06-20 | 2019-08-13 | Terumo Cardiovascular Systems Corporation | Centrifugal pumps for medical uses |
GB2551985B (en) * | 2016-07-01 | 2019-01-30 | Gw Res Ltd | Novel formulation |
WO2018017563A1 (en) | 2016-07-19 | 2018-01-25 | Heartware, Inc. | Ventricular assist devices and integrated sensors thereof |
WO2018017716A1 (en) | 2016-07-21 | 2018-01-25 | Tc1 Llc | Rotary seal for cantilevered rotor pump and methods for axial flow blood pumping |
CN109562211B (zh) | 2016-08-01 | 2021-07-06 | 心脏器械股份有限公司 | 基于vad电流波形的心率确定 |
US10675396B2 (en) | 2016-08-01 | 2020-06-09 | Heartware, Inc. | Suction detection methods and devices |
WO2018026716A1 (en) | 2016-08-01 | 2018-02-08 | Heartware, Inc. | Vad with aortic valve opening detection |
WO2018031741A1 (en) | 2016-08-12 | 2018-02-15 | Tc1 Llc | Devices and methods for monitoring bearing and seal performance |
US10864363B2 (en) | 2016-08-12 | 2020-12-15 | Carlos A. Hakim | Externally programable magnetic valve assembly and controller |
US10589013B2 (en) | 2016-08-26 | 2020-03-17 | Tci Llc | Prosthetic rib with integrated percutaneous connector for ventricular assist devices |
WO2018057608A1 (en) | 2016-09-23 | 2018-03-29 | Heartware, Inc. | Field-oriented control for control of blood pump motor |
US10660997B2 (en) | 2016-09-23 | 2020-05-26 | Heartware, Inc. | Blood pump with sensors on housing surface |
EP3515527A4 (en) | 2016-09-26 | 2020-05-13 | Tc1 Llc | POWER MODULATION FOR HEART PUMP |
US12090310B2 (en) | 2016-10-03 | 2024-09-17 | Procardia Llc | Mechanical circulatory support device with axial flow turbomachine optimized for heart failure and cardio-renal syndrome by implantation in the descending aorta |
US11524153B2 (en) | 2016-10-03 | 2022-12-13 | Queen Mary University Of London | Mechanical circulatory support device with axial flow turbomachine optimized for heart failure and cardio-renal syndrome by implantation in the descending aorta |
WO2018075780A1 (en) | 2016-10-20 | 2018-04-26 | Tc1 Llc | Methods and systems for bone conduction audible alarms for mechanical circulatory support systems |
US10751455B2 (en) | 2016-11-30 | 2020-08-25 | Heartware, Inc. | Patient behavior sensitive controller |
WO2018132713A1 (en) | 2017-01-12 | 2018-07-19 | Tc1 Llc | Driveline bone anchors and methods of use |
WO2018132708A1 (en) | 2017-01-12 | 2018-07-19 | Tc1 Llc | Percutaneous driveline anchor devices and methods of use |
WO2018136592A2 (en) | 2017-01-18 | 2018-07-26 | Tc1 Llc | Systems and methods for transcutaneous power transfer using microneedles |
KR101757440B1 (ko) * | 2017-01-24 | 2017-07-12 | 이제이콥부희 | 캐비테이션 펌프 유닛 |
CN108404237A (zh) * | 2017-02-09 | 2018-08-17 | 王改峰 | 叶轮交变旋转式悬浮离心血泵 |
AU2018250273B2 (en) * | 2017-04-05 | 2023-06-08 | Bivacor Inc. | Heart pump drive and bearing |
WO2018195301A1 (en) | 2017-04-21 | 2018-10-25 | Tc1 Llc | Aortic connectors and methods of use |
EP3615103B1 (en) * | 2017-04-25 | 2021-03-24 | Heartware, Inc. | Anti-thrombus surface potential ceramic element |
EP3615104A1 (en) | 2017-04-28 | 2020-03-04 | Tc1 Llc | Patient adapter for driveline cable and methods |
US10856745B2 (en) | 2017-05-16 | 2020-12-08 | Heartware, Inc. | Intra ventricular ambulatory implantable PV loop system |
WO2018223060A1 (en) * | 2017-06-01 | 2018-12-06 | Queen Mary University Of London | Mechanical circulatory support device with centrifugal impeller designed for implantation in the descending aorta |
EP3412915B1 (en) * | 2017-06-09 | 2019-12-25 | Xylem Europe GmbH | Self-adjusting drum system |
EP3651822B1 (en) | 2017-07-13 | 2022-03-30 | Heartware, Inc. | Hvad circadian tracker (phi+) |
EP3651824A1 (en) | 2017-07-13 | 2020-05-20 | Heartware, Inc. | Pump homeostasis indicator (phi) |
US10561774B2 (en) | 2017-07-13 | 2020-02-18 | Heartware, Inc. | HVAD circadian tracker (PHI+) |
WO2019014626A1 (en) | 2017-07-13 | 2019-01-17 | Everheart Systems Inc. | HIGH PERFORMANCE BLOOD PUMP |
EP3668559A1 (en) | 2017-08-16 | 2020-06-24 | Heartware, Inc. | Map measurement on vad patients with low pulsatility |
US10543302B2 (en) | 2017-08-16 | 2020-01-28 | Heartware, Inc. | Map measurement on VAD patients with low pulsatility |
CN107890590B (zh) * | 2017-08-17 | 2020-09-25 | 北京万峰医疗投资管理有限公司 | 一种动态磁平衡悬浮离心血泵 |
WO2019036206A1 (en) | 2017-08-18 | 2019-02-21 | Heartware, Inc. | THERAPEUTIC TREATMENT OF BLOOD BY UV IN A BLOOD PUMP |
CN110997032A (zh) * | 2017-08-18 | 2020-04-10 | 心脏器械股份有限公司 | 使用柔性电子传感器和发射器的血栓检测和去除 |
CN107519549A (zh) * | 2017-09-30 | 2017-12-29 | 清华大学天津高端装备研究院 | 一种新型单自由度磁悬浮离心式叶轮 |
CN111201049B (zh) | 2017-10-13 | 2022-08-16 | 心脏器械股份有限公司 | 用于闭环控制的动态hq |
US11110265B2 (en) | 2017-11-03 | 2021-09-07 | Heartware, Inc. | Updating a VAD system without stopping the pump |
CN109847127A (zh) * | 2017-11-30 | 2019-06-07 | 上海微创医疗器械(集团)有限公司 | 磁液悬浮式离心血泵 |
EP3720520B1 (en) | 2017-12-05 | 2024-07-03 | Heartware, Inc. | Blood pump with impeller rinse operation |
WO2019125718A1 (en) | 2017-12-22 | 2019-06-27 | Massachusetts Institute Of Technology | Homopolar bearingless slice motors |
