CN103236332B - 复合软磁材料的制备方法 - Google Patents

复合软磁材料的制备方法 Download PDF

Info

Publication number
CN103236332B
CN103236332B CN201310187700.1A CN201310187700A CN103236332B CN 103236332 B CN103236332 B CN 103236332B CN 201310187700 A CN201310187700 A CN 201310187700A CN 103236332 B CN103236332 B CN 103236332B
Authority
CN
China
Prior art keywords
performed polymer
polymer
magnetic material
soft magnetic
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310187700.1A
Other languages
English (en)
Other versions
CN103236332A (zh
Inventor
武高辉
丁伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201310187700.1A priority Critical patent/CN103236332B/zh
Publication of CN103236332A publication Critical patent/CN103236332A/zh
Application granted granted Critical
Publication of CN103236332B publication Critical patent/CN103236332B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

复合软磁材料的制备方法,它涉及一种软磁材料的制备方法。本发明是要解决现有技术无法制备磁性能优良的软磁复合材料的问题。方法1:一、制备固液混合物;二、制备磁粉表面包覆二氧化硅层的固液混合物;三、制备磁粉表面包覆硅酸盐玻璃的固液混合物;四、清洗干燥;五、混合;六、包覆有机聚合物;七、机械混粉;八、压制;九、热处理,即得到复合软磁材料,方法2:一、制备固液混合物;二、制备磁粉表面包覆二氧化硅层的固液混合物;三、清洗干燥;四、混合;五、包覆有机聚合物;六、机械混粉;七、压制;八、热处理,即得到复合软磁材料;本发明主要用于制备复合软磁材料。

