WO2013145135A1 - 補助人工心臓システム - Google Patents

補助人工心臓システム Download PDF

Info

Publication number
WO2013145135A1
WO2013145135A1 PCT/JP2012/058000 JP2012058000W WO2013145135A1 WO 2013145135 A1 WO2013145135 A1 WO 2013145135A1 JP 2012058000 W JP2012058000 W JP 2012058000W WO 2013145135 A1 WO2013145135 A1 WO 2013145135A1
Authority
WO
WIPO (PCT)
Prior art keywords
artificial heart
auxiliary artificial
flow rate
liquid
auxiliary
Prior art date
Application number
PCT/JP2012/058000
Other languages
English (en)
French (fr)
Inventor
貴之 宮越
小林 信治
金箱 秀樹
智哉 北野
Original Assignee
株式会社サンメディカル技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サンメディカル技術研究所 filed Critical 株式会社サンメディカル技術研究所
Priority to PCT/JP2012/058000 priority Critical patent/WO2013145135A1/ja
Priority to US14/388,242 priority patent/US20150051437A1/en
Priority to JP2014507104A priority patent/JP6345113B2/ja
Priority to CN201280059084.5A priority patent/CN103957959A/zh
Publication of WO2013145135A1 publication Critical patent/WO2013145135A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • A61M60/232Centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/178Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/515Regulation using real-time patient data
    • A61M60/531Regulation using real-time patient data using blood pressure data, e.g. from blood pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/538Regulation using real-time blood pump operational parameter data, e.g. motor current
    • A61M60/546Regulation using real-time blood pump operational parameter data, e.g. motor current of blood flow, e.g. by adapting rotor speed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/871Energy supply devices; Converters therefor
    • A61M60/88Percutaneous cables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2240/00Specially adapted for neonatal use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices

Definitions

  • the present invention relates to an auxiliary artificial heart system.
  • FIG. 5 is an exploded perspective view of an auxiliary artificial heart pump 900 in a conventional auxiliary artificial heart system.
  • the auxiliary artificial heart pump 900 includes a rotating part 910 having an impeller 912 and housings 920 and 922 that store the rotating part 910. According to the conventional assistive artificial heart system, it is possible to assist the heart function of the heart disease patient during the period until the heart transplantation.
  • heart disease is very difficult to treat, and there are many cases where there is no fundamental treatment method other than heart transplantation at present.
  • a heart disease patient waiting for a heart transplant (transplant waiting patient) You have to wait for a long time before the heart transplant is realized. For this reason, the period until the heart transplantation operation becomes very long, and the heart transplantation operation may not be completed until the end.
  • the auxiliary artificial heart system is used throughout life without performing heart transplantation surgery.
  • the period during which the user using the auxiliary artificial heart system (hereinafter simply referred to as the user) uses the auxiliary artificial heart system tends to be longer than the period conventionally assumed. For this reason, the importance of suppressing the degree to which a user's health state deteriorates when an auxiliary artificial heart system is used for a long period of time is further increased.
  • the present invention has been made in view of the above circumstances, and an assistive artificial device capable of suppressing the degree of deterioration of the user's health condition when used for a long period of time as compared with a conventional assistive artificial heart system.
  • An object is to provide a cardiac system.
  • the inventors of the present invention have conceived that the pulsatility of the blood flow discharged from the auxiliary artificial heart system is important in order to suppress the degree of deterioration of the user's health condition.
  • an auxiliary artificial heart pump including a rotating part creates a blood flow that is essentially free of pulsation by rotating the rotating part at a constant rotational speed.
  • the heart moves blood by stretching and contracting (pulsating) muscles, it is considered that a blood flow having pulsatile properties is preferable from the viewpoint of the health condition of the user.
  • the present invention is an auxiliary artificial heart system using an auxiliary artificial heart pump including a rotating part, and can make use of the pulsatility of blood flow generated by the pulsation of the heart, and includes the following elements.
  • An auxiliary artificial heart system includes an auxiliary artificial heart pump including a rotating part having an impeller and a housing that houses the rotating part, an introduction-side artificial blood vessel that introduces liquid into the auxiliary artificial heart pump, An auxiliary artificial heart system comprising a delivery-side artificial blood vessel that delivers liquid from an auxiliary artificial heart pump, wherein the auxiliary artificial heart system is connected to a liquid discharge source that discharges liquid while increasing or decreasing the flow rate at a constant cycle.
  • the difference between the maximum flow rate and the minimum flow rate of the liquid is 40% or more of the difference between the maximum flow rate and the minimum flow rate when the auxiliary artificial heart system is not connected to the liquid discharge source. .
  • the difference between the maximum flow rate and the minimum flow rate of the liquid in the state where the auxiliary artificial heart system is connected to the liquid discharge source is the liquid in the state where the auxiliary artificial heart system is not connected to the liquid discharge source. Since the difference between the maximum flow rate and the minimum flow rate is 40% or more, the flow rate fluctuation is sufficiently large with respect to the head fluctuation. As a result, it is possible to suppress the degree of deterioration of the user's health condition when used for a long period of time as compared with the conventional assistive artificial heart system.
  • the difference between the maximum flow rate and the minimum flow rate of the liquid discharged from the auxiliary artificial heart system is the maximum flow rate and the minimum flow rate of the liquid discharged from the liquid discharge source when the auxiliary artificial heart system is not connected.
  • the “liquid discharge source” is a device that simulates the function of the heart when the auxiliary artificial heart system is actually used inside the body, and when the auxiliary artificial heart system is tested outside the body. “The difference between the maximum flow rate and the minimum flow rate of the liquid when the auxiliary artificial heart system is connected” is calculated by the flow rate (so-called pump flow) when only the auxiliary artificial heart pump is seen in the auxiliary artificial heart system. Rather, it is calculated by the flow rate (so-called total flow) when viewed as a whole including the liquid discharge source, the auxiliary artificial heart system, and the like.
  • the “assist artificial heart pump” is a main component of the auxiliary artificial heart system, and refers to a pump that assists the heart weakened by a disease by applying a moving force to blood.
  • the “auxiliary artificial heart system” is a set of devices for use by attaching to a heart weakened by a disease, and mainly refers to a system that assists blood movement.
  • the “artificial blood vessel” includes both flexible ones made of cloth or soft resin and pipe-like ones made of hard resin or metal.
  • the assisting artificial heart system of the present invention is preferably composed of an implantable assisting artificial heart system that is implanted in the human body during actual use (that is, small enough to be implanted in the human body).
  • An auxiliary artificial heart system includes an auxiliary artificial heart pump including a rotating unit having an impeller and a housing that houses the rotating unit, an introduction-side artificial blood vessel that introduces liquid into the auxiliary artificial heart pump, An auxiliary artificial heart system including a delivery-side artificial blood vessel for delivering liquid from an auxiliary artificial heart pump, measuring the relationship between the head and flow rate using a liquid whose viscosity and density are equivalent to blood as an operating liquid, and having a constant rotational speed When the graph is drawn with the vertical axis in mmHg and the horizontal axis in L / min, the flow rate is 5 L / min or more at a point where the pressure is 20 mmHg lower than the deadline. .
  • the flow rate is 5 L / min or more at a point where the pressure of 20 mmHg is lower than the deadline lift, the flow rate is sufficiently higher than the size of the conventional auxiliary artificial heart system. It becomes large and can fully utilize the pulsatility of blood flow generated by the pulsation of the heart. As a result, it is possible to suppress the degree of deterioration of the user's health condition when used for a long period of time as compared with the conventional assistive artificial heart system.
  • the flow rate is preferably 8 L / min or more, and more preferably 10 L / min or more, in that the 20 mmHg pressure is low from the deadline.
  • the deadline head refers to the head when the flow rate is 0 L / min.
  • An auxiliary artificial heart system includes an auxiliary artificial heart pump including a rotating part having an impeller and a housing that houses the rotating part, an introduction-side artificial blood vessel that introduces liquid into the auxiliary artificial heart pump, An auxiliary artificial heart system including a delivery-side artificial blood vessel for delivering liquid from an auxiliary artificial heart pump, measuring the relationship between the head and flow rate using a liquid whose viscosity and density are equivalent to blood as an operating liquid, and having a constant rotational speed
  • the slope of the graph at the point where the lift is 100 mmHg and the flow rate is 5 L / min is ⁇ 5 It is characterized by being in the range of ⁇ 0.
  • the slope of the graph at the point where the head is 100 mmHg and the flow rate is 5 L / min is in the range of ⁇ 5 to 0 under the above conditions.
  • the fluctuation of the flow rate is sufficiently larger than the fluctuation of the head as compared with the heart system, and the pulsatility of blood generated by the pulsation of the heart can be fully utilized. As a result, it is possible to suppress the degree of deterioration of the user's health condition when used for a long period of time as compared with the conventional assistive artificial heart system.
  • the slope of the graph is in the range of -5 to 0.
  • the slope of the graph is preferably in the range of ⁇ 4 to 0, and more preferably in the range of ⁇ 3 to 0.
  • An auxiliary artificial heart system includes an auxiliary artificial heart pump including a rotating part having an impeller and a housing that houses the rotating part, an introduction-side artificial blood vessel that introduces liquid into the auxiliary artificial heart pump, An auxiliary artificial heart system comprising a delivery-side artificial blood vessel that delivers liquid from an auxiliary artificial heart pump, and when the liquid is flowed with the rotation speed of the rotating part being constant, the flow rate fluctuation is larger than the lift fluctuation It is characterized by that.
  • the flow rate fluctuation is large with respect to the head fluctuation (that is, the pressure fluctuation caused by the heart beat), so that the blood flow beat caused by the heart beat is increased.
  • the pressure loss is measured at a flow rate of 6 L / min while the auxiliary artificial heart pump is stopped with the liquid whose viscosity and density are equivalent to blood as the working liquid.
  • the pressure loss is preferably 25 mmHg or less.
  • the pressure loss of the auxiliary artificial heart system is more preferably in the range of 5 mmHg to 20 mmHg. This is because when the pressure loss is greater than 20 mmHg, it may be difficult to sufficiently utilize the pulsatility of the blood flow by sufficiently reducing the pressure loss, and when the pressure loss is less than 5 mmHg. This is because there is a case where a sufficient force for moving blood cannot be secured due to a design problem of the rotating part.
