CN103193593B - 一种利用水热技术由乙醇制备正丁醇的方法 - Google Patents

一种利用水热技术由乙醇制备正丁醇的方法 Download PDF

Info

Publication number
CN103193593B
CN103193593B CN201310074544.8A CN201310074544A CN103193593B CN 103193593 B CN103193593 B CN 103193593B CN 201310074544 A CN201310074544 A CN 201310074544A CN 103193593 B CN103193593 B CN 103193593B
Authority
CN
China
Prior art keywords
ethanol
butanol
cobalt powder
sodium bicarbonate
propyl carbinol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310074544.8A
Other languages
English (en)
Other versions
CN103193593A (zh
Inventor
田戈
张显龙
冯守华
刘紫微
徐兴良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201310074544.8A priority Critical patent/CN103193593B/zh
Publication of CN103193593A publication Critical patent/CN103193593A/zh
Application granted granted Critical
Publication of CN103193593B publication Critical patent/CN103193593B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明的一种利用水热技术由乙醇制备正丁醇的方法属于水热化学技术领域。乙醇和水在碳酸氢钠和金属钴粉共同催化作用下,发生水热反应,在140~300℃下反应1~30天可制得正丁醇。本发明为乙醇合成正丁醇提供了一条新的温和的反应路线,用简单的催化剂,在温和的条件下即可合成正丁醇;所用催化剂为金属钴粉和碳酸氢钠,原料易得,成本低廉;催化剂无需特殊处理简单混合即可,反应后钴粉无变化可重复使用;本发明反应温度低,对设备要求低,只需要密封的反应釜即可,操作容易,且对丁醇的选择性最高可达87%。

Description

一种利用水热技术由乙醇制备正丁醇的方法
技术领域
本发明属于水热化学技术领域,具体涉及一种乙醇在碳酸氢钠和金属钴粉共同催化作用下,通过水热技术合成正丁醇的方法。
背景技术
由于全球气候变暖、石油供应的波动、原油价格的增加和现有法规限制使用不可再生资源等诸多原因,在过去的几十年里,利用可再生资源生产化学产品和燃料备受关注。随着生物乙醇技术的不断发展,乙醇作为一种可再生资源,已经成为一种重要的工业原料,催化乙醇合成更有价值的产品(如正丁醇或1,3-丁二烯)备受关注。
正丁醇是一种重要的化工原料,主要用于邻苯二甲酸二甲脂、脂肪族二元酸丁酯及磷酸丁酯类增塑剂,广泛用于各种塑料和橡胶制品,目前,开发正丁醇作为车用燃料引起了广泛的关注。作为汽油的替代物,丁醇比乙醇更有优势。单位体积正丁醇所储备的能量是汽油的88%,而乙醇只是汽油的70%。相对于乙醇,正丁醇更不易污染水,对管道的腐蚀作用较小,而且现有车辆不需进行任何改装就可以使用混有正丁醇的汽油作为燃料,因此,正丁醇的合成备受关注。
目前,正丁醇的生产方法主要有发酵法、乙醛缩合法和丙烯羰基合成法。发酵法是将粮食进行水解得到发酵液,在丙酮-丁醇菌的作用下发酵得到丙酮-丁醇和乙醇的混合物,经精馏分离得到正丁醇。该法设备简单、投资少,但消耗粮食多,生产能力小,限制了该方法的发展。乙醛缩合法是乙醛在碱性条件下进行液相缩合制得2-羟基丁醛,经脱水成为丁烯醛,再催化加氢制得正丁醇。此法操作压力低,但流程长、步骤多、设备腐蚀严重,生产成本高,目前只有少数厂家采用此法生产正丁醇。丙烯羰基合成法主要分为高压法和低压法。高压法是烯烃和一氧化碳、氢气在钴系催化剂作用下,反应压力为20~30MPa,反应温度为130~160℃,进行羰基合成反应生成脂肪醛,经催化加氢、蒸馏分离制得正丁醇。该法较前两种方法有较大进步,但是也有不少缺点,如副产物多,由于压力高而导致投资和操作费用高、操作困难,维修量大等。低压合成法采用铑系催化剂,从而降低了反应压力,工厂的投资和维修费用低,操作容易,腐蚀性小。此方法为目前生产正丁醇的主要方法,但存在丙烯单程转化率低(仅为8%~10%)及对一氧化碳浓度要求高及铑金属催化剂价格昂贵等缺陷。
与本发明最接近的现有技术是发表在Applied Catalysis A:General415–416(2012)96–100上的论文,题目是《Mg and Al mixed oxides and the synthesis ofn-butanol from ethanol》,公开的乙醇缩合成正丁醇的方法是以镁铝氧化物为催化剂,将混有乙醇的氮气通过装有催化剂的固定床(350℃,常压)反应得到正丁醇及其它副产物。该方法所用催化剂并非简单地将氧化镁与氧化铝混合即可,而是采用共沉淀方法,经煅烧制得镁铝氧化物,其制备过程繁琐复杂,且随着反应的进行,催化剂会逐渐失活,且不可循环使用;同时,利用此方法合成正丁醇,存在反应温度高、正丁醇的选择性低(最高仅达40%)、设备复杂、操作困难和成本高等问题。
发明内容
本发明要解决的问题是在温和的反应温度下提供一种设备简单,反应选择性高,操作容易且成本低的制备正丁醇的方法。本发明采用的技术方案是,在温和的水热条件下,在碳酸氢钠和金属钴粉的共同催化作用下,由乙醇一步缩合生成正丁醇。其化学反应式为:
CH3CH2OH+CH3CH2OH→CH3CH2CH2CH2OH+H2O
本发明利用水热技术,以乙醇和水为原料,以钴粉和碳酸氢钠为共催化剂制备正丁醇,将所述碳酸氢钠、钴粉、乙醇装入高压反应釜中,加入蒸馏水,使填充度达到反应釜容积的30%~95%后密封,在140~300℃下反应1~30天,冷却后过滤得到正丁醇溶液;其中,所述乙醇、钴粉、碳酸氢钠和蒸馏水的摩尔比为1~4∶0~0.5∶0.05~0.3∶0.69~12.59。
优选的水热条件为180~240℃下反应3~10天。
优选的乙醇、钴粉、碳酸氢钠和蒸馏水的摩尔比为1.5~3∶0.05~0.125∶0.1~0.175∶0.69~10.97。
反应后的主产物是正丁醇,主要的副产物为正己醇,正辛醇,2-乙基己醇及2-乙基-1-丁醇,反应过程中未反应的乙醇可循环利用。
与本发明最接近的专利是《乙醇缩合成正丁醇的方法》,专利号ZL:200310108027.4,与此技术相比,本发明的优点在于:
本发明所用催化剂为金属钴粉和碳酸氢钠,原料易得,成本低廉;所述催化剂无需特殊处理简单混合即可,而且反应后的钴粉无变化,可重复使用;本发明的反应条件温和,温度低(140℃即可反应),对设备要求低,只需要密封的反应釜即可,设备简单,操作容易,且对丁醇的选择性(丁醇的摩尔数/各产物的总摩尔数)最高可达87%。
附图说明
图1实施例1中产物丁醇和丁醇标准品的气相色谱对照图。
图2实施例1中产物丁醇和丁醇标准品的质谱对照图。
具体实施方式
下面通过具体实施方式来说明本发明,但并不限于此。
实施例1
将0.295g(0.005mol)金属钴粉和0.84g(0.01mol)碳酸氢钠,8.76mL(0.15mol)无水乙醇及1.242mL(0.069mol)蒸馏水放入容积为30mL的高压反应釜中,使填充度达到33%,在240℃下反应3天,待反应釜冷却后,过滤。
利用气相色谱-质谱联用仪(TRACE DSQ GC-MS)对所得溶液进行检测(柱子型号为TR-wax-ms,进样口温度200℃,离子源温度250℃,传输线温度250℃,进样量0.4μL,分流比为10,程序升温起始温度80℃,保持1分钟,升温速度15℃/min,升温至200℃,保持6分钟。载气为99.999%的氦气,载气流量1.0mL/min)。与丁醇标准样品色谱图的保留时间和质谱图的分子离子峰及各个碎片峰对比后发现,样品中的主要产物的保留时间和质谱图与标准样品完全一致(见图1和图2),从而确定实施例1得到的主产物为丁醇。根据浓度-峰面积标准曲线和产物峰面积,可计算出产物中正丁醇的浓度为0.5mol/L,选择性为75%。
实施例2
将0.295g(0.005mol)金属钴粉和0.84g(0.01mol)碳酸氢钠,8.76mL(0.15mol)无水乙醇及11.24mL(0.624mol)蒸馏水加入容积为30mL的高压反应釜中,使填充度达到67%,在200℃下反应30天,待反应釜冷却后,过滤。
利用气相色谱-质谱联用仪(GC-MS)对所得溶液进行检测,根据浓度-峰面积标准曲线和产物峰面积,可计算实施例2产物中正丁醇的浓度为0.36mol/L,选择性为72%。
实施例3
将0.42g(0.005mol)碳酸氢钠,23.35mL无水乙醇(0.40mol)和5.15mL(0.286mol)蒸馏水加入容积为30mL的高压反应釜中,使填充度达到95%,于140℃反应30天,待反应釜冷却后,过滤,产物为无色透明液体。
利用气相色谱-质谱联用仪(GC-MS)对所得溶液进行检测,实施例3中未加入钴粉,能够发生反应合成正丁醇,但正丁醇产量低,选择性低。
实施例4
将2.945g金属钴粉(0.05mol)和2.52g碳酸氢钠(0.03mol),5.84mL(0.10mol)无水乙醇及3.16mL(0.176mol)蒸馏水加入容积为30mL的高压反应釜中,使填充度达到30%,于300℃反应1天,待反应釜冷却后,过滤,产物为无色透明液体。
利用气相色谱-质谱联用仪(GC-MS)对所得溶液进行检测,根据浓度-峰面积标准曲线和产物峰面积,可计算实施例4产物中正丁醇的浓度为0.31mol/L,选择性为75%。
实施例5
将0.295g(0.005mol)金属钴粉和0.84g(0.01mol)碳酸氢钠,17.51mL(0.3mol)无水乙醇及2.49mL(0.138mol)蒸馏水加入容积为30mL的高压反应釜中,使填充度达到67%,在200℃下反应3天,待反应釜冷却后,过滤。
利用气相色谱-质谱联用仪(GC-MS)对所得溶液进行检测,根据浓度-峰面积标准曲线和产物峰面积,可计算实施例5产物中正丁醇的浓度为0.16mol/L,选择性为78%。
实施例6
将0.295g(0.005mol)金属钴粉和1.47g(0.0175mol)碳酸氢钠,8.76mL(0.15mol)无水乙醇及11.24mL(0.624mol)蒸馏水加入容积为30mL的高压反应釜中,使填充度达到67%,在200℃下反应3天,待反应釜冷却后,过滤。利用气相色谱-质谱联用仪(GC-MS)对所得溶液进行检测,根据浓度-峰面积标准曲线和产物峰面积,可计算实施例6产物中正丁醇的浓度为0.15mol/L,选择性为85%。
实施例7
将0.737g(0.0125mol)金属钴粉和0.84g(0.01mol)碳酸氢钠,8.76mL(0.15mol)无水乙醇及11.24mL(0.624mol)蒸馏水加入容积为30mL的高压反应釜中,使填充度达到67%,在200℃下反应3天,待反应釜冷却后,过滤。
利用气相色谱-质谱联用仪(GC-MS)对所得溶液进行检测,根据浓度-峰面积标准曲线和产物峰面积,可计算实施例7产物中正丁醇的浓度为0.22mol/L,选择性为87%。
实施例8
将0.295g(0.005mol)金属钴粉和0.84g(0.01mol)碳酸氢钠,8.76mL(0.15mol)无水乙醇及19.74mL(1.097mol)蒸馏水加入容积为30mL的高压反应釜中,使填充度达到95%,在200℃下反应3天,待反应釜冷却后,过滤。
利用气相色谱-质谱联用仪(GC-MS)对所得溶液进行检测,根据浓度-峰面积标准曲线和产物峰面积,可计算实施例8产物中正丁醇的浓度为0.05mol/L,选择性为72%。
实施例9
将0.295g(0.005mol)金属钴粉和0.84g(0.01mol)碳酸氢钠,5.84mL(0.1mol)无水乙醇及22.66mL(1.259mol)蒸馏水加入容积为30mL的高压反应釜中,使填充度达到95%,在200℃下反应3天,待反应釜冷却后,过滤。
利用气相色谱-质谱联用仪(GC-MS)对所得溶液进行检测,根据浓度-峰面积标准曲线和产物峰面积,可计算实施例9产物中正丁醇的浓度为0.04mol/L,选择性为70%。

Claims (2)

1.一种利用水热技术由乙醇制备正丁醇的方法,其特征在于,以乙醇和水为原料,以钴粉和碳酸氢钠为共催化剂,将所述碳酸氢钠、钴粉、乙醇装入高压反应釜中,加入蒸馏水,使填充度达到反应釜容积的30%~95%后密封,水热条件为在140~300℃下反应1~30天,冷却后过滤得到正丁醇溶液;其中,所述乙醇、钴粉、碳酸氢钠和蒸馏水的摩尔比为1.5~3∶0.05~0.125∶0.1~0.175∶0.69~10.97。
2.根据权利要求1所述的利用水热技术由乙醇制备正丁醇的方法,其特征在于,水热条件为180~240℃下反应3~10天。
CN201310074544.8A 2013-03-08 2013-03-08 一种利用水热技术由乙醇制备正丁醇的方法 Expired - Fee Related CN103193593B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310074544.8A CN103193593B (zh) 2013-03-08 2013-03-08 一种利用水热技术由乙醇制备正丁醇的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310074544.8A CN103193593B (zh) 2013-03-08 2013-03-08 一种利用水热技术由乙醇制备正丁醇的方法

Publications (2)

Publication Number Publication Date
CN103193593A CN103193593A (zh) 2013-07-10
CN103193593B true CN103193593B (zh) 2014-07-09

Family

ID=48716432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310074544.8A Expired - Fee Related CN103193593B (zh) 2013-03-08 2013-03-08 一种利用水热技术由乙醇制备正丁醇的方法

Country Status (1)

Country Link
CN (1) CN103193593B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103588621B (zh) * 2013-10-21 2015-09-30 北京化工大学 一种正丁醇的合成方法
CN107473936B (zh) * 2017-08-14 2020-12-11 吉林大学 一种由二醇类化合物制备低级烷醇的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528727A (zh) * 2003-10-15 2004-09-15 浙江大学 乙醇缩合成正丁醇的方法
CN101530802A (zh) * 2009-04-16 2009-09-16 浙江大学 乙醇缩合成正丁醇的双组分负载型催化剂及其制备方法
CN101659597A (zh) * 2009-08-06 2010-03-03 石家庄联合石化有限公司 一种格尔伯特醇的制备方法
CN101855189A (zh) * 2007-12-20 2010-10-06 三菱化学株式会社 醇的制造方法
CN102424646A (zh) * 2011-10-27 2012-04-25 大连理工大学 一种转化乙醇的方法
EP2468400A1 (en) * 2009-08-17 2012-06-27 Kabushiki Kaisha Sangi Catalyst and alcohol synthesis method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528727A (zh) * 2003-10-15 2004-09-15 浙江大学 乙醇缩合成正丁醇的方法
CN101855189A (zh) * 2007-12-20 2010-10-06 三菱化学株式会社 醇的制造方法
CN101530802A (zh) * 2009-04-16 2009-09-16 浙江大学 乙醇缩合成正丁醇的双组分负载型催化剂及其制备方法
CN101659597A (zh) * 2009-08-06 2010-03-03 石家庄联合石化有限公司 一种格尔伯特醇的制备方法
EP2468400A1 (en) * 2009-08-17 2012-06-27 Kabushiki Kaisha Sangi Catalyst and alcohol synthesis method
CN102424646A (zh) * 2011-10-27 2012-04-25 大连理工大学 一种转化乙醇的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
冯守华等.水热生物化学.《吉林师范大学学报( 自然科学版)》.2009,(第4期),第1-4页.
水热生物化学;冯守华等;《吉林师范大学学报( 自然科学版)》;20091231(第4期);第1-4页 *

Also Published As

Publication number Publication date
CN103193593A (zh) 2013-07-10

Similar Documents

Publication Publication Date Title
CN104667976B (zh) 一种乙烯氢甲酰化制丙醛的多相催化剂及使用其的方法
CN104710282B (zh) 用于生产乙醇并联产甲醇的方法
CN104447176A (zh) 高选择性制备对二甲苯的方法
CN103193593B (zh) 一种利用水热技术由乙醇制备正丁醇的方法
CN102372666A (zh) 连续催化精馏合成α-甲基吡啶的方法
CN107008502B (zh) 一种由甲醇、二氧化碳和氢气合成乙酸的方法
CN102068945B (zh) 用于甲缩醛分离提纯的反应精馏装置和方法
Belguendouz et al. Selective synthesis of γ-valerolactone from levulinic and formic acid over ZnAl mixed oxide
CN102807500B (zh) 一种液相制备n,n-二甲基乙酰胺的方法
KR20160099097A (ko) 폴리옥시메틸렌 디메틸 에테르 카보닐 화합물 및 메틸 메톡시아세테이트의 제조방법
CN107141211B (zh) 一种苯甲醛的制备方法
CN101148401A (zh) 一种频那酮的合成方法
CN103772117B (zh) 丁烯多级绝热氧化脱氢制丁二烯的方法
CN112194566A (zh) 一种基于二氧化碳加氢合成甲醇的装置及工艺
CN103570485A (zh) Co2或co的还原偶联反应制备丙烯、乙烯、乙醛酸、丙醇、乙醇、丙二醇、丙二酸酯等的方法
CN106278786A (zh) 一种烷烃与co2生产氢甲酰化原料的方法
CN103387495A (zh) 连续制备羧酸酯的方法
EP3222609A1 (en) Method for preparing methyl formate and coproducing dimethyl ether
CN108707061B (zh) 一种甲醇用于醋酸甲酯制乙醇的工艺
CN111111763B (zh) 二氧化碳加氢直接制低碳烯烃的催化剂及其用途方法
CN102260170B (zh) 微波管道化生产乙酸正t酯的方法
CN103772175B (zh) 一种合成异丙叉丙酮及仲丁醇的组合工艺方法
CN101759533A (zh) 合成2-乙基己醛的新方法
CN104130210A (zh) N-甲基吗啉的制备方法
CN104610064A (zh) 一锅法以碳酸盐为催化剂制备碳酸二甲酯的工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140709

Termination date: 20160308