Description

复合软磁材料的制备方法
技术领域
本发明涉及一种软磁材料的制备方法。
背景技术
复合软磁材料是指在磁粉之间互相独立并通过绝缘层材料连接起来的一类软磁材料。这种复合软磁材料的突出优点是交流磁场下具有低的铁损和三维各向同性性质。因此可以制备很多常规软磁材料难以实现的部件,已应用在开关磁阻,谐振电感,防抱死制动传感器,电磁驱动装置,无刷直流电机,旋转机械,低频滤波器等领域。复合软磁材料的制备工艺通常是对金属或合金磁性粉末表面包覆无机物和有机物的电绝缘层,或采用磁性粉末基体—高电阻率连续纤维复合方式形成复合软磁粉体,然后采用粉末冶金压实工艺制备成密实的块体软磁材料。
艺制备成密实的块体软磁材料的方法在大量文献中报道,对于这些复合软磁材料来说,在其制备过程中需要施加大于800MPa的压力,以达到需要的压实密度,但同时又要满足良好的饱和磁感应强度和磁导率,就需要对含有有机物包覆层的复合软磁材料进行退火来去除材料的残余应力,由于纯有机物作为电绝缘层的复合软磁材料涡流损耗较高,因此通常都是在磷化层外再包覆有机绝缘层。但是通常磷化层不耐高温,所以很难有效去除其残余应力。对于现有的无机物包覆层的复合软磁材料来说,包覆层的绝缘性达不到要求,而且现有的含P或S的包覆层对环境污染严重,于是出现了用SiO2,MgO,SiO2粉、Al2O3粉、ZrO2粉与云母粉的混合物制备的无机绝缘层作为无机物包覆层,无机绝缘层普遍具有高温稳定,它克服了有机物包覆层通常不耐高温的缺点。但是现有的无机绝缘层也有缺点,无机绝缘层和磁粉的热膨胀系数相差较大且无机绝缘层的本身的热膨胀系数不可变化,在温差较大的环境或是在长时间使用过程中会在磁粉内产生热应力,导致无机物包覆层的复合软磁材料无法具有优良的磁性能。这些问题都制约着复合软磁材料的发展和应用。因此现有的复合软磁材料存在磁性能差和现有技术无法制备磁性能优良的复合软磁材料的问题。
发明内容
本发明是要解决现有技术无法制备磁性能优良的复合软磁材料的问题,而提供复合软磁材料的备方法。
一种复合软磁材料的制备方法,具体是按以下步骤完成的:
一、制备固液混合物:将磁粉放入清洗剂中,然后在超声频率为24KHz~35KHz下超声清洗10min~20min,过滤得到清洗后磁粉,向清洗后磁粉中加入乙醇和油酸,并用质量浓度为20%~30%的氨水将pH值调节至8.5~9.5,然后进行超声分散或搅拌分散,即得到固液混合物;步骤一中所述的油酸与磁粉的质量比为(0.03~0.2):1;步骤一中所述的油酸与乙醇的体积比为1:(40~75);步骤一中所述的清洗剂为蒸馏水;
二、制备磁粉表面包覆二氧化硅层的固液混合物:向步骤一得到的固液混合物中加入乙醇,然后采用质量浓度为20%~30%的氨水将pH值调节至8.5~9.5,然后在搅拌速度为600r/min~1200r/min和pH值为8.5~9.5的条件下搅拌反应,将正硅酸乙酯等份为2~4份,在搅拌反应过程中每间隔0.5h~1.5h加入1份正硅酸乙酯,最后一次加入正硅酸乙酯后,继续在搅拌速度为600r/min~1200r/min和pH值为8.5~9.5的条件下搅拌反应0.5h~3h;即得到磁粉表面包覆二氧化硅层的固液混合物;步骤二中所述的加入的乙醇与固液混合物的体积比为(2~4):1;步骤二中所述的加入的正硅酸乙酯的总质量与固液混合物中磁粉的质量比为(0.25~0.4):1;
三、制备磁粉表面包覆硅酸盐玻璃的固液混合物:向步骤二得到的磁粉表面包覆二氧化硅层的固液混合物中加入油酸、正硅酸乙酯和质量浓度为10%~20%的金属醇盐/有机溶液,然后采用质量浓度为20%~30%的氨水将pH值调节至8.5~9.5,并在搅拌速度为600r/min~1200r/min和pH值为8.5~9.5的条件下搅拌反应1h~6h,得到磁粉表面包覆硅酸盐玻璃的固液混合物;步骤三中所述的加入的油酸与磁粉表面包覆二氧化硅层的固液混合物中磁粉的质量比为(0.05~0.1):1;步骤三中所述的加入的正硅酸乙酯与磁粉表面包覆二氧化硅层的固液混合物的体积比为(0.25~0.6):1;步骤三中所述的加入的质量浓度为10%~20%的金属醇盐/有机溶液中金属醇盐与磁粉表面包覆二氧化硅层的固液混合物中磁粉的质量比为(0.05~0.6):1;步骤三中所述的金属醇盐/有机溶液中下金属醇盐的化学式为M(OR)x;其中所述的M(OR)x中的M为Ti、Be、Mn、In、Ge、Al、Zr、Na、K、Li、Mg、Ca、Mg和Ba中的一种或其中几种的组合;其中所述的M(OR)x中的R为CnH2n+1,且所述的CnH2n+1中n为1~4;其中所述的M(OR)x中的x为1~5,且所述的M(OR)x呈电中性;
四、清洗干燥:将步骤三中得到的磁粉表面包覆硅酸盐玻璃的固液混合物静置10min~30min,然后进行分离,对分离得到的固体进行清洗,将清洗后固体放入干燥箱中,在温度为40℃~80℃下干燥20min~360min,将干燥后的固体用电磁铁进行筛选,即得到硅酸盐玻璃包覆的磁粉;
五、混合:将硅酸盐玻璃包覆的磁粉加入粘度为10mPa·s~10000mPa·s的偶联剂溶液中,然后采取振动球磨研磨法、行星式球磨研磨法或机械搅拌混合均匀,最后进行干燥,干燥至恒重为止,即得到混合物;步骤五中所述的硅酸盐玻璃包覆的磁粉中磁粉与偶联剂溶液中溶质的质量比为100:(0.2~3.0);步骤五中所述的偶联剂溶液中溶质为偶联剂,溶剂为水、甲醇、乙醇、异丙醇、丁醇、乙醇、甲苯、苯、二甲苯、硬脂酸和液体石蜡中的一种或几种的混合物;其中所述的偶联剂为硅烷偶联剂、钛酸酯偶联剂或铝酸酯偶联剂;
六、包覆有机聚合物:首先按有机聚合物预聚体与步骤五得到的混合物中磁粉的质量比为(0.2~7):100称取有机聚合物预聚体,然后将有机聚合物预聚体加入有机溶剂中,在搅拌条件下混合均匀,得到浓度为10mpa·s~10000mpa·s的有机聚合物/有机溶剂混合物,再将浓度为10mpa·s~10000mpa·s的有机聚合物/有机溶剂混合物加入步骤五得到的混合物中,在搅拌速度为15r/min~30r/min条件下搅拌15min~40min,再在温度为60℃~80℃下干燥,干燥至恒重为止,得到包覆硅酸盐玻璃/有机聚合物粉末的磁粉;
七、机械混粉:向包覆硅酸盐玻璃/有机聚合物粉末的磁粉中加入润滑剂,然后进行机械混合,混匀后得到包覆硅酸盐玻璃/有机聚合物粉末的磁粉/润滑剂混合物;步骤七中所述的包覆硅酸盐玻璃/有机聚合物粉末的磁粉与润滑剂的质量比为100:(0.1~2);步骤七中所述的润滑剂为乙撑双硬脂酰胺或金属硬质酸化物,其中所述金属硬质酸化物为硬脂酸锌、硬脂酸锂或硬脂酸钙;
八、压制:将步骤七得到的包覆硅酸盐玻璃/有机聚合物粉末的磁粉/润滑剂混合物放入模具中,然后在温度为20℃~90℃和机械压力为400MPa~2500MPa下压制成型,即得到复合软磁材料的坯料;
九、热处理:对步骤八得到的复合软磁材料的坯料进行保护气氛热处理或真空热处理,即得到复合软磁材料;
步骤九中所述的保护气氛热处理具体操作如下:首先将步骤八得到的复合软磁材料的坯料置于氮气、氩气或氢气气氛下,然后以升温速率8℃/min~12℃/min升温至200℃~900℃,并在氮气、氩气或氢气保护下和温度为200℃~900℃条件下对步骤八得到的复合软磁材料的坯料进行热处理10min~300min,然后以降温速率8℃/min~12℃/min降温至室温,即得到复合软磁材料;
步骤九中所述的真空热处理具体操作如下:首先将步骤八得到的复合软磁材料的坯料置于真空条件下,然后以升温速率8℃/min~12℃/min升温至200℃~900℃,在真空度为10-1Pa~10-3Pa和温度为200℃~900℃条件下对步骤八得到的复合软磁材料的坯料进行热处理10min~300min,然后以降温速率8℃/min~12℃/min降温至室温,即得到复合软磁材料。
步骤一中所述的磁粉为纯Fe粉、Fe-Ni-Co系金属粉末、Fe-Ni系金属粉末、Fe-Si-Al系金属粉末、Fe-Co系金属粉末、Fe-Si系金属粉末、Fe-P系金属粉末、Fe3O4粉末或Fe-Cr系金属粉末,且所述磁粉的粒径为10μm~500μm。
步骤一中所述的超声分散具体操作如下:在超声频率为24KHz~35KHz下超声分散1h~2h。