EP3735280B1 (en) | 2018-01-02 | 2022-05-04 | Tc1 Llc | Fluid treatment system for a driveline |
WO2019139686A1 (en) | 2018-01-10 | 2019-07-18 | Tc1 Llc | Bearingless implantable blood pump |
CN108175884B (zh) * | 2018-01-11 | 2024-07-30 | 深圳核心医疗科技股份有限公司 | 心室辅助泵 |
US10701043B2 (en) | 2018-01-17 | 2020-06-30 | Tc1 Llc | Methods for physical authentication of medical devices during wireless pairing |
WO2019147444A1 (en) | 2018-01-26 | 2019-08-01 | Heartware, Inc. | Early warning of lvad thrombus formation |
US20190237175A1 (en) | 2018-02-01 | 2019-08-01 | Heartware, Inc. | System for automated analysis of mcs log files |
US11529508B2 (en) | 2018-03-02 | 2022-12-20 | Tc1 Llc | Wearable accessory for ventricular assist system |
CN111867674B (zh) | 2018-03-09 | 2024-09-10 | 美敦力公司 | 用于治疗控制的心室辅助设备和心脏电刺激系统 |
CN111867673A (zh) | 2018-03-14 | 2020-10-30 | 美敦力公司 | 用于植入式vad泵的rf功率传递线圈 |
US10940251B2 (en) | 2018-03-20 | 2021-03-09 | Tc1 Llc | Mechanical gauge for estimating inductance changes in resonant power transfer systems with flexible coils for use with implanted medical devices |
US11389641B2 (en) | 2018-03-21 | 2022-07-19 | Tc1 Llc | Modular flying lead cable and methods for use with heart pump controllers |
WO2019182691A1 (en) | 2018-03-21 | 2019-09-26 | Tc1 Llc | Improved driveline connectors and methods for use with heart pump controllers |
US11076944B2 (en) | 2018-03-26 | 2021-08-03 | Tc1 Llc | Methods and systems for irrigating and capturing particulates during heart pump implantation |
WO2019195480A1 (en) | 2018-04-04 | 2019-10-10 | Theodosios Korakianitis | Removable mechanical circulatory support for short term use |
EP3773783A1 (en) | 2018-04-06 | 2021-02-17 | Heartware, Inc. | Multi-input speed response algorithm for a blood pump |
WO2019212861A1 (en) | 2018-04-30 | 2019-11-07 | Tc1 Llc | Improved blood pump connectors |
EP3567619B1 (en) * | 2018-05-08 | 2020-11-25 | Abiomed Europe GmbH | Corrosion-resistant permanent magnet and intravascular blood pump comprising the magnet |
WO2019221983A1 (en) | 2018-05-17 | 2019-11-21 | Heartware, Inc. | Current-speed relationship for instantaneous suction detection algorithm in lvads |
WO2019232080A1 (en) | 2018-05-31 | 2019-12-05 | Tc1 Llc | Improved blood pump controllers |
US10947986B2 (en) | 2018-07-11 | 2021-03-16 | Ch Biomedical (Usa) Inc. | Compact centrifugal pump with magnetically suspended impeller |
US11241570B2 (en) | 2018-07-17 | 2022-02-08 | Tc1 Llc | Systems and methods for inertial sensing for VAD diagnostics and closed loop control |
KR102153561B1 (ko) * | 2018-07-17 | 2020-09-08 | 서강대학교산학협력단 | 원심형 혈액 펌프 |
EP3826695A4 (en) * | 2018-07-24 | 2022-04-20 | CardiacAssist, Inc. | ROTARY BLOOD PUMP |
CN112714661A (zh) * | 2018-09-19 | 2021-04-27 | 心脏器械股份有限公司 | 启动有电气故障的血液泵的方法 |
US11241572B2 (en) | 2018-09-25 | 2022-02-08 | Tc1 Llc | Adaptive speed control algorithms and controllers for optimizing flow in ventricular assist devices |
CN112888476B (zh) | 2018-09-27 | 2024-06-04 | 心脏器械股份有限公司 | Vad患者的map估计 |
US11318295B2 (en) | 2019-02-28 | 2022-05-03 | Heartware, Inc. | HVAD rinse via a non-uniform thrust bearing gap |
US11666281B2 (en) | 2019-02-28 | 2023-06-06 | Medtronic, Inc. | Detection of hypertension in LVAD patients using speed change |
US12059558B2 (en) | 2019-06-07 | 2024-08-13 | Medtronic, Inc. | Shield optimization for maximizing heat dissipation at the device tissue interface and improving fixation |
US11679250B2 (en) | 2019-06-28 | 2023-06-20 | Theodosios Alexander | Removable mechanical circulatory support for short term use |
US12083331B2 (en) | 2019-09-26 | 2024-09-10 | Heartware, Inc. | Blood pump algorithm for preventing and resolving left ventricular suction through dynamic speed response |
US20210113751A1 (en) | 2019-10-17 | 2021-04-22 | Heartware, Inc. | Pulsatile blood pump with active element and thrombus rinse |
CN114728116A (zh) | 2019-11-12 | 2022-07-08 | 费森尤斯医疗护理德国有限责任公司 | 血液治疗系统 |
CA3160967A1 (en) | 2019-11-12 | 2021-05-20 | Fresenius Medical Care Deutschland Gmbh | Blood treatment systems |
CN114728159A (zh) | 2019-11-12 | 2022-07-08 | 费森尤斯医疗护理德国有限责任公司 | 血液治疗系统 |
CA3160952A1 (en) | 2019-11-12 | 2021-05-20 | Fresenius Medical Care Deutschland Gmbh | Blood treatment systems |
US11707617B2 (en) | 2019-11-22 | 2023-07-25 | Heartware, Inc. | Method to extract and quantify the cardiac end diastolic point/mitral valve closing point from the HVAD estimated flow waveform |
CA3160442A1 (en) | 2019-12-03 | 2021-06-10 | Procyrion, Inc. | Blood pumps |
US11617877B2 (en) | 2019-12-11 | 2023-04-04 | Medtronic, Inc. | Detecting pump suction, pump thrombus, and other adverse VAD motor events |
WO2021119413A1 (en) | 2019-12-13 | 2021-06-17 | Procyrion, Inc. | Support structures for intravascular blood pumps |
RU205275U1 (ru) * | 2019-12-31 | 2021-07-06 | Акционерное общество НАУЧНО-ПРОИЗВОДСТВЕННАЯ КОМПАНИЯ "ИМПУЛЬС-проект" | Насос внутреннего вспомогательного кровообращения |
