CN103246773B - 电子式互感器中采样率转换的低延迟滤波器设计方法 - Google Patents

电子式互感器中采样率转换的低延迟滤波器设计方法 Download PDF

Info

Publication number
CN103246773B
CN103246773B CN201310175523.5A CN201310175523A CN103246773B CN 103246773 B CN103246773 B CN 103246773B CN 201310175523 A CN201310175523 A CN 201310175523A CN 103246773 B CN103246773 B CN 103246773B
Authority
CN
China
Prior art keywords
filter
passband
formula
stopband
filters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310175523.5A
Other languages
English (en)
Other versions
CN103246773A (zh
Inventor
陈正才
郑建勇
梅军
朱超
黄潇贻
倪玉玲
崔志伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jurong Huazheng Electric Co Ltd
Southeast University
Original Assignee
Jurong Huazheng Electric Co Ltd
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jurong Huazheng Electric Co Ltd, Southeast University filed Critical Jurong Huazheng Electric Co Ltd
Priority to CN201310175523.5A priority Critical patent/CN103246773B/zh
Publication of CN103246773A publication Critical patent/CN103246773A/zh
Application granted granted Critical
Publication of CN103246773B publication Critical patent/CN103246773B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

本发明公开了一种电子式互感器中采样率转换的低延迟滤波器设计方法。该方法首先采用内插器和抽取器的级联来实现任意分数倍采样频率的转换,将内插器中的抗镜像滤波器和抽取器中的抗混叠滤波器合并为一个低通滤波器;然后采用均方误差最小化准则来求解该滤波器的系数向量,以滤波器通带幅值与阻带幅值为约束条件,以均方误差最小化为优化目标;最后将基于约束最小二乘法设计的滤波器系数向量的求解过程转化为求解一个正定二次规划问题,即可直接求解得到滤波器系数向量。该方法解决了直接线性卷积滤波过程带来较大输出延迟,滤波器阶数越高群延迟也越大的问题,极大地提高了保护动作的快速性。