步骤一中所述的搅拌分散具体操作如下:在搅拌速度为200r/min~1200r/min下搅拌分散1h~2h。
步骤六中所述的有机聚合物预聚体为聚乙烯预聚体、聚丙烯预聚体、乙烯-乙酸乙酯共聚物预聚体、尼龙6预聚体、尼龙66预聚体、尼龙6/66预聚体、聚亚苯硫醚预聚体、聚亚苯硫酮预聚体、聚对苯二甲酸乙二酯预聚体、聚对苯二甲酸丁二酯预聚体、聚酰亚胺预聚体、聚醚酰亚胺预聚体、聚酰胺酰亚胺预聚体、聚苯乙烯预聚体、丙烯腈-苯乙烯共聚物预聚体、聚氯乙烯预聚体、聚偏氯乙烯预聚体、氯乙烯-偏氯乙烯共聚物预聚体、氯化聚乙烯预聚体、聚丙烯酸甲酯预聚体、聚甲基丙烯酸甲酯预聚体、聚丙烯腈预聚体、聚甲基丙烯腈预聚体、四氟乙烯/全氟烷基乙烯醚共聚物预聚体、四氟乙烯/六氟丙烯预聚体、聚偏氟乙烯预聚体、聚二甲基硅氧烷预聚体、聚苯醚预聚体、聚醚醚酮预聚体、聚醚酮预聚体、聚芳酯预聚体、聚砜预聚体、聚醚砜预聚体、聚甲醛预聚体、聚碳酸酯预聚体、聚醋酸乙烯酯预聚体、聚乙烯醇缩甲醛预聚体、聚乙烯醇缩丁醛预聚体、聚丁烯预聚体、聚异丁烯预聚体、聚甲基戊烯预聚体、丁二烯树脂预聚体、聚乙烯氧化物预聚体、羟基苯基聚酯预聚体、聚对二甲苯树脂预聚体、硅树脂预聚体、环氧树脂预聚体、苯酚树脂预聚体、乙丙橡胶预聚体、聚丁二烯橡胶预聚体、苯乙烯-丁二烯橡胶预聚体、氯丁二烯橡胶等橡胶预聚体和苯乙烯-丁二烯-苯乙烯嵌段共聚物预聚体中的一种或者两种及两种以上混合物。
一种复合软磁材料的制备方法,具体是按以下步骤完成的:
一、制备固液混合物:将磁粉放入清洗剂中,然后在超声频率为24KHz~35KHz下超声清洗10min~20min,过滤得到清洗后磁粉,向清洗后磁粉中加入乙醇和油酸,并用质量浓度为20%~30%的氨水将pH值调节至8.5~9.5,然后进行超声分散或搅拌分散,即得到固液混合物;步骤一中所述的油酸与磁粉的质量比为(0.03~0.2):1;步骤一中所述的油酸与乙醇的体积比为1:(40~75);步骤一中所述的清洗剂为蒸馏水;
二、制备磁粉表面包覆二氧化硅层的固液混合物:向步骤一得到的固液混合物中加入乙醇,然后采用质量浓度为20%~30%的氨水将pH值调节至8.5~9.5,然后在搅拌速度为600r/min~1200r/min和pH值为8.5~9.5的条件下搅拌反应,将正硅酸乙酯等份为2~4份,在搅拌反应过程中每间隔0.5h~1.5h加入1份正硅酸乙酯,最后一次加入正硅酸乙酯后,继续在搅拌速度为600r/min~1200r/min和pH值为8.5~9.5的条件下搅拌反应0.5h~3h;即得到磁粉表面包覆二氧化硅层的固液混合物;步骤二中所述的加入的乙醇与固液混合物的体积比为(2~4):1;步骤二中所述的加入的正硅酸乙酯的总质量与固液混合物中磁粉的质量比为(0.25~0.4):1;
三、清洗干燥:将步骤二中得到的磁粉表面包覆二氧化硅层的固液混合物静置10min~30min,然后进行分离,对分离得到的固体进行清洗,将清洗后固体放入干燥箱中,在温度为40℃~80℃下干燥20min~360min,将干燥后的固体用电磁铁进行筛选,即得到二氧化硅包覆的磁粉;
四、混合:将二氧化硅包覆的磁粉加入粘度为10mpa·s~10000mpa·s的偶联剂溶液中,然后采取振动球磨研磨法、行星式球磨研磨法或机械搅拌混合均匀,最后进行干燥,干燥至恒重为止,即得到混合物;步骤五中所述的二氧化硅包覆的磁粉中磁粉与偶联剂溶液中溶质的质量比为100:(0.2~3.0);步骤五中所述的偶联剂溶液中溶质为偶联剂,溶剂为水、甲醇、乙醇、异丙醇、丁醇、乙醇、甲苯、苯、二甲苯、硬脂酸和液体石蜡中的一种或几种的混合物;其中所述的偶联剂为硅烷偶联剂、钛酸酯偶联剂或铝酸酯偶联剂;
五、包覆有机聚合物:首先按有机聚合物预聚体与步骤四得到的混合物中磁粉的质量比为(0.2~7):100称取有机聚合物预聚体,然后将有机聚合物预聚体加入有机溶剂中,在搅拌条件下混合均匀,得到浓度为10mpa·s~10000mpa·s的有机聚合物/有机溶剂混合物,再将浓度为10mpa·s~10000mpa·s的有机聚合物/有机溶剂混合物加入步骤四得到的混合物中,在搅拌速度为15r/min~30r/min条件下搅拌15min~40min,再在温度为60℃~80℃下干燥,干燥至恒重为止,得到包覆二氧化硅/有机聚合物粉末的磁粉;
六、机械混粉:向包覆二氧化硅/有机聚合物粉末的磁粉中加入润滑剂,然后进行机械混合,混匀后得到包覆二氧化硅/有机聚合物粉末的磁粉/润滑剂混合物;步骤六中所述的包覆二氧化硅/有机聚合物粉末的磁粉与润滑剂的质量比为100:(0.1~2);步骤六中所述的润滑剂为乙撑双硬脂酰胺或金属硬质酸化物,其中所述金属硬质酸化物为硬脂酸锌、硬脂酸锂或硬脂酸钙;
七、压制:将步骤六得到的包覆二氧化硅/有机聚合物粉末的磁粉/润滑剂混合物放入模具中,然后在温度为20℃~90℃和机械压力为400MPa~2500MPa下压制成型,即得到复合软磁材料的坯料;
八、热处理:对步骤七得到的复合软磁材料的坯料进行保护气氛热处理或真空热处理,即得到复合软磁材料;
步骤八中所述的保护气氛热处理具体操作如下:首先将步骤七得到的复合软磁材料的坯料置于氮气、氩气或氢气气氛下,然后以升温速率8℃/min~12℃/min升温至200℃~900℃,并在氮气、氩气或氢气保护下和温度为200℃~900℃条件下对步骤七得到的复合软磁材料的坯料进行热处理10min~300min,然后以降温速率8℃/min~12℃/min降温至室温,即得到复合软磁材料;
步骤八中所述的真空热处理具体操作如下:首先将步骤七得到的复合软磁材料的坯料置于真空条件下,然后以升温速率8℃/min~12℃/min升温至200℃~900℃,在真空度为10-1Pa~10-3Pa和温度为200℃~900℃条件下对步骤七得到的复合软磁材料的坯料进行热处理10min~300min,然后以降温速率8℃/min~12℃/min降温至室温,即得到复合软磁材料。
步骤一中所述的磁粉为纯Fe粉、Fe-Ni-Co系金属粉末、Fe-Ni系金属粉末、Fe-Si-Al系金属粉末、Fe-Co系金属粉末、Fe-Si系金属粉末、Fe-P系金属粉末、Fe3O4粉末或Fe-Cr系金属粉末,且所述磁粉的粒径为10μm~500μm。
步骤一中所述的超声分散具体操作如下:在超声频率为24KHz~35KHz下超声分散1h~2h。
步骤一中所述的搅拌分散具体操作如下:在搅拌速度为200r/min~1200r/min下搅拌分散1h~2h。
步骤五中所述的有机聚合物预聚体为聚乙烯预聚体、聚丙烯预聚体、乙烯-乙酸乙酯共聚物预聚体、尼龙6预聚体、尼龙66预聚体、尼龙6/66预聚体、聚亚苯硫醚预聚体、聚亚苯硫酮预聚体、聚对苯二甲酸乙二酯预聚体、聚对苯二甲酸丁二酯预聚体、聚酰亚胺预聚体、聚醚酰亚胺预聚体、聚酰胺酰亚胺预聚体、聚苯乙烯预聚体、丙烯腈-苯乙烯共聚物预聚体、聚氯乙烯预聚体、聚偏氯乙烯预聚体、氯乙烯-偏氯乙烯共聚物预聚体、氯化聚乙烯预聚体、聚丙烯酸甲酯预聚体、聚甲基丙烯酸甲酯预聚体、聚丙烯腈预聚体、聚甲基丙烯腈预聚体、四氟乙烯/全氟烷基乙烯醚共聚物预聚体、四氟乙烯/六氟丙烯预聚体、聚偏氟乙烯预聚体、聚二甲基硅氧烷预聚体、聚苯醚预聚体、聚醚醚酮预聚体、聚醚酮预聚体、聚芳酯预聚体、聚砜预聚体、聚醚砜预聚体、聚甲醛预聚体、聚碳酸酯预聚体、聚醋酸乙烯酯预聚体、聚乙烯醇缩甲醛预聚体、聚乙烯醇缩丁醛预聚体、聚丁烯预聚体、聚异丁烯预聚体、聚甲基戊烯预聚体、丁二烯树脂预聚体、聚乙烯氧化物预聚体、羟基苯基聚酯预聚体、聚对二甲苯树脂预聚体、硅树脂预聚体、环氧树脂预聚体、苯酚树脂预聚体、乙丙橡胶预聚体、聚丁二烯橡胶预聚体、苯乙烯-丁二烯橡胶预聚体、氯丁二烯橡胶等橡胶预聚体和苯乙烯-丁二烯-苯乙烯嵌段共聚物预聚体中的一种或者两种及两种以上混合物。
本发明优点:一、本发明在磁粉表面上包覆硅酸盐玻璃或二氧化硅作为绝缘层,再使用偶联剂与树脂混合,通过加压固化得到复合软磁材料的坯料,在经退火得到复合软磁材料;由于采用硅酸盐玻璃或二氧化硅作为包覆层,因此用这种磁性粉末制备的复合软磁材料可以在较高温度下退火,使得复合软磁材料具有优异的磁性能,这为复合软磁材料在更大领域的应用提供了广阔的空间;二、本发明制备的复合软磁材料的断裂强度达到70MPa以上,最大磁导率达到900以上。三、由于本发明制备的复合软磁材料具有优良的磁性,本发明制备的复合软磁材料可应用于开关磁阻、谐振电感、防抱死制动传感器、电磁驱动装置、无刷直流电机、旋转机械和低频滤波器等领域。