US11534596B2 (en) | 2020-01-09 | 2022-12-27 | Heartware, Inc. | Pulsatile blood pump via contraction with smart material |
US11806518B2 (en) | 2020-01-10 | 2023-11-07 | Heartware, Inc. | Passive thrust bearing angle |
JP2023511385A (ja) * | 2020-01-21 | 2023-03-17 | ボストン サイエンティフィック サイムド,インコーポレイテッド | 血液ポンプのための磁束強化部を有する磁気駆動装置 |
US11617878B2 (en) | 2020-01-21 | 2023-04-04 | Medtronic, Inc. | Diagnostic metric for cumulative presence of suction conditions |
US20210228790A1 (en) | 2020-01-29 | 2021-07-29 | Medtronic, Inc. | Ventricular geometric and hemodynamic control by heart rate modulation in lvad therapy |
US12090315B2 (en) | 2020-02-20 | 2024-09-17 | Medtronic, Inc. | Speed change algorithm to resolve suction conditions in LVADS |
US11504520B2 (en) | 2020-02-20 | 2022-11-22 | Medtronic, Inc. | Cost function for response algorithm |
US11547847B2 (en) | 2020-03-12 | 2023-01-10 | Medtronic, Inc. | Method for minimizing misalignment notifications for a transcutaneous energy transfer system |
US20210283392A1 (en) | 2020-03-12 | 2021-09-16 | Medtronic, Inc. | Tets coil alignment conditions algorithm |
US11648393B2 (en) | 2020-03-17 | 2023-05-16 | Heartware, Inc. | Implantable blood pump with thrombus diverter |
US20210290940A1 (en) | 2020-03-19 | 2021-09-23 | Medtronic, Inc. | Lvad fixation and infection management |
US20210322758A1 (en) | 2020-04-21 | 2021-10-21 | Medtronic, Inc. | Use of graphite to spread heat inside device |
US20210330961A1 (en) | 2020-04-27 | 2021-10-28 | Medtronic, Inc. | Implantable lvad pump controller header |
US20210346682A1 (en) | 2020-05-11 | 2021-11-11 | Medtronic, Inc. | External wireless power transfer coil |
US11931561B2 (en) | 2020-05-26 | 2024-03-19 | Medtronic, Inc. | Body position and activity based flow control for ventricular assist device (VAD) with fully implantable controller |
US11694539B2 (en) | 2020-06-16 | 2023-07-04 | Heartware, Inc. | Notification system for low-level preventative LVAD alerts |
US20220023515A1 (en) | 2020-07-22 | 2022-01-27 | Medtronic, Inc. | Thermal stimulation and subsequent cooling for fully implantable lvad controller |
US20220026391A1 (en) | 2020-07-24 | 2022-01-27 | Medtronic, Inc. | Estimating coil implant depth for wireless power transfer |
US20220032038A1 (en) | 2020-07-31 | 2022-02-03 | Medtronic, Inc. | Managing pump speed when power constrained in a fully implanted lvad system |
US11452860B2 (en) | 2020-07-31 | 2022-09-27 | Medtronic, Inc. | Power source selection for a fully implantable LVAD system |
US20220062516A1 (en) | 2020-09-01 | 2022-03-03 | Medtronic, Inc. | Method of estimating power dissipated in foreign object |
US20220062514A1 (en) | 2020-09-01 | 2022-03-03 | Medtronic, Inc. | Method for pump start in a fully implanted lvad system when multiple power sources may be present |
EP4225422A1 (en) | 2020-10-12 | 2023-08-16 | KOC Universitesi | Implantable centrifugal cardiac assist pump having permanent magnets embedded in impeller |
DE112021005772T5 (de) | 2020-11-02 | 2023-09-21 | Medtronic, Inc. | Befestigungsmechanismus für Ausrichtungskleidungsstück zur Verwendung mit einem vollständig implantierbaren System |
US20240017054A1 (en) | 2020-11-02 | 2024-01-18 | Medtronic, Inc. | Alignment garment for use with a fully implantable system |
DE112021005771T5 (de) | 2020-11-02 | 2023-08-17 | Medtronic, Inc. | Ausrichtungsweste zur Verwendung mit einem vollständig implantierbaren System |
US20220133965A1 (en) | 2020-11-02 | 2022-05-05 | Medtronic, Inc. | Interconnect design for joining dissimilar materials |
US20230414926A1 (en) | 2020-11-11 | 2023-12-28 | Medtronic, Inc. | Detecting heating of implanted coil hermetic package when misaligned |
US20240009440A1 (en) | 2020-11-17 | 2024-01-11 | Medtronic, Inc. | Locking feature for lvad connector |
CN112587794A (zh) * | 2020-12-29 | 2021-04-02 | 上海市东方医院(同济大学附属东方医院) | 一种微型磁液悬浮离心式血泵 |
US11786721B2 (en) | 2021-01-05 | 2023-10-17 | Medtronic, Inc. | Sleep mode and do-not-disturb mode for a left ventricular assist device |
US11969586B2 (en) | 2021-03-02 | 2024-04-30 | Heartware, Inc. | Blood pump impeller |
US20220331580A1 (en) | 2021-04-15 | 2022-10-20 | Tc1 Llc | Systems and methods for medical device connectors |
US11867176B1 (en) | 2021-04-16 | 2024-01-09 | Lex Submersible Pumps FZE Company | Method and apparatus for a submersible multistage labyrinth-screw pump |
WO2022245496A1 (en) | 2021-05-18 | 2022-11-24 | Heartware, Inc. | Stroke detection and stroke risk management in mechanical circulatory support device patients |
DE102021207404A1 (de) * | 2021-07-13 | 2023-01-19 | Robert Bosch Gesellschaft mit beschränkter Haftung | Pumpenvorrichtung, insbesondere Magnetkupplungspumpenvorrichtung |
US11813468B2 (en) | 2021-07-16 | 2023-11-14 | Medtronic, Inc. | Connector conditioning/bore plug |
WO2023023545A2 (en) | 2021-08-17 | 2023-02-23 | Medtronic, Inc. | Hvad adverse event detection from cardiac compass data |
