CN103189999A - 具有砷化镓吸收层的高效率太阳能电池装置 - Google Patents

具有砷化镓吸收层的高效率太阳能电池装置 Download PDF

Info

Publication number
CN103189999A
CN103189999A CN2011800502214A CN201180050221A CN103189999A CN 103189999 A CN103189999 A CN 103189999A CN 2011800502214 A CN2011800502214 A CN 2011800502214A CN 201180050221 A CN201180050221 A CN 201180050221A CN 103189999 A CN103189999 A CN 103189999A
Authority
CN
China
Prior art keywords
gaas
layer
dopant
type
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800502214A
Other languages
English (en)
Other versions
CN103189999B (zh
Inventor
考施·K·辛格
罗伯特·简·维瑟
斯里坎特·拉奥
巴斯卡·库马
克莱尔·J·卡马尔特
兰加·拉奥·阿内帕利
奥姆卡尔姆·纳兰姆苏
戈拉夫·绍劳夫
克里斯托弗·S·布莱克曼
桑贾伊安·萨特西瓦姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN103189999A publication Critical patent/CN103189999A/zh
Application granted granted Critical
Publication of CN103189999B publication Critical patent/CN103189999B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78681Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3245Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • H01L29/454Ohmic electrodes on AIII-BV compounds on thin film AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Formation Of Insulating Films (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明的实施例提供一种由溶液型前驱物形成掺杂的砷化镓(GaAs)基层的方法。由该溶液型前驱物所形成的掺杂的砷化镓(GaAs)基层可帮助太阳能电池装置提高光吸收作用及转化效率。在一个实施例中,一种形成太阳能电池装置的方法包括:在基板表面上方形成第一层,在所述第一层内掺杂有第一种掺杂剂;在该第一层上形成砷化镓基层;以及在该砷化镓基层上形成第二层,在所述第二层内掺杂有第二种掺杂剂。

