CN107498035A - 一种耐腐蚀高导磁率的铁基软磁复合材料及其制备方法 - Google Patents

一种耐腐蚀高导磁率的铁基软磁复合材料及其制备方法 Download PDF

Info

Publication number
CN107498035A
CN107498035A CN201710543241.4A CN201710543241A CN107498035A CN 107498035 A CN107498035 A CN 107498035A CN 201710543241 A CN201710543241 A CN 201710543241A CN 107498035 A CN107498035 A CN 107498035A
Authority
CN
China
Prior art keywords
parts
iron
soft magnetic
sio
kaolin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710543241.4A
Other languages
English (en)
Inventor
林海
张和平
万美云
邢朝东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Jiangwei Precision Manufacturing Co Ltd
Original Assignee
Anhui Jiangwei Precision Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Jiangwei Precision Manufacturing Co Ltd filed Critical Anhui Jiangwei Precision Manufacturing Co Ltd
Priority to CN201710543241.4A priority Critical patent/CN107498035A/zh
Publication of CN107498035A publication Critical patent/CN107498035A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开一种耐腐蚀高导磁率的铁基软磁复合材料,由以下重量份的原料组成:铁粉40‑55,纳米高岭土9‑15,正硅酸乙酯20‑32,十二烷基苯磺酸钠4‑7,聚乙烯吡咯烷酮13‑22,甲基丙烯酸甲酯17‑35,乙醇适量,去离子水适量,引发剂2‑6,饱和NaCl溶液适量,硅酸铝2‑6,氯化石蜡2‑4,铝粉2‑6,乙醇铝3‑10,乙二醇适量。本发明制备得到二氧化硅网状结构覆盖在纳米高岭土与铁粉混合颗粒表面,之后与甲基丙烯酸甲酯原位聚合,得到聚甲基丙烯酸甲酯接枝包覆磁性颗粒,提高材料的致密性,降低气孔率,提高绝缘性以保护铁粉颗粒被氧化腐蚀,提高材料的比饱和磁感应强度,软磁材料的磁能积高,磁性稳定。