US20230149694A1 (en) * | 2021-11-15 | 2023-05-18 | Medtronic, Inc. | Mechanical circulatory support device |
US20230190290A1 (en) * | 2021-12-16 | 2023-06-22 | Cilag Gmbh International | Implantable sphincter assistance device with holding, aligning or clamping features integrated into housing |
WO2023158493A1 (en) | 2022-02-16 | 2023-08-24 | Tc1 Llc | Real time heart rate monitoring for close loop control and/or artificial pulse synchronization of implantable ventricular assist devices |
WO2023229899A1 (en) | 2022-05-26 | 2023-11-30 | Tc1 Llc | Tri-axis accelerometers for patient physiologic monitoring and closed loop control of implantable ventricular assist devices |
WO2023235230A1 (en) | 2022-06-02 | 2023-12-07 | Tc1 Llc | Implanted connector booster sealing for implantable medical devices |
WO2024050319A1 (en) | 2022-08-29 | 2024-03-07 | Tc1 Llc | Implantable electrical connector assembly |
CN115400343B (zh) * | 2022-09-30 | 2024-06-14 | 重庆凯磁医疗技术有限公司 | 一种人工血泵的转子结构 |
CN115337534B (zh) * | 2022-09-30 | 2024-06-14 | 重庆凯磁医疗技术有限公司 | 一种用于血泵的磁悬浮增压装置 |
CN115518288B (zh) * | 2022-09-30 | 2024-06-18 | 重庆凯磁医疗技术有限公司 | 一种磁悬浮轴向端部双电机血泵 |
CN115445075B (zh) * | 2022-09-30 | 2024-06-14 | 重庆凯磁医疗技术有限公司 | 一种磁悬浮轴向端部双电机血泵的磁悬浮增压驱动总成 |
WO2024097236A1 (en) | 2022-11-01 | 2024-05-10 | Tc1 Llc | Assessment and management of adverse event risks in mechanical circulatory support patients |
CN116421879A (zh) * | 2023-06-13 | 2023-07-14 | 北京悦唯医疗科技有限责任公司 | 流体动力导管 |
CN117627955B (zh) * | 2023-12-05 | 2024-06-11 | 吉林大学 | 一种防破乳的胶乳泵叶轮 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4642036A (en) * | 1984-09-17 | 1987-02-10 | Young Niels O | Magnet ball pump |
US6234772B1 (en) * | 1999-04-28 | 2001-05-22 | Kriton Medical, Inc. | Rotary blood pump |
US6234998B1 (en) * | 1996-02-20 | 2001-05-22 | Kriton Medical, Inc. | Sealless rotary blood pump |
CN1372479A (zh) * | 1999-04-23 | 2002-10-02 | 文特拉西斯特股份有限公司 | 旋转血泵及其控制系统 |
CN1886161A (zh) * | 2003-09-18 | 2006-12-27 | 奥基斯医药公司 | 旋转式血泵 |
Family Cites Families (165)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2362667A (en) | 1942-05-15 | 1944-11-14 | Westinghouse Electric & Mfg Co | Thrust bearing |
US3142519A (en) * | 1962-12-07 | 1964-07-28 | Ind Tectonics Inc | Tilting pad thrust bearing |
US3608088A (en) * | 1969-04-17 | 1971-09-28 | Univ Minnesota | Implantable blood pump |
US4004298A (en) | 1975-03-31 | 1977-01-25 | Sinai Hospital Of Detroit | Magnetically aligned releasable connector |
US4688998A (en) * | 1981-03-18 | 1987-08-25 | Olsen Don B | Magnetically suspended and rotated impellor pump apparatus and method |
US5078741A (en) | 1986-10-12 | 1992-01-07 | Life Extenders Corporation | Magnetically suspended and rotated rotor |
US4944748A (en) | 1986-10-12 | 1990-07-31 | Bramm Gunter W | Magnetically suspended and rotated rotor |
US4806080A (en) | 1983-07-06 | 1989-02-21 | Ebara Corporation | Pump with shaftless impeller |
US4704121A (en) | 1983-09-28 | 1987-11-03 | Nimbus, Inc. | Anti-thrombogenic blood pump |
US4625712A (en) | 1983-09-28 | 1986-12-02 | Nimbus, Inc. | High-capacity intravascular blood pump utilizing percutaneous access |
DE3343186A1 (de) | 1983-11-29 | 1985-06-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München | Magnetische rotorlagerung |
US4606698A (en) | 1984-07-09 | 1986-08-19 | Mici Limited Partnership Iv | Centrifugal blood pump with tapered shaft seal |
US4769031A (en) | 1986-06-25 | 1988-09-06 | Mcgough Edwin C | Ventricular access device and method |
US4753221A (en) * | 1986-10-22 | 1988-06-28 | Intravascular Surgical Instruments, Inc. | Blood pumping catheter and method of use |
US4745345A (en) | 1986-12-02 | 1988-05-17 | Camatec Corporation | D.C. motor with axially disposed working flux gap |
US4779614A (en) | 1987-04-09 | 1988-10-25 | Nimbus Medical, Inc. | Magnetically suspended rotor axial flow blood pump |
US5246295A (en) * | 1991-10-30 | 1993-09-21 | Ide Russell D | Non-contacting mechanical face seal of the gap-type |
US4860362A (en) | 1987-09-08 | 1989-08-22 | Siemens Hearing Instruments, Inc. | Hearing aid and method for making it |
US4846152A (en) | 1987-11-24 | 1989-07-11 | Nimbus Medical, Inc. | Single-stage axial flow blood pump |
US4817586A (en) | 1987-11-24 | 1989-04-04 | Nimbus Medical, Inc. | Percutaneous bloom pump with mixed-flow output |
US4895557A (en) * | 1987-12-07 | 1990-01-23 | Nimbus Medical, Inc. | Drive mechanism for powering intravascular blood pumps |
US4994078A (en) | 1988-02-17 | 1991-02-19 | Jarvik Robert K | Intraventricular artificial hearts and methods of their surgical implantation and use |
US4906229A (en) | 1988-05-03 | 1990-03-06 | Nimbus Medical, Inc. | High-frequency transvalvular axisymmetric blood pump |
US4880362A (en) | 1988-05-24 | 1989-11-14 | Laing Karsten A | Rotor with stabilizing magnets |
US4908012A (en) * | 1988-08-08 | 1990-03-13 | Nimbus Medical, Inc. | Chronic ventricular assist system |