Description

具有砷化镓吸收层的高效率太阳能电池装置
发明背景
发明领域
本发明的实施例一般涉及太阳能电池及形成该太阳能电池的方法。更特定言之,本发明的实施例涉及一种砷化镓(GaAs)基太阳能电池。
相关技术的描述
太阳能电池将太阳辐射及其它光线转化成可使用的电能。光伏效应(photovoltaic effect)造成能量转化作用的发生。可由结晶材料或由无定形或微晶材料形成太阳能电池。一般而言,现今大量制造的太阳能电池主要有两种,分别是结晶硅太阳能电池及薄膜太阳能电池。结晶硅太阳能电池一般使用单晶基板(即,纯硅的单一结晶基板)或多晶体硅基板(即,多晶或多晶硅)任一个。可在所述硅基板上沉积附加膜层,以提高光捕获(light capture)、形成电路及保护装置。适合的基板包括玻璃基板、金属基板和聚合物基板。已发现当薄膜太阳能电池暴露于光线下时,薄膜太阳能电池的特性会随时间降低,这可导致该装置的稳定性低于期望。可能降低的典型太阳能电池特性是填充因子(FF)、短路电流及开路电压(Voc)。
由于薄膜硅太阳能电池成本低廉且可进行无定形微晶硅吸收层的大面积沉积,因此薄膜硅太阳能电池获得相当大的市场占有率。薄膜太阳能电池利用沉积于适当基板上的多种材料薄层形成一个或多个的p-n结。通常,不同的材料层在太阳能电池中执行不同功能。形成于基板上的太阳能电池中的某些材料层配置为反射及散射光线,以帮助光线留在该太阳能电池中以达到较长时间的电流生成。在某些实例中,某些材料层可作为可具有高陷光效应(light-trappingeffect)的光吸收层。该吸收层中的陷光效应能吸收光线以产生高电流。通常,该光吸收层配置为吸收光子且在所述光子抵达所述太阳能电池电极并产生光电流之前具有最小的复合作用(recombination)。然而,某些吸收层经常具有高密度的复合位点的缺点,所述复合位点会对太阳能装置的效率造成重大不利影响。
因此,需要具有最小电子-空穴对的复合作用以提高太阳能电池的转化效率的改进的薄膜太阳能电池及用于形成所述太阳能电池的方法和设备。
发明概述
本发明的实施例提供一种由溶液型(solution based)前驱物形成含有或不含掺杂剂的砷化镓(GaAs)基层的方法。由该溶液型前驱物所形成的该砷化镓(GaAs)基层可并入太阳能电池装置中以提高光吸收作用及转化效率。在一个实施例中,一种形成太阳能电池装置的方法包括:在基板的表面上方形成第一层,在所述第一层内掺杂有第一种掺杂剂;在该第一层上形成砷化镓基层;以及在该砷化镓基层上形成第二层,在所述第二层内掺杂有第二种掺杂剂。
在另一个实施例中,一种形成太阳能电池装置的方法包括:将置于溶剂中的含砷化镓的前驱物提供至处理腔室,该含砷化镓的前驱物内具有p-型掺杂剂或n-型掺杂剂;以及在该处理腔室内使该具有p-型掺杂剂或n-型掺杂剂的含砷化镓的前驱物的溶剂蒸发,以在该基板上形成p-型掺杂或n-型掺杂的GaAs层。
在又一个实施例中,太阳能电池装置包括设置在基板上的第一层且该第一层内具有第一种掺杂剂、形成在该第一层上方的砷化镓基层、以及形成在该砷化镓基层上方的第二层。
附图简要说明
为能获得且详细了解本发明的上述特征的方式,可参考附图图示的本发明的多个实施例,阅读简要概述如上的本发明更具体的描述。
图1是根据本发明一个实施例的单结薄膜太阳能电池的截面图,其中该单结薄膜太阳能电池具有砷化镓层以作为光吸收层;
图2是根据本发明一个实施例的串接结薄膜太阳能电池的截面图,其中该串接结薄膜太阳能电池具有砷化镓层以作为光吸收层;
图3是根据本发明实施例的制造砷化镓基太阳能电池的方法的流程图;
图4图示气溶胶辅助化学气相沉积(AACVD)的一个实施例的简化截面透视图;
图5是根据本发明另一个实施例的制造砷化镓基太阳能电池的方法的流程图;
图6图示快速热处理腔室的一个实施例的简化截面透视图;
图7图示根据本发明一个实施例的形成在砷化镓基材料中的纳米碳管的截面图;
图8图示根据本发明一个实施例的太阳能电池装置的截面图;以及
图9图示根据本发明另一个实施例的太阳能电池装置的截面图。
为便于了解,尽可能地使用相同标号代表附图中共有的相同元件。无需进一步说明,即能预期可将一个实施例的元件和特征结构有利地并入其它实施例中。
然而需注意,附图仅图示本发明的示例性实施例,因此不应视为本发明范围的限制,本发明允许做出其它同等有效的实施例。
具体描述
使用薄膜沉积工艺形成的太阳能电池装置通常包括以许多不同方式配置在一起的不同组成的诸多材料层或薄膜。用于此类装置中的大多数薄膜含有半导体元素,所述半导体元素可包含硅、锗、镓、砷、铟、碳、硼、磷、氮、氧、氢及诸如此类的元素。不同沉积膜层的特性包括结晶度、掺杂剂种类、掺杂剂浓度、带隙、薄膜折射率、薄膜消光系数、薄膜透明度、薄膜吸收度及导电度。
通常由一个或多个光吸收层提供光伏过程期间的电荷产生作用。一般而言,电子-空穴对的生成作用主要发生在本征层中,本征层用以将p-i-n型薄膜太阳能电池装置中相对的掺杂的p-n区域隔开。“本征层”一词一般用以区分该本征层与存在于太阳能电池中的各种掺杂的层。该本征层可具有不同的薄膜性质,所述性质会影响薄膜的光吸收特性及电子-空穴对的生成。本发明的方面一般上提供一种用于形成砷化镓基光吸收层的装置结构及方法,该砷化镓基光吸收层具有期望的光学性质以帮助吸收广波长范围内的光线。通过利用砷化镓基光吸收层与无定形硅层及/或微晶硅层一起形成太阳能电池装置中的光伏结(photovoltaic junction),可获得高的光吸收率及转化效率。
图1是单结太阳能电池装置150的一个实施例的截面图,该太阳能电池装置150的方位朝向发光源或太阳辐射101。太阳能电池装置150包括基板100,例如玻璃基板、聚合物基板或其它合适的基板,且该基板100上形成有薄膜。该太阳能电池装置150进一步包括形成在该基板100上方的第一透明导电氧化物(TCO)层102、形成在该第一TCO层102上方的p-i-n结114、形成在该p-i-n结114上方的第二透明导电氧化物(TCO)层110以及形成在该第二TCO层110上方的金属背层112。
可选用性地使用湿法处理技术、等离子体处理技术、离子轰击处理技术及/或机械加工处理技术使该基板及/或形成在该基板上方的一个或多个薄膜纹理化,以通过增强光线捕捉作用而提高光吸收作用。在一个实施例中,该第一TCO层102中的界面表面被纹理化(图中未图示),使得沉积在该界面表面上的后续薄膜将大致遵循该膜下方的该表面的纹理形貌。
在一个实施例中,该第一TCO层102及该第二TCO层110可各自包含氧化锡、氧化锌、氧化锌铝、氧化锡铝、氧化铟锡、锡酸镉、上述化合物的组合或其它合适的材料。可理解所述TCO材料也可包含附加的掺杂剂与成分。例如,氧化锌可进一步包含掺杂剂,例如铝、镓、硼及其它合适的掺杂剂。氧化锌包含5原子百分比(%)或低于5原子%的掺杂剂,例如可包含2.5原子%或低于2.5原子%的铝。在某些实例中,玻璃制造商可提供已具备该第一TCO层102的该基板100。
该第一p-i-n结114包括p-型层104、形成在该p-型层104上方的本征型砷化镓(GaAs)基层106以及形成在该本征型砷化镓基层106上方的n-型层108。在一个实施例中,该p-型层104配置为p-型砷化镓(GaAs)基层104,以及该n-型层108配置为n-型砷化镓(GaAs)基层108,且该p-型砷化镓(GaAs)基层104和该n-型砷化镓(GaAs)基层108两者皆由一个或多个的砷化镓(GaAs)基层或掺杂的砷化镓(GaAs)基层所形成。设置在该p-型砷化镓(GaAs)基层104与该n-型砷化镓(GaAs)基层108之间的该本征型砷化镓(GaAs)层106可在宽广光波长范围内提供比传统薄膜太阳能电池装置更大量的光线吸收作用且具有更高的载流子迁移率。以下将参照图2至图5进一步描述形成太阳能电池装置150中的所述p-型砷化镓(GaAs)层104、本征型砷化镓(GaAs)层106及n-型砷化镓(GaAs)层108的方法和工艺。虽相信利用溶液型砷化镓前驱物(将进一步说明如下)可最佳地获得和形成所述p-型砷化镓(GaAs)层104、本征型砷化镓(GaAs)层106及n-型砷化镓(GaAs)层108,但注意也可利用任何其它合适的方式获得所述p-型砷化镓(GaAs)层104、本征型砷化镓(GaAs)层106及n-型砷化镓(GaAs)层108。在某些实施例中,该p型砷化镓(GaAs)基层104具有在约
Figure BDA00003065100300051
至约
Figure BDA00003065100300052
之间的厚度。在某些实施例中,该本征型砷化镓(GaAs)基层106具有在约
Figure BDA00003065100300053
至约
Figure BDA00003065100300054
之间的厚度。在某些实施例中,该n-型砷化镓(GaAs)基层108具有在约
Figure BDA00003065100300055
至约
Figure BDA00003065100300056
之间的厚度。
该金属背层112可包含但不限于选自由铝(Al)、银(Ag)、钛(Ti)、铬(Cr)、金(Au)、铜(Cu)、铂(Pt)、上述金属的合金及上述金属的组合物所构成的组中的材料。可执行其它工艺以形成该太阳能电池装置150,例如激光划线工艺。也可在金属背层112上方提供其它薄膜、材料、基板及/或封装以完成该太阳能电池装置。可互相连接所形成的所述太阳能电池以形成模块,且依次连接所述模块以形成太阳能电池阵列。
可选择地,在一个实施例中,该太阳能电池装置150包括多结太阳能电池装置。在此结构配置中,可在该第一p-i-n结114与该第二TCO层110之间或在该第一TCO层102与该第一p-i-n结114之间形成一个或多个的附加p-i-n结,所述配置将参照图2进一步讨论如下。可由与该第一p-i-n结114中的所述层具有相似或不同组成的层形成所述一个或多个的附加p-i-n结。例如,所述附加结的一个或多个可包括本征层,且该本征层是由与该本征型砷化镓(GaAs)层106具有不同的带隙的材料所形成。
主要由该p-i-n结114的该本征型砷化镓(GaAs)层106吸收太阳辐射101,并且使该太阳辐射101转化成电子-空穴对。在该p-型砷化镓(GaAs)基层104与该n-型砷化镓(GaAs)基层108之间创造出延伸跨越该本征型砷化镓(GaAs)层106的电场,造成电子流向所述n-型砷化镓(GaAs)基层108且空穴流向所述p-型砷化镓(GaAs)基层104而产生电流。由于该本征型砷化镓(GaAs)层106能够捕捉较广范围的太阳能辐射光谱,因此所形成的太阳能电池100将比传统太阳能电池装置更有效率。
在另一个实施例中,存在于该p-型砷化镓(GaAs)基层104中的p-型掺杂剂可选自于由含锌材料、含镁材料、含碳材料或诸如此类的材料所构成的组中。所述含锌材料的合适实例包括金属锌掺杂剂、二甲基锌(DMZ)、二乙基锌(DEZ)或其它合适的含锌材料。含镁材料的合适实例包括金属镁掺杂剂、环戊二烯基镁或其它合适的含镁材料。含碳材料的合适实例包括四氯化碳(CCl4)、四溴化碳(CBr4)或诸如此类者。存在于该n-型砷化镓(GaAs)基层108中的n-型掺杂剂可选自于由含硫材料、含硅材料、含硒材料或诸如此类者所构成的组中。含硫材料的合适实例包括硫化氢(H2S)、硫磺或诸如此类者。含硅材料的合适实例包括甲硅烷(SiH4)、二硅烷(Si2H6)或诸如此类者。含硒材料的合适实例包括硒化氢(H2Se)、硒(Se)或诸如此类者。在一个实例中,用以形成该p-型砷化镓(GaAs)基层104的该p-型掺杂剂是含锌材料,从而形成掺杂锌的砷化镓(GaAs)层。用以形成该n-型砷化镓(GaAs)基层108的该n-型掺杂剂是含硅材料,从而形成掺杂硅的砷化镓(GaAs)层。以下将参照图5至图6进一步说明有关如何使掺杂剂掺杂至该砷化镓(GaAs)基层中的细节。
或者,在某些实施例中,在该第一p-i-n结114中所形成的该p-型层104和该n-型层108可为硅基层(silicon based layer),例如层内掺杂有p-型掺杂剂或n-型掺杂剂的含硅层。该本征型砷化镓(GaAs)层106形成在该p-型含硅层104上方,且该n-型含硅层108形成在该本征型砷化镓(GaAs)层106上方。该p-型硅层104及n-型硅层108可由一个或多个p-型或n-型微晶层或由一个或多个p-型或n-型无定形硅层所形成。设置在该p-型硅层104与该n-型硅层108之间的该本征型砷化镓(GaAs)层106可在宽广光波长范围内提供比传统硅基薄膜太阳能电池装置更大量的光线吸收作用且具有更高的载流子迁移率。虽相信利用溶液型砷化镓前驱物(将参照图3至图6进一步说明如下)可最佳地获得和形成该本征型砷化镓(GaAs)层106,但注意也可利用所属技术领域中可取得的任何其它适合方式来获得该本征型砷化镓(GaAs)层106。在某些实施例中,该p-型含硅层104是无定形硅层,且该无定形硅层可形成在约
Figure BDA00003065100300061
至约
Figure BDA00003065100300062
之间的厚度。在某些实施例中,该n-型含硅层108可形成在约
Figure BDA00003065100300063
至约
Figure BDA00003065100300064
之间的厚度。在某些实施例中,该n-型含硅层108是n-型无定形硅层,且该无定形硅层可形成在约
Figure BDA00003065100300065
至约
Figure BDA00003065100300066
之间的厚度。
在该p-型层104与n-型层108是含硅层的特定示例性实施例中,在该p-型含硅层104中所形成的p-型掺杂剂通常是III族元素,例如硼或铝。在该n-型含硅层108中所形成的n-型掺杂剂通常是V族元素,例如磷、砷或锑。在大部分的实施例中,使用硼作为该p-型掺杂剂且使用磷作为该n-型掺杂剂。通过在该沉积工艺期间使该反应混合物包含一种含硼化合物或一种含磷化合物,可将所述掺杂剂添加至以上描述的p-型层104及n-型层108中。合适的硼化合物及磷化合物通常包含被取代或未被取代的低级硼烷和膦低聚物。某些合适的硼化合物包括三甲基硼(B(CH3)3或TMB)、二硼烷(B2H6)、硼烷(BH3)、三氟化硼(BF3)及三乙基硼(B(C2H5)3或TEB)。膦(phosphine)是最常用的磷化合物。通常利用载气(例如,氢气、氦气、氩气及其它适当气体)供应所述掺杂剂。
在一个实施例中,通过提供氢气与硅烷气体约20:1或更低的体积比的气体混合物可沉积该p-型含硅层104。可用在约1sccm/L至约10sccm/L的流速提供硅烷气体。可用在约5sccm/L至约60sccm/L的流速提供氢气。可用在约0.005sccm/L至约0.05sccm/L的流速提供三甲基硼。若在载气中提供0.5%摩尔或体积浓度的三甲基硼,则可用在约1sccm/L至约10sccm/L之间的流速供应该掺杂剂/载气的混合物。施加在约15mW/cm2(毫瓦/平方厘米)至约200mW/cm2的射频(RF)功率且使腔室压力在约0.1托尔(Torr)至约20托尔之间,例如在约1托尔至约4托尔之间,将以约