附图说明
图1是试验一制备的复合软磁材材200倍扫描电子显微镜图。
具体实施方式
具体实施方式一:本实施方式是一种复合软磁材料的制备方法,具体是按以下步骤完成的:
一、制备固液混合物:将磁粉放入清洗剂中,然后在超声频率为24KHz~35KHz下超声清洗10min~20min,过滤得到清洗后磁粉,向清洗后磁粉中加入乙醇和油酸,并用质量浓度为20%~30%的氨水将pH值调节至8.5~9.5,然后进行超声分散或搅拌分散,即得到固液混合物;步骤一中所述的油酸与磁粉的质量比为(0.03~0.2):1;步骤一中所述的油酸与乙醇的体积比为1:(40~75);步骤一中所述的清洗剂为蒸馏水;
二、制备磁粉表面包覆二氧化硅层的固液混合物:向步骤一得到的固液混合物中加入乙醇,然后采用质量浓度为20%~30%的氨水将pH值调节至8.5~9.5,然后在搅拌速度为600r/min~1200r/min和pH值为8.5~9.5的条件下搅拌反应,将正硅酸乙酯等份为2~4份,在搅拌反应过程中每间隔0.5h~1.5h加入1份正硅酸乙酯,最后一次加入正硅酸乙酯后,继续在搅拌速度为600r/min~1200r/min和pH值为8.5~9.5的条件下搅拌反应0.5h~3h;即得到磁粉表面包覆二氧化硅层的固液混合物;步骤二中所述的加入的乙醇与固液混合物的体积比为(2~4):1;步骤二中所述的加入的正硅酸乙酯的总质量与固液混合物中磁粉的质量比为(0.25~0.4):1;
三、制备磁粉表面包覆硅酸盐玻璃的固液混合物:向步骤二得到的磁粉表面包覆二氧化硅层的固液混合物中加入油酸、正硅酸乙酯和质量浓度为10%~20%的金属醇盐/有机溶液,然后采用质量浓度为20%~30%的氨水将pH值调节至8.5~9.5,并在搅拌速度为600r/min~1200r/min和pH值为8.5~9.5的条件下搅拌反应1h~6h,得到磁粉表面包覆硅酸盐玻璃的固液混合物;步骤三中所述的加入的油酸与磁粉表面包覆二氧化硅层的固液混合物中磁粉的质量比为(0.05~0.1):1;步骤三中所述的加入的正硅酸乙酯与磁粉表面包覆二氧化硅层的固液混合物的体积比为(0.25~0.6):1;步骤三中所述的加入的质量浓度为10%~20%的金属醇盐/有机溶液中金属醇盐与磁粉表面包覆二氧化硅层的固液混合物中磁粉的质量比为(0.05~0.6):1;步骤三中所述的金属醇盐/有机溶液中下金属醇盐的化学式为M(OR)x;其中所述的M(OR)x中的M为Ti、Be、Mn、In、Ge、Al、Zr、Na、K、Li、Mg、Ca、Mg和Ba中的一种或其中几种的组合;其中所述的M(OR)x中的R为CnH2n+1,且所述的CnH2n+1中n为1~4;其中所述的M(OR)x中的x为1~5,且所述的M(OR)x呈电中性;
四、清洗干燥:将步骤三中得到的磁粉表面包覆硅酸盐玻璃的固液混合物静置10min~30min,然后进行分离,对分离得到的固体进行清洗,将清洗后固体放入干燥箱中,在温度为40℃~80℃下干燥20min~360min,将干燥后的固体用电磁铁进行筛选,即得到硅酸盐玻璃包覆的磁粉;
五、混合:将硅酸盐玻璃包覆的磁粉加入粘度为10mPa·s~10000mPa·s的偶联剂溶液中,然后采取振动球磨研磨法、行星式球磨研磨法或机械搅拌混合均匀,最后进行干燥,干燥至恒重为止,即得到混合物;步骤五中所述的硅酸盐玻璃包覆的磁粉中磁粉与偶联剂溶液中溶质的质量比为100:(0.2~3.0);步骤五中所述的偶联剂溶液中溶质为偶联剂,溶剂为水、甲醇、乙醇、异丙醇、丁醇、乙醇、甲苯、苯、二甲苯、硬脂酸和液体石蜡中的一种或几种的混合物;其中所述的偶联剂为硅烷偶联剂、钛酸酯偶联剂或铝酸酯偶联剂;
六、包覆有机聚合物:首先按有机聚合物预聚体与步骤五得到的混合物中磁粉的质量比为(0.2~7):100称取有机聚合物预聚体,然后将有机聚合物预聚体加入有机溶剂中,在搅拌条件下混合均匀,得到浓度为10mpa·s~10000mpa·s的有机聚合物/有机溶剂混合物,再将浓度为10mpa·s~10000mpa·s的有机聚合物/有机溶剂混合物加入步骤五得到的混合物中,在搅拌速度为15r/min~30r/min条件下搅拌15min~40min,再在温度为60℃~80℃下干燥,干燥至恒重为止,得到包覆硅酸盐玻璃/有机聚合物粉末的磁粉;
七、机械混粉:向包覆硅酸盐玻璃/有机聚合物粉末的磁粉中加入润滑剂,然后进行机械混合,混匀后得到包覆硅酸盐玻璃/有机聚合物粉末的磁粉/润滑剂混合物;步骤七中所述的包覆硅酸盐玻璃/有机聚合物粉末的磁粉与润滑剂的质量比为100:(0.1~2);步骤七中所述的润滑剂为乙撑双硬脂酰胺或金属硬质酸化物,其中所述金属硬质酸化物为硬脂酸锌、硬脂酸锂或硬脂酸钙;
八、压制:将步骤七得到的包覆硅酸盐玻璃/有机聚合物粉末的磁粉/润滑剂混合物放入模具中,然后在温度为20℃~90℃和机械压力为400MPa~2500MPa下压制成型,即得到复合软磁材料的坯料;
九、热处理:对步骤八得到的复合软磁材料的坯料进行保护气氛热处理或真空热处理,即得到复合软磁材料;
步骤九中所述的保护气氛热处理具体操作如下:首先将步骤八得到的复合软磁材料的坯料置于氮气、氩气或氢气气氛下,然后以升温速率8℃/min~12℃/min升温至200℃~900℃,并在氮气、氩气或氢气保护下和温度为200℃~900℃条件下对步骤八得到的复合软磁材料的坯料进行热处理10min~300min,然后以降温速率8℃/min~12℃/min降温至室温,即得到复合软磁材料;
步骤九中所述的真空热处理具体操作如下:首先将步骤八得到的复合软磁材料的坯料置于真空条件下,然后以升温速率8℃/min~12℃/min升温至200℃~900℃,在真空度为10-1Pa~10-3Pa和温度为200℃~900℃条件下对步骤八得到的复合软磁材料的坯料进行热处理10min~300min,然后以降温速率8℃/min~12℃/min降温至室温,即得到复合软磁材料。
本实施方式在磁粉表面上包覆硅酸盐玻璃或二氧化硅作为绝缘层,再使用偶联剂与树脂混合,通过加压固化得到复合软磁材料的坯料,在经退火得到复合软磁材料;由于采用硅酸盐玻璃或二氧化硅作为包覆层,因此用这种磁性粉末制备的复合软磁材料可以在较高温度下退火,使得复合软磁材料具有优异的磁性能,这为复合软磁材料在更大领域的应用提供了广阔的空间。
本实施方式制备的复合软磁材料的断裂强度达到70MPa以上,最大磁导率达到900以上。
由于本实施方式制备的复合软磁材料具有优良的磁性,本实施方式制备的复合软磁材料可应用于开关磁阻、谐振电感、防抱死制动传感器、电磁驱动装置、无刷直流电机、旋转机械和低频滤波器等领域。
具体实施方式二:本实施方式与具体实施方式一的不同点是:步骤一中所述的磁粉为纯Fe粉、Fe-Ni-Co系金属粉末、Fe-Ni系金属粉末、Fe-Si-Al系金属粉末、Fe-Co系金属粉末、Fe-Si系金属粉末、Fe-P系金属粉末、Fe3O4粉末或Fe-Cr系金属粉末,且所述磁粉的粒径为10μm~500μm。其他与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同点是:步骤一中所述的超声分散具体操作如下:在超声频率为24KHz~35KHz下超声分散1h~2h。其他与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一或二之一不同点是:步骤一中所述的搅拌分散具体操作如下:在搅拌速度为200r/min~1200r/min下搅拌分散1h~2h。其他与具体实施方式一或二相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤六中所述的有机聚合物预聚体为聚乙烯预聚体、聚丙烯预聚体、乙烯-乙酸乙酯共聚物预聚体、尼龙6预聚体、尼龙66预聚体、尼龙6/66预聚体、聚亚苯硫醚预聚体、聚亚苯硫酮预聚体、聚对苯二甲酸乙二酯预聚体、聚对苯二甲酸丁二酯预聚体、聚酰亚胺预聚体、聚醚酰亚胺预聚体、聚酰胺酰亚胺预聚体、聚苯乙烯预聚体、丙烯腈-苯乙烯共聚物预聚体、聚氯乙烯预聚体、聚偏氯乙烯预聚体、氯乙烯-偏氯乙烯共聚物预聚体、氯化聚乙烯预聚体、聚丙烯酸甲酯预聚体、聚甲基丙烯酸甲酯预聚体、聚丙烯腈预聚体、聚甲基丙烯腈预聚体、四氟乙烯/全氟烷基乙烯醚共聚物预聚体、四氟乙烯/六氟丙烯预聚体、聚偏氟乙烯预聚体、聚二甲基硅氧烷预聚体、聚苯醚预聚体、聚醚醚酮预聚体、聚醚酮预聚体、聚芳酯预聚体、聚砜预聚体、聚醚砜预聚体、聚甲醛预聚体、聚碳酸酯预聚体、聚醋酸乙烯酯预聚体、聚乙烯醇缩甲醛预聚体、聚乙烯醇缩丁醛预聚体、聚丁烯预聚体、聚异丁烯预聚体、聚甲基戊烯预聚体、丁二烯树脂预聚体、聚乙烯氧化物预聚体、羟基苯基聚酯预聚体、聚对二甲苯树脂预聚体、硅树脂预聚体、环氧树脂预聚体、苯酚树脂预聚体、乙丙橡胶预聚体、聚丁二烯橡胶预聚体、苯乙烯-丁二烯橡胶预聚体、氯丁二烯橡胶等橡胶预聚体和苯乙烯-丁二烯-苯乙烯嵌段共聚物预聚体中的一种或者两种及两种以上混合物。其他与具体实施方式一至四相同。
本实施方式所述的有机聚合物预聚体为混合物时,各组分之间按任意比混合。
具体实施方式六:本实施方式是一种复合软磁材料的制备方法,具体是按以下步骤完成的:
一、制备固液混合物:将磁粉放入清洗剂中,然后在超声频率为24KHz~35KHz下超声清洗10min~20min,过滤得到清洗后磁粉,向清洗后磁粉中加入乙醇和油酸,并用质量浓度为20%~30%的氨水将pH值调节至8.5~9.5,然后进行超声分散或搅拌分散,即得到固液混合物;步骤一中所述的油酸与磁粉的质量比为(0.03~0.2):1;步骤一中所述的油酸与乙醇的体积比为1:(40~75);步骤一中所述的清洗剂为蒸馏水;
二、制备磁粉表面包覆二氧化硅层的固液混合物:向步骤一得到的固液混合物中加入乙醇,然后采用质量浓度为20%~30%的氨水将pH值调节至8.5~9.5,然后在搅拌速度为600r/min~1200r/min和pH值为8.5~9.5的条件下搅拌反应,将正硅酸乙酯等份为2~4份,在搅拌反应过程中每间隔0.5h~1.5h加入1份正硅酸乙酯,最后一次加入正硅酸乙酯后,继续在搅拌速度为600r/min~1200r/min和pH值为8.5~9.5的条件下搅拌反应0.5h~3h;即得到磁粉表面包覆二氧化硅层的固液混合物;步骤二中所述的加入的乙醇与固液混合物的体积比为(2~4):1;步骤二中所述的加入的正硅酸乙酯的总质量与固液混合物中磁粉的质量比为(0.25~0.4):1;
三、清洗干燥:将步骤二中得到的磁粉表面包覆二氧化硅层的固液混合物静置10min~30min,然后进行分离,对分离得到的固体进行清洗,将清洗后固体放入干燥箱中,在温度为40℃~80℃下干燥20min~360min,将干燥后的固体用电磁铁进行筛选,即得到二氧化硅包覆的磁粉;
四、混合:将二氧化硅包覆的磁粉加入粘度为10mpa·s~10000mpa·s的偶联剂溶液中,然后采取振动球磨研磨法、行星式球磨研磨法或机械搅拌混合均匀,最后进行干燥,干燥至恒重为止,即得到混合物;步骤五中所述的二氧化硅包覆的磁粉中磁粉与偶联剂溶液中溶质的质量比为100:(0.2~3.0);步骤五中所述的偶联剂溶液中溶质为偶联剂,溶剂为水、甲醇、乙醇、异丙醇、丁醇、乙醇、甲苯、苯、二甲苯、硬脂酸和液体石蜡中的一种或几种的混合物;其中所述的偶联剂为硅烷偶联剂、钛酸酯偶联剂或铝酸酯偶联剂;
五、包覆有机聚合物:首先按有机聚合物预聚体与步骤四得到的混合物中磁粉的质量比为(0.2~7):100称取有机聚合物预聚体,然后将有机聚合物预聚体加入有机溶剂中,在搅拌条件下混合均匀,得到浓度为10mpa·s~10000mpa·s的有机聚合物/有机溶剂混合物,再将浓度为10mpa·s~10000mpa·s的有机聚合物/有机溶剂混合物加入步骤四得到的混合物中,在搅拌速度为15r/min~30r/min条件下搅拌15min~40min,再在温度为60℃~80℃下干燥,干燥至恒重为止,得到包覆二氧化硅/有机聚合物粉末的磁粉;
六、机械混粉:向包覆二氧化硅/有机聚合物粉末的磁粉中加入润滑剂,然后进行机械混合,混匀后得到包覆二氧化硅/有机聚合物粉末的磁粉/润滑剂混合物;步骤六中所述的包覆二氧化硅/有机聚合物粉末的磁粉与润滑剂的质量比为100:(0.1~2);步骤六中所述的润滑剂为乙撑双硬脂酰胺或金属硬质酸化物或,其中所述金属硬质酸化物为硬脂酸锌、硬脂酸锂或硬脂酸钙;
七、压制:将步骤六得到的包覆二氧化硅/有机聚合物粉末的磁粉/润滑剂混合物放入模具中,然后在温度为20℃~90℃和机械压力为400MPa~2500MPa下压制成型,即得到复合软磁材料的坯料;
八、热处理:对步骤七得到的复合软磁材料的坯料进行保护气氛热处理或真空热处理,即得到复合软磁材料;
步骤八中所述的保护气氛热处理具体操作如下:首先将步骤七得到的复合软磁材料的坯料置于氮气、氩气或氢气气氛下,然后以升温速率8℃/min~12℃/min升温至200℃~900℃,并在氮气、氩气或氢气保护下和温度为200℃~900℃条件下对步骤七得到的复合软磁材料的坯料进行热处理10min~300min,然后以降温速率8℃/min~12℃/min降温至室温,即得到复合软磁材料;
步骤八中所述的真空热处理具体操作如下:首先将步骤七得到的复合软磁材料的坯料置于真空条件下,然后以升温速率8℃/min~12℃/min升温至200℃~900℃,在真空度为10-1Pa~10-3Pa和温度为200℃~900℃条件下对步骤七得到的复合软磁材料的坯料进行热处理10min~300min,然后以降温速率8℃/min~12℃/min降温至室温,即得到复合软磁材料。
本实施方式在磁粉表面上包覆硅酸盐玻璃或二氧化硅作为绝缘层,再使用偶联剂与树脂混合,通过加压固化得到复合软磁材料的坯料,在经退火得到复合软磁材料;由于采用硅酸盐玻璃或二氧化硅作为包覆层,因此用这种磁性粉末制备的复合软磁材料可以在较高温度下退火,使得复合软磁材料具有优异的磁性能,这为复合软磁材料在更大领域的应用提供了广阔的空间。本实施方式制备的复合软磁材料的断裂强度达到70MPa以上,最大磁导率达到900以上。
由于本实施方式制备的复合软磁材料具有优良的磁性,本实施方式制备的复合软磁材料可应用于开关磁阻、谐振电感、防抱死制动传感器、电磁驱动装置、无刷直流电机、旋转机械和低频滤波器等领域。
具体实施方式七:本实施方式与具体实施方式六的不同点是:步骤一中所述的磁粉为纯Fe粉、Fe-Ni-Co系金属粉末、Fe-Ni系金属粉末、Fe-Si-Al系金属粉末、Fe-Co系金属粉末、Fe-Si系金属粉末、Fe-P系金属粉末、Fe3O4粉末或Fe-Cr系金属粉末,且所述磁粉的粒径为10μm~500μm。其他与具体实施方式六相同。
具体实施方式八:本实施方式与具体实施方式六或七之一不同点是:步骤一中所述的超声分散具体操作如下:在超声频率为24KHz~35KHz下超声分散1h~2h。其他与具体实施方式六或七相同。
具体实施方式九:本实施方式与具体实施方式六或七之一不同点是:步骤一中所述的搅拌分散具体操作如下:在搅拌速度为200r/min~1200r/min下搅拌分散1h~2h。其他与具体实施方式六或七相同。
具体实施方式十:本实施方式与具体实施方式六至八之一不同点是:步骤五中所述的有机聚合物预聚体为聚乙烯预聚体、聚丙烯预聚体、乙烯-乙酸乙酯共聚物预聚体、尼龙6预聚体、尼龙66预聚体、尼龙6/66预聚体、聚亚苯硫醚预聚体、聚亚苯硫酮预聚体、聚对苯二甲酸乙二酯预聚体、聚对苯二甲酸丁二酯预聚体、聚酰亚胺预聚体、聚醚酰亚胺预聚体、聚酰胺酰亚胺预聚体、聚苯乙烯预聚体、丙烯腈-苯乙烯共聚物预聚体、聚氯乙烯预聚体、聚偏氯乙烯预聚体、氯乙烯-偏氯乙烯共聚物预聚体、氯化聚乙烯预聚体、聚丙烯酸甲酯预聚体、聚甲基丙烯酸甲酯预聚体、聚丙烯腈预聚体、聚甲基丙烯腈预聚体、四氟乙烯/全氟烷基乙烯醚共聚物预聚体、四氟乙烯/六氟丙烯预聚体、聚偏氟乙烯预聚体、聚二甲基硅氧烷预聚体、聚苯醚预聚体、聚醚醚酮预聚体、聚醚酮预聚体、聚芳酯预聚体、聚砜预聚体、聚醚砜预聚体、聚甲醛预聚体、聚碳酸酯预聚体、聚醋酸乙烯酯预聚体、聚乙烯醇缩甲醛预聚体、聚乙烯醇缩丁醛预聚体、聚丁烯预聚体、聚异丁烯预聚体、聚甲基戊烯预聚体、丁二烯树脂预聚体、聚乙烯氧化物预聚体、羟基苯基聚酯预聚体、聚对二甲苯树脂预聚体、硅树脂预聚体、环氧树脂预聚体、苯酚树脂预聚体、乙丙橡胶预聚体、聚丁二烯橡胶预聚体、苯乙烯-丁二烯橡胶预聚体、氯丁二烯橡胶等橡胶预聚体和苯乙烯-丁二烯-苯乙烯嵌段共聚物预聚体中的一种或者两种及两种以上混合物。其他与具体实施方式六至九同。
本实施方式所述的有机聚合物预聚体为混合物时,各组分之间按任意比混合。
采用下述试验验证本发明效果:
试验一:一种复合软磁材料的制备方法,具体是按以下步骤完成的:
一、制备固液混合物:将150g纯Fe粉放入蒸馏水中,然后在超声频率为30KHz下超声清洗10min,过滤得到清洗后磁粉,向清洗后磁粉中加入660mL乙醇和10.72g油酸,并用质量浓度为25%的氨水将pH值调节至9,然后在搅拌速度为800r/min下搅拌分散1.5h。,即得到固液混合物;
二、制备磁粉表面包覆二氧化硅层的固液混合物:向步骤一得到的固液混合物中加入2340mL乙醇,然后采用质量浓度为25%的氨水将pH值调节至9,然后在搅拌速度为800r/min和pH值为9的条件下搅拌反应,将44.64g正硅酸乙酯等份为2份,在搅拌反应过程中每间隔1h加入1份正硅酸乙酯,最后一次加入正硅酸乙酯后,继续在搅拌速度为800r/min和pH值为9的条件下搅拌反应2h;即得到磁粉表面包覆二氧化硅层的固液混合物;
三、制备磁粉表面包覆硅酸盐玻璃的固液混合物:向步骤二得到的磁粉表面包覆二氧化硅层的固液混合物中加入12.95g油酸、61.38g正硅酸乙酯和120mL质量浓度为15%的乙醇钠/乙醇溶液,然后采用质量浓度为25%的氨水将pH值调节至9,并在搅拌速度为800r/min和pH值为9的条件下搅拌反应3h,得到磁粉表面包覆硅酸盐玻璃的固液混合物;
四、清洗干燥:将步骤三中得到的磁粉表面包覆硅酸盐玻璃的固液混合物静置30min,然后进行分离,对分离得到的固体采用去离子水清洗1次,再采用乙醇清洗1次,将清洗后固体放入干燥箱中,在温度为60℃下干燥240min,将干燥后的固体用电磁铁进行筛选,即得到硅酸盐玻璃包覆的磁粉;
五、混合:将100g硅酸盐玻璃包覆的磁粉加入偶联剂溶液中,然后在搅拌速度为30r/min下混合均匀,最后在温度为60℃下干燥30min(固体恒重),即得到混合物;步骤五中所述的偶联剂溶液中溶质为0.3g硅烷偶联剂,溶剂为2mL水、5mL甲醇和10mL乙醇;
六、包覆有机聚合物:将3g环氧树脂(型号6101)预聚体加入甲苯中,混匀后得到浓度为30mPa·s的环氧树脂/甲苯混合物,再将浓度为30mPa·s的环氧树脂/甲苯混合物加入步骤五得到的混合物中,在搅拌速度为25r/min条件下搅拌30min,再在温度为70℃下干燥1h(固体恒重),得到包覆硅酸盐玻璃/有机聚合物粉末的磁粉;
七、机械混粉:向步骤六得到包覆硅酸盐玻璃/有机聚合物粉末的磁粉中加入0.5g硬脂酸锌粉末,然后进行机械混合,混匀后得到包覆硅酸盐玻璃/有机聚合物粉末的磁粉/润滑剂混合物;
八、压制:将步骤七得到的包覆硅酸盐玻璃/有机聚合物粉末的磁粉/润滑剂混合物放入模具中,然后在温度为50℃和机械压力为1000MPa下压制成型,即得到复合软磁材料的坯料;
九、热处理:首先将步骤八得到的复合软磁材料的坯料置于真空条件下,然后以升温速率10℃/min升温至600℃,在真空度为10-1Pa和温度为600℃条件下对步骤八得到的复合软磁材料的坯料进行热处理40min,然后以降温速率10℃/min降温至室温,即得到复合软磁材料。
本试验所述的纯Fe粉是加拿大魁北克金属粉末有限公司的ATOMET_1001HP水雾化铁粉。
对本试验制备的复合软磁材料进行了检测,本试验制备的复合软磁材料的电磁性能及力学性能指标如表1。
表1
μm为本试验制备的复合软磁材料的最大磁导率,可知本试验制备的复合软磁材料的最大导磁率为996,B10000表示磁化场为10000A/m时本试验制备的复合软磁材料的磁感应强度值,Br为本试验制备的复合软磁材料的剩余磁感应强度,Hc为本试验制备的复合软磁材料的矫顽力,W(50Hz)和W(200Hz)分别表示本试验制备的复合软磁材料在最大磁场强度1T,交变频率50Hz和200Hz下的铁损耗值。
通过上述性能可知本试验制备的复合软磁材料具有优异的磁性能,因此本试验制备的复合软磁材料可应用于开关磁阻、谐振电感、防抱死制动传感器、电磁驱动装置、无刷直流电机、旋转机械和低频滤波器等领域。
采用扫描电子显微镜观察本试验制备的复合软磁材料,如图1所示,图1是试验一制备的复合软磁材材200倍扫描电子显微镜图,通过图1可以看到铁粉均匀分布在绝缘物内,这有利于提高材料的电阻率,以达到各向同性的磁性能。
试验二:一种复合软磁材料的制备方法,具体是按以下步骤完成的:
一、制备固液混合物:将150g纯Fe粉放入蒸馏水中,然后在超声频率为30KHz下超声清洗10min,过滤得到清洗后磁粉,向清洗后磁粉中加入660mL乙醇和10.72g油酸,并用质量浓度为25%的氨水将pH值调节至9,然后在搅拌速度为800r/min下搅拌分散1.5h。,即得到固液混合物;
二、制备磁粉表面包覆二氧化硅层的固液混合物:向步骤一得到的固液混合物中加入2340mL乙醇,然后采用质量浓度为25%的氨水将pH值调节至9,然后在搅拌速度为800r/min和pH值为9的条件下搅拌反应,将44.64g正硅酸乙酯等份为2份,在搅拌反应过程中每间隔1h加入1份正硅酸乙酯,最后一次加入正硅酸乙酯后,继续在搅拌速度为800r/min和pH值为9的条件下搅拌反应2h;即得到磁粉表面包覆二氧化硅层的固液混合物;
三、清洗干燥:将步骤二中得到的磁粉表面包覆二氧化硅层的固液混合物静置30min,然后进行分离,对分离得到的固体采用去离子水清洗1次,再采用乙醇清洗1次,将清洗后固体放入干燥箱中,在温度为60℃下干燥240min,将干燥后的固体用电磁铁进行筛选,即得到二氧化硅包覆的磁粉;
四、混合:将100g二氧化硅包覆的磁粉加入偶联剂溶液中,然后在搅拌速度为30r/min下混合均匀,最后在温度为60℃下干燥30min(固体恒重),即得到混合物;步骤四中所述的偶联剂溶液中溶质为0.3g硅烷偶联剂,溶剂为2mL水、5mL甲醇和10mL乙醇;
五、包覆有机聚合物:将3g环氧树脂(型号6101)预聚体加入甲苯中,混匀后得到浓度为30mPa·s的环氧树脂/甲苯混合物,再将浓度为30mPa·s的环氧树脂/甲苯混合物加入步骤五得到的混合物中,在搅拌速度为25r/min条件下搅拌30min,再在温度为70℃下干燥1h(固体恒重),得到包覆二氧化硅//有机聚合物粉末的磁粉;
六、机械混粉:向步骤五得到包覆硅酸盐玻璃/有机聚合物粉末的磁粉中加入0.5g硬脂酸锌粉末,然后进行机械混合,混匀后得到包覆硅酸盐玻璃/有机聚合物粉末的磁粉/润滑剂混合物;
七、压制:将步骤六得到的包覆二氧化硅/有机聚合物粉末的磁粉/润滑剂混合物放入模具中,然后在温度为50℃和机械压力为1000MPa下压制成型,即得到复合软磁材料的坯料;
八、热处理:首先将步骤七得到的复合软磁材料的坯料置于真空条件下,然后以升温速率10℃/min升温至600℃,在真空度为10-1Pa和温度为600℃条件下对步骤八得到的复合软磁材料的坯料进行热处理40min,然后以降温速率10℃/min降温至室温,即得到复合软磁材料。
本试验所述的纯Fe粉是加拿大魁北克金属粉末有限公司的ATOMET_1001HP水雾化铁粉。
对本试验制备的复合软磁材料进行了检测,本试验制备的复合软磁材料的电磁性能及力学性能指标如表2。
表2
μm为本试验制备的复合软磁材料的最大磁导率,可知本试验制备的复合软磁材料的最大导磁率为920,B10000表示磁化场为10000A/m时本试验制备的复合软磁材料的磁感应强度值,Br为本试验制备的复合软磁材料的剩余磁感应强度,Hc为本试验制备的复合软磁材料的矫顽力,W(50Hz)和W(200Hz)分别表示本试验制备的复合软磁材料在最大磁场强度1T,交变频率50Hz和200Hz下的铁损耗值。
通过上述性能可知本试验制备的复合软磁材料具有优异的磁性能,因此本试验制备的复合软磁材料可应用于开关磁阻、谐振电感、防抱死制动传感器、电磁驱动装置、无刷直流电机、旋转机械和低频滤波器等领域。

Claims (10)

1.一种复合软磁材料的制备方法,其特征在于复合软磁材料的制备方法是按以下步骤完成的:
一、制备固液混合物:将磁粉放入清洗剂中,然后在超声频率为24KHz~35KHz下超声清洗10min~20min,过滤得到清洗后磁粉,向清洗后磁粉中加入乙醇和油酸,并用质量浓度为20%~30%的氨水将pH值调节至8.5~9.5,然后进行超声分散或搅拌分散,即得到固液混合物;步骤一中所述的油酸与磁粉的质量比为(0.03~0.2):1;步骤一中所述的油酸与乙醇的体积比为1:(40~75);步骤一中所述的清洗剂为蒸馏水;
二、制备磁粉表面包覆二氧化硅层的固液混合物:向步骤一得到的固液混合物中加入乙醇,然后采用质量浓度为20%~30%的氨水将pH值调节至8.5~9.5,然后在搅拌速度为600r/min~1200r/min和pH值为8.5~9.5的条件下搅拌反应,将正硅酸乙酯等份为2~4份,在搅拌反应过程中每间隔0.5h~1.5h加入1份正硅酸乙酯,最后一次加入正硅酸乙酯后,继续在搅拌速度为600r/min~1200r/min和pH值为8.5~9.5的条件下搅拌反应0.5h~3h;即得到磁粉表面包覆二氧化硅层的固液混合物;步骤二中所述的加入的乙醇与固液混合物的体积比为(2~4):1;步骤二中所述的加入的正硅酸乙酯的总质量与固液混合物中磁粉的质量比为(0.25~0.4):1;
三、制备磁粉表面包覆硅酸盐玻璃的固液混合物:向步骤二得到的磁粉表面包覆二氧化硅层的固液混合物中加入油酸、正硅酸乙酯和质量浓度为10%~20%的金属醇盐/有机溶液,然后采用质量浓度为20%~30%的氨水将pH值调节至8.5~9.5,并在搅拌速度为600r/min~1200r/min和pH值为8.5~9.5的条件下搅拌反应1h~6h,得到磁粉表面包覆硅酸盐玻璃的固液混合物;步骤三中所述的加入的油酸与磁粉表面包覆二氧化硅层的固液混合物中磁粉的质量比为(0.05~0.1):1;步骤三中所述的加入的正硅酸乙酯与磁粉表面包覆二氧化硅层的固液混合物的体积比为(0.25~0.6):1;步骤三中所述的加入的质量浓度为10%~20%的金属醇盐/有机溶液中金属醇盐与磁粉表面包覆二氧化硅层的固液混合物中磁粉的质量比为(0.05~0.6):1;步骤三中所述的金属醇盐/有机溶液中下金属醇盐的化学式为M(OR)x;其中所述的M(OR)x中的M为Ti、Be、Mn、In、Ge、Al、Zr、Na、K、Li、Mg、Ca、Mg和Ba中的一种或其中几种的组合;其中所述的M(OR)x中的R为CnH2n+1,且所述的CnH2n+1中n为1~4;其中所述的M(OR)x中的x为1~5,且所述的M(OR)x呈电中性;
四、清洗干燥:将步骤三中得到的磁粉表面包覆硅酸盐玻璃的固液混合物静置10min~30min,然后进行分离,对分离得到的固体进行清洗,将清洗后固体放入干燥箱中,在温度为40℃~80℃下干燥20min~360min,将干燥后的固体用电磁铁进行筛选,即得到硅酸盐玻璃包覆的磁粉;
五、混合:将硅酸盐玻璃包覆的磁粉加入粘度为10mPa·s~10000mPa·s的偶联剂溶液中,然后采取振动球磨研磨法、行星式球磨研磨法或机械搅拌混合均匀,最后进行干燥,干燥至恒重为止,即得到混合物;步骤五中所述的硅酸盐玻璃包覆的磁粉中磁粉与偶联剂溶液中溶质的质量比为100:(0.2~3.0);步骤五中所述的偶联剂溶液中溶质为偶联剂,溶剂为水、甲醇、乙醇、异丙醇、丁醇、乙醇、甲苯、苯、二甲苯、硬脂酸和液体石蜡中的一种或几种的混合物;其中所述的偶联剂为硅烷偶联剂、钛酸酯偶联剂或铝酸酯偶联剂;
六、包覆有机聚合物:首先按有机聚合物预聚体与步骤五得到的混合物中磁粉的质量比为(0.2~7):100称取有机聚合物预聚体,然后将有机聚合物预聚体加入有机溶剂中,在搅拌条件下混合均匀,得到浓度为10mpa·s~10000mpa·s的有机聚合物/有机溶剂混合物,再将浓度为10mpa·s~10000mpa·s的有机聚合物/有机溶剂混合物加入步骤五得到的混合物中,在搅拌速度为15r/min~30r/min条件下搅拌15min~40min,再在温度为60℃~80℃下干燥,干燥至恒重为止,得到包覆硅酸盐玻璃/有机聚合物粉末的磁粉;
七、机械混粉:向包覆硅酸盐玻璃/有机聚合物粉末的磁粉中加入润滑剂,然后进行机械混合,混匀后得到包覆硅酸盐玻璃/有机聚合物粉末的磁粉/润滑剂混合物;步骤七中所述的包覆硅酸盐玻璃/有机聚合物粉末的磁粉与润滑剂的质量比为100:(0.1~2);步骤七中所述的润滑剂为乙撑双硬脂酰胺或金属硬质酸化物,其中所述金属硬质酸化物为硬脂酸锌、硬脂酸锂或硬脂酸钙;
八、压制:将步骤七得到的包覆硅酸盐玻璃/有机聚合物粉末的磁粉/润滑剂混合物放入模具中,然后在温度为20℃~90℃和机械压力为400MPa~2500MPa下压制成型,即得到复合软磁材料的坯料;
九、热处理:对步骤八得到的复合软磁材料的坯料进行保护气氛热处理或真空热处理,即得到复合软磁材料;
步骤九中所述的保护气氛热处理具体操作如下:首先将步骤八得到的复合软磁材料的坯料置于氮气、氩气或氢气气氛下,然后以升温速率8℃/min~12℃/min升温至200℃~900℃,并在氮气、氩气或氢气保护下和温度为200℃~900℃条件下对步骤八得到的复合软磁材料的坯料进行热处理10min~300min,然后以降温速率8℃/min~12℃/min降温至室温,即得到复合软磁材料;
步骤九中所述的真空热处理具体操作如下:首先将步骤八得到的复合软磁材料的坯料置于真空条件下,然后以升温速率8℃/min~12℃/min升温至200℃~900℃,在真空度为10-1Pa~10-3Pa和温度为200℃~900℃条件下对步骤八得到的复合软磁材料的坯料进行热处理10min~300min,然后以降温速率8℃/min~12℃/min降温至室温,即得到复合软磁材料;
步骤九中所述的复合软磁材料的横向断裂强度达到70MPa以上,最大导磁率达到900以上。
2.根据权利要求1所述的一种复合软磁材料的制备方法,其特征在于步骤一中所述的磁粉为纯Fe粉、Fe-Ni-Co系金属粉末、Fe-Ni系金属粉末、Fe-Si-Al系金属粉末、Fe-Co系金属粉末、Fe-Si系金属粉末、Fe-P系金属粉末、Fe3O4粉末或Fe-Cr系金属粉末,且所述磁粉的粒径为10μm~500μm。
3.根据权利要求2所述的一种复合软磁材料的制备方法,其特征在于步骤一中所述的超声分散具体操作如下:在超声频率为24KHz~35KHz下超声分散1h~2h。
4.根据权利要求2所述的一种复合软磁材料的制备方法,其特征在于步骤一中所述的搅拌分散具体操作如下:在搅拌速度为200r/min~1200r/min下搅拌分散1h~2h。
5.根据权利要求1所述的一种复合软磁材料的制备方法,其特征在于步骤六中所述的有机聚合物预聚体为聚乙烯预聚体、聚丙烯预聚体、乙烯-乙酸乙酯共聚物预聚体、尼龙6预聚体、尼龙66预聚体、尼龙6/66预聚体、聚亚苯硫醚预聚体、聚亚苯硫酮预聚体、聚对苯二甲酸乙二酯预聚体、聚对苯二甲酸丁二酯预聚体、聚酰亚胺预聚体、聚醚酰亚胺预聚体、聚酰胺酰亚胺预聚体、聚苯乙烯预聚体、丙烯腈-苯乙烯共聚物预聚体、聚氯乙烯预聚体、聚偏氯乙烯预聚体、氯乙烯-偏氯乙烯共聚物预聚体、氯化聚乙烯预聚体、聚丙烯酸甲酯预聚体、聚甲基丙烯酸甲酯预聚体、聚丙烯腈预聚体、聚甲基丙烯腈预聚体、四氟乙烯/全氟烷基乙烯醚共聚物预聚体、四氟乙烯/六氟丙烯预聚体、聚偏氟乙烯预聚体、聚二甲基硅氧烷预聚体、聚苯醚预聚体、聚醚醚酮预聚体、聚醚酮预聚体、聚芳酯预聚体、聚砜预聚体、聚醚砜预聚体、聚甲醛预聚体、聚碳酸酯预聚体、聚醋酸乙烯酯预聚体、聚乙烯醇缩甲醛预聚体、聚乙烯醇缩丁醛预聚体、聚丁烯预聚体、聚异丁烯预聚体、聚甲基戊烯预聚体、丁二烯树脂预聚体、聚乙烯氧化物预聚体、羟基苯基聚酯预聚体、聚对二甲苯树脂预聚体、硅树脂预聚体、环氧树脂预聚体、苯酚树脂预聚体、乙丙橡胶预聚体、聚丁二烯橡胶预聚体、苯乙烯-丁二烯橡胶预聚体、氯丁二烯橡胶橡胶预聚体和苯乙烯-丁二烯-苯乙烯嵌段共聚物预聚体中的一种或者两种及两种以上混合物。
6.一种复合软磁材料的制备方法,其特征在于复合软磁材料的制备方法是按以下步骤完成的:
一、制备固液混合物:将磁粉放入清洗剂中,然后在超声频率为24KHz~35KHz下超声清洗10min~20min,过滤得到清洗后磁粉,向清洗后磁粉中加入乙醇和油酸,并用质量浓度为20%~30%的氨水将pH值调节至8.5~9.5,然后进行超声分散或搅拌分散,即得到固液混合物;步骤一中所述的油酸与磁粉的质量比为(0.03~0.2):1;步骤一中所述的油酸与乙醇的体积比为1:(40~75);步骤一中所述的清洗剂为蒸馏水;
二、制备磁粉表面包覆二氧化硅层的固液混合物:向步骤一得到的固液混合物中加入乙醇,然后采用质量浓度为20%~30%的氨水将pH值调节至8.5~9.5,然后在搅拌速度为600r/min~1200r/min和pH值为8.5~9.5的条件下搅拌反应,将正硅酸乙酯等份为2~4份,在搅拌反应过程中每间隔0.5h~1.5h加入1份正硅酸乙酯,最后一次加入正硅酸乙酯后,继续在搅拌速度为600r/min~1200r/min和pH值为8.5~9.5的条件下搅拌反应0.5h~3h;即得到磁粉表面包覆二氧化硅层的固液混合物;步骤二中所述的加入的乙醇与固液混合物的体积比为(2~4):1;步骤二中所述的加入的正硅酸乙酯的总质量与固液混合物中磁粉的质量比为(0.25~0.4):1;
三、清洗干燥:将步骤二中得到的磁粉表面包覆二氧化硅层的固液混合物静置10min~30min,然后进行分离,对分离得到的固体进行清洗,将清洗后固体放入干燥箱中,在温度为40℃~80℃下干燥20min~360min,将干燥后的固体用电磁铁进行筛选,即得到二氧化硅包覆的磁粉;
四、混合:将二氧化硅包覆的磁粉加入粘度为10mpa·s~10000mpa·s的偶联剂溶液中,然后采取振动球磨研磨法、行星式球磨研磨法或机械搅拌混合均匀,最后进行干燥,干燥至恒重为止,即得到混合物;步骤五中所述的二氧化硅包覆的磁粉中磁粉与偶联剂溶液中溶质的质量比为100:(0.2~3.0);步骤五中所述的偶联剂溶液中溶质为偶联剂,溶剂为水、甲醇、乙醇、异丙醇、丁醇、乙醇、甲苯、苯、二甲苯、硬脂酸和液体石蜡中的一种或几种的混合物;其中所述的偶联剂为硅烷偶联剂、钛酸酯偶联剂或铝酸酯偶联剂;
五、包覆有机聚合物:首先按有机聚合物预聚体与步骤四得到的混合物中磁粉的质量比为(0.2~7):100称取有机聚合物预聚体,然后将有机聚合物预聚体加入有机溶剂中,在搅拌条件下混合均匀,得到浓度为10mpa·s~10000mpa·s的有机聚合物/有机溶剂混合物,再将浓度为10mpa·s~10000mpa·s的有机聚合物/有机溶剂混合物加入步骤四得到的混合物中,在搅拌速度为15r/min~30r/min条件下搅拌15min~40min,再在温度为60℃~80℃下干燥,干燥至恒重为止,得到包覆二氧化硅/有机聚合物粉末的磁粉;
六、机械混粉:向包覆二氧化硅/有机聚合物粉末的磁粉中加入润滑剂,然后进行机械混合,混匀后得到包覆二氧化硅/有机聚合物粉末的磁粉/润滑剂混合物;步骤六中所述的包覆二氧化硅/有机聚合物粉末的磁粉与润滑剂的质量比为100:(0.1~2);步骤六中所述的润滑剂为乙撑双硬脂酰胺或金属硬质酸化物,其中所述金属硬质酸化物为硬脂酸锌、硬脂酸锂或硬脂酸钙;
七、压制:将步骤六得到的包覆二氧化硅/有机聚合物粉末的磁粉/润滑剂混合物放入模具中,然后在温度为20℃~90℃和机械压力为400MPa~2500MPa下压制成型,即得到复合软磁材料的坯料;
八、热处理:对步骤七得到的复合软磁材料的坯料进行保护气氛热处理或真空热处理,即得到复合软磁材料;
步骤八中所述的保护气氛热处理具体操作如下:首先将步骤七得到的复合软磁材料的坯料置于氮气、氩气或氢气气氛下,然后以升温速率8℃/min~12℃/min升温至200℃~900℃,并在氮气、氩气或氢气保护下和温度为200℃~900℃条件下对步骤七得到的复合软磁材料的坯料进行热处理10min~300min,然后以降温速率8℃/min~12℃/min降温至室温,即得到复合软磁材料;
步骤八中所述的真空热处理具体操作如下:首先将步骤七得到的复合软磁材料的坯料置于真空条件下,然后以升温速率8℃/min~12℃/min升温至200℃~900℃,在真空度为10-1Pa~10-3Pa和温度为200℃~900℃条件下对步骤七得到的复合软磁材料的坯料进行热处理10min~300min,然后以降温速率8℃/min~12℃/min降温至室温,即得到复合软磁材料;
步骤八中所述的复合软磁材料的横向断裂强度达到70MPa以上,最大导磁率达到900以上。
7.根据权利要求6所述的一种复合软磁材料的制备方法,其特征在于步骤一中所述的磁粉为纯Fe粉、Fe-Ni-Co系金属粉末、Fe-Ni系金属粉末、Fe-Si-Al系金属粉末、Fe-Co系金属粉末、Fe-Si系金属粉末、Fe-P系金属粉末、Fe3O4粉末或Fe-Cr系金属粉末,且所述磁粉的粒径为10μm~500μm。
8.根据权利要求7所述的一种复合软磁材料的制备方法,其特征在于步骤一中所述的超声分散具体操作如下:在超声频率为24KHz~35KHz下超声分散1h~2h。
9.根据权利要求7所述的一种复合软磁材料的制备方法,其特征在于步骤一中所述的搅拌分散具体操作如下:在搅拌速度为200r/min~1200r/min下搅拌分散1h~2h。
10.根据权利要求6所述的一种复合软磁材料的制备方法,其特征在于步骤五中所述的有机聚合物预聚体为聚乙烯预聚体、聚丙烯预聚体、乙烯-乙酸乙酯共聚物预聚体、尼龙6预聚体、尼龙66预聚体、尼龙6/66预聚体、聚亚苯硫醚预聚体、聚亚苯硫酮预聚体、聚对苯二甲酸乙二酯预聚体、聚对苯二甲酸丁二酯预聚体、聚酰亚胺预聚体、聚醚酰亚胺预聚体、聚酰胺酰亚胺预聚体、聚苯乙烯预聚体、丙烯腈-苯乙烯共聚物预聚体、聚氯乙烯预聚体、聚偏氯乙烯预聚体、氯乙烯-偏氯乙烯共聚物预聚体、氯化聚乙烯预聚体、聚丙烯酸甲酯预聚体、聚甲基丙烯酸甲酯预聚体、聚丙烯腈预聚体、聚甲基丙烯腈预聚体、四氟乙烯/全氟烷基乙烯醚共聚物预聚体、四氟乙烯/六氟丙烯预聚体、聚偏氟乙烯预聚体、聚二甲基硅氧烷预聚体、聚苯醚预聚体、聚醚醚酮预聚体、聚醚酮预聚体、聚芳酯预聚体、聚砜预聚体、聚醚砜预聚体、聚甲醛预聚体、聚碳酸酯预聚体、聚醋酸乙烯酯预聚体、聚乙烯醇缩甲醛预聚体、聚乙烯醇缩丁醛预聚体、聚丁烯预聚体、聚异丁烯预聚体、聚甲基戊烯预聚体、丁二烯树脂预聚体、聚乙烯氧化物预聚体、羟基苯基聚酯预聚体、聚对二甲苯树脂预聚体、硅树脂预聚体、环氧树脂预聚体、苯酚树脂预聚体、乙丙橡胶预聚体、聚丁二烯橡胶预聚体、苯乙烯-丁二烯橡胶预聚体、氯丁二烯橡胶橡胶预聚体和苯乙烯-丁二烯-苯乙烯嵌段共聚物预聚体中的一种或者两种及两种以上混合物。
CN201310187700.1A 2013-05-20 2013-05-20 复合软磁材料的制备方法 Expired - Fee Related CN103236332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310187700.1A CN103236332B (zh) 2013-05-20 2013-05-20 复合软磁材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310187700.1A CN103236332B (zh) 2013-05-20 2013-05-20 复合软磁材料的制备方法

Publications (2)

Publication Number Publication Date
CN103236332A CN103236332A (zh) 2013-08-07
CN103236332B true CN103236332B (zh) 2016-01-20

Family

ID=48884366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310187700.1A Expired - Fee Related CN103236332B (zh) 2013-05-20 2013-05-20 复合软磁材料的制备方法

Country Status (1)

Country Link
CN (1) CN103236332B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107020373B (zh) * 2017-03-23 2019-08-02 陕西烽火诺信科技有限公司 一种用SiO2包覆金属粉末技术制备金属软磁粉芯的方法及由此方法制备的金属软磁粉芯
JP6930722B2 (ja) * 2017-06-26 2021-09-01 太陽誘電株式会社 磁性材料、電子部品及び磁性材料の製造方法
CN107498035A (zh) * 2017-07-05 2017-12-22 安徽江威精密制造有限公司 一种耐腐蚀高导磁率的铁基软磁复合材料及其制备方法
CN107492433B (zh) * 2017-07-05 2019-08-16 铜陵江威科技有限公司 一种掺杂改性镍粉的铁基软磁复合材料及其制备方法
CN110610803B (zh) * 2018-06-15 2021-09-14 山东精创磁电产业技术研究院有限公司 一种软磁复合材料的成型方法
CN109036755A (zh) * 2018-08-17 2018-12-18 佛山皖和新能源科技有限公司 一种高磁通软磁复合材料的制备方法
CN109889009B (zh) * 2019-03-21 2021-08-10 中山大学 一种基于磁性针状结构的电磁-摩擦复合式发电机
CN112837881B (zh) * 2021-02-08 2024-03-22 浙江工业大学 一种高流动性注射成型烧结镍锌铁氧体颗粒料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217919A (ja) * 2002-01-17 2003-07-31 Nec Tokin Corp 圧粉磁芯及びこれを用いた高周波リアクトル
CN101233586A (zh) * 2005-08-03 2008-07-30 住友电气工业株式会社 软磁性材料、软磁性材料的制造方法、压粉铁心以及压粉铁心的制造方法
CN102361716A (zh) * 2009-03-25 2012-02-22 松下电器产业株式会社 复合磁性材料
CN102820115A (zh) * 2012-08-31 2012-12-12 哈尔滨工业大学 溶胶浸润的玻璃包覆层软磁复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217919A (ja) * 2002-01-17 2003-07-31 Nec Tokin Corp 圧粉磁芯及びこれを用いた高周波リアクトル
CN101233586A (zh) * 2005-08-03 2008-07-30 住友电气工业株式会社 软磁性材料、软磁性材料的制造方法、压粉铁心以及压粉铁心的制造方法
CN102361716A (zh) * 2009-03-25 2012-02-22 松下电器产业株式会社 复合磁性材料
CN102820115A (zh) * 2012-08-31 2012-12-12 哈尔滨工业大学 溶胶浸润的玻璃包覆层软磁复合材料及其制备方法

Also Published As

Publication number Publication date
CN103236332A (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
CN103236332B (zh) 复合软磁材料的制备方法
CN103247402B (zh) 一种复合软磁材料的制备方法
CN103240411B (zh) 无机-有机绝缘层软磁复合材料的制备方法
Zhou et al. The core-shell structured Fe-based amorphous magnetic powder cores with excellent magnetic properties
Wu et al. Magnetic properties of iron-based soft magnetic composites with SiO2 coating obtained by reverse microemulsion method
US20150050178A1 (en) Soft Magnetic Composite Materials
Geng et al. Fe-Si/ZrO2 composites with core-shell structure and excellent magnetic properties prepared by mechanical milling and spark plasma sintering
CN102789861B (zh) 溶胶浸润的玻璃粉包覆层的软磁复合材料的制备方法
CN1914697B (zh) 压粉铁心及其制造方法
CN104078182B (zh) 一种铁基软磁复合磁粉芯及其制备方法
CN104368807B (zh) 一种金属软磁复合材料用粉末的包覆方法及磁体的制备方法
Li et al. Structure and magnetic properties of iron-based soft magnetic composite with Ni-Cu-Zn ferrite–silicone insulation coating
CN102360665B (zh) 含有玻璃绝缘层的软磁复合材料的制备方法
US8241557B2 (en) Method for producing dust core
CN106601417B (zh) 一种核壳结构铁硅软磁复合铁芯及其制备方法
CN102820115B (zh) 溶胶浸润的玻璃包覆层软磁复合材料的制备方法
CN109590460B (zh) 一种软磁复合材料及其制备方法
CN106782982B (zh) 一种软磁复合材料及其制备方法
CN110246675A (zh) 一种高饱和磁通密度、低损耗软磁复合材料及其制备方法
WO2021103466A1 (zh) 高磁导率低损耗软磁复合材料的制备方法及其磁环
CN104157389B (zh) 一种高性能软磁复合材料的制备方法
CN106601416B (zh) 一种多层核壳结构的铁硅软磁复合粉末及其制备方法
CN102789863B (zh) 以玻璃粉作为包覆层的软磁复合材料的制备方法
CN106601463A (zh) 一种钕铁硼永磁材料
CN112366057B (zh) 一种有机无机杂化纳米钛酸盐包覆金属软磁复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20210520

CF01 Termination of patent right due to non-payment of annual fee