JPH0653161B2 (ja) * | 1988-09-28 | 1994-07-20 | 東洋紡績株式会社 | 循環装置 |
US4919647A (en) | 1988-10-13 | 1990-04-24 | Kensey Nash Corporation | Aortically located blood pumping catheter and method of use |
US4957504A (en) | 1988-12-02 | 1990-09-18 | Chardack William M | Implantable blood pump |
US4944722A (en) | 1989-02-23 | 1990-07-31 | Nimbus Medical, Inc. | Percutaneous axial flow blood pump |
US5017103A (en) | 1989-03-06 | 1991-05-21 | St. Jude Medical, Inc. | Centrifugal blood pump and magnetic coupling |
US5049134A (en) | 1989-05-08 | 1991-09-17 | The Cleveland Clinic Foundation | Sealless heart pump |
US5324177A (en) | 1989-05-08 | 1994-06-28 | The Cleveland Clinic Foundation | Sealless rotodynamic pump with radially offset rotor |
EP0401761B1 (en) | 1989-06-05 | 1994-11-02 | Ebara Corporation | Magnet pump |
US5079467A (en) * | 1989-07-10 | 1992-01-07 | Regents Of The University Of Minnesota | Radial drive for fluid pump |
JPH03111697A (ja) | 1989-09-22 | 1991-05-13 | Jidosha Denki Kogyo Co Ltd | 小型遠心ポンプ |
EP0431332B1 (en) | 1989-11-08 | 1995-11-02 | Sanwa Tokushu Seiko Co., Ltd. | Magnetically driven pump |
US5112202A (en) * | 1990-01-31 | 1992-05-12 | Ntn Corporation | Turbo pump with magnetically supported impeller |
US5145333A (en) | 1990-03-01 | 1992-09-08 | The Cleveland Clinic Foundation | Fluid motor driven blood pump |
JPH0636821B2 (ja) | 1990-03-08 | 1994-05-18 | 健二 山崎 | 体内埋設形の補助人工心臓 |
US5092844A (en) | 1990-04-10 | 1992-03-03 | Mayo Foundation For Medical Education And Research | Intracatheter perfusion pump apparatus and method |
EP0452827B1 (en) | 1990-04-16 | 1995-08-02 | Nikkiso Co., Ltd. | Blood pump and extracorporeal blood circulating apparatus |
US5129789A (en) | 1990-04-23 | 1992-07-14 | Advanced Medical Systems, Inc. | Means and method of pumping fluids, particularly biological fluids |
US5211546A (en) | 1990-05-29 | 1993-05-18 | Nu-Tech Industries, Inc. | Axial flow blood pump with hydrodynamically suspended rotor |
US5112200A (en) * | 1990-05-29 | 1992-05-12 | Nu-Tech Industries, Inc. | Hydrodynamically suspended rotor axial flow blood pump |
US5158440A (en) | 1990-10-04 | 1992-10-27 | Ingersoll-Rand Company | Integrated centrifugal pump and motor |
US5470208A (en) * | 1990-10-05 | 1995-11-28 | Kletschka; Harold D. | Fluid pump with magnetically levitated impeller |
US5055005A (en) | 1990-10-05 | 1991-10-08 | Kletschka Harold D | Fluid pump with levitated impeller |
US5195877A (en) * | 1990-10-05 | 1993-03-23 | Kletschka Harold D | Fluid pump with magnetically levitated impeller |
US5205721A (en) | 1991-02-13 | 1993-04-27 | Nu-Tech Industries, Inc. | Split stator for motor/blood pump |
US5316440A (en) * | 1991-05-10 | 1994-05-31 | Terumo Kabushiki Kaisha | Blood pump apparatus |
US5263925A (en) * | 1991-07-22 | 1993-11-23 | Gilmore Jr Thomas F | Photopheresis blood treatment |
US5290236A (en) | 1991-09-25 | 1994-03-01 | Baxter International Inc. | Low priming volume centrifugal blood pump |
US5263924A (en) * | 1991-09-25 | 1993-11-23 | Baxter International Inc. | Integrated low priming volume centrifugal pump and membrane oxygenator |
US5182533A (en) | 1991-10-11 | 1993-01-26 | Csd, Inc. | Magnetically levitated spinning axel display apparatus |
JP2580275Y2 (ja) | 1992-03-24 | 1998-09-03 | 三和ハイドロテック株式会社 | マグネットポンプ |
US5676651A (en) | 1992-08-06 | 1997-10-14 | Electric Boat Corporation | Surgically implantable pump arrangement and method for pumping body fluids |
JPH0669492B2 (ja) | 1992-08-20 | 1994-09-07 | 日機装株式会社 | 血液ポンプ |
SE501215C2 (sv) * | 1992-09-02 | 1994-12-12 | Oeyvind Reitan | Kateterpump |
US5713730A (en) * | 1992-09-04 | 1998-02-03 | Kyocera Corporation | Ceramic pivot bearing arrangement for a sealless blood pump |
US5405251A (en) | 1992-09-11 | 1995-04-11 | Sipin; Anatole J. | Oscillating centrifugal pump |
US5376114A (en) | 1992-10-30 | 1994-12-27 | Jarvik; Robert | Cannula pumps for temporary cardiac support and methods of their application and use |
EP0599138A3 (en) * | 1992-11-27 | 1994-12-07 | Urawa Kohgyo Co Ltd | Blood pump for blood circulation. |
US5393207A (en) | 1993-01-21 | 1995-02-28 | Nimbus, Inc. | Blood pump with disposable rotor assembly |
JP2569419B2 (ja) * | 1993-02-18 | 1997-01-08 | 工業技術院長 | 人工心臓用ポンプ |
JP3085835B2 (ja) | 1993-04-28 | 2000-09-11 | 京セラ株式会社 | 血液ポンプ |
US5542817A (en) * | 1993-06-16 | 1996-08-06 | Itt Flygt Ab | Impeller for a rotary pump |
DE4321260C1 (de) * | 1993-06-25 | 1995-03-09 | Westphal Dieter Dipl Ing Dipl | Blutpumpe als Zentrifugalpumpe |
US5368438A (en) * | 1993-06-28 | 1994-11-29 | Baxter International Inc. | Blood pump |
US5947892A (en) | 1993-11-10 | 1999-09-07 | Micromed Technology, Inc. | Rotary blood pump |
US5527159A (en) | 1993-11-10 | 1996-06-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Rotary blood pump |
US6102845A (en) | 1994-02-07 | 2000-08-15 | Baxter International Inc. | Ventricular assist device with minimal blood contacting surfaces |