Figure BDA00003065100300071
分钟或
Figure BDA00003065100300072
分钟以上的速度沉积p-型无定形硅层。
在所形成的n-型含硅层108为n-型无定形硅层的实施例中,通过提供氢气与硅烷气体约20:1或更低的体积比(例如约5:5:1或7.8:1)的气体混合物可沉积该n-型含硅层108。可用在约0.1sccm/L至约10sccm/L之间的流速,例如在约1sccm/L至约10sccm/L、在约0.1sccm/L至约5sccm/L或在0.5sccm/L至约3sccm/L之间的流速(例如约1.42sccm/L或5.5sccm/L)提供硅烷气体。可用在约1sccm/L至约40sccm/L之间的流速,例如在约4sccm/L至约40sccm/L或在约1sccm/L至约10sccm/L之间的流速(例如约6.42sccm/L或27sccm/L)提供氢气。可用在约0.0005sccm/L至约0.075sccm/L之间的体积流速,例如在约0.0005sccm/L至约0.0015sccm/L或在约0.015sccm/L至约0.03sccm/L之间的体积流速(例如约0.0095sccm/L或0.023sccm/L)提供膦。若在载气中提供0.5%摩尔或体积浓度的膦,则可用在约0.1sccm/L至约15sccm/L之间的流速,例如在约0.1sccm/L至约3sccm/L、在约2sccm/L至约15sccm/L或在约3sccm/L至约6sccm/L之间的流速(例如约1.9sccm/L或约4.71sccm/L)提供该掺杂剂/载气的混合物。施加在约25mW/cm2至约250mW/cm2(例如约60mW/cm2或约80mW/cm2)的射频功率且使腔室压力在约0.1托尔至约20托尔之间,例如在约0.5托尔至约4托尔之间(例如约1.5托尔),将以约
Figure BDA00003065100300073
分钟或
Figure BDA00003065100300074
分钟以上的速度,例如约/分钟或
Figure BDA00003065100300082
/分钟以上的速度(例如约
Figure BDA00003065100300083
/分钟或
Figure BDA00003065100300084
/分钟的速度)沉积n-型无定形硅层。
图2是串接结太阳能电池200的实施例的示意图,该串接结太阳能电池200的位向面向光线或太阳辐射101。该太阳能电池200包括与图1描述的结构类似的装置结构,该装置结构包括形成于该基板100上方的第一透明导电氧化物(TCO)层104、形成于该第一TCO层102上方的第一p-i-n结114。除了形成在该第一TCO层102上方的该第一p-i-n结114之外,在该第一p-i-n结114上方形成第二p-i-n结208。该第二p-i-n结208包括第二p-型层202、第二本征型砷化镓(GaAs)基层204及第二n-型层206。在一个实施例中,该第二p-型层202可为第二型砷化镓(GaAs)基层202,该第二型砷化镓(GaAs)基层202类似于在砷化镓(GaAs)基层内掺杂有期望p-型掺杂剂的该第一p-型砷化镓(GaAs)基层102。该第二本征型砷化镓(GaAs)基层204类似该第一本征型砷化镓(GaAs)基层106,该第一本征型砷化镓(GaAs)基层106为不含掺杂剂的砷化镓(GaAs)层。该第二n-型层206可为第二n-型砷化镓(GaAs)基层,该第二n-型砷化镓基层类似于层内掺杂有期望n-型掺杂剂的该第一n-型砷化镓(GaAs)基层108。在另一个实施例中,可如上述般,该第二p-型层202可为层内含有p-型掺杂剂的硅基层,同时该第二n-型层206可为层内掺杂有n-型掺杂剂的n-型硅层。
在一个实例中,选择用于掺杂至该第二p-型砷化镓(GaAs)基层202中的该p-型掺杂剂是含锌材料,且选择用于掺杂至该第二n-型砷化镓(GaAs)基层206中的该n-型掺杂剂是含硅材料。在该第一p-i-n结114上形成该第二p-i-n结208之后,接着以类似形成以上参照图1描述形成该太阳能电池装置150的方法,在该第二p-i-n结208上方形成该第二TCO层110及该金属背层112。
注意到,虽然图1及图2所示的实施例皆为p-i-n结结构,然而如有需要,也可采用反向顺序形成所述结,例如n-i-p结,该n-i-p结是先具有n-型掺杂的GaAs层或n-型掺杂的含硅层且之后为本征型GaAs层及p-型掺杂的GaAs层或p-型掺杂的含硅层。此外,在某些配置中,也可排除该本征型GaAs层,仅留下形成在基板上的p-n结(例如,具有紧邻n-型掺杂的GaAs层而形成的p-型掺杂的GaAs层)。在某些实施例中,如有需要也可使用多个掺杂的层(例如一个以上的p-型掺杂的GaAs层n-型掺杂的GaAs层)以形成p-i-n、n-i-p、p-n或n-p结。
图3图示形成用于太阳能电池装置中的溶液型GaAs层的处理顺序300的一个实施例的流程图,该用于太阳能电池装置中的溶液型GaAs层例如是图1及图2图示形成于太阳能电池装置150、200中的GaAs层106、204。在将所述p-型层104、202及所述n-型层108、206配置为GaAs基材料的实施例中,也可通过如图3所述的处理顺序300制造所述层。请注意图3图示该制造本征型GaAs层106、204的工艺仅为解说之用,且非意欲限制本发明范围或可制造的层的某些种类。应注意,由于适合在该方法中添加或删除一个或多个步骤及/或将一个或多个步骤重新排序而不偏离在此描述的本发明的基本范围,因此图3中所示步骤的数目与顺序非意欲用以限制在此描述的本发明的范围。
该处理顺序300始于步骤302以提供基板100,该基板100配置为在该基板上形成如图1所示的太阳能电池装置。在一个实施例中,该基板100可为透明基板、塑料基板、含硅基板(例如单晶硅基板、多晶硅体基板)、玻璃基板、石英基板或其它合适材料。类似形成在该太阳能电池装置150中的所述膜层,该基板100可具有第一TCO层102及形成在该第一TCO层102上的p-型层104。接着在该p-型层104上执行该处理顺序200中的下个步骤,即步骤204,以在该p-型层104上形成GaAs层,例如图1中图示的该GaAs层106。请注意该基板100上可形成有不同材料层以助于在该基板100上形成该GaAs层。
在步骤304,执行GaAs沉积工艺以在该基板100上沉积GaAs层106。通过提供被预先工程处理(pre-engineered)的溶液型GaAs前驱物至处理腔室以作为源前驱物可执行该GaAs沉积工艺,以助于在该基板100上沉积该GaAs层106。
该被预先工程处理的溶液型砷化镓(GaAs)前驱物包含处于溶液中由镓络合物与砷络合物组成的混合物,而于该溶液中形成镓-砷络合物。在一个实施例中,在该被预先工程处理的溶液型砷化镓(GaAs)前驱物中所形成的该镓-砷络合物通常含有如下所示的砷化镓二聚体(-GaAs-)、砷化镓四聚体(-Ga2As2-)或砷化镓六聚体(-Ga3As3-)结构。
Figure BDA00003065100300101
Figure BDA00003065100300102
Figure BDA00003065100300103
(a)砷化镓二聚体       (b)砷化镓四聚体        (c)砷化镓六聚体
一般相信砷化镓二聚体(-GaAs-)、砷化镓四聚体(-Ga2As2-)或砷化镓六聚体(-Ga3As3-)结构是相对稳定的络合物,因而使得所述络合物是作为可置于或存储于液态溶液中且可处于相对稳定状态下的良好候选化合物。通过使用此种相对稳定的溶液型GaAs前驱物,可将该GaAs溶液输送、注入、喷雾和涂覆于该基板上且具有高度的均匀一致性和良好的薄膜质量,从而提供具有期望薄膜性质和高薄膜性质的可靠且可再现的GaAs层。
砷化镓二聚体、砷化镓四聚体或砷化镓六聚体上可连接有不同的官能团,以在该被预先工程处理的溶液中形成稳定络合物形式的GaAs源前驱物。该GaAs络合物可具有化学式Rx(GaAs)yR′z,其中x、y及z是在1至15之间的整数,R及R′可能是相同或不相同的官能团或诸如此类的基团。可连接至所述砷化镓二聚体、砷化镓四聚体或砷化镓六聚体中的镓(Ga)元素和砷(As)元素上的官能团可包括烷基(例如甲基(CH3-)、乙基(C2H5-)、丙基(C3H7-)、丁基(C4H9-)、戊基(C5H11-)且依此类推、异丙基和其它类似异构物)、芳基(例如苄基(benzal)、苯乙烯、甲苯、二甲苯、吡啶、乙苯、苯乙酮、苯甲酸甲酯、乙酸苯酯、苯酚(phenol)、甲酚(cresol)、呋喃及诸如此类的化合物)、脂环族基(例如环丙烷、环丁烷、环戊烷、环戊二烯、甲苯及诸如此类的化合物)、氨基(例如NR2(R为烷基))、-SiR3、-O-R、-S-R、-PR3、-POR3、卤素、2,3,5,6-四甲基-1-4-苯醌或四甲基-对-苯醌、二齿配位体(bidentate ligands)、速效配位体(expediousligands)、胺类(amines)溶剂绿(pyranine)、立体位阻配位体(steric hindranceligands)及诸如此类者。在一个示例性实施例中,氨基(例如NR2(R为烷基))及立体位阻配位体是被选择以作为连接至该GaAs二聚体、GaAs四聚体或GaAs六聚体的所述官能团。
该GaAs络合物需在溶液中具有高溶解度和稳定性。因此,期望所述选出用以形成该GaAs络合物的官能团在预反应(preactive)或形成簇团(cluster)时具有1:1的化学计量比。此外,还期望所述官能团能够低温分解成GaAs。再者,所述官能团与镓(Ga)元素之间及/或所述官能团与砷(As)元素之间的键能配置成比该镓-砷键的键能要弱。通过此配置,在沉积反应期间,所述官能团与镓(Ga)元素及/或砷(As)元素之间的键可从该GaAs溶液前驱物上轻易断裂,从而帮助在该基板表面上形成该GaAs层,且留下该络合物中的GaAs键。由于所连接的所述官能团选择为在沉积期间或在后续烘烤或固化工艺期间轻易地去除、蒸发或热裂解所述官能团,因此可获得且于该基板表面上形成具有最少杂质或污染物的GaAs层。
符合上述要求的所述GaAs前驱物的适当实例包括(NMe2)2Ga2As2(tBuH)2、Me2GaAs(NMe2)2、Me2GaAs(SiMePh2)2、Me2GaAs(SiPh3)2、Et2GaAs(SiMe2Cy)2、Me2GaAs(SiMe2Cy)2、(Me)3GaAs(NMe2)3、(Et)3GaAs(NMe2)3、(Me)4Ga2As2(tBuH)2、(Et)4Ga2As2(tBuH)2、Ga:As为1:3化学计量比的化合物(例如GaAs3 tBu6)或诸如此类的化合物。所述GaAs前驱物的结构包括下列结构:
(Et)3GaAs(NMe2)3
Figure BDA00003065100300111
(Me)4Ga2As2(tBuH)2
Figure BDA00003065100300112
(Et)4Ga2As2(tBuH)2
(NMe2)2Ga2As2(tBuH)2
(Me)3GaAs(NMe2)3
在一个实施例中,如图1及图2所示般,用于形成该基板100上的GaAs层106和204的GaAs前驱物是(NMe2)2GaAstBuH。可通过在己烷或甲苯溶剂或其它适当的有机或无机溶剂中混合酰氨基镓(Ga(NMe2))3与过量的叔丁基砷烷(tBuAsH2)且搅拌过夜,例如搅拌超过16小时,可合成出(NMe2)2GaAstBuH前驱物。该工艺温度可控制在约-40摄氏度至约-90摄氏度之间。在该混合工艺后,获得(NMe2)2GaAstBuH,且可将(NMe2)2GaAstBuH存储在二氯甲烷(CH2Cl2)溶剂或甲苯溶剂中。
在另一个实施例中,通过使用三(二甲氨基)砷(Me6N3As)与三甲基镓(GaMe3)作为源前驱物以合成且预先工程处理该GaAs源前驱物,可形成该GaAs层。该三(二甲氨基)砷(Me6N3As)与三甲基镓(GaMe3)在甲苯或己烷溶剂中反应而生成期望的含GaAs溶液型前驱物。该工艺温度可控制在约-40摄氏度至约-90摄氏度之间。
在又一个实施例中,可使用[{L}HGaAsR]n或[{L}2GaAstBuH]作为前驱物以形成该GaAs层,其中L为氮基供体配位体(nitrogen-based donor ligand)、NMe2或肼类(hydrazines)官能团。通过使As(SiR3)3、R3SiAsH3或H2AstBu与GaH3{L}或Ga{L}3在己烷溶液中进行反应且同时于室温下搅拌超过24小时可合成出所述[{L}HGaAsR]n或[{L}2GaAstBuH]前驱物。在反应完全后,可得到该[{L}HGaAsR]n或[{L}2GaAstBuH]前驱物,且可使用该[{L}HGaAsR]n或[{L}2GaAstBuH]前驱物作为砷化镓(GaAs)的源,以当该前驱物分解时可在该基板上形成GaAs层。
随后将该含GaAs的前驱物(例如上述(NMe2)2GaAstBuH、[{L}HGaAsR]n或[{L}2GaAstBuH]或其它合适的前驱物)供应至化学气相沉积(CVD)腔室以在基板上沉积GaAs层。在一个实施例中,该含GaAs的溶液型前驱物被供应至CVD腔室以执行气溶胶辅助化学气相沉积(AACVD)工艺。在该AACVD工艺中,该含GaAs的前驱物会分解。以下将参考图4进一步讨论可用于实施本发明的AACVD腔室的实例。通过使用气溶胶产生器使该前驱物溶液雾化。使用载气以促进气溶胶生成。随后,通过该载气将携带该含GaAs的溶剂前驱物的气溶胶输送至CVD腔室中并且于该腔室内蒸发该气溶胶。在该气溶胶进入该CVD腔室后,该前驱物从液相进入气相而能够进行CVD工艺。随后,该气相的含GaAs的前驱物接着被分解且吸附于该基板上以在该基板上形成期望的GaAs层。若该前驱物未完全蒸发,可执行喷雾热裂解工艺以使该前驱物变成气溶胶液滴而吸附在该基板上且在该基板表面上形成该GaAs层。在一个实施例中,在该气溶胶辅助化学气相沉积(AACVD)工艺期间,该基板温度控制在约550摄氏度,以便有效地蒸发进入该腔室中的该前驱物。
在另一个实施例中,如有需要,也可使用喷气法(aerojet)、闪蒸法(flashevaporation)、激光辅助化学气相沉积法、紫外线辅助化学气相沉积法、激光反应沉积法、由溶液形成纳米颗粒喷雾法、喷雾式化学气相沉积法、有机金属化学气相外延法(MOVPE)、氢化物气相外延法(HVPE)或通过其它适当技术在该基板上形成GaAs层。也可采用某些其它湿法沉积工艺,例如喷墨法、旋涂法、半月板涂覆法(meniscus coating)、浸涂法(dip coating)、电镀法、喷雾涂覆法、电喷雾法、丝网印刷法或其它适当技术,以于该基板表面上形成GaAs层。再者,如有需要,也可使用某些真空技术,例如分子束外延法(MBE)、有机金属气相外延法(MOVPE)、脉冲激光沉积法(PLD)、等离子体增强化学气相沉积法(PECVD)、溅射法、蒸镀法、磁控溅射法、化学束沉积法、原子层沉积法(ALD)、热丝化学气相沉积法(hardware chemical vapor deposition,HWCVD)、微波等离子体及一些其它技术。
在沉积后,如图1和图2所示般,该GaAs层106、204形成在该基板100上。形成在该基板上的该GaAs层可具有实质在约1:0.8至约1:1.2之间的镓(Ga)元素:砷(As)元素的比例。X光绕射(XRD)分析显示所形成的GaAs层具有(111)平面的强波峰。位于<111>、<220>和<311>平面处的XRD波峰位置符合砷化镓(GaAs)立方体的标准波峰位置。在一个实施例中,该GaAs层106可具有在约0.2微米至约3微米之间的厚度。
在一个实施例中,可在该GaAs层中掺杂不同的掺杂剂。掺杂剂可为颗粒、粉末、凝胶、液体、溶液或任意其它适当形式,且可将掺杂剂拌入且混合至该溶液型的被预先工程处理的GaAs前驱物中。形成在该GaAs层中的不同掺杂剂可提供不同的薄膜导电性和迁移率,从而提高该装置的电性效能。在一个实施例中,可掺杂至该GaAs层中的所述掺杂剂包括铝(Al)、锌(Zn)、镁(Mg)、铟(In)、磷(P)、硅(Si)、硒(Se)、硫(S)、碳(C)、氮(N)及诸如此类者。
在步骤306,在该基板100上形成该GaAs层106、204后,执行退火工艺以对该GaAs层106、204进行热处理。请注意,如有需要,也可在该GaAs层106、204上执行不同类型的后续处理工艺,例如淬火(quenching)、烘烤、激光处理或诸如此类的处理。用于形成该GaAs层106的该前驱物含有除了镓(Ga)和砷(As)以外的元素,例如该前驱物中含有碳、氮、氧化物或其它元素。在该沉积层上执行热退火工艺及/或后续处理工艺可帮助驱除刚沉积的GaAs层106、204中所含的杂质。该热处理工艺也可帮助修复该刚沉积的薄膜中可能在该沉积工艺期间形成的缺陷。
在一个实施例中,可通过任何适当的退火工具执行该退火工艺,该退火工具例如是烤炉、快速热处理(RTP)腔室、尖峰退火(spike anneal)腔室或激光退火腔室及诸如此类工具。可在约400摄氏度至约600摄氏度之间的温度下执行该退火工艺,以帮助该基板100上所形成的GaAs层106、204致密化及/或结晶化。
图4图示气溶胶辅助化学气相沉积(AACVD)腔室300的实施例的简化截面透视图,该气溶胶辅助化学气相沉积腔室400可用于在基板上沉积溶液型GaAs层,该基板是例如以上参照图1至图2所述的基板100。该AACVD腔室400可用于执行AACVD沉积工艺,例如以上参照图1至图2所述的沉积工艺。请注意,如有需要,也可使用其它种类的沉积工艺,例如MOCVD、喷气法、闪蒸法、激光辅助CVD法、紫外线辅助CVD法、激光反应沉积法、由溶液形成纳米颗粒喷雾法、喷雾式CVD法、MOVPE法、HVPE法或通过其它适当技术以形成该GaAs层。也可采用某些其它湿法沉积工艺,例如喷墨法、旋涂法、半月板涂覆法(meniscus coating)、浸涂法、电镀法、喷雾涂覆法、电喷雾法、丝网印刷法或其它适当技术,以在该基板表面上形成GaAs基层。再者,如有需要,也可使用某些真空技术,例如分子束外延法(MBE)、有机金属气相外延法(MOVPE)、脉冲激光沉积法(PLD)、等离子体增强化学气相沉积法(PECVD)、溅射法、蒸镀法、磁控溅射法、化学束沉积法、原子层沉积法(ALD)、热丝化学气相沉积法(HWCVD)、微波等离子体法及某些其它技术。
该腔室400包括反应管422,该反应管422具有第一管壁426、第二管壁428及反应器主体424,该反应器主体424连接在该第一管壁326与该第二管壁428之间。形成在该反应管422中的该第一管壁426、该第二管壁428和该反应器主体424限定内部处理区域418。石墨加热块420设置在该反应管422中以接收该基板100,该基板100置于该石墨加热块上以进行处理。如有需要,可利用设置在该反应管422中的温度传感器(图中未图示)监控该基板100的温度。
排气口432形成在该第二管壁428中以帮助传送该基板进入和离开该反应管422。气体入口端口430形成在该第一管壁426中以帮助在工艺期间从混合腔室416输送反应气体和前驱物进入该内部处理区域418。液体安瓿容器434经由气体输送通路436而连接至该混合腔室416。该液体安瓿容器434可存储前驱物408以供应源材料进入该内部处理区域418,以在该基板100上沉积GaAs基层。该混合腔室416提供一条弯曲路径,该弯曲路径可延长来自该液体安瓿容器434所供应的GaAs前驱物408的流动路径,以确保所述前驱物402完全混合。可存储在该液体安瓿容器434中的GaAs前驱物的实例包括(NMe2)2GaAstBuH、Me2GaAs(NMe2)2、Me2GaAs(SiMePh2)2、Me2GaAs(SiPh3)2、Et2GaAs(SiMe2Cy)2、Me2GaAs(SiMe2Cy)2、(Me)3GaAs(NMe2)3、(Et)3GaAs(NMe2)3、(Me)4Ga2As2(tBuH)2、(Et)4Ga2As2(tBuH)2或诸如此类的化合物。
在期望在该基板100上形成掺杂的GaAs基层的实施例中,例如欲形成p-型掺杂的GaAs基层或n-型掺杂的GaAs基层,可在该液体安瓿容器334中的该GaAs前驱物内拌入、添加或混入含掺杂剂的材料而形成含掺杂剂的GaAs前驱物,且可容易地将该含掺杂剂的GaAs前驱物供应至该内部处理区域418用于进行处理。如上述,可加入该GaAs前驱物中的合适p-型掺杂剂材料包括含锌材料(例如金属锌掺杂剂、二甲基锌(DMZ)、二乙基锌(DEZ)或诸如此类者)、含镁材料(例如金属镁掺杂剂、环戊二烯基镁或诸如此类者)以及含碳材料(例如四氯化碳(CCl4)、四溴化碳(CBr4)或诸如此类者)。可加入该GaAs前驱物中的合适n-型掺杂剂材料包括含硫材料(例如硫化氢(H2S)、硫磺)、含硅材料(例如甲硅烷(SiH4)、二硅烷(Si2H6))以及含硒材料(例如硒化氢(H2Se)、硒或诸如此类者)。在一个实施例中,用于加入该GaAs前驱物中的该p-型掺杂剂材料是DMZ或DEZ,且用于加入该GaAs前驱物中的n-型掺杂剂材料是二硅烷(Si2H6)。
气体控制板410耦接至该液体安瓿容器432以经由输送通路412供应载气至该液体安瓿容器434。该气体控制板410将载气引入该液体安瓿容器434以注入并推动置于该液体安瓿容器434中的该GaAs前驱物402经由该气体输送通路436使该GaAs前驱物402进入该混合腔室416且最终进入该内部处理区域418。可由该气体控制板410供应的气体实例包括含氮气体,例如特别是氮气(N2)、氧化亚氮(N2O)及一氧化氮(NO),或含氧气体,例如氧气(O2)或臭氧(O3)。诸如氩(Ar)或氦(He)的惰性气体也可用于携带该GaAs前驱物402进入该内部处理区域418。在在此所述的一个示例性实施例中,用以注入和推动该GaAs前驱物408进入该内部处理区域418中的载气是氮气(N2)。
利用增湿器404加热且蒸发置于该液体安瓿容器434中的含有或不含期望掺杂剂的溶液型GaAs前驱物402。该增湿器404可具有压电装置406,该压电装置406可提供超声波能量及/或热能给置于该增湿器404内的该溶液型GaAs前驱物402,从而帮助加热及蒸发GaAs前驱物402成为气相或微小液滴状,以利用该载气如箭头414所示般将该气相或微小液滴状的GaAs前驱物402注入该内部处理区域418。可在该液体安瓿容器434与该增湿器之间设置某些液体408(例如水或其它合适的液体),以使该溶液型GaAs前驱物402保持在期望的温度范围内。在一个实施例中,该增湿器404可在约100摄氏度至约250摄氏度之间的温度下蒸发该GaAs前驱物。
图5图示用以形成溶液型GaAs基层的处理顺序500的另一个实施例的流程图,该处理顺序500可形成本征型GaAs层106、204,且所述本征型GaAs层106、204可并入太阳能电池装置中,在该实施例中,该p-型层104、202配置以成为图1和图2中所示的太阳能电池装置150、200中的该p-型掺杂的GaAs基层104、202,且n-型层108、206配置以成为该太阳能电池装置150、200中的该n-型掺杂的GaAs基层108、206。应注意,由于可适当添加或删除一个或多个步骤及/或将一个或多个步骤重新排序而不偏离在此描述的本发明的基本范围,因此图5图示的步骤数目与步骤顺序非意欲用以限制在此描述的本发明的范围。
该处理顺序500始于步骤502以提供基板100,该基板100配置为在该基板上形成如图1和图2所示的太阳能电池装置。在一个实施例中,该基板100可为透明基板、塑料基板、含硅基板(例如单晶硅基板、多晶体硅基板)、玻璃基板、石英基板或其它合适材料。类似形成在该太阳能电池装置150中的所述膜层,该基板100可具有形成在该基板上的第一TCO层102。接着在该基板上执行该处理顺序500中的下个步骤即步骤504,以视需要而形成p-型掺杂的GaAs层、本征型GaAs层或n-型掺杂的GaAs层。请注意,该基板100上可形成有不同材料层,以帮助在该基板100上形成该GaAs层。
在步骤504,可在GaAs前驱物中混合、拌入、添加期望的掺杂剂,且供应该具有期望掺杂剂的GaAs前驱物至处理腔室,例如图4图示的处理腔室400。该GaAs前驱物可为如上述的被预先工程处理且添加有期望掺杂剂(例如p-型掺杂剂或n-型掺杂剂)的溶液型GaAs前驱物以作为源前驱物,以便于在该基板100上沉积p-型掺杂的GaAs基层或n-型掺杂的GaAs基层。在该实施例中,其中期望形成本征型GaAs层,且不必将掺杂剂加入该GaAs前驱物中。
该被预先工程处理的溶液型砷化镓(GaAs)前驱物包含处于溶液中由镓络合物与砷络合物组成的混合物,而在该溶液中形成镓-砷络合物。在一个实施例中,在该被预先工程处理的溶液型砷化镓(GaAs)前驱物中所形成的该镓-砷络合物通常含有砷化镓二聚体(-GaAs-)、砷化镓四聚体(-Ga2As2-)或砷化镓六聚体(-Ga3As3-)结构。一般相信砷化镓二聚体(-GaAs-)、砷化镓四聚体(-Ga2As2-)或砷化镓六聚体(-Ga3As3-)结构是相对稳定的络合物,使得所述络合物可置于或存储于液态溶液中。通过使用此种相对稳定的溶液型GaAs前驱物,可高度均匀一致地将该GaAs溶液分配至该基板以产生预期的良好薄膜质量,从而提供具有期望薄膜性质和高薄膜性质的可靠且可再现的GaAs层。
砷化镓二聚体、砷化镓四聚体或砷化镓六聚体上可连接有不同的官能团,以用于在该被预先工程处理的溶液中形成稳定络合物形式的GaAs源前驱物。该GaAs络合物可具有化学式Rx(GaAs)yR′z,其中x、y及z是在1至15之间的整数,R及R′可能是相同或不相同的官能团或诸如此类的基团。可连接至所述砷化镓二聚体、砷化镓四聚体或砷化镓六聚体中的镓(Ga)元素和砷(As)元素上的官能团可包括烷基(例如甲基(CH3-)、乙基(C2H5-)、丙基(C3H7-)、丁基(C4H9-)、戊基(C5H11-)且依此类推、异丙基和其它类似异构物)、芳基(例如苄基(benzal)、苯乙烯、甲苯、二甲苯、吡啶、乙苯、苯乙酮、苯甲酸甲酯、乙酸苯酯、苯酚(phenol)、甲酚(cresol)、呋喃及诸如此类的化合物)、脂环族基(例如环丙烷、环丁烷、环戊烷、环戊二烯、甲苯及诸如此类的化合物)、氨基(例如NR2(R为烷基))、-SiR3、-O-R、-S-R、-PR3、-POR3、卤素、2,3,5,6-四甲基-1-4-苯醌或四甲基-对-苯醌、二齿配位体(bidentate ligands)、速效配位体(expedious ligands)、胺类(amines)溶剂绿(pyranine)、立体位阻配位体及诸如此类者。在一个示例性实施例中,氨基(例如NR2(R为烷基))及立体位阻配位体是被选择作为连接至该GaAs二聚体、GaAs四聚体或GaAs六聚体的所述官能团。符合上述要求的所述GaAs前驱物的适当实例包括(NMe2)2Ga2As2(tBuH)2、Me2GaAs(NMe2)2、Me2GaAs(SiMePh2)2、Me2GaAs(SiPh3)2、Et2GaAs(SiMe2Cy)2、Me2GaAs(SiMe2Cy)2、(Me)3GaAs(NMe2)3、(Et)3GaAs(NMe2)3、(Me)4Ga2As2(tBuH)2、(Et)4Ga2As2(tBuH)2、Ga:As为1:3化学计量比的化合物(例如GaAs3 tBu6)或诸如此类的化合物。在一个实施例中,选择用于形成该p-型掺杂的GaAs层、本征型GaAs层或n-型掺杂的GaAs层的GaAs前驱物是(NMe2)2GaAstBuH。可通过在己烷或甲苯溶剂或其它适当的有机或无机溶剂中混合酰氨基镓(Ga(NMe2))3与过量的叔丁基砷烷(tBuAsH2)且搅拌过夜,例如搅拌超过16小时,可合成出(NMe2)2GaAstBuH前驱物。该工艺温度可控制在约-40摄氏度至约-90摄氏度之间。经该混合工艺后,获得(NMe2)2GaAstBuH,且可将(NMe2)2GaAstBuH存储在二氯甲烷(CH2Cl2)溶剂或甲苯溶剂中。
上述合适的p-型掺杂剂和n-型掺杂剂可加入、混合或拌入该GaAs前驱物中以形成掺杂的GaAs溶液型前驱物,以形成p-型或n-型掺杂的GaAs层。可加入该GaAs前驱物中的p-型掺杂剂的合适实例包括金属锌掺杂剂、二甲基锌(DMZ)、二乙基锌(DEZ)、金属镁掺杂剂、环戊二烯基镁、四氯化碳(CCl4)和四溴化碳(CBr4)或诸如此类者。n-型掺杂剂的合适实例包括硫化氢(H2S)、硫磺、甲硅烷(SiH4)、二硅烷(Si2H6)、硒化氢(H2Se)、硒(Se)或诸如此类者。
在步骤506,在供应该含有或不含掺杂剂的GaAs前驱物至该处理腔室内之后,可在该基板表面上形成掺杂/未掺杂的GaAs层。在一个实施例中,供应该含GaAs的溶液型前驱物至CVD腔室,例如图4图示的AACVD腔室400,以执行气溶胶辅助化学气相沉积(AACVD)工艺。如上述,掺杂剂可为颗粒、粉末、凝胶、液体、溶液或其它适当形式,且可将掺杂剂混合至该溶液型的被预先工程处理的GaAs前驱物中。选择用以形成该掺杂的GaAs层的不同掺杂剂可提供不同的薄膜导电性和迁移率,从而提高该装置的电性效能。在一个实施例中,可掺杂至该GaAs层中的所述掺杂剂包括铝(Al)、锌(Zn)、镁(Mg)、铟(In)、磷(P)、硅(Si)、硒(Se)、硫(S)、碳(C)、氮(N)及诸如此类者。
在一个实施例中,该掺杂的GaAs层中的掺杂剂浓度可控制在约1×1016原子/立方厘米至约1×1020原子/立方厘米之间。例如,在p-型掺杂的GaAs层中,该p-型掺杂剂可掺杂入该GaAs层中而具有在约1×1017原子/立方厘米至约1×1019原子/立方厘米之间的掺杂剂浓度。在另一个实例中,在n-型掺杂的GaAs层中,该n-型掺杂剂可掺杂入该GaAs层中而具有在约1×1018原子/立方厘米至约1×1020原子/立方厘米之间的掺杂剂浓度。
在步骤508,在该基板100上形成该掺杂/未掺杂的GaAs层后,执行退火工艺以对所沉积的GaAs层进行热处理。请注意,视需要也可于所沉积的GaAs层上执行不同类型的后续处理工艺,例如淬火(quenching)、烘烤、激光处理或诸如此类的处理。用于形成该GaAs层的前驱物含有除镓(Ga)和砷(As)以外的元素,例如碳、氮、氧化物或其它杂质且所述元素或其它杂质可能进入所沉积的GaAs薄膜中。在该沉积层上执行的热退火工艺及/或后续处理工艺可帮助驱除刚沉积的GaAs层中所含的杂质。该热处理工艺也可帮助修复该刚沉积的薄膜中可能在该沉积工艺期间形成的缺陷。
在一个实施例中,可通过任何适当的退火工具执行该退火工艺,该退火工具例如是烤炉、快速热处理(RTP)腔室、尖峰退火(spike anneal)腔室或激光退火腔室及诸如此类工具。可在约400摄氏度至约600摄氏度之间的温度下执行该退火工艺,以帮助该基板100上所形成的GaAs层致密化及/或结晶化。以上将参照图6进一步描述热退火腔室(例如RTP腔室)的实例
图6图示快速热处理腔室600的一个实施例的简化截面透视图,该快速热处理腔室600可用于退火基板,例如以上参照图1至图5所述的基板100。该处理腔室600包括腔室主体650,该腔室主体650具有多个腔室壁630、底壁632及顶壁634以限定内部空间628。所述腔室壁630一般包括至少一个基板接收端口(图中未图示)以便于送入及取出该基板100。
辐射热组件624安装于该腔室主体650的顶壁634处。边缘环610设置成环绕该基板100的周围,且该辐射热组件624用以加热由边缘环610而悬空设置的该基板100。该辐射热组件624包括位于水夹套(water jacket)组件604内的多个灯管602。每个灯管602包括反射体及钨卤素灯组件。所述灯管602嵌套成紧密蜂巢管状的结构配置。由多个灯管602组成的此种密排六方结构配置可提供辐射能量,例如具有波长在约400纳米至约4000纳米的高功率密度的红外线(IR)辐射及/或较长波长的紫外线(UV)辐射。在一个实施例中,该辐射热组件624提供辐射能量以对该基板进行热处理,例如使设置于该基板100上的硅层退火。在1996年1月23日授予给Gronet等人的美国专利第5,487,127号中描述一种经调适而可受益于本发明的辐射热组件624,且援引该专利申请和专利的全部内容作为参考。
利用可旋转式石英圆筒612使边缘环610与该不锈钢基底618隔开,且所述边缘环610位于该不锈钢基底618上方,所述边缘环610用以支撑基板100,所述石英圆筒612安装在不锈钢基底618上。该边缘环610可由具有小热膨胀系数的硬材料(例如碳化硅)制成,以避免该边缘环610在热处理期间过度膨胀和收缩。该石英圆筒612在基板处理期间以在约50rpm至约300rpm之间的转速旋转,以通过使该腔室600内和该基板100上的热不对称性的影响减至最小,而使基板温度的均匀一致性达到最大。在一个实施例中,可用硅涂覆该圆筒612,以使期望波长无法穿透该圆筒。该不锈钢基底618具有循环管路646以允许冷却剂(例如水)在该循环管路646内循环。在处理后,该冷却剂的循环作用可有效冷却该腔室温度。
反射板614设置在该基板100下方且安装在该不锈钢基底618上方。通过限定在该反射板614中的多个开口642使多个温度探针644组成的阵列嵌入在该反射板614内。导管636从该不锈钢基底618的底侧延伸至该反射板614中的所述开口642,所述温度探针644经由该导管636而连接至高温计616。所述温度探针644与所述高温计616用以获得该基板100邻近各个探针644的区域处的温度度量指示值,而可确定该基板的温度梯度。
该基板100的底侧620及该反射板614的上侧538之间限定出反射腔640。该反射腔640增强该基板100的有效发射率,从而提高该温度测量的精确性。控制器618可接收来自所述高温计616的测量值且输出控制信号至该辐射热组件624以用于实时调整该处理腔室600内产生的辐射,从而使该基板温度保持在期望处理范围内。
该反射板614的上侧638是高反射性,且可反射落在目标波长范围内的热幅射,并吸收除了该目标波长范围以外的热幅射。可利用一种或多种涂层或层涂覆位于该基底618上的反射板614,以提供选择性的反射性。例如,可使用具有不同反射性和吸收性的多个涂层的不同组合而使该反射板614能够将期望波长的热辐射反射回该基板100并且吸收除了该期望波长以外的热幅射(或对于除了该期望波长以外的热幅射具有较低的反射性)。在一个实施例中,该反射板614反射在约700纳米至约1000纳米之间的热波长,且吸收低于700纳米和波长高于1000纳米的热波长。在2005年1月4日授予给Adams等人的美国专利第6,839,507号中描述一种经调适而可受益于本发明的反射板614,且且援引该专利申请和专利的全部内容作为参考。
该反射板614会吸收未被反射回基板100的热能量。利用循环流经基底618的冷却剂可有效且快速地去除被吸收的热能量,所述基底618设置在该反射板614下方。此外,流经该反射板614内的多个孔(图中未图示)提供的气体可用以改善该反射板614以及位于该反射板614上方的基板100的冷却速率。由该反射板614提供该快速冷却速率可改善对该基板100的温度控制,从而有效提供期望的温度处理轮廓分布。在一个实施例中,该反射板614可提供大于约每秒200摄氏度的基板冷却速率。在另一个实施例中,该反射板614可提供约每秒220摄氏度的基板冷却速率。
图7是根据本发明一个实施例的光吸收层702的截面图,该光吸收层702包括多个纳米碳管(CNTs)704且利用GaAs材料706包围所述纳米碳管704。请注意,图7图示形成有多个纳米碳管(CNTs)704的光吸收层702的一个可行结构配置,且该GaAs材料706包围着所述纳米碳管704。在某些其它配置中,在所述纳米碳管(CNTs)704上方设置该GaAs材料706之前,可先在该基板与该光吸收层702之间或该基板100与所述纳米碳管(CNTs)704之间形成多个附加层。以下将参照图8和图9讨论使用涂覆GaAs材料706的纳米碳管(CNTs)704的太阳能装置实例。
继续参照图7,在一个实施例中,在该基板100的表面708上形成该光吸收层702。该光吸收层702用以辅助太阳能电池装置中的捕捉光线的过程以及电流生成过程。一般相信设置在该光吸收层702中的所述纳米碳管(CNTs)704可作为改善空穴及/或电子收集作用的有效路径且降低一般可能发生在传统光吸收层中的电荷载流子复合作用的速率。所述纳米碳管(CNTs)704具有期望的电性质,所述期望电性质可改善所形成的太阳能电池装置中的电荷产生作用。在一个实施例中,在该基板的表面上形成所述纳米碳管(CNTs)704。随后,使该溶液型GaAs层706沉积在所述纳米碳管(CNTs)704上,而包围住所述纳米碳管(CNTs)704。请注意,在该纳米碳管(CNTs)704上方设置该GaAs层306之前,也可在所述纳米碳管(CNTs)704上方沉积多个附加层。
在一个实施例中,该光吸收层702形成为该基板100的表面上的连续薄膜。该含GaAs的光吸收层702提供从紫外线(UV)波长跨至近红外线(IR)波长的广光谱范围的高吸光系数。由于该层702中并入纳米碳管(CNTs),因此所形成的光吸收层702在该连续薄膜702各处也将测得高导电性。再者,由于所形成的吸收层702的高吸光系数,因此可减少该吸收层的整体厚度,减少厚度可提供多种提高的太阳能电池特性,例如电池能量转化效率、开路电压、填充因子及归一化短路电流。
在一个实施例中,所述纳米碳管(CNTs)704是纳米级圆筒,且所述纳米级圆筒具有石墨烯所形成的筒壁,即单原子厚度的石墨薄片所形成的筒壁。该纳米碳管704可为单层壁面(由单片石墨烯薄片构成的筒壁,简写为SWNTs)或多层筒壁(由多片石墨烯薄片构成的筒壁,简写为MWNTs)。在一个实施例中,在形成所述纳米碳管(CNTs)704之前,可先在该基板100上沉积由金属颗粒催化剂712组成的薄层710。该金属颗粒催化剂712的薄层710可用于促进该基板100上的碳原子的成核作用,从而促进后续在该基板100上的所述纳米碳管(CNTs)704的沉积作用。在一个配置中,使用烃类前驱物气体在该金属颗粒催化剂712上选择性地形成所述纳米碳管(CNTs)704,所述烃类前驱物气体例如是乙烯、丙烯、乙炔、苯、甲苯、乙烷、甲烷、丁烷、丙烷、己烷、甲醇、乙醇、丙醇、异丙醇、一氧化碳、丙酮、含氧的烃类化合物(oxygenatedhydrocarbons)、低分子量烃类化合物、高分子量烃类化合物或上述化合物的组合。合适的金属颗粒包括铁、镍、钴、铜、钼及上述金属的合金或诸如此类者。该薄层710可为选自铁(Fe)、铜(Cu)、铝(Al)、钴(Co)、钼(Mo)、钽(Ta)、钨(W)、银(Ag)、镍(Ni)、三氧化二铝(Al2O3)或诸如此类者中的金属材料。
在一个实施例中,各个纳米碳管(CNTs)彼此之间规律地隔开而使所述纳米碳管(CNTs)704垂直排列在该基板100上。垂直排列所述纳米碳管(CNTs)704可辅助捕捉该光吸收层702内的光线。所述纳米碳管(CNTs)704的长度可为约100纳米至约2.0微米且具有范围在约0.5纳米至约1.5纳米的直径。在使用该GaAs材料706包围所述纳米碳管(CNTs)704的配置中,可使用与以上参照图3和图5所述的工艺相似的工艺在所述纳米碳管(CNTs)704上形成该GaAs材料706。在一个实施例中,所形成的所述纳米碳管(CNTs)704距离该基板的表面708的高度在该光吸收层702的厚度的约5%至约95%之间。
所述纳米碳管(CNTs)704可垂直排列且彼此平行。此种排列方式可通过经由所述纳米碳管(CNTs)704材料的传导而提供可从该光吸收层702抽出载流子(例如空穴)的较短路径。可在该光吸收层702内的电子-空穴对产生效率与从该光吸收层702中抽出空穴的效率之间取折衷(compromise)以取得该光吸收层702中所形成的纳米碳管(CNTs)704的期望密度。在一个实施例中,该基板的该表面上的纳米碳管(CNTs)704的期望平均密度可达每平方米约1011个至1016个。
在一个实施例中,形成在该基板100上的金属薄层710可为在该层上形成有纳米铁颗粒710的铝层。所述纳米铁颗粒的直径将决定后续形成在该纳米铁颗粒上的所述纳米碳管(CNTs)704的直径。可使用合适的技术形成所述纳米颗粒710和该薄层712,所述技术例如是CVD、PVD、ALD、PECVD、HWCVD、任何等离子体工艺或紫外线诱导ALD技术。随后在所述纳米铁颗粒710上形成所述纳米碳管(CNTs)704。一旦所述纳米碳管(CNTs)704生长于该基板100上,接着在所述纳米碳管(CNTs)704上方设置所述GaAs基材料306以形成该光吸收层702。
图8是另一种太阳能电池装置840的截面图,该太阳能电池装置840具有形成于该太阳能电池装置840中的光吸收层802,该光吸收层802的配置大体上类似图1所示的设置在太阳能电池装置150中的光吸收层106。在此种结构配置中,该光吸收层802包括设置在多个纳米碳管(CNTs)704上方的GaAs材料706。在此实施例中,如上述般,可在该基板100上形成第一TCO层102。随后在该第一TCO层102上形成所述纳米碳管(CNTs)704。如以上参照图7所述般,可在该基板100上形成所述选用性的催化剂颗粒712,以帮助在所述催化剂颗粒712上生长所述纳米碳管(CNTs)704。在该基板100上形成所述纳米碳管(CNTs)704后,使用以上参照图3和图5所述的所述工艺在所述纳米碳管(CNTs)704上方形成p-型层104。在一个实施例中,该p-型层104形成覆盖所述纳米碳管(CNTs)704的外表面的共形层。随后,在该p-型层104上方形成该GaAs层706以包围住所述纳米碳管(CNTs)704。在一个实施例中,可利用以上参照图3和图5所述的一或多种工艺在该p-型层104和所述纳米碳管(CNTs)704上形成该溶液型GaAs层706。因此该光吸收层802包括设置在该p-型层104及所述纳米碳管(CNTs)704上的GaAs层706。由于可收集电荷的表面积增加且所述纳米碳管(CNTs)具有高导电性,因此被该GaAs层706和该p-型层104包围住的所述纳米碳管(CNTs)704将可帮助抽出本征型光吸收层802中所生成的空穴和电子。因此该本征型光吸收层802可有助于收集电荷载流子且提高所形成的太阳能电池装置840的整体转化效率。随后如以上参照图1所述般,在该本征型光吸收层802上形成n-型层108,且接着在该n-型层108上形成第二TCO层112及背电极层110。
由于相较于传统的硅基太阳能电池装置而言,该光吸收层802的位向及光散射表面的数目增多且具有较广的吸收波长范围,故相信上述的光吸收层802的结构配置也可有助于留住且吸收入射光。因此,形成于该光吸收层802中的所述导电性纳米碳管(CNTs)704及该GaAs材料706能提高太阳能电池的整体转化效率。
图9图示具有本征型光吸收层902的太阳能电池装置940,该本征型光吸收层902形成在该太阳能电池装置940内。在此实施例中,相较于图8所示的太阳能电池840,所述纳米碳管(CNTs)704最先形成在该基板100上。可选择地,在该基板表面上沉积金属颗粒催化剂712且使用所述金属颗粒催化剂712以帮助在该基板100的表面上生长所述纳米碳管704。随后,在所述纳米碳管(CNTs)704上方形成该第一TCO层102,因此所沉积的第一TCO层102遵循所述纳米碳管(CNTs)704的轮廓。接着,随后在该第一TCO层102上形成该p-型层104。在一个配置中,所沉积的p-型层104共形地遵循该第一TCO层102和所述纳米碳管(CNTs)704的轮廓。随后,在该p-型层104及所述纳米碳管704上方形成该GaAs层706以形成该光吸收层902。在一个实施例中,可使用以上参照图3和图5所述的一种或多种工艺在该基板上形成该溶液型GaAs层706。所述纳米碳管(CNTs)704、p-型层104、第一TCO层102及GaAs层706都帮助抽出该光吸收层902中所生成的空穴和电子,从而有助于收集所产生的电荷且提高所形成的太阳能电池装置的整体转化效率。随后,如以上参照图1所述般,在该光吸收层902上形成n-型硅层108,且接着在该n-型硅层108上形成第二TCO层110及背金属电极112。
请注意,视需要,形成包括该p-型层104、该光吸收层702、802、902及该n-型层108的该p-i-n结的顺序可以反转。例如,也可利用以该GaAs基材料层706填充所述纳米碳管704的结构形成n-i-p结。例如,取代如图8和图9所示在所述纳米碳管704上形成p-型层104的步骤,而改在所述纳米碳管704上形成n-型层108。随后,在该n-型层108和所述纳米碳管704上形成该GaAs基材料层706。在该基板100上形成连续的GaAs基材料层706之后,可如期望地接着在该GaAs基材料层706上形成该p-型层104,以在该基板上形成期望的n-i-p结。应注意,在某些配置中,可能希望使用硅以外的材料形成该p-型及/或n-型层。
虽然上述内容涉及本发明的多个实施例,然而可做出本发明的其它和进一步的实施例而不偏离本发明的基本范围,且本发明的范围由所附权利要求书范围所界定。

Claims (15)

1.一种形成太阳能电池装置的方法,所述方法包括下列步骤:
在基板的表面上方形成第一层,在所述第一层内掺杂有第一种掺杂剂;
在所述第一层上形成砷化镓基层;以及
在所述砷化镓基层上形成第二层,在所述第二层内掺杂有第二种掺杂剂。
2.如权利要求1所述的方法,其中形成所述砷化镓基层的步骤包括下列步骤:
将置于溶剂中的含砷化镓的前驱物提供至处理腔室;以及
在所述处理腔室内蒸发所述含砷化镓的前驱物溶剂,以在所述基板上形成所述砷化镓基层。
3.如权利要求2所述的方法,其中所述含砷化镓的前驱物选自于由(NMe2)2GaAstBuH、Me2GaAs(NMe2)2、Me2GaAs(SiMePh2)2、Me2GaAs(SiPh3)2、Et2GaAs(SiMe2Cy)2及Me2GaAs(SiMe2Cy)2所构成的组中。
4.如权利要求2所述的方法,所述方法进一步包括下列步骤:
使形成在所述基板上的所述砷化镓基层退火。
5.如权利要求1所述的方法,其中所述第一种掺杂剂是p-型掺杂剂,以及所述第二种掺杂剂是n-型掺杂剂。
6.如权利要求1所述的方法,其中所述第一层是含硅层或砷化镓基层,以及所述第二层是含硅层或砷化镓基层。
7.如权利要求6所述的方法,其中所述p-型掺杂剂包含下列掺杂剂的至少一种:金属锌掺杂剂、二甲基锌(DMZ)、二乙基锌(DEZ)、金属镁掺杂剂、环戊二烯基镁、四氯化碳(CCl4)或四溴化碳(CBr4),以及所述n-型掺杂剂包含下列掺杂剂的至少一种:硫化氢(H2S)、硫磺、甲硅烷(SiH4)、二硅烷(Si2H6)、硒化氢(H2Se)、硒或诸如此类者。
8.如权利要求1所述的方法,其中所述第一层是p-型无定形硅层,以及所述第二层是n-型无定形硅层。
9.如权利要求1所述的方法,所述方法进一步包括在所述基板上形成所述第一层之前,先在所述基板的所述表面上方形成多个纳米碳管。
10.如权利要求9所述的方法,所述方法进一步包括下列步骤:
以GaAs层填充所述多个纳米碳管。
11.一种适用于太阳能电池装置中的结构,所述结构包括:
第一层,所述第一层内掺杂有第一种掺杂剂,所述第一层设置在基板上;
砷化镓基层,所述砷化镓基层形成在所述第一层上方;以及
第二层,所述第二层形成在所述砷化镓基层上方。
12.如权利要求11所述的结构,其中所述第一种掺杂剂是p-型掺杂剂,所述p-型掺杂剂包含下列掺杂剂的至少一种:金属锌掺杂剂、二甲基锌(DMZ)、二乙基锌(DEZ)、金属镁掺杂剂、环戊二烯基镁、四氯化碳(CCl4)和四溴化碳(CBr4),以及所述第二种掺杂剂是n-型掺杂剂,所述n-型掺杂剂包含下列掺杂剂的至少一种:硫化氢(H2S)、硫磺、甲硅烷(SiH4)、二硅烷(Si2H6)、硒化氢(H2Se)、硒或诸如此类者。
13.如权利要求11所述的结构,其中所述第一层是p-型含硅层,以及所述第二层是n-型含硅层。
14.如权利要求11所述的结构,其中形成在所述基板上的所述砷化镓基层包含掺杂在所述砷化镓基层中的第三种掺杂剂,并且其中所述第三种掺杂剂是p-型掺杂剂或n-型掺杂剂。
15.如权利要求11所述的结构,其中所述砷化镓基层是由溶液型GaAs前驱物所制成。
CN201180050221.4A 2010-10-01 2011-09-30 具有砷化镓吸收层的高效率太阳能电池装置 Expired - Fee Related CN103189999B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US38894310P 2010-10-01 2010-10-01
US61/388,943 2010-10-01
US201161452801P 2011-03-15 2011-03-15
US61/452,801 2011-03-15
US201161468918P 2011-03-29 2011-03-29
US61/468,918 2011-03-29
PCT/US2011/054301 WO2012044978A2 (en) 2010-10-01 2011-09-30 High efficiency solar cell device with gallium arsenide absorber layer

Publications (2)

Publication Number Publication Date
CN103189999A true CN103189999A (zh) 2013-07-03
CN103189999B CN103189999B (zh) 2015-12-02

Family

ID=45888752

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201180051105.4A Expired - Fee Related CN103189991B (zh) 2010-10-01 2011-09-30 用在薄膜晶体管应用中的砷化镓基材料
CN201180050221.4A Expired - Fee Related CN103189999B (zh) 2010-10-01 2011-09-30 具有砷化镓吸收层的高效率太阳能电池装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201180051105.4A Expired - Fee Related CN103189991B (zh) 2010-10-01 2011-09-30 用在薄膜晶体管应用中的砷化镓基材料

Country Status (6)

Country Link
US (3) US8846437B2 (zh)
JP (2) JP6080167B2 (zh)
KR (2) KR101892115B1 (zh)
CN (2) CN103189991B (zh)
TW (2) TWI594451B (zh)
WO (2) WO2012044980A2 (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110099422A (ko) * 2010-03-02 2011-09-08 삼성전자주식회사 박막 트랜지스터 및 이의 제조 방법
US8936965B2 (en) * 2010-11-26 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9018517B2 (en) 2011-11-07 2015-04-28 International Business Machines Corporation Silicon heterojunction photovoltaic device with wide band gap emitter
TWI442587B (zh) * 2011-11-11 2014-06-21 Hon Hai Prec Ind Co Ltd 外殼面板及使用該外殼面板的電子設備
US20130337636A1 (en) * 2012-06-14 2013-12-19 Thomas Kuech Carbon doping of gallium arsenide via hydride vapor phase epitaxy
WO2014052901A2 (en) * 2012-09-29 2014-04-03 Precursor Energetics, Inc. Processes for photovoltaic absorbers with compositional gradients
CN104798208B (zh) * 2012-10-19 2018-07-10 佐治亚科技研究公司 在碳纳米管的定向阵列上形成的多层涂层
US8853438B2 (en) * 2012-11-05 2014-10-07 Dynaloy, Llc Formulations of solutions and processes for forming a substrate including an arsenic dopant
WO2014124109A1 (en) * 2013-02-07 2014-08-14 First Solar Semiconductor material surface treatment with laser
JP6097147B2 (ja) * 2013-05-16 2017-03-15 日本放送協会 Mimo−ofdm受信装置及び測定装置
FI128093B (en) * 2013-07-02 2019-09-13 Ultratech Inc Formation of heteroepitaxial layers with rapid thermal processing to remove grid dislocations
US9443728B2 (en) * 2013-08-16 2016-09-13 Applied Materials, Inc. Accelerated relaxation of strain-relaxed epitaxial buffers by use of integrated or stand-alone thermal processing
US9136355B2 (en) * 2013-12-03 2015-09-15 Intermolecular, Inc. Methods for forming amorphous silicon thin film transistors
WO2015102830A1 (en) 2013-12-30 2015-07-09 Dow Global Technologies Llc Processes for using flux agents to form polycrystalline group iii-group v compounds from single source organometallic precursors
CN104795295B (zh) 2014-01-20 2017-07-07 清华大学 电子发射源
CN104795292B (zh) 2014-01-20 2017-01-18 清华大学 电子发射装置、其制备方法及显示器
CN104795296B (zh) 2014-01-20 2017-07-07 清华大学 电子发射装置及显示器
CN104795298B (zh) 2014-01-20 2017-02-22 清华大学 电子发射装置及显示器
CN104795294B (zh) 2014-01-20 2017-05-31 清华大学 电子发射装置及电子发射显示器
CN104795297B (zh) 2014-01-20 2017-04-05 清华大学 电子发射装置及电子发射显示器
CN104795300B (zh) 2014-01-20 2017-01-18 清华大学 电子发射源及其制备方法
CN104795291B (zh) 2014-01-20 2017-01-18 清华大学 电子发射装置、其制备方法及显示器
CN104795293B (zh) 2014-01-20 2017-05-10 清华大学 电子发射源
CN104051542B (zh) * 2014-06-23 2016-10-05 上海和辉光电有限公司 有机发光显示装置及其薄膜晶体管
JP6368594B2 (ja) * 2014-09-09 2018-08-01 シャープ株式会社 光電変換素子
CN104681630B (zh) * 2015-03-24 2018-04-03 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、阵列基板和显示面板
CN104934330A (zh) * 2015-05-08 2015-09-23 京东方科技集团股份有限公司 一种薄膜晶体管及其制备方法、阵列基板和显示面板
US9583649B2 (en) 2015-06-22 2017-02-28 International Business Machines Corporation Thin film solar cell backside contact manufacturing process
CN105161523B (zh) * 2015-08-13 2018-09-25 京东方科技集团股份有限公司 一种电极、薄膜晶体管、阵列基板及显示设备
US10096471B2 (en) * 2016-08-04 2018-10-09 Lam Research Corporation Partial net shape and partial near net shape silicon carbide chemical vapor deposition
US20180148588A1 (en) * 2016-11-29 2018-05-31 United Technologies Corporation High temperature inks for electronic and aerospace applications
US10457148B2 (en) 2017-02-24 2019-10-29 Epic Battery Inc. Solar car
WO2018187384A1 (en) 2017-04-03 2018-10-11 Epic Battery Inc. Modular solar battery
JP7391296B2 (ja) * 2017-10-07 2023-12-05 株式会社Flosfia 成膜方法
US10431695B2 (en) 2017-12-20 2019-10-01 Micron Technology, Inc. Transistors comprising at lease one of GaP, GaN, and GaAs
US10825816B2 (en) 2017-12-28 2020-11-03 Micron Technology, Inc. Recessed access devices and DRAM constructions
US10319586B1 (en) 2018-01-02 2019-06-11 Micron Technology, Inc. Methods comprising an atomic layer deposition sequence
US10734527B2 (en) 2018-02-06 2020-08-04 Micron Technology, Inc. Transistors comprising a pair of source/drain regions having a channel there-between
US11127572B2 (en) 2018-08-07 2021-09-21 Silfex, Inc. L-shaped plasma confinement ring for plasma chambers
US11038027B2 (en) 2019-03-06 2021-06-15 Micron Technology, Inc. Integrated assemblies having polycrystalline first semiconductor material adjacent conductively-doped second semiconductor material
US11489082B2 (en) 2019-07-30 2022-11-01 Epic Battery Inc. Durable solar panels
RU2727124C1 (ru) * 2020-02-05 2020-07-20 Общество с ограниченной ответственностью "МеГа Эпитех" Способ получения низколегированного слоя GaAs методом жидкофазной эпитаксии

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923524A (en) * 1985-05-06 1990-05-08 Chronar Corp. Wide ranging photovoltaic laminates comprising particulate semiconductors
US4975299A (en) * 1989-11-02 1990-12-04 Eastman Kodak Company Vapor deposition process for depositing an organo-metallic compound layer on a substrate
US20020050288A1 (en) * 2000-11-01 2002-05-02 Yoshiyuki Suzuki Solar cell and process of manufacturing the same
CN101471394A (zh) * 2007-12-29 2009-07-01 中国科学院上海硅酸盐研究所 铜铟镓硫硒薄膜太阳电池光吸收层的制备方法
US20100012170A1 (en) * 2008-07-20 2010-01-21 Varonides Argyrios C High Efficiency Solar Cell
CN101657906A (zh) * 2007-02-15 2010-02-24 麻省理工学院 具有纹理表面的太阳能电池
US20100096004A1 (en) * 2006-10-25 2010-04-22 Unidym, Inc. Solar cell with nanostructure electrode(s)

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1140032A (en) * 1978-03-07 1983-01-25 Marc M. Faktor Growth of semiconductor compounds
US4594264A (en) * 1984-11-20 1986-06-10 Hughes Aircraft Company Method for forming gallium arsenide from thin solid films of gallium-arsenic complexes
CA1292550C (en) * 1985-09-03 1991-11-26 Masayoshi Umeno Epitaxial gallium arsenide semiconductor wafer and method of producing the same
JPH02181976A (ja) * 1989-01-09 1990-07-16 Daido Steel Co Ltd 太陽電池
US5084128A (en) * 1990-10-23 1992-01-28 E. I. Du Pont De Nemours And Company Low-temperature synthesis of group III-group V semiconductors
JP2719230B2 (ja) * 1990-11-22 1998-02-25 キヤノン株式会社 光起電力素子
JPH1092747A (ja) * 1996-09-13 1998-04-10 Hamamatsu Photonics Kk 非晶質GaAs薄膜の製造方法および非晶質GaAsTFTの製造方法
US5920105A (en) * 1996-09-19 1999-07-06 Fujitsu Limited Compound semiconductor field effect transistor having an amorphous gas gate insulation layer
JP4189610B2 (ja) * 1998-05-08 2008-12-03 ソニー株式会社 光電変換素子およびその製造方法
JP3716755B2 (ja) * 2001-04-05 2005-11-16 株式会社日立製作所 アクティブマトリクス型表示装置
JP3790500B2 (ja) * 2002-07-16 2006-06-28 ユーディナデバイス株式会社 電界効果トランジスタ及びその製造方法
US6839507B2 (en) * 2002-10-07 2005-01-04 Applied Materials, Inc. Black reflector plate
JP2005003730A (ja) * 2003-06-09 2005-01-06 Canon Inc 画像形成装置
JP2005268719A (ja) * 2004-03-22 2005-09-29 Sharp Corp 薄膜太陽電池
US7473943B2 (en) * 2004-10-15 2009-01-06 Nanosys, Inc. Gate configuration for nanowire electronic devices
JP2006287070A (ja) * 2005-04-01 2006-10-19 Seiko Epson Corp 半導体装置の製造方法、および電子機器の製造方法
JP5078246B2 (ja) * 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
GB0522027D0 (en) * 2005-10-28 2005-12-07 Nanoco Technologies Ltd Controlled preparation of nanoparticle materials
WO2007111008A1 (ja) * 2006-03-28 2007-10-04 Sharp Kabushiki Kaisha 半導体素子の転写方法及び半導体装置の製造方法並びに半導体装置
EP1892769A2 (en) * 2006-08-25 2008-02-27 General Electric Company Single conformal junction nanowire photovoltaic devices
TWI312580B (en) * 2006-09-04 2009-07-21 Taiwan Tft Lcd Associatio A thin film transistor, manufacturing method of a active layer thereof and liquid crystal display
JP2009164161A (ja) * 2007-12-28 2009-07-23 Panasonic Corp 電界効果トランジスタ
KR20090108853A (ko) * 2008-04-14 2009-10-19 삼성전자주식회사 무기물 패턴 형성용 조성물 및 그를 이용한 무기물패턴형성 방법
KR101540341B1 (ko) * 2008-10-17 2015-07-30 삼성전자주식회사 패널 구조체, 패널 구조체를 포함하는 표시장치 및 이들의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923524A (en) * 1985-05-06 1990-05-08 Chronar Corp. Wide ranging photovoltaic laminates comprising particulate semiconductors
US4975299A (en) * 1989-11-02 1990-12-04 Eastman Kodak Company Vapor deposition process for depositing an organo-metallic compound layer on a substrate
US20020050288A1 (en) * 2000-11-01 2002-05-02 Yoshiyuki Suzuki Solar cell and process of manufacturing the same
US20100096004A1 (en) * 2006-10-25 2010-04-22 Unidym, Inc. Solar cell with nanostructure electrode(s)
CN101657906A (zh) * 2007-02-15 2010-02-24 麻省理工学院 具有纹理表面的太阳能电池
CN101471394A (zh) * 2007-12-29 2009-07-01 中国科学院上海硅酸盐研究所 铜铟镓硫硒薄膜太阳电池光吸收层的制备方法
US20100012170A1 (en) * 2008-07-20 2010-01-21 Varonides Argyrios C High Efficiency Solar Cell

Also Published As

Publication number Publication date
US20160322509A1 (en) 2016-11-03
US8846437B2 (en) 2014-09-30
JP6080167B2 (ja) 2017-02-15
KR101892115B1 (ko) 2018-08-27
TW201220501A (en) 2012-05-16
JP2014500610A (ja) 2014-01-09
KR101875159B1 (ko) 2018-07-06
WO2012044980A2 (en) 2012-04-05
US20120080753A1 (en) 2012-04-05
US20120080092A1 (en) 2012-04-05
WO2012044978A3 (en) 2012-06-21
WO2012044978A2 (en) 2012-04-05
CN103189999B (zh) 2015-12-02
TW201222863A (en) 2012-06-01
TWI594451B (zh) 2017-08-01
US9780223B2 (en) 2017-10-03
JP5881714B2 (ja) 2016-03-09
JP2013543659A (ja) 2013-12-05
CN103189991B (zh) 2016-02-17
KR20130091767A (ko) 2013-08-19
CN103189991A (zh) 2013-07-03
TWI565063B (zh) 2017-01-01
KR20130121103A (ko) 2013-11-05
WO2012044980A3 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
CN103189999B (zh) 具有砷化镓吸收层的高效率太阳能电池装置
Könenkamp et al. Thin film semiconductor deposition on free-standing ZnO columns
US10640884B2 (en) Black phosphorus crystal having high photoelectric response rate, two-dimensional black phosphorus PN junction, and preparation method and use thereof
US4910153A (en) Deposition feedstock and dopant materials useful in the fabrication of hydrogenated amorphous silicon alloys for photovoltaic devices and other semiconductor devices
JP2017526821A (ja) 低圧化学気相成長に基づくペロブスカイト膜、その製造システム、製造方法、ソーラーセルおよびled。
EP0233613B1 (en) Deposition feedstock and dopant materials useful in the fabrication of hydrogenated amorphous silicon alloys for photovoltaic devices and other semiconductor devices
US4690830A (en) Activation by dehydrogenation or dehalogenation of deposition feedstock and dopant materials useful in the fabrication of hydrogenated amorphous silicon alloys for photovoltaic devices and other semiconductor devices
CN102447013A (zh) 薄膜太阳能电池制作工艺、薄膜太阳能电池前体层堆叠的制造方法和太阳能电池前体层堆叠
CN102668104A (zh) 用于薄膜太阳能应用的波长选择反射层的粗糙度控制
CN103668453B (zh) 一种二维硅烯薄膜及其制备方法
Chang et al. Chemical vapor deposition of transparent, p-type cuprous bromide thin films
JPH036652B2 (zh)
Hermann et al. MOCVD growth and properties of Zn3P2 and Cd3P2 films for thermal photovoltaic applications
KR102602059B1 (ko) 유기금속화학기상증착 방법을 이용한 Bi2O2Se 박막 제조방법 및 이를 위한 전구체
US7399654B2 (en) Method for fabricating optical sensitive layer of solar cell having silicon quantum dots
Hsueh et al. Si nanowire-based photovoltaic devices prepared at various temperatures
JPH09312258A (ja) 多結晶シリコン薄膜積層体、その製造方法、シリコン薄膜太陽電池
Qi et al. Influence of substrate on the growth of microcrystalline silicon thin films deposited by plasma enhanced chemical vapor deposition
Wang et al. Study on Preparation and Properties of InN films on self-supporting diamond substrates under different nitrogen flows
Oluwabi et al. Combinative solution processing and Li doping approach to develop p-type NiO thin films with enchanced electrical properties
JPH04192373A (ja) 光起電力素子
Varshney et al. A review of quantum dot solar cells fabrication via chemical vapor deposition method
CN106098812B (zh) 一种基于氧掺杂碲化锌纳米线阵列的太阳电池及制备方法
JPS6318856B2 (zh)
JPH0653532A (ja) 光電変換素子

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151202

Termination date: 20190930