Description

一种耐腐蚀高导磁率的铁基软磁复合材料及其制备方法
技术领域
本发明主要涉及磁性材料技术领域,具体涉及一种耐腐蚀高导磁率的铁基软磁复合材料及其制备方法。
技术背景
随着科学技术的进步,铁基软磁材料作为一种重要的基础功能材料,广泛用于通讯、传感、音像设备、滤波器、变压器等电子工业中,为铁基软磁材料的应用打开了广阔的市场;同时,由于通讯、计算机网络等电子信息产业的快速发展,对大功率状态下应用的铁基软磁材料需求也越来越多,如电视接收机、质子同步加速器、机载和车载电子装备和用于几兆赫工作频率的开关电源等,都需要高性能大功率铁基软磁材料,为适应大功率应用,要求此类铁基材料具有高磁导率、高饱和磁感应强度、高居里温度、高电阻率、低损耗等特性。
李爱坤、易健宏等人在其《SiO2绝缘包覆制备高频低损耗铁基软磁复合材料》一文中,采用正硅酸乙酯(TEOS)为前驱体,3-氨丙基三乙氧基硅烷(APTES)为偶联剂在铁磁粉末表面包覆一层SiO2绝缘层来制备铁基软磁复合材料,使其电阻率显著增加,随着工作频率增加,铁损相比于未经包覆的材料明显降低,且具有高的磁导率和高的使用频率。
但是,经硅包埋的磁性纳米颗粒不能应用于强酸和强碱的环境中,而且,因为硅的表面有空隙结构,氧分子和其他的物质分子可以渗透保护层与磁性颗粒表面接触,导致磁性纳米颗粒被氧化腐蚀。
发明内容
针对现有技术的不足,本发明提供一种耐腐蚀高导磁率的铁基软磁复合材料及其制备方法,使其具有高的饱和磁化强度、低的交流磁损耗。
一种耐腐蚀高导磁率的铁基软磁复合材料,由以下重量份的原料组成:铁粉40-55份,纳米高岭土9-15份,正硅酸乙酯20-32份,十二烷基苯磺酸钠4-7份,聚乙烯吡咯烷酮13-22份,甲基丙烯酸甲酯17-35份,乙醇适量,去离子水适量,引发剂2-6份,饱和NaCl溶液适量,硅酸铝2-6份,氯化石蜡2-4份,铝粉2-6份,乙醇铝3-10份,乙二醇适量。
具体步骤如下:
(1)硅烷化高岭土/Fe@ SiO2壳核结构复合物的制备:
将纳米高岭土、铁粉、聚乙烯吡咯烷酮加入到乙醇和去离子水的混合溶液中,充分搅拌并超声处理40-55分钟,然后加热至55-65℃,调节pH值至9-10,之后缓慢加入正硅酸乙酯,继续搅拌陈化4-6小时,随后加入预先水解的十二烷基苯磺酸钠,继续搅拌25-45分钟,最后过滤并用去离子水多次洗涤,在115-130℃下烘干后,碾碎,即得硅烷化高岭土/Fe@ SiO2壳核结构复合物;
(2)制备高岭土/Fe@SiO2接枝聚甲基丙烯酸甲酯:
取步骤(1)硅烷化高岭土/Fe@ SiO2壳核结构复合物加入去离子水中,超声搅拌1-2小时,加入1/3份甲基丙烯酸甲酯预乳化25-45分钟,然后滴加1/2份引发剂到反应体系中,超声分散、搅拌,滴加余下的甲基丙烯酸甲酯、引发剂,45-60℃下反应2-3小时,升温至55-70℃反应25-35分钟,得到高岭土/Fe@SiO2接枝聚甲基丙烯酸甲酯复合胶乳,加入饱和NaCl溶液破乳,通过过滤、洗涤、干燥至恒重,得到高岭土/Fe@SiO2接枝聚甲基丙烯酸甲酯复合粉体;
(3)将步骤(2)高岭土/Fe@SiO2接枝聚甲基丙烯酸甲酯复合粉体、硅酸铝送入混合罐,加入铝粉、氯化石蜡,2600-3000转/分搅拌混和2-4小时,之后加入氯化石蜡以及主料重量25-30%的去离子水,高速搅拌得混合浆液;
(4)将上述处理后的浆液,抽真空保持8-15分钟,后取出,烘干,放入模具内,在磁场中取向并在1.5-2GPa下压制成坯体,在氩气保护下980-1200℃下烧结,保温2-3小时,在720-750℃下回火1-1.5小时,得到软磁材料主体;
(5)将乙醇铝溶于乙二醇溶剂中,形成浓度为5-10wt%的溶液,将上述软磁材料主体浸泡在其中10-20分钟,取出后,在空气氛围中,在温度为650-700℃条件下热处理1-2小时,形成致密的氧化铝保护层,自然冷却后,得到产品。
其中,所述的引发剂是由过硫酸钾和亚硫酸氢钠组成,两者的摩尔比为1:1。
与现有技术相比,本发明具有以下优点:
(1)本发明将纳米高岭土与铁粉预先混合分散,使两者充分混合,利用高岭土表面羟基与经正硅酸乙酯水解形成的部分原硅酸进行缩合反应,另一部分原硅酸相互缩合形成低聚体,与缩合在高岭土表面的原硅酸缩聚生长而形成二氧化硅网状结构覆盖在纳米高岭土与铁粉混合颗粒表面,利用高岭土的特性使二氧化硅均匀包覆载铁粉表面,提高材料的致密性,降低气孔率,提高绝缘性以保护铁粉颗粒被氧化腐蚀,提高材料的比饱和磁感应强度。
(2)利用烷基化改性的高岭土/Fe@ SiO2壳核结构复合物与甲基丙烯酸甲酯原位聚合,得到聚甲基丙烯酸甲酯接枝包覆铁粉颗粒,解决了二氧化硅表面的空隙结构问题,进一步提高材料的绝缘层性能,同时明显改善材料的饱和磁化强度,软磁材料的磁能积高,磁性稳定。
(3)本发明制备的软磁材料在其表面形成氧化铝保护层,提高了材料的耐腐性能,同时保证材料的高导磁率,另外氧化铝的使用可以在基本不改变原有磁性能基础上,大大提高其机械强度和硬度,且强化效果可保持到较高的温度。
具体实施方式
一种耐腐蚀高导磁率的铁基软磁复合材料,由以下重量份的原料组成:铁粉52份,纳米高岭土13份,正硅酸乙酯30份,十二烷基苯磺酸钠6份,聚乙烯吡咯烷酮19份,甲基丙烯酸甲酯32份,乙醇适量,去离子水适量,引发剂5份,饱和NaCl溶液适量,硅酸铝5份,氯化石蜡3份,铝粉5份,乙醇铝8份,乙二醇适量。
具体步骤如下:
(1)硅烷化高岭土/Fe@ SiO2壳核结构复合物的制备:
将纳米高岭土、铁粉、聚乙烯吡咯烷酮加入到乙醇和去离子水的混合溶液中,充分搅拌并超声处理50分钟,然后加热至60℃,调节pH值至10,之后缓慢加入正硅酸乙酯,继续搅拌陈化5小时,随后加入预先水解的十二烷基苯磺酸钠,继续搅拌40分钟,最后过滤并用去离子水多次洗涤,在120℃下烘干后,碾碎,即得硅烷化高岭土/Fe@ SiO2壳核结构复合物;
(2)制备高岭土/Fe@SiO2接枝聚甲基丙烯酸甲酯:
取步骤(1)硅烷化高岭土/Fe@ SiO2壳核结构复合物加入去离子水中,超声搅拌1.5小时,加入1/3份甲基丙烯酸甲酯预乳化30分钟,然后滴加1/2份引发剂到反应体系中,超声分散、搅拌,滴加余下的甲基丙烯酸甲酯、引发剂,55℃下反应2.5小时,升温至65℃反应30分钟,得到高岭土/Fe@SiO2接枝聚甲基丙烯酸甲酯复合胶乳,加入饱和NaCl溶液破乳,通过过滤、洗涤、干燥至恒重,得到高岭土/Fe@SiO2接枝聚甲基丙烯酸甲酯复合粉体;
(3)将步骤(2)高岭土/Fe@SiO2接枝聚甲基丙烯酸甲酯复合粉体、硅酸铝送入混合罐,加入铝粉、氯化石蜡,2800转/分搅拌混和3小时,之后加入氯化石蜡以及主料重量30%的去离子水,高速搅拌得混合浆液;
(4)将上述处理后的浆液,抽真空保持10分钟,后取出,烘干,放入模具内,在磁场中取向并在2GPa下压制成坯体,在氩气保护下1000℃下烧结,保温3小时,在740℃下回火1-1.5小时,得到软磁材料主体;
(5)将乙醇铝溶于乙二醇溶剂中,形成浓度为8wt%的溶液,将上述软磁材料主体浸泡在其中15分钟,取出后,在空气氛围中,在温度为680℃条件下热处理1.5小时,形成致密的氧化铝保护层,自然冷却后,得到产品。
其中,所述的引发剂是由过硫酸钾和亚硫酸氢钠组成,两者的摩尔比为1:1。
按照具体实施例制备的软磁复合材料,对其进行性能测试,结果如下:
抗拉强度为168N,磁化强度为281Am2/kg,最大磁芯损耗(100Kc、200mT):304kw/m3,饱和磁感应强度为1.3T,矫顽力为7.12e,居里温度为480℃。

Claims (3)

1.一种耐腐蚀高导磁率的铁基软磁复合材料,其特征在于,由以下重量份的原料组成:铁粉40-55份,纳米高岭土9-15份,正硅酸乙酯20-32份,十二烷基苯磺酸钠4-7份,聚乙烯吡咯烷酮13-22份,甲基丙烯酸甲酯17-35份,乙醇适量,去离子水适量,引发剂2-6份,饱和NaCl溶液适量,硅酸铝2-6份,氯化石蜡2-4份,铝粉2-6份,乙醇铝3-10份,乙二醇适量。
2.根据权利要求书1所述的一种耐腐蚀高导磁率的铁基软磁复合材料的制备方法,其特征在于,具体步骤如下:
(1)硅烷化高岭土/Fe@ SiO2壳核结构复合物的制备:
将纳米高岭土、铁粉、聚乙烯吡咯烷酮加入到乙醇和去离子水的混合溶液中,充分搅拌并超声处理40-55分钟,然后加热至55-65℃,调节pH值至9-10,之后缓慢加入正硅酸乙酯,继续搅拌陈化4-6小时,随后加入预先水解的十二烷基苯磺酸钠,继续搅拌25-45分钟,最后过滤并用去离子水多次洗涤,在115-130℃下烘干后,碾碎,即得硅烷化高岭土/Fe@ SiO2壳核结构复合物;
(2)制备高岭土/Fe@SiO2接枝聚甲基丙烯酸甲酯:
取步骤(1)硅烷化高岭土/Fe@ SiO2壳核结构复合物加入去离子水中,超声搅拌1-2小时,加入1/3份甲基丙烯酸甲酯预乳化25-45分钟,然后滴加1/2份引发剂到反应体系中,超声分散、搅拌,滴加余下的甲基丙烯酸甲酯、引发剂,45-60℃下反应2-3小时,升温至55-70℃反应25-35分钟,得到高岭土/Fe@SiO2接枝聚甲基丙烯酸甲酯复合胶乳,加入饱和NaCl溶液破乳,通过过滤、洗涤、干燥至恒重,得到高岭土/Fe@SiO2接枝聚甲基丙烯酸甲酯复合粉体;
(3)将步骤(2)高岭土/Fe@SiO2接枝聚甲基丙烯酸甲酯复合粉体、硅酸铝送入混合罐,加入铝粉、氯化石蜡,2600-3000转/分搅拌混和2-4小时,之后加入氯化石蜡以及主料重量25-30%的去离子水,高速搅拌得混合浆液;
(4)将上述处理后的浆液,抽真空保持8-15分钟,后取出,烘干,放入模具内,在磁场中取向并在1.5-2GPa下压制成坯体,在氩气保护下980-1200℃下烧结,保温2-3小时,在720-750℃下回火1-1.5小时,得到软磁材料主体;
(5)将乙醇铝溶于乙二醇溶剂中,形成浓度为5-10wt%的溶液,将上述软磁材料主体浸泡在其中10-20分钟,取出后,在空气氛围中,在温度为650-700℃条件下热处理1-2小时,形成致密的氧化铝保护层,自然冷却后,得到产品。
3.根据权利要求书1、2所述的一种耐腐蚀高导磁率的铁基软磁复合材料的制备方法,其特征在于,所述的引发剂是由过硫酸钾和亚硫酸氢钠组成,两者的摩尔比为1:1。
CN201710543241.4A 2017-07-05 2017-07-05 一种耐腐蚀高导磁率的铁基软磁复合材料及其制备方法 Pending CN107498035A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710543241.4A CN107498035A (zh) 2017-07-05 2017-07-05 一种耐腐蚀高导磁率的铁基软磁复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710543241.4A CN107498035A (zh) 2017-07-05 2017-07-05 一种耐腐蚀高导磁率的铁基软磁复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN107498035A true CN107498035A (zh) 2017-12-22

Family

ID=60678704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710543241.4A Pending CN107498035A (zh) 2017-07-05 2017-07-05 一种耐腐蚀高导磁率的铁基软磁复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107498035A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210313110A1 (en) * 2020-04-02 2021-10-07 Seiko Epson Corporation Method For Manufacturing Dust Core And Dust Core
CN116997170A (zh) * 2023-07-13 2023-11-03 苏州铂韬新材料科技有限公司 一种吸波薄膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1284104A (zh) * 1997-11-28 2001-02-14 米什兰集团总公司 涂覆有含铝层的炭黑及其制备方法
JP2010163691A (ja) * 2008-05-23 2010-07-29 Sumitomo Electric Ind Ltd 軟磁性材料、および圧粉磁心
CN103177838A (zh) * 2012-12-30 2013-06-26 中南大学 一种软磁复合粉末及其制备方法
CN103236332A (zh) * 2013-05-20 2013-08-07 哈尔滨工业大学 复合软磁材料的制备方法
CN103247403A (zh) * 2013-05-31 2013-08-14 合肥工业大学 一种金属软磁粉芯的制备方法
CN103520955A (zh) * 2013-09-13 2014-01-22 河南科技学院 一种分子印迹整体搅拌吸附棒及其制备方法
CN104078182A (zh) * 2014-07-24 2014-10-01 武汉科技大学 一种铁基软磁复合磁粉芯及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1284104A (zh) * 1997-11-28 2001-02-14 米什兰集团总公司 涂覆有含铝层的炭黑及其制备方法
JP2010163691A (ja) * 2008-05-23 2010-07-29 Sumitomo Electric Ind Ltd 軟磁性材料、および圧粉磁心
CN103177838A (zh) * 2012-12-30 2013-06-26 中南大学 一种软磁复合粉末及其制备方法
CN103236332A (zh) * 2013-05-20 2013-08-07 哈尔滨工业大学 复合软磁材料的制备方法
CN103247403A (zh) * 2013-05-31 2013-08-14 合肥工业大学 一种金属软磁粉芯的制备方法
CN103520955A (zh) * 2013-09-13 2014-01-22 河南科技学院 一种分子印迹整体搅拌吸附棒及其制备方法
CN104078182A (zh) * 2014-07-24 2014-10-01 武汉科技大学 一种铁基软磁复合磁粉芯及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210313110A1 (en) * 2020-04-02 2021-10-07 Seiko Epson Corporation Method For Manufacturing Dust Core And Dust Core
CN116997170A (zh) * 2023-07-13 2023-11-03 苏州铂韬新材料科技有限公司 一种吸波薄膜及其制备方法
CN116997170B (zh) * 2023-07-13 2024-04-26 苏州铂韬新材料科技有限公司 一种吸波薄膜及其制备方法

Similar Documents

Publication Publication Date Title
CN106158340B (zh) 一种Fe‑Si‑Al粉芯环形磁体及其制备方法
CN103177838B (zh) 一种软磁复合粉末及其制备方法
CN104321839B (zh) 软磁复合材料
CN108777229B (zh) 一种高频软磁铁硅铝磁粉芯的制备方法
CN107286705B (zh) 纳米无机复合颜料及其制备方法
JP2020075508A (ja) 組成物
CN104368807A (zh) 一种金属软磁复合材料用粉末的包覆方法及磁体的制备方法
CN106205935B (zh) 一种非晶态软磁复合磁粉芯及其制备方法
CN104347219B (zh) 复合磁性材料及其制造方法以及复合磁性材料的原料组
JP7417038B2 (ja) 希土類磁性粉末の製造方法
KR19990063249A (ko) 희토류로 이루어진 고내식성 영구자석
CN109257915A (zh) 一种钴镍/二氧化硅气凝胶复合吸波材料及其制备方法
CN111354528A (zh) 一种磷酸-硅烷共包覆金属软磁复合材料及其制备方法
CN105513739A (zh) 一种利用表面活性剂制备具有核壳结构的软磁复合材料
CN107498035A (zh) 一种耐腐蚀高导磁率的铁基软磁复合材料及其制备方法
JP6252224B2 (ja) 複合磁性材料及びその製造方法
CN107492433B (zh) 一种掺杂改性镍粉的铁基软磁复合材料及其制备方法
CN106986991A (zh) 聚苯胺/膨胀珍珠岩/钡铁氧体电磁复合材料的制备方法
CN111883328B (zh) 一种改性粘结剂及利用其制备软磁复合材料的方法
CN112366056A (zh) 一种高频低损耗软磁复合材料及其制备方法
CN106601463B (zh) 一种钕铁硼永磁材料
Xi et al. Property enhancement of bonded Nd-Fe-B magnets by composite adhesive design
CN113223843B (zh) 一种复合软磁粉末的绝缘包覆方法
CN112687445B (zh) 一种磷酸二氢铝基复合绝缘包覆的金属软磁粉芯的制备方法
CN103224595B (zh) 一种聚合物基纳米吸波材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171222

RJ01 Rejection of invention patent application after publication