CA2165166C (en) | 1994-04-15 | 2002-12-17 | John J. Pacella | Blood pump device and method of producing |
US5507629A (en) | 1994-06-17 | 1996-04-16 | Jarvik; Robert | Artificial hearts with permanent magnet bearings |
DE4430853A1 (de) | 1994-08-31 | 1996-03-07 | Jostra Medizintechnik | Zentrifugal-Blutpumpe |
US5591017A (en) | 1994-10-03 | 1997-01-07 | Ametek, Inc. | Motorized impeller assembly |
US5613935A (en) | 1994-12-16 | 1997-03-25 | Jarvik; Robert | High reliability cardiac assist system |
US5725357A (en) | 1995-04-03 | 1998-03-10 | Ntn Corporation | Magnetically suspended type pump |
US6206659B1 (en) * | 1995-06-01 | 2001-03-27 | Advanced Bionics, Inc. | Magnetically driven rotor for blood pump |
US5924848A (en) | 1995-06-01 | 1999-07-20 | Advanced Bionics, Inc. | Blood pump having radial vanes with enclosed magnetic drive components |
US5938412A (en) | 1995-06-01 | 1999-08-17 | Advanced Bionics, Inc. | Blood pump having rotor with internal bore for fluid flow |
US5575630A (en) | 1995-08-08 | 1996-11-19 | Kyocera Corporation | Blood pump having magnetic attraction |
US5924975A (en) | 1995-08-30 | 1999-07-20 | International Business Machines Corporation | Linear pump |
US5824070A (en) | 1995-10-30 | 1998-10-20 | Jarvik; Robert | Hybrid flow blood pump |
US5695471A (en) | 1996-02-20 | 1997-12-09 | Kriton Medical, Inc. | Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings |
US5676035A (en) * | 1996-03-05 | 1997-10-14 | Fmc Corporation | Cam follower retainer for a swashplate pump |
US5649811A (en) | 1996-03-06 | 1997-07-22 | The United States Of America As Represented By The Secretary Of The Navy | Combination motor and pump assembly |
JP3599886B2 (ja) * | 1996-03-08 | 2004-12-08 | 日立粉末冶金株式会社 | 動圧スラスト多孔質軸受 |
DE19613564C1 (de) | 1996-04-04 | 1998-01-08 | Guenter Prof Dr Rau | Intravasale Blutpumpe |
US6074180A (en) | 1996-05-03 | 2000-06-13 | Medquest Products, Inc. | Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method |
JPH09313600A (ja) * | 1996-05-28 | 1997-12-09 | Terumo Corp | 遠心式液体ポンプ装置 |
US6244835B1 (en) | 1996-06-26 | 2001-06-12 | James F. Antaki | Blood pump having a magnetically suspended rotor |
US6015272A (en) * | 1996-06-26 | 2000-01-18 | University Of Pittsburgh | Magnetically suspended miniature fluid pump and method of designing the same |
JP2807786B2 (ja) * | 1996-07-26 | 1998-10-08 | 工業技術院長 | 人工心臓用ポンプ |
AT404318B (de) * | 1996-07-29 | 1998-10-27 | Heinrich Dr Schima | Zentrifugalpumpe bestehend aus einem pumpenkopf und einem scheibenläuferantrieb zur förderung von blut und anderen scherempfindlichen flüssigkeiten |
JP4016441B2 (ja) | 1996-10-02 | 2007-12-05 | 株式会社ジェイ・エム・エス | ターボ式血液ポンプ |
DE69739257D1 (de) | 1996-10-04 | 2009-03-26 | United States Surgical Corp | Kreislaufunterstützungssystem |
US6071093A (en) * | 1996-10-18 | 2000-06-06 | Abiomed, Inc. | Bearingless blood pump and electronic drive system |
SE508442C2 (sv) | 1997-01-28 | 1998-10-05 | Magnetal Ab | Elektrodynamiskt magnetlager |
US5829338A (en) * | 1997-03-03 | 1998-11-03 | Fmc Corporation | Pump having unidirectional tapered land thrust bearing cluster |
US5951169A (en) * | 1997-03-27 | 1999-09-14 | Pump Engineering, Inc. | Thrust bearing |
US6036435A (en) * | 1997-03-27 | 2000-03-14 | Pump Engineering, Inc. | Thrust bearing |
US5964694A (en) * | 1997-04-02 | 1999-10-12 | Guidant Corporation | Method and apparatus for cardiac blood flow assistance |
AUPO902797A0 (en) | 1997-09-05 | 1997-10-02 | Cortronix Pty Ltd | A rotary blood pump with hydrodynamically suspended impeller |
DE59712162D1 (de) * | 1997-09-04 | 2005-02-17 | Levitronix Llc Waltham | Zentrifugalpumpe |
US6250880B1 (en) | 1997-09-05 | 2001-06-26 | Ventrassist Pty. Ltd | Rotary pump with exclusively hydrodynamically suspended impeller |
US5904646A (en) * | 1997-09-08 | 1999-05-18 | Jarvik; Robert | Infection resistant power cable system for medically implanted electric motors |
US6390969B1 (en) * | 1997-10-09 | 2002-05-21 | Orqis Medical Corporation | Implantable heart assist system and method of applying same |
US6610004B2 (en) | 1997-10-09 | 2003-08-26 | Orqis Medical Corporation | Implantable heart assist system and method of applying same |
UA56262C2 (uk) * | 1997-10-09 | 2003-05-15 | Орквіс Медікел Корпорейшн | Імплантовувана система підтримки серця |
US6387037B1 (en) | 1997-10-09 | 2002-05-14 | Orqis Medical Corporation | Implantable heart assist system and method of applying same |
US6007478A (en) | 1997-11-13 | 1999-12-28 | Impella Cardiotechnik Aktiengesellschaft | Cannula having constant wall thickness with increasing distal flexibility and method of making |
US5928131A (en) | 1997-11-26 | 1999-07-27 | Vascor, Inc. | Magnetically suspended fluid pump and control system |
US6120537A (en) | 1997-12-23 | 2000-09-19 | Kriton Medical, Inc. | Sealless blood pump with means for avoiding thrombus formation |
US6111332A (en) | 1998-02-03 | 2000-08-29 | The Regents Of The University Of California | Combined passive bearing element/generator motor |