  • pressure loss of the auxiliary artificial heart system means that when the auxiliary artificial heart pump in the auxiliary artificial heart system is stopped and the working liquid is poured at a predetermined flow rate (6 L / min), the liquid The pressure required to pass from the introduction side artificial blood vessel through the auxiliary artificial heart pump to the delivery side artificial blood vessel.
  • the auxiliary artificial heart pump is a centrifugal auxiliary artificial heart pump, and is the minimum distance between the introduction-side artificial blood vessel and the blood introduction part of the auxiliary artificial heart pump.
  • a value obtained by dividing the inner diameter by the rotational diameter of the impeller is preferably in the range of 0.2 to 0.8.
  • the value obtained by dividing the minimum inner diameter between the introduction-side artificial blood vessel and the blood introduction part of the auxiliary artificial heart pump by the rotation diameter of the impeller is within the range of 0.2 to 0.8.
  • the numerical value is smaller than 0.2, the minimum inner diameter becomes too small, and it may be difficult to sufficiently utilize the pulsatility of the blood flow by sufficiently reducing the pressure loss. This is because when the numerical value is larger than 0.8, it may be difficult to obtain a sufficiently compact auxiliary artificial heart system.
  • the auxiliary artificial heart pump is a centrifugal auxiliary artificial heart pump, and the minimum distance between the delivery-side artificial blood vessel and the blood delivery unit in the auxiliary artificial heart pump.
  • a value obtained by dividing the inner diameter by the rotational diameter of the impeller is preferably in the range of 0.2 to 0.8.
  • the numerical value obtained by dividing the minimum inner diameter from the delivery-side artificial blood vessel to the blood delivery part of the auxiliary artificial heart pump by the rotation diameter of the impeller is in the range of 0.2 to 0.8.
  • the numerical value is smaller than 0.2, the minimum inner diameter becomes too small, and it may be difficult to sufficiently utilize the pulsatility of the blood flow by sufficiently reducing the pressure loss. This is because when the numerical value is larger than 0.8, it may be difficult to obtain a sufficiently compact auxiliary artificial heart system.
  • FIG. 10 is an exploded perspective view of an auxiliary artificial heart pump 900 in a conventional auxiliary artificial heart system.
  • FIG. 1 is a diagram for explaining an auxiliary artificial heart system 100 according to an embodiment.
  • FIG. 1A is a diagram showing a state in which the auxiliary artificial heart system 100 is actually used.
  • FIG. 1B shows an auxiliary artificial heart pump 110, an introduction-side artificial blood vessel 120, and the like in the auxiliary artificial heart system 100. It is a front view which extracts and displays the sending side artificial blood vessel.
  • FIG. 2 is a diagram for explaining the auxiliary artificial heart pump 110 in the auxiliary artificial heart system 100 according to the embodiment.
  • 2A is a top view of the auxiliary artificial heart pump 110
  • FIG. 2B is a cross-sectional view of the auxiliary artificial heart pump 110
  • FIG. 2C is a front view of the rotating unit 10.
  • FIG. 3 is a graph for explaining the state of blood flow measured using the auxiliary artificial heart system 100 according to the embodiment and the liquid ejection source.
  • FIG. 3A is a graph showing a state of blood flow in a state where the auxiliary artificial heart system 100 is not connected to a device (beat simulator) that simulates a failing heart
  • FIG. It is a graph which shows the mode of the blood flow in the state which connected the heart pump.
  • the vertical axis in FIG. 3 represents the flow rate (L / min), and the horizontal axis represents time (sec).
  • the solid line indicates the liquid flow rate (total flow) when the whole including the liquid discharge source and the auxiliary artificial heart system is seen, and the one-dot broken line indicates the auxiliary artificial heart pump. This is the flow rate (pump flow).
  • FIG. 4 is a graph shown for explaining the relationship between the head and the flow rate of the auxiliary artificial heart system 100 according to the embodiment.
  • the upper graph is a graph in which the flow rate is 5 L / min when the lift is 100 mmHg
  • the lower graph is a graph in which the deadline lift is 80 mmHg.
  • a broken line in contact with the upper graph is a tangent at a point where the head is 100 mmHg and the flow rate is 5 L / min.
  • the auxiliary artificial heart system 100 includes an auxiliary artificial heart pump 110, an introduction-side artificial blood vessel 120, a delivery-side artificial blood vessel 130, a cable 140, and a control unit 150 (not shown).
  • the control unit 150 is connected to the auxiliary artificial heart pump 110 via the cable 140 and controls the operation of the auxiliary artificial heart pump 110.
  • the auxiliary artificial heart system 100 is an implantable auxiliary artificial heart system that is used by being implanted in a human body during actual use.
  • the auxiliary artificial heart pump 110 is a centrifugal type auxiliary artificial heart pump including a rotating part 10 (see FIG. 2C) having an impeller 12 and a housing 20 that houses the rotating part 10. It is.
  • the auxiliary artificial heart pump 110 includes a drive unit that rotationally drives the rotating unit 10 and a cool seal that performs functions such as lubrication, cooling, and maintenance of sealing performance inside the auxiliary artificial heart pump 110.
  • a flow path of a liquid also referred to as a purge liquid, for example, water or physiological saline
  • a purge liquid for example, water or physiological saline
  • the rotating unit 10 is directly connected to the driving unit through a rotating shaft.
  • the bearing portion of the rotating unit 10 is a mechanical seal, and has a structure that prevents blood from entering.
  • the housing 20 includes a storage unit 22 that stores a rotating unit, a blood introduction unit 30 that introduces blood from outside the auxiliary artificial heart pump 110 into the auxiliary artificial heart pump 110, and an auxiliary artificial heart pump 110 from inside the auxiliary artificial heart pump 110.
  • the blood introduction part 30 is connected to the introduction-side artificial blood vessel 120, and the blood delivery part 40 is connected to the delivery-side artificial blood vessel 130.
  • the blood introduction part and the blood delivery part may be provided separately from the housing.
  • the auxiliary artificial heart pump 110 used for the auxiliary artificial heart system 100 for example, a pump having the following characteristics can be used.
  • the minimum distance between the impeller 12 and the inner wall of the housing 20 during operation of the auxiliary artificial heart pump 110 is in the range of 0.1 mm to 2.0 mm, and more specifically 0.5 mm to 0. .8 mm, for example, 0.6 mm.
  • the pressure loss when the pressure loss is measured at a flow rate of 6 L / min in a state where the auxiliary artificial heart pump 110 is stopped with a liquid whose viscosity and density are equivalent to blood as an operating liquid, the pressure loss Is 20 mmHg or less, more specifically in the range of 5 mmHg to 16 mmHg, for example, 14 mmHg.
  • the value obtained by dividing the volume of the rotating part 10 by the internal volume of the housing 20 is in the range of 0.01 to 0.50, and more specifically in the range of 0.06 to 0.12. For example, 0.09.
  • the “inner volume of the housing” does not mean only the inner volume of the portion (housing portion 22) for storing the impeller in the housing, but also the portion for introducing blood (connected / separated from the introducing side artificial blood vessel).
  • auxiliary artificial heart pump 110 having the above-described configuration, it is possible to sufficiently reduce the pressure loss and to sufficiently use the pulsatility of the blood flow, and the rotating unit moves the blood. Sufficient power can be secured.
  • the introduction-side artificial blood vessel 120 introduces liquid into the auxiliary artificial heart pump 110.
  • the introduction-side artificial blood vessel 120 connects the heart and the auxiliary artificial heart pump 110 to introduce blood into the auxiliary artificial heart pump 110 (see FIG. 1A).
  • the introduction-side artificial blood vessel 120 is a flexible material made of cloth or soft resin, and has a length of 7.2 cm, for example.
  • the delivery-side artificial blood vessel 130 delivers liquid from the auxiliary artificial heart pump 110.
  • the delivery-side artificial blood vessel 120 connects the auxiliary artificial heart pump 110 and the aorta and delivers blood from the auxiliary artificial heart pump 110.
  • the delivery-side artificial blood vessel 130 is a flexible one made of cloth or soft resin, and has a length of, for example, 25 cm.
  • the flow rate fluctuation is larger than the lift height fluctuation.
  • the graph of FIG. 3 shows a pulsation simulator (pulsation simulator) that actually manufactures an auxiliary artificial heart system having the same configuration as that of the auxiliary artificial heart system 100 according to the embodiment and simulates the delivery of blood from the heart.
  • the experiment was conducted by connecting an auxiliary artificial heart system, and the results were obtained by graphing.
  • As the working liquid for testing for example, an aqueous glycerin solution prepared with a viscosity of 3.5 cP was used.
  • the graph result (waveform) reflects disturbance factors such as a pressure spike waveform due to opening and closing of the valve.
  • the difference between the maximum flow rate and the minimum flow rate of the liquid in a state where the auxiliary artificial heart system 100 is connected to the liquid discharge source that discharges the liquid while increasing / decreasing the flow rate at a constant cycle is the liquid flow rate. It is 40% or more of the difference between the maximum flow rate and the minimum flow rate of the liquid when the auxiliary artificial heart system 100 is not connected to the discharge source, more specifically 80% or more, and specifically about 87%.
  • the maximum pump flow rate (average maximum flow rate is 11.73 L / min) and the minimum flow rate (average minimum flow rate is 1.38 L / min) is 10.35 L / min.