Description

电子式互感器中采样率转换的低延迟滤波器设计方法
技术领域
本发明涉及一种互感器中采样率转换的低延迟滤波器设计方法,基于约束最小二乘法设计,属于FIR滤波器技术领域。
背景技术
在智能变电站中,微机保护系统过程层采用电子式互感器,间隔层二次保护装置与过程层的连接通过网络接口实现,保护装置从通信接口中接收由不同数字源A/D采样后的数字量,输入信号由传统的单一模拟信号变成了多数字源采样信号的混合输入。基于差动保护原理的保护装置通常需要获得瞬时差电流值,要求与被保护一次设备相连接的所有支路的电流采样值的采样频率必须一致。当各支路的电子式电流互感器输出数据的采样频率不完全一致时,须将采样频率进行归一化。
FIR滤波器主要采用非递归结构,在Z平面上不存在极点,因此在继电保护算法上广泛采用的是FIR数字滤波算法。但FIR滤波器的选频特性较差,实现与IIR滤波器同等幅频响应特性,其阶数通常比IIR高数倍,反映在滤波器输出上,对应着群延迟较大,输出响应速度较慢,这是FIR滤波器的主要问题所在。
传统的FRR滤波方法是先将输入序列按顺序滤波,然后将所得结果逆转后反向通过滤波器,再将所得结果逆转后输出,即得到精确零相位失真的输出序列。该方案在滤波环节进行了两次滤波,即在时域进行两次卷积计算,而每一次卷积滤波都会带来群延迟,两次滤波其群延迟增加一倍,使得在采用高阶FIR滤波器时,输出严重滞后于输入序列。尽管输出和输入在相位上不存任何相位上的失真,但引入了较大的输出延迟,不利于保护的快速动作。
因此,发明一种性能更为优越、应用范围更为广泛的互感器采样率转换的新算法成为亟需解决的课题。
发明内容
发明目的:针对上述问题,本发明提供了一种互感器中采样率转换的低延迟滤波器设计方法,致力于解决数字低通FIR滤波器的群延迟较大的问题,实现快速重采样。
技术方案:为达到上述目的,本发明采取的技术方案为:
一种电子式互感器中采样率转换的低延迟滤波器设计方法,包括如下步骤:
1)采用内插器和抽取器的级联来实现任意分数倍采样频率的转换,将内插器中的抗镜像滤波器和抽取器中的抗混叠滤波器合并,建立一个低通滤波器模型;
2)采用均方误差最小化准则来求解该滤波器的系数向量,以滤波器通带幅值与阻带幅值为约束条件,以均方误差最小化为优化目标;
3)将通带幅值约束条件与阻带幅值约束条件转化为约束关系函数;
4)将基于约束最小二乘法设计的滤波器系数向量求解过程转化为求解一个正定二次规划问题,即可直接进行求解得到滤波器系数向量。
步骤2中采用均方误差最小化准则来求解滤波器系数向量b,其加权误差函数为:
E ( x ) = 1 2 ∫ - π π W ( ω ) | H D ( ω ) - H ( ω ) | 2 dω
式中x=b,HD(ω)为理想幅频响应,H(ω)为幅频响应,W(ω)为误差加权函数。
步骤3中将通带幅值约束条件转化为约束关系函数的方法为:
1)将通带幅值约束条件||H(ω)|-1|≤δp化简为1-δp≤|H(ω)|≤1+δp,δp表示通带允许的偏差,P表示通带内的一系列点集;
2)将H(ω)经过K次迭代得到H(k)(ω),其通带群延迟为K,H(k)(ω)与H(ω)的关系如下:
H(ω)≈e-jKω|H(k)(ω)|
| H ( k ) ( ω ) | ≈ c k T ( ω ) b k
式中ck(ω)=[cos(Kω),cos((K-1)ω),...cos((K-n)ω)]T
通带群延迟的误差满足以下条件
g(ω)-K|≤δg,ω∈P={ωi P,i=1,...nP}
式中,τg(ω)为通带群延迟的误差,δg通带群延迟允许的偏差。
3)由以上式子得通带幅值约束关系式如下
A p ( k ) b k ≤ q p ( k )
式中
A p ( k ) = c k T ( ω 1 ( p ) ) . . . c k T ( ω n p ( p ) ) - c k T ( ω 1 ( p ) ) . . . - c k T ( ω n p ( p ) ) 2 n p × ( n + 1 ) , q p ( k ) = 1 + δ p . . . 1 + δ p δ p - 1 . . . δ p - 1 ;
步骤3中将阻带幅值约束条件转化为约束关系函数的方法为:
1)定义阻带幅值约束公式|H(ω)|≤δs,ω∈S={ωi S,i=1,...nS}中
s(ω)=[0,sin(ω),...,sin(nω)]T
c(ω)=[1,cos(ω),...,cos(nω)]T
式中δs表示阻带允许的偏差,S表示阻带内的一系列点集;
2)令
| c T ( ω ) b k | ≤ δ s 2
| s T ( ω ) b k | ≤ δ s 2
|H(k)(ω)|≤δs
3)将幅值约束简化为如下形式:
A s ( k ) b k ≤ q s ( k )
式中
A s ( k ) = C ( ω ) - C ( ω ) S ( ω ) - S ( ω ) 4 n s × ( n + 1 ) , q s ( k ) = δ s 2 1 . . . 1 4 n s × 1
C ( ω ) = c T ( ω 1 ( s ) ) . . . c T ( ω n s ( s ) ) n s × ( n + 1 ) , S ( ω ) = s T ( ω 1 ( s ) ) . . . s T ( ω n s ( s ) ) n s × ( n + 1 )
步骤4中将约束最小二乘法设计转化为解一个正定二次规划问题后进行求解的方法为:
1)将基于约束最小二乘法设计滤波器的目标函数:
转化为解一个正定二次规划问题:
min b k 1 2 b k T H k b k + b k T p k
式中ω∈[0,π]={ωi,i=1,...M},T代表转置,Hk为(n+1)×(n+1)阶正定Hessian矩阵,其中:
2)将通带和阻带约束统一表示为如下形式
Akbk≤qk
式中 A k = A p ( k ) A s ( k ) , q k = q p ( k ) q s ( k )
3)定义二次规划的数学模型为
min x 1 2 Hx + f T x
其中约束条件为
Ax≤b
Aeqx=beq
lb≤x≤ub
式中,H为二次型矩阵,A、Aeq分别为不等式和等式约束的系数矩阵,其余为向量;
4)利用Matlab调用quadprog函数命令进行直接求解。
本发明的有益效果:本发明提出的上述互感器中采样率转换的低延迟滤波器设计方法,极大地提高了保护动作的快速性,同时在区外故障时转换后的误差电流能够满足保护精度的要求,不会造成区外故障时的误动作,有效地实现了测量环节和智能保护装置之间的无缝连接。该方法可有效弥补传统的采样频率频率转换方法的缺陷,即直接线性卷积滤波过程带来了较大的输出延迟,以及滤波器阶数越高,群延迟也越大。
附图说明
图1本发明的流程框图;
图2低通滤波器分别实现抽取和插值示意图;
图3按有理因子U/D的采样频率转换方法示意图;
图4低通滤波器的频谱示意图;
图5 500kV系统仿真模型图;
图6算例系统接线图;
图7a低延迟FIR滤波器的幅频响应图;
图7b低延迟FIR滤波器的相频响应图;
图7c低延迟FIR滤波器的群延迟图;
图7d低延迟FIR滤波器的幅值误差图;
图8母线N区外故障时两侧电流采样值图;
图9 ECT2转换后电流采样数据图;
图10差动保护动作图;
图11区外故障时差电流图;
图12方法2转换后电流的频域分析图。
具体实施方式
以下结合附图和实施例对本发明作进一步说明。
如图1所示,一种电子式互感器中采样率转换的低延迟滤波器设计方法,包括如下步骤:
1)在采样频率转换过程中,变换因子是任意的有理数U/D,可以采用抽取和插值的级联来实现任意分数倍采样频率的转换,实现过程如图2所示。由于内插器中的抗镜像滤波器和抽取器中的抗混叠滤波器均按相同的采样频率Ufs操作,则可将两者合并成一个低通滤波器,如图3所示。
组合滤波器h(n)的理想低通频率响应特性为:
H ( e jω ) = U 0 ≤ | ω | ≤ min ( π U , π D ) 0 min ( π U , π D ) ≤ | ω | ≤ π
式中,π/U和π/D分别是抗镜像滤波器和抗混叠滤波器的截止频率,组合滤波器的截止频率应取二者中的最小值。
2)采用均方误差最小化准则来求解滤波器系数向量,列出加权误差函数最小化的约束条件,即通带幅值约束条件与阻带幅值约束条件。
图4给出了低通滤波器的幅频响应。其中,ωp和ωs分别表示通带和阻带的归一化截止频率,δp和δs分别表示通带和阻带允许的偏差。
采用均方误差最小化准则来求解滤波器系数向量,其加权误差函数为
E ( x ) = 1 2 ∫ - π π W ( ω ) | H D ( ω ) - H ( ω ) | 2 dω
式中,x=b,HD(ω)为理想幅频响应,其中W(ω)为误差加权函数,它在不同的频带中取值可以不同,逼近精度高的频带,W(ω)取值大;逼近精度低的频带,W(ω)取值小。加权误差函数最小化的约束条件如下:
通带幅值约束条件:
| | H ( ω ) | - 1 | ≤ δ p , ω ∈ P = { ω i P , i = 1 , . . . n P }
式中,P表示通带内的一系列点集;
阻带幅值约束条件:
|H(ω)|≤δs,ω∈S={ωi S,i=1,...nS}
式中,S表示阻带内的一系列点集。
3)通带幅值约束条件可以化简为
1-δp≤|H(ω)|≤1+δp
考虑到通带幅值约束条件,经过K次迭代得到H(k)(ω)的通带群延迟为K,与H(ω)的关系如下
H(ω)≈e-jKω|H(k)(ω)|
| H ( k ) ( ω ) | ≈ c k T ( ω ) b k
式中
ck(ω)=[cos(Kω),cos((K-1)ω),...cos((K-n)ω)]T
必须考虑通带群延迟的误差满足以下条件
g(ω)-K|≤δg,ω∈P={ωi P,i=1,...nP}
由K与H(ω)的关系式得通带幅值约束关系式如下
A p ( k ) b k ≤ q p ( k )
式中
A p ( k ) = c k T ( ω 1 ( p ) ) . . . c k T ( ω n p ( p ) ) - c k T ( ω 1 ( p ) ) . . . - c k T ( ω n p ( p ) ) 2 n p × ( n + 1 ) , q p ( k ) = 1 + δ p . . . 1 + δ p δ p - 1 . . . δ p - 1
当k→∞时,H(k)(ω)→H(ω),此时||H(ω)|-1|≤δp与等波纹设计一致。
4)阻带幅值误差约束如下式
|H(ω)|≤δs,ωs≤ω≤π
定义
s(ω)=[0,sin(ω),...,sin(nω)]T
c(ω)=[1,cos(ω),...,cos(nω)]T
如果
| c T ( ω ) b k | ≤ δ s 2
| s T ( ω ) b k | ≤ δ s 2
则满足阻带幅值约束条件
|H(k)(ω)|≤δs
因此幅值约束可以写成如下形式
A s ( k ) b k ≤ q s ( k )
式中
A s ( k ) = C ( ω ) - C ( ω ) S ( ω ) - S ( ω ) 4 n s × ( n + 1 ) , q s ( k ) = δ s 2 1 . . . 1 4 n s × 1
C ( ω ) = c T ( ω 1 ( s ) ) . . . c T ( ω n s ( s ) ) n s × ( n + 1 ) , S ( ω ) = s T ( ω 1 ( s ) ) . . . s T ( ω n s ( s ) ) n s × ( n + 1 )
当k→∞时,H(k)(ω)→H(ω),当满足以上两式时,有|H(ω)|≤|cT(ω)bk|+|sT(ω)bk|≤δs,即满足阻带幅值约束条件。
5)将约束最小二乘法设计转化为解一个正定二次规划问题,并将通带和阻带约束统一表示。
基于约束最小二乘法设计滤波器的目标函数为
式中ω∈[0,π]={ωi,i=1,...M}。
约束最小二乘法设计可转化为解一个正定二次规划问题:
min b k 1 2 b k T H k b k + b k T p k
式中Hk为(n+1)×(n+1)阶正定Hessian矩阵,其中:
通带和阻带约束可统一表示为如下形式
Akbk≤qk
式中 A k = A p ( k ) A s ( k ) , q k = q p ( k ) q s ( k )
6)利用MATLAB,根据二次规划的数学模型和约束条件进行直接求解。
采用约束最小二乘法设计的滤波器,其求解过程转化为求解一个正定二次规划问题,二次规划的数学模型为
min x 1 2 Hx + f T x
其中约束条件为
Ax≤b
Aeqx=beq
lb≤x≤ub
式中,H为二次型矩阵,A、Aeq分别为不等式和等式约束的系数矩阵,其余为向量。
MATLAB提供了相关求解二次规划的函数,可以调用quadprog函数命令进行直接求解。
实施例:
对500kV两圈变压器进行各种情况仿真分析,系统模型如图5所示,线路长度为330km,变压器采用Yn/D-11接线,变比为500/13.8kV,转角方式为减零序的相电流差动方式,采用星形侧向三角形侧转角。
IEC60044-8标准规定ECT的额定采样频率可取为20倍、48倍、80倍工频频率中的任意一种,为使各条支路电流采样值采样频率一致,可以确定相应的抽取因子和插值因子,其结构如图6所示。因此所设计的低通滤波器可能工作在两个频率下,即4kHz和12kHz。
ECT1和ECT2为分别装设在变压器首端和末端的电子式电流互感器,为变压器差动保护装置提供采样数据。设ECT1输出数据采样频率为1kHz,ECT2输出数据采样频率为4kHz,采样频率转化算法在差动保护装置中进行,以高采样频率的采样数据向低采样频率转化为例,设计FIR数字低通滤波器,其性能指标为:Fs=4kHz,fp=450,fs=550,即通带和阻带的截止频率分别为0.225π和0.275π,阶数N=80,加权函数在通带和阻带均取值为1,ω∈{kπ/1000;k=0,1,···,1000},期望群延迟为25,通带纹波不大于1dB,阻带衰减不小于25dB,迭代停止条件为tol=0.0001。
图7a-7d为该FIR数字低通滤波器的幅频响应、相频响应、群延迟和时域的单位脉冲响应图,由图7(c)群延迟曲线可以看出,在通带内群延迟基本保持在25附近波动,最大群延迟误差为2.716,峰值瞬时误差小于3.683%,其中基波幅值误差小于0.52%。表1为所设计的FIR数字低通滤波器系数。
表1滤波器系数h(n)
由于以4kHz采样频率向1kHz采样频率转换,可确定插值因子U=1,抽取因子D=4,FIR滤波器采用上述基于约束最小二乘法设计的系数,并采用切比雪夫等波纹逼近法设计的阶数N=80的低通滤波器,与其进行对比。采用切比雪夫等波纹逼近法设计的低通滤波器,其群延迟在通带和阻带内均为常数,即延迟了40个采样点。分别对采样信号进行采样频率转换,方法1为U=1倍插值、等波纹设计滤波算法和D=4倍抽取三者级联的采样频率转换方法;方法2为U=1倍插值、基于约束最小二乘法设计的低延迟滤波算法和D=4倍抽取三者级联的采样频率转换方法。
在t=0.04s时高压侧母线N区外F1点发生三相短路故障,互感器ECT1、ECT2在采样前经低通滤波器进行抗混叠滤波。以A相为例进行分析,图8给出了从ECT1和ECT2的A相采样数据中恢复的连续波形I1H,I2L
图9给出了高采样率的ECT2采样数据经过转角后,分别采用方法1和方法2后采样电流输出值I1L,可见方法1的转换方法输出滞后于方法2的输出,延迟约为3.75ms。因此,采用等波纹设计滤波算法的普通滤波输出滞后于基于约束最小二乘法设计的低延迟滤波算法,制约了保护动作的快速性,而低延迟滤波算法在完成滤波同时不带来附加的输出延迟。
变压器保护方案为采样值差动保护判据,采用双折线采样值差动判据,转换后采样频率为1kHz,因此选取数据窗长R=8,判别点数S=6,即连续8次判别中有6次及以上则输出动作信号1,否则输出0,其动作信号如图10所示。方法1必须等待到正确的滤波输出后方能进入差动保护算法,其动作时间明显大于方法2的动作时间。滤波器阶数越高,其动作延迟时间也越大。
对转换后的电流采样数据进行误差分析,图11为采样频率转换后的计算的差电流IdL,IdL=I1L-I2L,其最大瞬时值为1.029A,通过合理的整定,能够保证在区外故障时差动保护的正确判别。
从图12中可以看出方法2的转换算法在小于500Hz频率段误差较小,很好地滤除了I1H中的高频分量,并且较完整地保留了I1H中的低频分量,工频基波的幅值误差相当于实际值的-60dB。计算方法2的有效值相对误差与DFT基波幅值相对误差,由表2数据可见,由于频谱吻合良好,误差较低。
表2有效值相对误差与DFT基波幅值相对误差
t0/ms 有效值误差(%) 基波幅值误差(%)
10 0.2184 0.1028
20 -0.1082 -0.0876
30 0.0323 0.0192
40 0.0795 0.0574
50 -0.0532 -0.0511

Claims (1)

1.一种电子式互感器中采样率转换的低延迟滤波器设计方法,其特征在于:包括如下步骤:
一、采用内插器和抽取器的级联来实现采样频率的转换,将内插器中的抗镜像滤波器和抽取器中的抗混叠滤波器合并,建立一个低通滤波器模型;
二、采用均方误差最小化准则来求解该滤波器的系数向量,以滤波器通带幅值与阻带幅值为约束条件,以均方误差最小化为优化目标;
三、将通带幅值约束条件与阻带幅值约束条件转化为约束关系函数;
四、将基于约束最小二乘法设计的滤波器系数向量求解过程转化为求解一个正定二次规划问题,即可直接进行求解得到滤波器系数向量;
步骤二中采用均方误差最小化准则来求解滤波器系数向量b,其加权误差函数为:
式中x=b,HD(ω)为理想幅频响应,H(ω)为幅频响应,W(ω)为误差加权函数;
步骤三中将通带幅值约束条件转化为约束关系函数的方法为:
1)将通带幅值约束条件||H(ω)|1|≤δp化简为1δp≤|H(ω)|≤1+δp,δp表示通带允许的偏差,P表示通带内的一系列点集;
2)将H(ω)经过K次迭代得到H(k)(ω),其通带群延迟为K,H(k)(ω)与H(ω)的关系如下:
H(ω)≈e-jKω|H(k)(ω)|
式中ck(ω)=[cos(Kω),cos((K-1)ω),...cos((K-n)ω)]T
通带群延迟的误差满足以下条件
g(ω)-K|≤δg,ω∈P={ωi P,i=1,...nP}
式中,τg(ω)为通带群延迟的误差,δg通带群延迟允许的偏差;
3)由以上式子得通带幅值约束关系式如下:
式中
步骤三中将阻带幅值约束条件转化为约束关系函数的方法为:
1)定义阻带幅值约束公式|H(ω)|≤δs,ω∈S={ωi S,i=1,...nS}中
s(ω)=[0,sin(ω),...,sin(nω)]T
c(ω)=[1,cos(ω),...,cos(nω)]T
式中δs表示阻带允许的偏差,S表示阻带内的一系列点集;
2)令
|H(k)(ω)|≤δs
3)将幅值约束简化为如下形式:
式中
步骤四中将约束最小二乘法设计转化为解一个正定二次规划问题后进行求解的方法为:
1)将基于约束最小二乘法设计滤波器的目标函数:
转化为解一个正定二次规划问题:
式中ω∈[0,π]={ωi,i=1,...M},T代表转置,Hk为(n+1)×(n+1)阶正定Hessian矩阵,其中:
2)将通带和阻带约束统一表示为如下形式:
Akbk≤qk
式中
3)定义二次规划的数学模型为
其中约束条件为
Ax≤b
Aeqx=beq
lb≤x≤ub
式中,H为二次型矩阵,A、Aeq分别为不等式和等式约束的系数矩阵,其余为向量;
4)利用Matlab调用quadprog函数命令进行直接求解。
CN201310175523.5A 2013-05-13 2013-05-13 电子式互感器中采样率转换的低延迟滤波器设计方法 Expired - Fee Related CN103246773B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310175523.5A CN103246773B (zh) 2013-05-13 2013-05-13 电子式互感器中采样率转换的低延迟滤波器设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310175523.5A CN103246773B (zh) 2013-05-13 2013-05-13 电子式互感器中采样率转换的低延迟滤波器设计方法

Publications (2)

Publication Number Publication Date
CN103246773A CN103246773A (zh) 2013-08-14
CN103246773B true CN103246773B (zh) 2016-12-28

Family

ID=48926291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310175523.5A Expired - Fee Related CN103246773B (zh) 2013-05-13 2013-05-13 电子式互感器中采样率转换的低延迟滤波器设计方法

Country Status (1)

Country Link
CN (1) CN103246773B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105302935B (zh) * 2015-08-10 2018-03-27 工业和信息化部电信研究院 数字解调和测量分析方法
CN105353216B (zh) * 2015-11-19 2018-06-19 许继集团有限公司 一种高效fir滤波器级联dft算法
US10044386B2 (en) * 2016-04-30 2018-08-07 Analog Devices, Inc. Designing FIR filters with globally minimax-optimal magnitude response
WO2018213635A1 (en) * 2017-05-17 2018-11-22 Google Llc Low latency matrix multiply unit
CN107239623B (zh) * 2017-06-08 2020-07-10 桂林电子科技大学 基于凸优化的m通道过采样图滤波器组的优化设计方法
CN107977043B (zh) * 2017-12-19 2020-12-01 电子科技大学 一种可变分数倍采样率的选取方法
CN114006668B (zh) * 2021-10-29 2024-02-20 中国人民解放军国防科技大学 卫星信道免系数更新的高精确时延滤波方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706522A (zh) * 2009-11-13 2010-05-12 电子科技大学 一种数字示波器通道带宽补偿装置
CN102055434A (zh) * 2010-12-01 2011-05-11 北京华力创通科技股份有限公司 一种应用于惯性器件中数字滤波器的设计方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7161515B2 (en) * 2004-11-04 2007-01-09 Tektronix, Inc. Calibration system and method for a linearity corrector using filter products

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706522A (zh) * 2009-11-13 2010-05-12 电子科技大学 一种数字示波器通道带宽补偿装置
CN102055434A (zh) * 2010-12-01 2011-05-11 北京华力创通科技股份有限公司 一种应用于惯性器件中数字滤波器的设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
低延迟有限冲击响应滤波器约束最小二乘设计;赖晓平;《浙江大学学报(工学版)》;20100731;第44卷(第7期);全文 *

Also Published As

Publication number Publication date
CN103246773A (zh) 2013-08-14

Similar Documents

Publication Publication Date Title
CN103246773B (zh) 电子式互感器中采样率转换的低延迟滤波器设计方法
CN105842583B (zh) 基于故障相电压和电流突变量的配网单相接地区段定位方法
CN103344875B (zh) 谐振接地系统单相接地故障分类选线方法
CN101350518A (zh) 数字化保护测控装置采样值处理方法
CN103529294A (zh) 基于hht的光伏系统并网逆变器谐波检测系统及方法
CN110609204B (zh) 基于形态学小波分析消噪的配电网单相接地故障定位方法
CN105243241B (zh) 基于提升结构的两通道双正交图滤波器组设计方法
CN112557812B (zh) 基于Hausdorff距离的小电流接地故障定位方法及系统
CN106405230A (zh) 频率测量方法和装置
CN109669072B (zh) 一种配电网的自适应同步相量量测方法
CN207730865U (zh) 一种基于对称分量法的含光伏电站并网系统故障定位装置
CN105207646B (zh) 交替dft调制滤波器组的极小化极大设计方法
CN110261723B (zh) 一种基于变异系数与高阶累积量的小电流接地选线方法
CN102854422B (zh) 一种变压器支路三相不对称故障分析方法
CN101510687A (zh) 电网中利用窗函数实现多采样率信号的频率转换方法
CN114636896A (zh) 利用峭度的配电网单相接地高阻故障行波定位方法
CN103956987A (zh) 一种数字滤波器设计方法
CN102082420B (zh) 输电线路的纵差保护方法
CN103607180B (zh) 光电互感器中多数字源采样率转换的快速滤波方法
CN110082642B (zh) 基于全相位微分滤波的电网工况故障时刻检测方法及装置
CN104701847B (zh) 风电场接入系统感应滤波支路参数计算方法
CN116609610A (zh) 一种基于自适应小波包变换的单相接地故障选相方法
CN103390117B (zh) 一种电力负荷动特性的特征提取方法
CN114878969A (zh) 一种线路故障行波反演方法
CN203949979U (zh) 一种模拟量合并单元暂态延时测试的前端采集回路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161228

Termination date: 20170513