JPH11244376A (ja) * | 1998-02-27 | 1999-09-14 | Kyocera Corp | 血液ポンプ |
US6176822B1 (en) * | 1998-03-31 | 2001-01-23 | Impella Cardiotechnik Gmbh | Intracardiac blood pump |
DE19821307C1 (de) * | 1998-05-13 | 1999-10-21 | Impella Cardiotech Gmbh | Intrakardiale Blutpumpe |
US6042347A (en) | 1998-07-27 | 2000-03-28 | Scholl; Frank G. | Pedia-cadio pump |
US6152704A (en) | 1998-09-30 | 2000-11-28 | A-Med Systems, Inc. | Blood pump with turbine drive |
JP2000188822A (ja) * | 1998-10-14 | 2000-07-04 | Furukawa Electric Co Ltd:The | 電力ケ―ブル接続部および電力ケ―ブル接続部に用いるシリコ―ン皮膜形成用組成物 |
US6001056A (en) | 1998-11-13 | 1999-12-14 | Baxter International Inc. | Smooth ventricular assist device conduit |
DE29821565U1 (de) * | 1998-12-02 | 2000-06-15 | Impella Cardiotechnik AG, 52074 Aachen | Lagerlose Blutpumpe |
US6132094A (en) | 1998-12-21 | 2000-10-17 | Fmc Corporation | Multiple groove thrust bearing |
AUPP995999A0 (en) * | 1999-04-23 | 1999-05-20 | University Of Technology, Sydney | Non-contact estimation and control system |
US20050196293A1 (en) | 1999-04-23 | 2005-09-08 | Ayre Peter J. | Rotary blood pump and control system therefor |
US6304015B1 (en) | 1999-05-13 | 2001-10-16 | Alexei Vladimirovich Filatov | Magneto-dynamic bearing |
US6398494B1 (en) * | 1999-05-14 | 2002-06-04 | Argo-Tech Corporation | Centrifugal pump impeller |
US6250080B1 (en) * | 1999-06-24 | 2001-06-26 | Wartsila Nsd North America, Inc. | Mobile modular intermodal cogeneration system |
US7138776B1 (en) | 1999-07-08 | 2006-11-21 | Heartware, Inc. | Method and apparatus for controlling brushless DC motors in implantable medical devices |
US6346071B1 (en) | 1999-07-16 | 2002-02-12 | World Heart Corporation | Inflow conduit assembly for a ventricular assist device |
US6423772B1 (en) * | 1999-07-16 | 2002-07-23 | Institute Of Chemistry, Chinese Academy Of Sciences | Organo-bridged ladderlike polysiloxane, tube-like organosilicon polymers, complexes thereof, and the method for producing the same |
US6250230B1 (en) | 1999-07-20 | 2001-06-26 | The Regents Of The University Of California | Apparatus and method for reducing inductive coupling between levitation and drive coils within a magnetic propulsion system |
US6227817B1 (en) | 1999-09-03 | 2001-05-08 | Magnetic Moments, Llc | Magnetically-suspended centrifugal blood pump |
US6227820B1 (en) * | 1999-10-05 | 2001-05-08 | Robert Jarvik | Axial force null position magnetic bearing and rotary blood pumps which use them |
JP2001342986A (ja) | 1999-10-21 | 2001-12-14 | Yoshio Yano | コンタミの発生しない非接触ポンプ |
US6439845B1 (en) | 2000-03-23 | 2002-08-27 | Kidney Replacement Services, P.C. | Blood pump |
US6530876B1 (en) * | 2000-04-25 | 2003-03-11 | Paul A. Spence | Supplemental heart pump methods and systems for supplementing blood through the heart |
US6527699B1 (en) * | 2000-06-02 | 2003-03-04 | Michael P. Goldowsky | Magnetic suspension blood pump |
DE10034662A1 (de) | 2000-07-16 | 2002-01-24 | Wolfgang Amrhein | Aufwandsamer elektrischer Antrieb zur Erzeugung von Tragkräften und Drehmomenten |
JP2002054198A (ja) | 2000-08-10 | 2002-02-20 | Toto Ltd | 湯水混合水栓器具 |
JP3644491B2 (ja) | 2000-09-11 | 2005-04-27 | 株式会社ジェイ・エム・エス | ターボ式血液ポンプ |
JP3582467B2 (ja) | 2000-09-14 | 2004-10-27 | 株式会社ジェイ・エム・エス | ターボ式血液ポンプ |
US6761532B2 (en) | 2001-03-14 | 2004-07-13 | Vascor, Inc. | Touch down of blood pump impellers |
US6547539B2 (en) | 2001-05-21 | 2003-04-15 | Advanced Bionics, Inc. | Pump assembly with bearing and seal-free reusable impeller for fragile and aggressive fluids |
JP3834610B2 (ja) | 2001-07-12 | 2006-10-18 | 独立行政法人産業技術総合研究所 | 動圧軸受を備えた人工心臓ポンプ |
US6641378B2 (en) * | 2001-11-13 | 2003-11-04 | William D. Davis | Pump with electrodynamically supported impeller |
US6981942B2 (en) | 2001-11-19 | 2006-01-03 | University Of Medicine And Dentristy Of New Jersey | Temporary blood circulation assist device |
US20030113208A1 (en) * | 2001-12-17 | 2003-06-19 | Hart Robert M. | Rotary blood pump |
CA2374989A1 (en) | 2002-03-08 | 2003-09-08 | Andre Garon | Ventricular assist device comprising a dual inlet hybrid flow blood pump |
US6884210B2 (en) * | 2002-06-12 | 2005-04-26 | Miwatec Incorporated | Blood pump |
US6732501B2 (en) | 2002-06-26 | 2004-05-11 | Heartware, Inc. | Ventricular connector |
US7156873B2 (en) * | 2002-09-10 | 2007-01-02 | Miwatec Co., Ltd. | Methods for detecting an abnormal condition of a blood pump system |
US7470246B2 (en) | 2002-12-17 | 2008-12-30 | Terumo Kabushiki Kaisha | Centrifugal blood pump apparatus |
US6864210B2 (en) | 2003-02-06 | 2005-03-08 | Equistar Chemicals, Lp | Bimetallic olefin polymerization catalysts containing indigoid ligands |
JP4078245B2 (ja) * | 2003-04-30 | 2008-04-23 | 三菱重工業株式会社 | 人工心臓ポンプ |
CA2428741A1 (en) | 2003-05-13 | 2004-11-13 | Cardianove Inc. | Dual inlet mixed-flow blood pump |
US20040241019A1 (en) | 2003-05-28 | 2004-12-02 | Michael Goldowsky | Passive non-contacting smart bearing suspension for turbo blood-pumps |