  • the difference between the maximum flow rate and the minimum flow rate of the pump flow rate in a state where the auxiliary artificial heart system 100 is connected to a liquid discharge source that discharges liquid while increasing or decreasing the flow rate at a constant cycle It is 200% or more of the difference between the maximum flow rate and the minimum flow rate when the auxiliary artificial heart system 100 is not connected to the liquid discharge source, more specifically 250% or more, specifically about 270%.
  • the difference between the maximum flow rate and the minimum flow rate of the pump flow rate when the auxiliary artificial heart pump is connected to the liquid discharge source is connected to the liquid discharge source. Since the auxiliary artificial heart pump 110 is 200% or more of the difference between the maximum flow rate and the minimum flow rate of the liquid in the non-operating state, the flow rate fluctuation is sufficiently large with respect to the lift height fluctuation. As a result, it is possible to suppress the degree of deterioration of the user's health condition when used for a long period of time as compared with the conventional assistive artificial heart system.
  • the graph of FIG. 4 is a graph based on the result of manufacturing an auxiliary artificial heart system having the same configuration as the auxiliary artificial heart system 100 according to the embodiment, performing an experiment using the auxiliary artificial heart system. It was obtained by doing.
  • As the working liquid for the test an aqueous glycerin solution having a viscosity of 3.5 cP was used.
  • the auxiliary artificial heart system 100 measures the relationship between the head and the flow rate using a liquid whose viscosity and density are equivalent to blood as an operating liquid, and takes the head in the unit of mmHg at a constant rotation speed.
  • the flow rate is 5 L / min or more, more specifically 10 L / min or more at a point where the 20 mmHg pressure is low from the deadline.
  • the auxiliary artificial heart system 100 measures the relationship between the lift and the flow rate using a liquid whose viscosity and density are equivalent to blood as the working liquid, and the lift is measured in mmHg at a constant rotational speed.
  • the slope of the graph at the point where the head is 100 mmHg and the flow rate is 5 L / min is within the range of -5 to 0. In other words, it is in the range of -3 to 0, specifically about -2.6.
  • the pressure loss when the pressure loss is measured at a flow rate of 6 L / min in a state where the auxiliary artificial heart pump 110 is stopped with a liquid whose viscosity and density are equivalent to blood as an operating liquid, the pressure loss Is 25 mmHg or less, more specifically in the range of 5 mmHg to 20 mmHg, for example, 18 mmHg.
  • the rotation diameter of the impeller 12 (see d1 in FIG. 2C) is 40 mm, and the minimum inner diameter from the introduction side artificial blood vessel 120 to the blood introduction part 30 in the auxiliary artificial heart pump 110 is 16 mm. Therefore, the numerical value obtained by dividing the minimum inner diameter between the introduction-side artificial blood vessel 120 and the blood introduction part 30 in the auxiliary artificial heart pump 110 by the rotation diameter of the impeller 12 is in the range of 0.2 to 0.8. Specifically, it becomes 0.4.
  • the internal diameter from the introduction side artificial blood vessel 120 to the blood introduction part 30 in the auxiliary artificial heart pump 110 is unified with 16 mm (refer also d2 of FIG.2 (b)). ).
  • the minimum inner diameter from the delivery-side artificial blood vessel 130 to the blood delivery part 40 in the auxiliary artificial heart pump 110 is 10 mm. Therefore, in the auxiliary artificial heart system 100, the numerical value obtained by dividing the minimum inner diameter from the delivery-side artificial blood vessel 130 to the blood delivery unit 40 in the auxiliary artificial heart pump 110 by the rotational diameter of the impeller 12 is 0.2 to 0.00. It is in the range of 8, specifically 0.25. In addition, although description by illustration is abbreviate
  • the inner diameter between the delivery-side artificial blood vessel 130 and the blood delivery unit 40 in the auxiliary artificial heart pump 110 is minimized near the junction between the blood delivery unit 40 and the storage unit 22 (the back of the blood introduction unit 40, FIG. 2 (b) d3), and the minimum inner diameter is the diameter of the portion.
  • the difference between the maximum flow rate and the minimum flow rate of the liquid in a state where the auxiliary artificial heart system 100 is connected to the liquid discharge source connects the auxiliary artificial heart system 100 to the liquid discharge source. Since it is 40% or more of the difference between the maximum flow rate and the minimum flow rate of the liquid in the non-operating state, the flow rate variation is sufficiently large with respect to the lift variation. As a result, it is possible to suppress the degree of deterioration of the user's health condition when used for a long period of time as compared with the conventional assistive artificial heart system.
  • the auxiliary artificial heart system 100 since the flow rate is 5 L / min or more at a point where the pressure of 20 mmHg is lower than the deadline lifting height, the size of the lifting height is larger than that of the conventional auxiliary artificial heart system.
  • the flow rate becomes sufficiently large, and the pulsatility of blood flow generated by the pulsation of the heart can be fully utilized. As a result, it is possible to suppress the degree of deterioration of the user's health condition when used for a long period of time as compared with the conventional assistive artificial heart system.
  • the slope of the graph at the point where the head is 100 mmHg and the flow rate is 5 L / min is in the range of ⁇ 5 to 0.
  • the fluctuation of the flow rate is sufficiently larger than the fluctuation of the head as compared with the heart system, and the pulsatility of blood generated by the pulsation of the heart can be fully utilized.
  • the auxiliary artificial heart system 100 since the flow rate is greatly changed with respect to the lift, the pulsatility of the blood flow generated by the pulsation of the heart can be fully utilized. As a result, it is possible to suppress the degree of deterioration of the user's health condition when used for a long period of time as compared with the conventional assistive artificial heart system.
  • the pressure and loss are set at a flow rate of 6 L / min in a state where the auxiliary artificial heart pump 110 is stopped with the liquid whose viscosity and density are equivalent to blood as the working liquid. Since the pressure loss is 25 mmHg or less, it is possible to sufficiently reduce the pressure loss and fully utilize the pulsatility of the blood flow.
  • the auxiliary artificial heart pump 110 includes a centrifugal auxiliary artificial heart pump, and extends from the introduction-side artificial blood vessel 120 to the blood introduction unit 30 in the auxiliary artificial heart pump 110. Since the numerical value obtained by dividing the minimum inner diameter by the rotating diameter of the impeller 12 is in the range of 0.2 to 0.8, it is possible to sufficiently utilize the pulsatility of the blood flow by sufficiently reducing the pressure loss. And a sufficiently compact auxiliary artificial heart system can be obtained.
  • the numerical value obtained by dividing the minimum inner diameter from the delivery-side artificial blood vessel 130 to the blood delivery unit 40 in the auxiliary artificial heart pump 110 by the rotation diameter of the impeller 12 is 0. Since it is in the range of 2 to 0.8, it is possible to make the auxiliary artificial heart system sufficiently compact by making the pressure loss sufficiently low and fully utilizing the pulsatility of the blood flow. It becomes possible.
  • the auxiliary artificial heart system 100 is “the maximum flow rate and the minimum flow rate of the liquid in a state where the auxiliary artificial heart system is connected to a liquid discharge source that discharges liquid while increasing or decreasing the flow rate at a constant cycle.
  • the difference is 40% or more of the difference between the maximum flow rate and the minimum flow rate in the state where the auxiliary artificial heart system is not connected to the liquid discharge source, ”“ the liquid whose viscosity and density are equivalent to blood is used as the working liquid.
  • the flow rate is 5 L / min or more” and “the liquid whose viscosity and density are equivalent to blood is the working liquid, and the relationship between the head and the flow rate is measured and the rotation speed is constant.
  • the slope of the graph at a point where the lift is 100 mmHg and the flow rate is 5 L / min is ⁇ 5 to Although it is within the range of “0” and “when the liquid is flowed with the rotation speed of the rotating part 10 being constant, the flow rate fluctuation is large relative to the head fluctuation”.
  • the present invention is not limited to this.
  • An auxiliary artificial heart pump having a rotating part having an impeller and a housing for storing the rotating part, an introduction-side artificial blood vessel for introducing liquid into the auxiliary artificial heart pump, and a delivery-side artificial blood vessel for sending liquid from the auxiliary artificial heart pump
  • Any assistive artificial heart system provided with any one of the four features described above is within the scope of the present invention.
  • the introduction-side artificial blood vessel and the delivery-side artificial blood vessel are made of a flexible material made of cloth or soft resin, but the present invention is not limited to this.
  • pipes made of hard resin or metal may be used as the introduction-side artificial blood vessel and the delivery-side artificial blood vessel.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Mechanical Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Vascular Medicine (AREA)
  • External Artificial Organs (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 本発明の補助人工心臓システムは、インペラを有する回転部及び回転部を収納するハウジングを備える補助人工心臓ポンプと、補助人工心臓ポンプに液体を導入する導入側人工血管と、補助人工心臓ポンプから液体を送出する送出側人工血管とを備える補助人工心臓システムであって、流量を一定周期で増減させながら液体を吐出する液体吐出源に補助人工心臓システムを接続した状態における液体の最大流量と最小流量との差が、液体吐出源に補助人工心臓システムを接続しない状態における液体の最大流量と最小流量との差の40%以上であることを特徴とする。 本発明の補助人工心臓システムによれば、従来の補助人工心臓システムと比較して、長期間使用したときに使用者の健康状態が悪化する度合いを抑制することが可能となる。

Description

補助人工心臓システム
 本発明は、補助人工心臓システムに関する。
 従来、インペラを有する回転部及び回転部を収納するハウジングを備える補助人工心臓ポンプと、補助人工心臓ポンプに液体を導入する導入側人工血管と、補助人工心臓ポンプから液体を送出する送出側人工血管とを備える補助人工心臓システムが知られている(例えば、特許文献1及び非特許文献1参照。)。
 図5は、従来の補助人工心臓システムにおける補助人工心臓ポンプ900の分解斜視図である。補助人工心臓ポンプ900は、図5に示すように、インペラ912を有する回転部910と、回転部910を収納するハウジング920,922とを備える。従来の補助人工心臓システムによれば、心臓移植までの期間中、心臓疾患患者の心臓の働きを補助することが可能となる。
特表2009-523488号公報
Jeffrey A LaRose、他3名、「American Society of Artificial Internal Organs journal」、2010年、第56巻、第4号、p.285~289
 ところで、心臓疾患は治療が非常に困難であり、現在においては心臓移植以外に根本的な治療方法がないケースも多い。しかし、心臓移植の条件が早急に整うことはまれであるため(例えば、患者に適合するドナーの出現を待たなければならない等)、心臓移植を待っている心臓疾患患者(移植待機患者)は、心臓移植が実現するまで長期間待たなければならない状況にある。このため、心臓移植手術までの期間が非常に長くなり、最後まで心臓移植手術ができないことがある。また、上記状況を鑑みて、心臓移植手術を行わず、補助人工心臓システムを終生使用するという考え方も生まれている。
 上記のように、補助人工心臓システムを使用する使用者(以下、単に使用者という。)が補助人工心臓システムを使用する期間は、従来想定されていた期間よりも長くなる傾向にある。このため、補助人工心臓システムを長期間使用したときに使用者の健康状態が悪化する度合いを抑制することの重要性が一層高くなっている。
 そこで、本発明は上記事情に鑑みてなされたもので、従来の補助人工心臓システムと比較して、長期間使用したときに使用者の健康状態が悪化する度合いを抑制することが可能な補助人工心臓システムを提供することを目的とする。
 本発明の発明者らは、使用者の健康状態が悪化する度合いを抑制するためには、補助人工心臓システムから吐出される血流の拍動性が重要であることに想到し、本発明を完成させた。すなわち、回転部を備える補助人工心臓ポンプは、回転部を一定回転数で回転させることにより、本質的には拍動性を有しない血流を作り出すものである。しかし、心臓は筋肉の伸縮(拍動)により血液を移動させるため、使用者の健康状態の観点からは、拍動性を有する血流が好ましいと考えられるためである。本発明は、回転部を備える補助人工心臓ポンプを用いた補助人工心臓システムでありながら、心臓の拍動により生まれる血流の拍動性を活かすことができるものであり、以下の要素から構成される。
[1]本発明の補助人工心臓システムは、インペラを有する回転部及び前記回転部を収納するハウジングを備える補助人工心臓ポンプと、前記補助人工心臓ポンプに液体を導入する導入側人工血管と、前記補助人工心臓ポンプから液体を送出する送出側人工血管とを備える補助人工心臓システムであって、流量を一定周期で増減させながら液体を吐出する液体吐出源に前記補助人工心臓システムを接続した状態における前記液体の最大流量と最小流量との差が、前記液体吐出源に前記補助人工心臓システムを接続しない状態における前記液体の最大流量と最小流量との差の40%以上であることを特徴とする。
 本発明の補助人工心臓システムによれば、液体吐出源に補助人工心臓システムを接続した状態における液体の最大流量と最小流量との差が、液体吐出源に補助人工心臓システムを接続しない状態における液体の最大流量と最小流量との差の40%以上であるため、揚程の変動に対して流量の変動が十分に大きくなる。その結果、従来の補助人工心臓システムと比較して、長期間使用したときに使用者の健康状態が悪化する度合いを抑制することが可能となる。
 なお、上記観点からは、補助人工心臓システムが吐出する液体の最大流量と最小流量との差が、補助人工心臓システムを接続しなかったときに液体吐出源が吐出する液体の最大流量と最小流量との差の60%以上であることが好ましく、80%以上であることが一層好ましい。また、理想としては100%であることが最も好ましいことは言うまでもない。
 「液体吐出源」は、体内において補助人工心臓システムを実際に用いるときには心臓であり、体外において補助人工心臓システムをテストするときには心臓の働きをシミュレーションする機器である。
 「補助人工心臓システムを接続した状態における液体の最大流量と最小流量との差」は、補助人工心臓システムにおける補助人工心臓ポンプのみを見たときの流量(いわゆるポンプ・フロー)で算出するのではなく、液体吐出源、補助人工心臓システム等を含む全体で見たときの流量(いわゆるトータル・フロー)で算出するものである。
 本明細書において「補助人工心臓ポンプ」とは、補助人工心臓システムの主要要素であり、血液に移動力を付与することにより、疾患により弱った心臓を補助するポンプのことをいう。
 また、「補助人工心臓システム」とは、疾患により弱った心臓に取り付けて用いるための機器一式であり、主に血液の移動を補助するシステムのことをいう。
 また、「人工血管」には、布や軟質樹脂からなる可撓性のものと、硬質樹脂や金属からなるパイプ状のものとの両方を含む。
 本発明の補助人工心臓システムは、実際の使用時において、人体に埋め込んで用いる(つまり、人体に埋め込んで用いるのに十分なほど小型の)埋め込み型の補助人工心臓システムからなることが好ましい。
[2]本発明の補助人工心臓システムは、インペラを有する回転部及び前記回転部を収納するハウジングを備える補助人工心臓ポンプと、前記補助人工心臓ポンプに液体を導入する導入側人工血管と、前記補助人工心臓ポンプから液体を送出する送出側人工血管とを備える補助人工心臓システムであって、粘度及び密度が血液相当である液体を動作液体として揚程と流量との関係を測定し、一定回転数において、揚程をmmHg単位で縦軸にとり、流量をL/min単位で横軸にとってグラフを作成したとき、締め切り揚程から20mmHg圧力が低い点において、流量が5L/min以上であることを特徴とする。
 本発明の補助人工心臓システムによれば、締め切り揚程から20mmHg圧力が低い点において、流量が5L/min以上であるため、従来の補助人工心臓システムよりも揚程の大きさに対して流量が十分に大きくなって、心臓の拍動により生まれる血流の拍動性を十分に活かすことができる。その結果、従来の補助人工心臓システムと比較して、長期間使用したときに使用者の健康状態が悪化する度合いを抑制することが可能となる。
 なお、上記観点からは、締め切り揚程から20mmHg圧力が低い点において、流量が8L/min以上であることが好ましく、10L/min以上であることが一層好ましい。
 「締め切り揚程」とは、流量が0L/minとなるときの揚程のことをいう。
[3]本発明の補助人工心臓システムは、インペラを有する回転部及び前記回転部を収納するハウジングを備える補助人工心臓ポンプと、前記補助人工心臓ポンプに液体を導入する導入側人工血管と、前記補助人工心臓ポンプから液体を送出する送出側人工血管とを備える補助人工心臓システムであって、粘度及び密度が血液相当である液体を動作液体として揚程と流量との関係を測定し、一定回転数において、揚程をmmHg単位で縦軸にとり、流量をL/min単位で横軸にとってグラフを作成したとき、揚程が100mmHgであり、流量が5L/minである点における前記グラフの傾きが、-5~0の範囲内にあることを特徴とする。
 本発明の補助人工心臓システムによれば、上記条件において、揚程が100mmHgであり、流量が5L/minである点におけるグラフの傾きが、-5~0の範囲内にあるため、従来の補助人工心臓システムよりも揚程の変動に対して流量の変動が十分に大きくなって、心臓の拍動により生まれる血液の拍動性を十分に活かすことができる。その結果、従来の補助人工心臓システムと比較して、長期間使用したときに使用者の健康状態が悪化する度合いを抑制することが可能となる。
 なお、グラフの傾きが-5~0の範囲内にあることとしたのは、グラフの傾きが-5よりも小さい場合には揚程の変動に対して流量の変動を十分に大きくすることが困難であるためであり、グラフの傾きが0より大きい場合には揚程が大きくなったにも関わらず流量も大きくなることから有意な値ではないためである。上記観点からは、グラフの傾きが-4~0の範囲内にあることが好ましく、-3~0の範囲内にあることが一層好ましい。
[4]本発明の補助人工心臓システムは、インペラを有する回転部及び前記回転部を収納するハウジングを備える補助人工心臓ポンプと、前記補助人工心臓ポンプに液体を導入する導入側人工血管と、前記補助人工心臓ポンプから液体を送出する送出側人工血管とを備える補助人工心臓システムであって、前記回転部の回転数を一定として液体を流したとき、揚程の変動に対して流量の変動が大きいことを特徴とする。
 このため、本発明の補助人工心臓システムによれば、揚程の変動(つまり、心臓の拍動により生まれる圧力の変動)に対して流量の変動が大きいため、心臓の拍動により生まれる血流の拍動性を十分に活かすことができる。その結果、従来の補助人工心臓システムと比較して、長期間使用したときに使用者の健康状態が悪化する度合いを抑制することが可能となる。
 なお、「回転部の回転数を一定として」とは、回転部の回転数を絶対的に一定とすることではなく、揚程の変化がなければ回転数が一定となるようにすることをいう。
[5]本発明の補助人工心臓システムにおいては、粘度及び密度が血液相当である液体を動作液体として、前記補助人工心臓ポンプが停止している状態で、流量を6L/minとして圧力損失を測定したとき、前記圧力損失が25mmHg以下であることが好ましい。
 このような構成とすることにより、圧力損失を十分に低くして血流の拍動性を十分に利用することが可能となる。
 なお、補助人工心臓システムの圧力損失は5mmHg~20mmHgの範囲内にあることが一層好ましい。当該圧力損失が20mmHgより大きい場合には圧力損失を十分に低くして血流の拍動性を十分に利用することが困難となる場合があるためであり、当該圧力損失が5mmHgより小さい場合には回転部の設計上の問題から血液を移動させる力を十分に確保することが出来ない場合があるためである。
 本明細書において、「補助人工心臓システムの圧力損失」とは、補助人工心臓システムにおける補助人工心臓ポンプを停止状態として、動作液体を所定の流量(6L/min)で流し込んだとき、当該液体が導入側人工血管から補助人工心臓ポンプを経て送出側人工血管までを通過するのに必要な圧力のことをいう。
[6]本発明の補助人工心臓システムにおいては、前記補助人工心臓ポンプは、遠心方式の補助人工心臓ポンプからなり、前記導入側人工血管から前記補助人工心臓ポンプにおける血液導入部までの間の最小内径を前記インペラの回転直径で割った数値が0.2~0.8の範囲内にあることが好ましい。
 このような構成とすることにより、圧力損失を十分に低くして血流の拍動性を十分に利用することが可能となり、かつ、十分にコンパクトな補助人工心臓システムとすることが可能となる。
 なお、導入側人工血管から補助人工心臓ポンプにおける血液導入部までの間の最小内径をインペラの回転直径で割った数値が0.2~0.8の範囲内にあることとしたのは、当該数値が0.2より小さい場合には最小内径が小さくなりすぎるために圧力損失を十分に低くして血流の拍動性を十分に利用することが困難となる場合があるためであり、当該数値が0.8より大きい場合には十分にコンパクトな補助人工心臓システムとすることが困難となる場合があるためである。
[7]本発明の補助人工心臓システムにおいては、前記補助人工心臓ポンプは、遠心方式の補助人工心臓ポンプからなり、前記送出側人工血管から前記補助人工心臓ポンプにおける血液送出部までの間の最小内径を前記インペラの回転直径で割った数値が0.2~0.8の範囲内にあることが好ましい。
 このような構成とすることにより、圧力損失を十分に低くして血流の拍動性を十分に利用することが可能となり、かつ、十分にコンパクトな補助人工心臓システムとすることが可能となる。
 なお、送出側人工血管から補助人工心臓ポンプにおける血液送出部までの間の最小内径をインペラの回転直径で割った数値が0.2~0.8の範囲内にあることとしたのは、当該数値が0.2より小さい場合には最小内径が小さくなりすぎるために圧力損失を十分に低くして血流の拍動性を十分に利用することが困難となる場合があるためであり、当該数値が0.8より大きい場合には十分にコンパクトな補助人工心臓システムとすることが困難となる場合があるためである。
実施形態に係る補助人工心臓システム100を説明するために示す図である。 実施形態に係る補助人工心臓システム100における補助人工心臓ポンプ110を説明するために示す図である。 実施形態に係る補助人工心臓システム100と液体吐出源とを用いて測定した血流の様子を説明するために示すグラフである。 実施形態に係る補助人工心臓システム100の揚程と流量との関係を説明するために示すグラフである。 従来の補助人工心臓システムにおける補助人工心臓ポンプ900の分解斜視図である。
 以下、本発明の補助人工心臓ポンプについて、図に示す実施の形態に基づいて説明する。
[実施形態]
 図1は、実施形態に係る補助人工心臓システム100を説明するために示す図である。図1(a)は補助人工心臓システム100を実際に使用するときの様子を示す図であり、図1(b)は補助人工心臓システム100のうち補助人工心臓ポンプ110、導入側人工血管120及び送出側人工血管130を抜き出して表示する正面図である。
 図2は、実施形態に係る補助人工心臓システム100における補助人工心臓ポンプ110を説明するために示す図である。図2(a)は補助人工心臓ポンプ110の上面図であり、図2(b)は補助人工心臓ポンプ110の断面図であり、図2(c)は回転部10の正面図である。
 図3は、実施形態に係る補助人工心臓システム100と液体吐出源とを用いて測定した血流の様子を説明するために示すグラフである。図3(a)は不全心をシミュレーションする機器(拍動シミュレーター)に補助人工心臓システム100を接続しない状態における血流の様子を示すグラフであり、図3(b)は当該機器に補助人工心臓ポンプ110を接続した状態における血流の様子を示すグラフである。図3の縦軸は流量(L/min)を表し、横軸は時間(sec)を表す。図3のグラフのうち、実線で示すのは液体吐出源、補助人工心臓システム当を含む全体を見たときの液体の流量(トータル・フロー)であり、一点破線で示すのは補助人工心臓ポンプのみを見たときの流量(ポンプ・フロー)である。
 図4は、実施形態に係る補助人工心臓システム100の揚程と流量との関係を説明するために示すグラフである。なお、上のグラフは揚程が100mmHgであるときに流量が5L/minとなるようにしたグラフであり、下のグラフは締め切り揚程が80mmHgとなるようにしたグラフである。上のグラフに接する破線は、揚程100mmHg、流量5L/minの点における接線である。
 実施形態に係る補助人工心臓システム100は、補助人工心臓ポンプ110、導入側人工血管120、送出側人工血管130、ケーブル140及び制御部150(図示せず。)を備える。制御部150は、補助人工心臓ポンプ110とケーブル140で接続されており、補助人工心臓ポンプ110の動作を制御する。また、補助人工心臓システム100は、実際の使用時において、人体に埋め込んで用いる埋め込み型の補助人工心臓システムである。
 補助人工心臓ポンプ110は、図2に示すように、インペラ12を有する回転部10(図2(c)参照。)と、回転部10を収納するハウジング20とを備える遠心方式の補助人工心臓ポンプである。なお、補助人工心臓ポンプ110は、上記した構成要素の他に、回転部10を回転駆動する駆動部や、補助人工心臓ポンプ110内部の潤滑、冷却、シール性の維持等の機能を果たすクールシール液(パージ液ともいう。例えば、水や生理食塩水)の流路等を備えるが、本発明に直接的に関わるものではないため、説明や符号の図示を省略する。
 補助人工心臓ポンプ110においては、回転部10は回転シャフトで駆動部と直接接続されている。回転部10の軸受け部分はメカニカルシールとなっており、血液の進入を防ぐ構造となっている。
 ハウジング20は、回転部を格納する格納部22と、補助人工心臓ポンプ110外から補助人工心臓ポンプ110内に血液を導入する血液導入部30と、補助人工心臓ポンプ110内から補助人工心臓ポンプ110外(大動脈)に血液を送出する血液送出部40とを有する。血液導入部30は導入側人工血管120と接続され、血液送出部40は送出側人工血管130と接続される。なお、血液導入部及び血液送出部は、ハウジングとは別に設けられていてもよい。
 なお、実施形態に係る補助人工心臓システム100に用いる補助人工心臓ポンプ110としては、例えば、以下のような特徴を有するものを用いることができる。
 補助人工心臓ポンプ110においては、補助人工心臓ポンプ110の動作時におけるインペラ12とハウジング20の内壁との最小間隔が0.1mm~2.0mmの範囲内にあり、さらにいえば0.5mm~0.8mmの範囲内にあり、例えば、0.6mmである。
 補助人工心臓ポンプ110においては、粘度及び密度が血液相当である液体を動作液体として、補助人工心臓ポンプ110が停止している状態で、流量を6L/minとして圧力損失を測定したとき、圧力損失が20mmHg以下であり、さらにいえば5mmHg~16mmHgの範囲内にあり、例えば、14mmHgである。
 補助人工心臓ポンプ110においては、回転部10の体積をハウジング20の内容量で割った数値が0.01~0.50の範囲内にあり、さらにいえば0.06~0.12の範囲内にあり、例えば、0.09である。なお、「ハウジングの内容量」とは、ハウジングのうちインペラを格納する部分(格納部22)の内容量のみのことをいうのではなく、血液を導入する部分(導入側人工血管と接続・分離が可能な部分)の内容量及び血液を送出する部分(送出側人工血管と接続・分離が可能な部分)の内容量を含むハウジング全体の内容量のことをいう。
 上記のような構成を有する補助人工心臓ポンプ110を備えることにより、圧力損失を十分に低くして血流の拍動性を十分に利用することが可能となり、かつ、回転部が血液を移動させる力を十分に確保することが可能となる。
 導入側人工血管120は、補助人工心臓ポンプ110に液体を導入する。実際の使用時には、導入側人工血管120は心臓と補助人工心臓ポンプ110とを接続し、補助人工心臓ポンプ110に血液を導入する(図1(a)参照。)。導入側人工血管120は布や軟質樹脂からなる可撓性のものであり、長さは、例えば、7.2cmである。
 送出側人工血管130は、補助人工心臓ポンプ110から液体を送出する。実際の使用時には、送出側人工血管120は補助人工心臓ポンプ110と大動脈とを接続し、補助人工心臓ポンプ110から血液を送出する。送出側人工血管130は布や軟質樹脂からなる可撓性のものであり、長さは、例えば、25cmである。
 補助人工心臓システム100は、回転部10の回転数を一定として液体(体内での使用時においては血液)を流したとき、揚程の変動に対して流量の変動が大きい。
 ここで、図3のグラフを得た方法について説明する。図3のグラフは、実施形態に係る補助人工心臓システム100と同様の構成を有する補助人工心臓システムを実際に製造し、心臓からの血液の送出をシミュレーションする拍動シミュレーター(拍動シミュレーター)に当該補助人工心臓システムを接続して実験を行い、その結果をグラフ化することにより得たものである。試験用の動作液体としては、例えば、粘度3.5cPに調製したグリセリン水溶液を用いた。なお、グラフの結果(波形)には弁の開閉による圧スパイク波形等の外乱要因が反映されている。
 図3(a)に示すように、液体吐出源に補助人工心臓システム100を接続しない状態における液体の最大流量(平均最大流量は6.29L/min)と最小流量(平均最小流量は2.45L/min)との差は3.84L/minである。また、図3(b)に示すように、液体吐出源に補助人工心臓システム100を接続した状態における液体の最大流量(平均最大流量は8.25L/min)と最小流量(平均最小流量は4.91L/min)との差は3.34L/minである。このため、補助人工心臓システム100においては、流量を一定周期で増減させながら液体を吐出する液体吐出源に補助人工心臓システム100を接続した状態における液体の最大流量と最小流量との差が、液体吐出源に補助人工心臓システム100を接続しない状態における液体の最大流量と最小流量との差の40%以上であり、さらにいえば80%以上であり、具体的には約87%である。
 なお、図3(b)に示すように、液体吐出源に補助人工心臓システム100を接続した状態におけるポンプ流量の最大流量(平均最大流量は11.73L/min)と最小流量(平均最小流量は1.38L/min)との差は10.35L/minである。このため、補助人工心臓システム100においては、流量を一定周期で増減させながら液体を吐出する液体吐出源に補助人工心臓システム100を接続した状態におけるポンプ流量の最大流量と最小流量との差が、液体吐出源に補助人工心臓システム100を接続しない状態における液体の最大流量と最小流量との差の200%以上であり、さらにいえば250%以上であり、具体的には約270%である。
 このため、実施形態に係る補助人工心臓システム100は、液体吐出源に補助人工心臓ポンプを接続した状態におけるポンプ流量の最大流量と最小流量との差が、液体吐出源に補助人工心臓ポンプを接続しない状態における液体の最大流量と最小流量との差の200%以上となる補助人工心臓ポンプ110を備えるため、揚程の変動に対して流量の変動が十分に大きくなる。その結果、従来の補助人工心臓システムと比較して、長期間使用したときに使用者の健康状態が悪化する度合いを抑制することが可能となる。
 また、ここで、図4のグラフを得た方法について説明する。図4のグラフは、実施形態に係る補助人工心臓システム100と同様の構成を有する補助人工心臓システムを製造し、当該補助人工心臓システムを用いて実験を行い、その結果をもとにグラフを作成することにより得たものである。試験用の動作液体としては、粘度3.5cPに調製したグリセリン水溶液を用いた。
 補助人工心臓システム100は、図4に示すように、粘度及び密度が血液相当である液体を動作液体として揚程と流量との関係を測定し、一定回転数において、揚程をmmHg単位で縦軸にとり、流量をL/min単位で横軸にとってグラフを作成したとき、締め切り揚程から20mmHg圧力が低い点において、流量が5L/min以上であり、さらにいえば10L/min以上である。
 さらにまた、補助人工心臓システム100は、同じく図4に示すように、粘度及び密度が血液相当である液体を動作液体として揚程と流量との関係を測定し、一定回転数において、揚程をmmHg単位で縦軸にとり、流量をL/min単位で横軸にとってグラフを作成したとき、揚程が100mmHgであり、流量が5L/minである点における前記グラフの傾きが、-5~0の範囲内にあり、さらにいえば-3~0の範囲内にあり、具体的には約-2.6である。
 補助人工心臓システム100においては、粘度及び密度が血液相当である液体を動作液体として、補助人工心臓ポンプ110が停止している状態で、流量を6L/minとして圧力損失を測定したとき、圧力損失が25mmHg以下であり、さらにいえば5mmHg~20mmHgの範囲内にあり、例えば、18mmHgである。
 インペラ12の回転直径(図2(c)のd1参照。)は40mmであり、導入側人工血管120から補助人工心臓ポンプ110における血液導入部30までの間の最小内径は16mmである。このため、導入側人工血管120から補助人工心臓ポンプ110における血液導入部30までの間の最小内径をインペラ12の回転直径で割った数値は0.2~0.8の範囲内にあり、具体的には0.4となる。なお、図示による説明は省略するが、導入側人工血管120から補助人工心臓ポンプ110における血液導入部30までの間の内径は、16mmで統一されている(図2(b)のd2も参照。)。
 また、送出側人工血管130から補助人工心臓ポンプ110における血液送出部40までの間の最小内径は10mmである。このため、補助人工心臓システム100においては、送出側人工血管130から補助人工心臓ポンプ110における血液送出部40までの間の最小内径をインペラ12の回転直径で割った数値は0.2~0.8の範囲内にあり、具体的には0.25となる。なお、図示による説明は省略するが、送出側人工血管130の末端部から補助人工心臓ポンプ110における血液送出部40までの間の内径は、16mmで統一されている。送出側人工血管130から補助人工心臓ポンプ110における血液送出部40までの間で内径が最小となるのは、血液送出部40と格納部22との接合部付近(血液導入部40の奥、図2(b)のd3参照。)であり、最小内径は当該部分の直径である。
 以下、実施形態に係る補助人工心臓システム100の効果を記載する。
 実施形態に係る補助人工心臓システム100によれば、液体吐出源に補助人工心臓システム100を接続した状態における液体の最大流量と最小流量との差が、液体吐出源に補助人工心臓システム100を接続しない状態における液体の最大流量と最小流量との差の40%以上であるため、揚程の変動に対して流量の変動が十分に大きくなる。その結果、従来の補助人工心臓システムと比較して、長期間使用したときに使用者の健康状態が悪化する度合いを抑制することが可能となる。
 また、実施形態に係る補助人工心臓システム100によれば、締め切り揚程から20mmHg圧力が低い点において、流量が5L/min以上であるため、従来の補助人工心臓システムよりも揚程の大きさに対して流量が十分に大きくなって、心臓の拍動により生まれる血流の拍動性を十分に活かすことができる。その結果、従来の補助人工心臓システムと比較して、長期間使用したときに使用者の健康状態が悪化する度合いを抑制することが可能となる。
 また、実施形態に係る補助人工心臓システム100によれば、揚程が100mmHgであり、流量が5L/minである点におけるグラフの傾きが、-5~0の範囲内にあるため、従来の補助人工心臓システムよりも揚程の変動に対して流量の変動が十分に大きくなって、心臓の拍動により生まれる血液の拍動性を十分に活かすことができる。その結果、従来の補助人工心臓システムと比較して、長期間使用したときに使用者の健康状態が悪化する度合いを抑制することが可能となる。
 また、実施形態に係る補助人工心臓システム100によれば、揚程の変動に対して流量の変動が大きいため、心臓の拍動により生まれる血流の拍動性を十分に活かすことができる。その結果、従来の補助人工心臓システムと比較して、長期間使用したときに使用者の健康状態が悪化する度合いを抑制することが可能となる。
 また、実施形態に係る補助人工心臓システム100によれば、粘度及び密度が血液相当である液体を動作液体として、補助人工心臓ポンプ110が停止している状態で、流量を6L/minとして圧力損失を測定したとき、圧力損失が25mmHg以下であるため、圧力損失を十分に低くして血流の拍動性を十分に利用することが可能となる。
 また、実施形態に係る補助人工心臓システム100によれば、補助人工心臓ポンプ110は遠心方式の補助人工心臓ポンプからなり、導入側人工血管120から補助人工心臓ポンプ110における血液導入部30までの間の最小内径をインペラ12の回転直径で割った数値が0.2~0.8の範囲内にあるため、圧力損失を十分に低くして血流の拍動性を十分に利用することが可能となり、かつ、十分にコンパクトな補助人工心臓システムとすることが可能となる。
 また、実施形態に係る補助人工心臓システム100によれば、送出側人工血管130から補助人工心臓ポンプ110における血液送出部40までの間の最小内径をインペラ12の回転直径で割った数値が0.2~0.8の範囲内にあるため、圧力損失を十分に低くして血流の拍動性を十分に利用することが可能となり、かつ、十分にコンパクトな補助人工心臓システムとすることが可能となる。
 以上、本発明を上記の実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではない。その趣旨を逸脱しない範囲において種々の様態において実施することが可能であり、例えば、次のような変形も可能である。
(1)上記実施形態において記載した各構成要素の寸法、個数、材質及び形状は例示であり、本発明の効果を損なわない範囲において変更することが可能である。
(2)上記実施形態に係る補助人工心臓システム100は、「流量を一定周期で増減させながら液体を吐出する液体吐出源に補助人工心臓システムを接続した状態における液体の最大流量と最小流量との差が、液体吐出源に補助人工心臓システムを接続しない状態における液体の最大流量と最小流量との差の40%以上であること」と、「粘度及び密度が血液相当である液体を動作液体として揚程と流量との関係を測定し、一定回転数において、揚程をmmHg単位で縦軸にとり、流量をL/min単位で横軸にとってグラフを作成したとき、締め切り揚程から20mmHg圧力が低い点において、流量が5L/min以上であること」と、「粘度及び密度が血液相当である液体を動作液体として揚程と流量との関係を測定し、一定回転数において、揚程をmmHg単位で縦軸にとり、流量をL/min単位で横軸にとってグラフを作成したとき、揚程が100mmHgであり、流量が5L/minである点におけるグラフの傾きが、-5~0の範囲内にあること」と、「回転部10の回転数を一定として液体を流したとき、揚程の変動に対して流量の変動が大きいこと」との4つの特徴を備えるものであるが、本発明はこれに限定されるものではない。インペラを有する回転部及び回転部を収納するハウジングを備える補助人工心臓ポンプと、補助人工心臓ポンプに液体を導入する導入側人工血管と、補助人工心臓ポンプから液体を送出する送出側人工血管とを備える補助人工心臓システムであって、上記した4つの特徴のうちいずれか1つの特徴を備えるものであれば、本発明の範囲に含まれる。
(3)上記実施形態においては、導入側人工血管及び送出側人工血管として、布や軟質樹脂からなる可撓性のものを用いることとしたが、本発明はこれに限定されるものではない。例えば、導入側人工血管及び送出側人工血管として、硬質樹脂や金属からなるパイプ状のものを用いることとしてもよい。
10…回転部、12…インペラ、20…ハウジング、22…格納部、30…血液導入部、40…血液送出部、100…補助人工心臓システム、110…補助人工心臓ポンプ、120…導入側人工血管、130…送出側人工血管、140…ケーブル

Claims (7)

  1.  インペラを有する回転部及び前記回転部を収納するハウジングを備える補助人工心臓ポンプと、前記補助人工心臓ポンプに液体を導入する導入側人工血管と、前記補助人工心臓ポンプから液体を送出する送出側人工血管とを備える補助人工心臓システムであって、
     流量を一定周期で増減させながら液体を吐出する液体吐出源に前記補助人工心臓システムを接続した状態における前記液体の最大流量と最小流量との差が、前記液体吐出源に前記補助人工心臓システムを接続しない状態における前記液体の最大流量と最小流量との差の40%以上であることを特徴とする補助人工心臓システム。
  2.  インペラを有する回転部及び前記回転部を収納するハウジングを備える補助人工心臓ポンプと、前記補助人工心臓ポンプに液体を導入する導入側人工血管と、前記補助人工心臓ポンプから液体を送出する送出側人工血管とを備える補助人工心臓システムであって、
     粘度及び密度が血液相当である液体を動作液体として揚程と流量との関係を測定し、一定回転数において、揚程をmmHg単位で縦軸にとり、流量をL/min単位で横軸にとってグラフを作成したとき、
     締め切り揚程から20mmHg圧力が低い点において、流量が5L/min以上であることを特徴とする補助人工心臓システム。
  3.  インペラを有する回転部及び前記回転部を収納するハウジングを備える補助人工心臓ポンプと、前記補助人工心臓ポンプに液体を導入する導入側人工血管と、前記補助人工心臓ポンプから液体を送出する送出側人工血管とを備える補助人工心臓システムであって、
     粘度及び密度が血液相当である液体を動作液体として揚程と流量との関係を測定し、一定回転数において、揚程をmmHg単位で縦軸にとり、流量をL/min単位で横軸にとってグラフを作成したとき、
     揚程が100mmHgであり、流量が5L/minである点における前記グラフの傾きが、-5~0の範囲内にあることを特徴とする補助人工心臓システム。
  4.  インペラを有する回転部及び前記回転部を収納するハウジングを備える補助人工心臓ポンプと、前記補助人工心臓ポンプに液体を導入する導入側人工血管と、前記補助人工心臓ポンプから液体を送出する送出側人工血管とを備える補助人工心臓システムであって、
     前記回転部の回転数を一定として液体を流したとき、
     揚程の変動に対して流量の変動が大きいことを特徴とする補助人工心臓システム。
  5.  請求項1~4のいずれかに記載の補助人工心臓システムにおいて、
     粘度及び密度が血液相当である液体を動作液体として、前記補助人工心臓システムが停止している状態で、流量を6L/minとして圧力損失を測定したとき、
     前記圧力損失が25mmHg以下であることを特徴とする補助人工心臓システム。
  6.  請求項1~5のいずれかに記載の補助人工心臓システムにおいて、
     前記補助人工心臓ポンプは、遠心方式の補助人工心臓ポンプからなり、
     前記導入側人工血管から前記補助人工心臓ポンプにおける血液導入部までの間の最小内径を前記インペラの回転直径で割った数値が0.2~0.8の範囲内にあることを特徴とする補助人工心臓システム。
  7.  請求項1~6のいずれかに記載の補助人工心臓システムにおいて、
     前記補助人工心臓ポンプは、遠心方式の補助人工心臓ポンプからなり、
     前記送出側人工血管から前記補助人工心臓ポンプにおける血液送出部までの間の最小内径を前記インペラの回転直径で割った数値が0.2~0.8の範囲内にあることを特徴とする補助人工心臓システム。
PCT/JP2012/058000 2012-03-27 2012-03-27 補助人工心臓システム WO2013145135A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2012/058000 WO2013145135A1 (ja) 2012-03-27 2012-03-27 補助人工心臓システム
US14/388,242 US20150051437A1 (en) 2012-03-27 2012-03-27 Ventricular assist system
JP2014507104A JP6345113B2 (ja) 2012-03-27 2012-03-27 補助人工心臓システム
CN201280059084.5A CN103957959A (zh) 2012-03-27 2012-03-27 辅助人工心脏系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/058000 WO2013145135A1 (ja) 2012-03-27 2012-03-27 補助人工心臓システム

Publications (1)

Publication Number Publication Date
WO2013145135A1 true WO2013145135A1 (ja) 2013-10-03

Family

ID=49258502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058000 WO2013145135A1 (ja) 2012-03-27 2012-03-27 補助人工心臓システム

Country Status (4)

Country Link
US (1) US20150051437A1 (ja)
JP (1) JP6345113B2 (ja)
CN (1) CN103957959A (ja)
WO (1) WO2013145135A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105597172B (zh) * 2016-02-02 2017-12-08 丁以群 左心辅助装置
CN105597173B (zh) * 2016-02-02 2018-05-25 深圳市尚捷医疗科技有限公司 右心辅助装置
CN105561412B (zh) * 2016-02-02 2018-02-23 丁以群 心脏辅助装置
EP4233989A3 (en) 2017-06-07 2023-10-11 Shifamed Holdings, LLC Intravascular fluid movement devices, systems, and methods of use
US20200230306A1 (en) * 2017-09-29 2020-07-23 Sun Medical Technology Research Corporation Ventricular assist blood pump
EP3710076B1 (en) 2017-11-13 2023-12-27 Shifamed Holdings, LLC Intravascular fluid movement devices, systems, and methods of use
EP4085965A1 (en) 2018-02-01 2022-11-09 Shifamed Holdings, LLC Intravascular blood pumps and methods of use and manufacture
US11241572B2 (en) * 2018-09-25 2022-02-08 Tc1 Llc Adaptive speed control algorithms and controllers for optimizing flow in ventricular assist devices
WO2021011473A1 (en) 2019-07-12 2021-01-21 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
WO2021016372A1 (en) 2019-07-22 2021-01-28 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
WO2021062265A1 (en) 2019-09-25 2021-04-01 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005058617A (ja) * 2003-08-19 2005-03-10 Miwatec:Kk 血流ポンプ。
JP2009297174A (ja) * 2008-06-11 2009-12-24 San Medical Gijutsu Kenkyusho:Kk 人工心臓制御装置、人工心臓システム及び人工心臓の制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPO902797A0 (en) * 1997-09-05 1997-10-02 Cortronix Pty Ltd A rotary blood pump with hydrodynamically suspended impeller
US6572530B1 (en) * 1997-12-27 2003-06-03 Jms Co., Ltd. Blood circulation auxiliary device using continuous blood flow pump and diagnosis device for blood circulation state in organism
CA2374989A1 (en) * 2002-03-08 2003-09-08 Andre Garon Ventricular assist device comprising a dual inlet hybrid flow blood pump
US7682301B2 (en) * 2003-09-18 2010-03-23 Thoratec Corporation Rotary blood pump
US7591777B2 (en) * 2004-05-25 2009-09-22 Heartware Inc. Sensorless flow estimation for implanted ventricle assist device
US20070142923A1 (en) * 2005-11-04 2007-06-21 Ayre Peter J Control systems for rotary blood pumps
WO2007084339A2 (en) * 2006-01-13 2007-07-26 Heartware, Inc. Rotary blood pump
AU2007201127B2 (en) * 2006-03-23 2012-02-09 Thoratec Corporation System For Preventing Diastolic Heart Failure
EP1847281A1 (en) * 2006-04-20 2007-10-24 Ventrassist Pty Ltd System and method of controlling a rotary blood pump
US8226712B1 (en) * 2008-06-13 2012-07-24 Newheart Medical Devices Llc Total artificial heart system for auto-regulating flow and pressure
WO2011047160A2 (en) * 2009-10-16 2011-04-21 University Of Rochester Transcutaneous magnetic energy transfer device
US8506471B2 (en) * 2010-09-24 2013-08-13 Thoratec Corporation Generating artificial pulse

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005058617A (ja) * 2003-08-19 2005-03-10 Miwatec:Kk 血流ポンプ。
JP2009297174A (ja) * 2008-06-11 2009-12-24 San Medical Gijutsu Kenkyusho:Kk 人工心臓制御装置、人工心臓システム及び人工心臓の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UEKOMI-GATA HOJO JINKO SHINZO EVAHEART, November 2011 (2011-11-01) *

Also Published As

Publication number Publication date
JP6345113B2 (ja) 2018-06-20
JPWO2013145135A1 (ja) 2015-08-03
CN103957959A (zh) 2014-07-30
US20150051437A1 (en) 2015-02-19

Similar Documents

Publication Publication Date Title
JP6345113B2 (ja) 補助人工心臓システム
JP6345112B2 (ja) 補助人工心臓ポンプ
US7862501B2 (en) System for preventing diastolic heart failure
US8870951B1 (en) Total artificial heart system for auto-regulating flow and pressure
JP2000512191A (ja) 心内血液ポンプ
Topilsky et al. Focused review on transthoracic echocardiographic assessment of patients with continuous axial left ventricular assist devices
CN105597173B (zh) 右心辅助装置
Slaughter et al. Transapical miniaturized ventricular assist device: design and initial testing
JP2016508841A (ja) 医療機器用安全装置ポンプに関する方法、システム及び装置
CN112891730A (zh) 一种可植入电磁搏动式人工心脏血泵
Bertram Measurement for implantable rotary blood pumps
CN102284091A (zh) 一种左心辅助装置
US10874779B2 (en) Artificial heart and its drive unit
CN110339412B (zh) 一种搏动式人工血泵
WO2019024111A1 (zh) 心脏模拟设备
Weber et al. Magscrew tah-an update
CN117679628A (zh) 一种脉动式介入人工心脏
Fontana et al. An Autoregulation Unit for enabling adaptive control of sensorized left ventricular assist device
CN116077821A (zh) 一种压力驱动式心脏辅助装置
KR20130078164A (ko) 맥동형 혈액펌프장치
Del Cañizo Juan Heart support systems: from idea to clinical practice
Shalli et al. Recent advances and patents on mechanical circulatory support devices
Motomura et al. TEN-YEAR NEDO BVAD DEVELOPMENT PROGRAM: MOVING FORWARD TO THE CLINICAL ARENA
Tuzun et al. ASSESSMENT OF VENTRICULAR REVERSE REMODELING IN AN OVINE MODEL OF NON-ISCHEMIC HEART FAILURE
Swalen et al. THE HEMODYNAMIC PERFORMANCE OF THE BCM LVAD: AN IN VITRO INVESTIGATION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507104

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14388242

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872404

Country of ref document: EP

Kind code of ref document: A1