US7021905B2 (en) * | 2003-06-25 | 2006-04-04 | Advanced Energy Conversion, Llc | Fluid pump/generator with integrated motor and related stator and rotor and method of pumping fluid |
US20070129779A1 (en) * | 2004-02-04 | 2007-06-07 | Ayre Peter J | Percutaneous lead |
DE602005019219D1 (de) | 2004-03-24 | 2010-03-25 | Terumo Corp | Zentrifugalblutpumpe mit hydrodynamischer Lagerung |
US20060083642A1 (en) | 2004-10-18 | 2006-04-20 | Cook Martin C | Rotor stability of a rotary pump |
US8419609B2 (en) * | 2005-10-05 | 2013-04-16 | Heartware Inc. | Impeller for a rotary ventricular assist device |
TWI296025B (en) * | 2005-05-27 | 2008-04-21 | Delta Electronics Inc | Fan and impeller thereof |
US8672611B2 (en) | 2006-01-13 | 2014-03-18 | Heartware, Inc. | Stabilizing drive for contactless rotary blood pump impeller |
EP3954901A1 (en) | 2006-01-13 | 2022-02-16 | HeartWare, Inc. | Rotary blood pump |
-
2007
- 2007-01-12 EP EP21198909.0A patent/EP3954901A1/en not_active Withdrawn
- 2007-01-12 KR KR1020087019783A patent/KR101356414B1/ko active IP Right Grant
- 2007-01-12 EP EP07709705.3A patent/EP1977110B8/en not_active Not-in-force
- 2007-01-12 WO PCT/US2007/000763 patent/WO2007084339A2/en active Application Filing
- 2007-01-12 CA CA002636418A patent/CA2636418A1/en not_active Abandoned
- 2007-01-12 CN CN2007800030147A patent/CN101371041B/zh active Active
- 2007-01-12 EP EP18199912.9A patent/EP3477103B1/en active Active
- 2007-01-12 JP JP2008550412A patent/JP5155186B2/ja active Active
- 2007-01-12 AU AU2007207782A patent/AU2007207782B2/en active Active
- 2007-01-12 CN CN201310285851.0A patent/CN103432637B/zh active Active
- 2007-01-16 US US11/654,226 patent/US7976271B2/en active Active
- 2007-01-16 US US11/654,216 patent/US8512013B2/en active Active
- 2007-01-16 US US11/654,217 patent/US7997854B2/en not_active Expired - Fee Related
-
2008
- 2008-07-06 IL IL192649A patent/IL192649A/en not_active IP Right Cessation
-
2011
- 2011-08-04 US US13/198,315 patent/US8540477B2/en active Active
-
2012
- 2012-05-22 JP JP2012116644A patent/JP5539441B2/ja active Active
-
2013
- 2013-07-31 US US13/955,955 patent/US9777732B2/en active Active
- 2013-09-23 US US14/034,357 patent/US8932006B2/en not_active Expired - Fee Related
-
2014
- 2014-02-26 JP JP2014035942A patent/JP6067606B2/ja not_active Expired - Fee Related
- 2014-12-11 US US14/567,194 patent/US9242032B2/en active Active
-
2016
- 2016-01-21 US US15/003,068 patent/US20160138597A1/en not_active Abandoned
-
2017
- 2017-08-29 US US15/689,567 patent/US10731652B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4642036A (en) * | 1984-09-17 | 1987-02-10 | Young Niels O | Magnet ball pump |
US6234998B1 (en) * | 1996-02-20 | 2001-05-22 | Kriton Medical, Inc. | Sealless rotary blood pump |
CN1372479A (zh) * | 1999-04-23 | 2002-10-02 | 文特拉西斯特股份有限公司 | 旋转血泵及其控制系统 |
US6234772B1 (en) * | 1999-04-28 | 2001-05-22 | Kriton Medical, Inc. | Rotary blood pump |
CN1886161A (zh) * | 2003-09-18 | 2006-12-27 | 奥基斯医药公司 | 旋转式血泵 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106062411A (zh) * | 2014-02-19 | 2016-10-26 | 伯杰橡胶金属有限责任公司 | 用于轴向减振的液力轴承的喷嘴盘 |
CN106062411B (zh) * | 2014-02-19 | 2018-12-28 | 伯杰橡胶金属有限责任公司 | 用于轴向减振的液力轴承的喷嘴盘 |
CN104740704A (zh) * | 2015-04-21 | 2015-07-01 | 傅风荣 | 一种治疗心血管疾病的医疗器械微动力泵 |
US11717670B2 (en) | 2017-06-07 | 2023-08-08 | Shifamed Holdings, LLP | Intravascular fluid movement devices, systems, and methods of use |
US11185677B2 (en) | 2017-06-07 | 2021-11-30 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US11511103B2 (en) | 2017-11-13 | 2022-11-29 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US10722631B2 (en) | 2018-02-01 | 2020-07-28 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
US11229784B2 (en) | 2018-02-01 | 2022-01-25 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
US12076545B2 (en) | 2018-02-01 | 2024-09-03 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
US11964145B2 (en) | 2019-07-12 | 2024-04-23 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of manufacture and use |
US11654275B2 (en) | 2019-07-22 | 2023-05-23 | Shifamed Holdings, Llc | Intravascular blood pumps with struts and methods of use and manufacture |
US11724089B2 (en) | 2019-09-25 | 2023-08-15 | Shifamed Holdings, Llc | Intravascular blood pump systems and methods of use and control thereof |
US12102815B2 (en) | 2019-09-25 | 2024-10-01 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible pump housings |
WO2021073420A1 (zh) * | 2019-10-18 | 2021-04-22 | 上海微创心力医疗科技有限公司 | 叶轮组件及悬浮式血泵 |
US12121713B2 (en) | 2020-09-25 | 2024-10-22 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible blood conduits |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101371041B (zh) | 旋转式血泵 | |
US9050405B2 (en) | Stabilizing drive for contactless rotary blood pump impeller | |
EP2145108B1 (en) | Centrifugal rotary blood pump | |
AU2012261669B2 (en) | Rotary blood pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |