CN1031115A - 制备自撑体的方法及其制造的产品 - Google Patents

制备自撑体的方法及其制造的产品 Download PDF

Info

Publication number
CN1031115A
CN1031115A CN88104357A CN88104357A CN1031115A CN 1031115 A CN1031115 A CN 1031115A CN 88104357 A CN88104357 A CN 88104357A CN 88104357 A CN88104357 A CN 88104357A CN 1031115 A CN1031115 A CN 1031115A
Authority
CN
China
Prior art keywords
mother metal
boride
metal
boron
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN88104357A
Other languages
English (en)
Inventor
戴奈·R·怀特
迈克尔·K·阿哈简伊恩
丹尼斯·T·克拉尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanxide Technology Co LP
Original Assignee
Lanxide Technology Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxide Technology Co LP filed Critical Lanxide Technology Co LP
Publication of CN1031115A publication Critical patent/CN1031115A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/74Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/5156Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on rare earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • C04B35/652Directional oxidation or solidification, e.g. Lanxide process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • General Factory Administration (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Catalysts (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Load-Engaging Elements For Cranes (AREA)
  • Installation Of Indoor Wiring (AREA)
  • Supports For Pipes And Cables (AREA)
  • Glass Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

通过向碳化硼中反应性渗透一种母材的方法制 造自撑体材,一般得到一种含有含硼化合物和金属的 复合材料。待被渗透的物质可含有一种或多种与碳 化硼掺混的惰性填料以通过反应性渗透制造出复合 材料,所述复合材料包括嵌入填料中的一种金属基体 和含硼化合物。可变化或控制反应物的相对量和工 艺条件以得到一种含有不同体积百分率的陶瓷、金属 和/或孔隙的体材。

Description

概括地说,本发明涉及一种制备自撑体的新方法,以及用其制成的新产品。更确切地说,本发明涉及一种制造含一种或多种含硼化合物(如硼化物或一种硼化物和碳化物)的自撑体的方法,该方法是使一种熔融母材向含碳化硼的床层或团块(选含一种或多种惰性填料)反应性渗透,从而形成体材。
在近几年里,人们增加了对使用陶瓷代替历来是金属作为结构件应用的兴趣。促使人们感兴趣的因素一直是由于陶瓷某些优越的特性,例如与金属比较时其耐腐蚀、硬度,耐磨性、弹性模量和折射率等。
然而,为此而使用陶瓷的一个主要局限性在于生产所需陶瓷结构的可行性和成本。例如,用热压、反应烧结和反应热压法来生产陶瓷硼化物体是一种常用方法。就热压法来说,所需硼化物的细粉颗粒是在高温高压下进行压实。反应热压涉及例如在高温高压下,将硼或一种金属硼化物与一种适当的金属粉末加压成型。美国专利3,937,619(Clougherty)描述了用热压制粉末金属与粉末二硼化物的方法制备一硼化物体,美国专利4,512,946(Brun)描述了用热压制陶瓷粉末与硼和一种金属氢化物的方法形成一种硼化物复合材料。
然而,这些热压法需要特殊加工手段和昂贵的特殊设备。所生产的陶瓷件的形状和尺寸受到限制,通常这要造成产率低和加工成本高。
使用陶瓷作为结构应用的第二个主要局限性是缺乏韧性(即损坏极限或抗裂性)。这一性质往往突然导致应用中陶瓷的损坏。(即使是中等抗拉强度的陶瓷)。整块陶瓷硼化物体缺伐韧性板为常见。
已经试图解决这个问题,一种方法是陶瓷和金属结合使用,例如作为金属陶瓷或金属基体复合材料。这种方法的目的是要获得陶瓷(如硬度和/或刚度)和金属(如韧性)最佳综合特性。美国专利4,585,618(Fresnel等人)揭示了一种生产金属陶瓷的方法,该方法是使一种颗粒反应物的松堆反应混合物(其反应生成一种经烧结的自撑陶瓷体)在与熔融的金属接触时发生反应。熔融金属至少渗透到部分生成的陶瓷体。这种典型的反应混合物是一种含有钛、铝和氧化硼(全部是颗粒状)的混合物,该混合物在与熔融铝池接触时被加热。反应混合物反应生成二硼化钛和氧化铝作为被熔融铝渗透的陶瓷相。因此,这种方法原理上利用反应混合物中的铝作为还原剂。另外,外部熔融铝池并未作为使氧化硼形成反应的原始金属的来源,而是用来作为一种填充所得到的陶瓷结构中的孔隙的手段。这种方法所产生的陶瓷是可湿性的,并且耐熔铝。在铝生产池里,这些陶瓷作为接触生产的熔融铝部件特别有用,但最好不与熔融冰晶石接触。此外在这种方法中没有使用碳化硼。
欧洲专利申请0,113,249,(Reeve,等人)揭示了一种制造金属陶瓷体的方法即首先在熔融金属相中原地形成分散颗粒陶瓷相,然后在这种熔融态下保持一段时间,充分实现交互生长陶瓷网的形成。该专利举例说明了在一种熔融金属中(如铝)使一种钛盐与一种硼盐反应的方法形成陶瓷相。陶瓷硼化物原地发展,并成为交互生长网。但没有发生渗透,进而在熔融金属中氧化硼作为沉积生成。该申请中两个实施例都清楚地表明未生成TiAl3,AlB2或AlB12晶粒,却有TiB2生成,这表明铝并不是硼化物的金属前体。此外,也没有建议使用碳化硼作为工艺中的产物前体材料。
美国专利3,864,154(Ga22a等人)揭示了一种用渗透法生产的陶瓷-金属体系。在真空下,用熔融铝浸渍AlB12压实体,从而得到这些组分的体系。所制备的其它材料包括SiB6-Al、B-Al;B4C-Al/Si,及AlB12-B-Al。该专利没提出究竟如何反应,没提出用反应性渗透金属来制造复合材料,也没提到对包理惰性填充物,或作为复合材料一部分的任何反应产物。
美国专利4,605,440(Halverson等人)揭示,为了获得B4Cl-Al复合材料,既可在真空下,也可在氩气氛下烧结B4C-Al压坯(该压坯是经冷压B4C和铝粉的均匀混合体而形成的)。没有发生熔融金属由沉淀池或熔融产物母体金属体向预型坯渗透。此外,也没提到反应产物包埋一种惰性填充物以获得利用填充物优良特性的复合材料。
在某些情况下,当这些生产金属陶瓷材料的原理,已能生产出所要求的产品时,广泛地需要更有效和经济的方法来制备含硼化物的材料。
根据本发明,在有碳化硼存在时,利用母材渗透和反应方法(即反应性渗透)来生产自撑陶瓷体。用熔融母材渗透碳化硼床或团块,该床可全由碳化硼构成,得到一种包括一种或多种母材含硼化合物的自撑体,该化合物包括母材硼化物或母材碳硼化物,或包括这两种,而且通常还可包括母材碳化物。另一方面,被渗透的团块可含有一种或多种掺有碳化硼的填料以通过反应性渗透来生产复合材料,该复合材料包括一种或多种含硼化合物的基体,也可以还包括母材碳化物。在两个实施方案中,最终产品可包括金属作为一种或多种母材金属组份。可改变或控制反应物浓度和工艺条件以生产出含不同体积百分比的陶瓷化合物,金属和/或孔隙的体材。
概括地说,在本发明的方法中,含有碳化硼的团块置于邻近或接触熔融金属体或金属合金体,后者在特定的温度内、在基本上惰性环境中熔化。该熔融金属渗透团块并与碳化硼反应形成一种或多种反应产物。在工艺温度条件下,通过熔融母材可还原碳化硼,至少部分还原,形成母材含硼化物(如母材硼化物和/或硼化合物),通常也生成母材碳化物,并且在一定的情况下也生成母材碳硼化物。至少有一部分反应产物与金属保持接触,熔融金属通过虹吸或毛细作用被吸向或输向未反应的碳化硼。这些被输送的金属形成了进一步的母材硼化物、碳化物,和/或碳硼化物,且陶瓷体不断形成或增长直至母材或碳化硼耗尽,或直至反应温度变化到反应温度以外的温度。生成的结构包括一种或多种母材硼化物、母材硼化合物、母材碳化物,金属(这里所使用的金属包括合金和金属化合物)或空隙或以上的混合体,并且这几种可在一维或多维相联或不相联。用改变一种或多种条件(如碳化硼体的初始密度,碳化硼与母材的相对量、合金化母材、用填料稀释碳化硼、温度和时间)可控制含硼化合物(即硼化物和硼化合物)含碳化合物的最终体积分数比,金属相和内联度。一般来说碳化硼团块至少要有些疏松以允许通过反应产物虹吸母材。虹吸的发生很明显或者是因为反应体积的任何变化不能全部封闭孔隙,穿过这些孔隙可不断虹吸,或是因为反应产物保持对溶融金属的可渗透性,而可渗透性是由于诸如表面能方面的因素,后者至少提供了一些对母材可渗透的晶界。
在另一个实施方案中,通过向掺有一种或多种惰性填料的碳化硼床输送熔融母材来生产复合材料。在这一实施方案中,碳化硼掺到适宜的填料中,然后置于与熔融母材邻近或接触的位置。整体结构体(Setup)可支撑在单独的床上或床中,在工艺条件下,该床基本上与熔融金属为非湿、非反应的。熔融母材渗透碳化硼填料混合物,并与碳化硼反应形成一种或多种含硼化合物。生成的自撑陶瓷一金属复合材料通常为致密型显微结构,包括一种包埋在由含硼化合物组成的基体里的一种填料,也可包括一种碳化物和金属。仅需要少量碳化硼来促进反应性渗透工艺进行。因此,生成的基体在组成上可从主要由金属成分构成,由此显示出母材的某些特性的情况,变化到工艺中采用了高浓度碳化硼,由此生产出大量的含硼化合物相,后者与任何含碳化合物结合,控制了基体特性。填料可起到增强复合材料性能,降低复合材料原材料成本,或减缓含硼化合物和/或含碳化合物形成反应的反应动力,以及与其相关的放热率的作用。
在另一个实施方案中,待渗透的材料成型为与所需最终复合材料几何形状一致的预型坯。接着,通过熔融母材的予型坯反应性渗透得到净尺寸或接近净尺寸的复合材料,从而最大限度地降低了精加工和抛光的费用。
在本说明书和所附权利要求书中所使用的术语定义如下:
“母材”指的是金属(如锆),这种金属是多晶氧化反应产物,即母材硼化物或其它母材硼化合物的前体,包括纯的或比较纯的金属,市售的含杂质和/或合金成份的金属,和一种其中金属前体是主要成份的合金;当所特定的金属指的是母材(如锆)时,除非在文中另有标明,所称的金属应认为是所定义的金属。
“母材硼化合物”和母材硼化合物,意指碳化硼与母材之间反应而生成的含硼反应产物,并且包括硼与母材的二元化合物以及三元或多元的化合物。
“母材碳化物”意指碳化物和母材反应生成的含碳的反应产物。
图1是正剖面示意图,该图示出了埋入耐热坩埚内碳化硼颗粒中的要按本发明进行处理的母材坯料。
图2是正剖面示意图,该图示出与碳化硼预型坯相邻并埋入装在耐热坩埚内惰性床中按本发明进行处理的母材坯料。
图3是用实施例1所述的方法形成的陶瓷复合材料的剖面经放大1000倍的照片。
图4是用实施例6所述方法形成陶瓷复合材料的剖面经放大1500倍的显微照片。
图5是用实施例8所述方法形成陶瓷复合材料的剖面放大1500倍的显微照片。
根据本发明,自撑体是通过熔融母材与碳化硼进行反应性渗透以形成一种含多晶陶瓷体材制成的,该含多晶陶瓷体材包括母材与碳化硼的反应产物,还可包括一种或多种母材的组分。碳化硼(在工艺条件下通常是固体)最好是细颗粒或粉末状。在工艺条件,选择相对惰性或非活性的环境或气氛。例如,氩气或真空往往是适宜的工艺气氛,生成的产物包括一种或多种(a)母材硼化物,(b)硼化合物,(c)通常是母材碳化物,和(d)金属。产物中的组分和比例主要取决于母材的选择和组成以及反应条件。还有,生成的自撑体可呈现出气孔或孔隙。
在本发明的最佳实施方案中,母材和碳化硼团块或床层位于彼此相邻的位置上,以使反应性渗透朝着床层方向并进入床层。这种床层(可以被预成形)可含有一种填料,如:增强填料,后者在工艺条件下基本上是惰性的。反应产物可基本不干扰或置换就能长入床层。因此无需可破坏或干扰床层分布的外力和难以处理或高成本的高温高压工艺和设备来产生反应产物。母材渗向碳化硼并与其发生反应性渗渗(碳化硼最好为颗粒状或粉末状)形成一种复合材料,这种材料一般包括母材硼化物和母材硼化合物。用铝作为母材,产品可含有一种碳硼化铝(例如:Al3B48C2,AlB12C2,AlB24C4),且也可包括金属如铝,可能还有其它未反应的或未氧化的母材组分。如果锆是母材,则所得复合材料含有硼化锆和碳化锆,而且,金属锆也可存在于这种复合材料中。
虽然在下文特别参考某些最佳实施方案来描述本发明(其中母材为锆或铝),但这仅是用来说明。也可以使用其它母材象硅钛、铪、镧、铁、钙、钒、铌、镁、铍,下面给出几个象这样的母材例子。
参考图1,作为前体(如锆)的母材10成形为金属锭、坯、棒、板或其它类似物。这种金属至少部分地埋入颗粒碳化硼12中(最好粒径为大约0.1μw~100μw)。这种套件或组件由惰性材料14包围(该惰性材料一般呈颗粒状,在工艺条件下是熔融金属不可湿的并与其不反应)装在坩埚16中或其它耐热容器中。母材顶面18可以暴露,或者母材可以完全地被碳化硼包埋即包围,也可把惰性床层14省略。将这种组件放在炉中,最好是在象氩这种惰性气氛中加热到母材熔点以上且最好在所需反应产品的熔点以下以便形成熔融金属体或金属池。不用说可操作的温度范围或最佳温度不可超过整个范围。温度范围主要取决于这样的因素,如母材的组成和所得复合材料中的所需相。熔体金属接触碳化硼,而母材硼化物(如二硼化锆)作为反应产物形成。由于余下的熔体金属不断地暴露于碳化硼中,穿过含碳化硼团块方向,反应产物逐渐地被吸取出来并进入到碳化硼团中,从而在熔体金属和碳化硼的界面连续形成反应产物。用这种方法生产的产物包括母材与碳化硼的反应产物,或可包括一种金属陶瓷复合材料,进而一种或多种未反应的或未被氧化的母材的组分包括在内。使主要量的碳化硼反应形成反应产物,这个主要量最好至少约为50%,最佳至少约为90%。通过这种工艺形成的陶瓷晶体作为反应产物可以是或也可以不是相互连接的,但最好是在三维方向上相互连接的,并且产物中这种金属的相和任何孔隙通常至少是局部相互连接的。任何孔隙都易于导致部分或近似全部母材金属相的消耗,有利于形成进一步的反应产物(如在化学计量反应物或过量碳化硼存在时的情况下),但孔隙体积百分比将取决于象温度、时间、母材类型和碳化硼团块的孔隙率这样的因素。
已经观测到按照本发明用锆、钛、铪作为母材制成的产物形成了一种以片晶状结构为特征的母材硼化硼,这种片晶典型地是无规排列或无规取向的,如在图3,4,5中可看出。由于裂纹挠曲和/或撤出机理(Pull-out),这种片晶状结构和金属相似乎至少占该复合材料的超高断裂韧性的一多半,约为12兆帕斯卡米1/2或更高。
本发明的另一方面,提供了一种自撑体材,包括复合材料体在内,这种自撑体含有一种反应产物基体且选含嵌入基本上惰性填料中的金属组分。这种基体是通过母材反应性渗透到直接与碳化硼混合的填料床层或团块中而形成的。这种填料可具有任意尺寸和形状,并且可以任何方式相对于母材定向排列,只要反应产物的增长方向朝着、并至少浸没一部分填料而不至于干扰或将其置换。这种填料可以是由任何适宜的材料组成或包含这种材料。例如陶瓷和/或金属纤维,金属须晶、细粒子、粉末、棒材,线材、金属细布,耐火布,板材、片材、网状泡沫结构,实心或空心球体等。一种特别有用的填料是氯化铝,但也可用其它氧化物和陶瓷填料,这取决于原料和所需目的特性。填料的体积可呈疏松或耦接排列或分布,这种排列有缝隙,孔隙,错位间隙等,以赋予填料对于熔融母材渗透的可渗性。此外填料可以是均相的也可以是多相的。如果需要,这些种材料也可用任何适宜的粘接剂进行粘接(如Avicil PH105,From FMC CO.),该粘接剂不会妨碍本发明的反应或不会在最终产品内留下任何不需要的剩余副产品。可以对在制备过程中往往会与碳化硼或与熔体金属进行过量反应的填料进行涂复,以使填料对工艺环境呈惰性。例如,如果碳纤维用作填料与作为母材的铝结合,它势必会与熔铝反应,但如果将该纤维用例如氧化铝涂覆后会避免这种反应。
将一合适的耐热容器放置在炉中,此耐热容器内装有母材和掺有碳化硼的填料的床层或体积,后者经适当的定向排列,以使母材反应性渗透到填料床层并使复合材料适当的生长。将这种叠层(lay-up)加热到母材熔点以上的温度。在这样的高温下,通过虹吸过程使熔融母材渗透到可渗透的填料中并与碳化硼反应,由此产生所需的陶瓷或金属陶瓷复合材料体。
通过实施本发明制得的复合材料在图2中举例说明。将碳化硼连同任何所需的惰性填料加工成与最终复合材料所需几何形状一致的预型坯。预型坯20与母材前体10叠放在一起并且该组件由装在坩埚16内的惰性材料14包围。母材顶面18可以暴露也可不暴露。根据填料特性,预型坯20可以用任一种常用的陶瓷体成形法进行制备(例如单向压制、等压压制、粉浆浇注、沉积浇注、成型浇注、注射成型、纤维材料缠绕法等)。在进行反应性渗透之前,填料颗粒、金属须晶、纤维等的预先粘合可通过轻度烧结或用不干扰此过程或不产生付产品的各种有机或无机粘接材料来获得。预型坯20被加工成具有足够的形状完整性和湿强度,它对于熔体金属的输送应该也是可渗透的,孔隙率最好在约5%和90%(体积)之间,最佳约在25%和75(体积)之间。就铝母材而言,适宜的填料包括如碳化硅、二硼化钛、氧化铝、十二硼化铝(这只是其中之一),作为颗粒,典型的筛目大小为大约14至1000,但可以使用任何填料掺合物和粒度。然后,将预型坯20与母材在其一个面或多个面上接触足够的时间以使基体完全渗透到预型坯界面。这种预成型方法的结果得到了接近或完全呈现最终产物所需的形状的金属陶瓷复合材料体材,因此可减少或消除花费高的精加工和磨削加工工序。
已经发现,填料中碳化硼的存在加速了母材对于可渗透的填料的渗透作用。已经表明少量硼源是有效的,但其最小量取决于种种因素,例如碳化硼的类型和颗粒尺寸,母材类型,填料的类型及工艺条件。因此填料中碳化硼的浓度变化很宽,但碳化硼的浓度越低,基体中金属体积百分比就越高。当碳化硼用量很低时(例如以碳化硼加上填料的总量计为1~3%wt),所得的基体是互连的金属和有限量的分散在金属中母材硼化物和母材碳化物。在无碳化硼的情况下,不可能发生填料的反应性渗透;而在没有特殊的生产工序,诸如施加外压强迫金属进入填料,渗透也是不可能的。
在本发明的方法中,由于填料中可使用的碳化硼浓度范围很宽,因此,通过变化碳化硼的浓度和(或)床层的组成可控制或改善成品的性质。当只有少量的碳化硼存在(相对于母材),即团块中碳化硼的密度很低时,母材的性质,最典型的是延性和韧性控制了复合材料体或基体的性质,因为基体是起主要作用的金属。这样的产品对于低温或中温应用可能是有利的。当使用大量的碳化硼时,例如当具有碳化硼颗粒的化合物惶盍现旅艿匕Щ蛟谔盍献榉种湔加泻芨叩目占浒俜直仁保玫牟牧匣蚧宓男灾释嵊赡覆呐鸹锘蚰覆奶蓟锢粗洌率固宀幕蚧逋不蜓有愿罨蛉托愿睢H绻Ъ屏康玫窖细窨刂疲鼓覆幕旧贤耆蜃詈蟮玫降牟镏薪泻苌俚幕虿缓鹗簦饪赡苡欣谡庵植锏母呶掠τ谩6遥覆幕就耆淇赡苁怯欣模乇鹗窃谀承└呶掠τ弥懈侨绱耍蛭鸹锓从Σ锉忍蓟鸶榷ǎ蓟鸾嵊胧S嗟幕蛭幢谎趸慕鹗衾绱嬖谟诓镏械穆疗鸱从ΑH粜枰靥伎梢杂胩蓟鸫不旌匣蛴牒蓟鸷吞盍系脑ば团骰旌稀R话阍谧艽膊?~10%(重量)范围变化的过量的碳与母体金属反应,从而确保金属反应基本上完全。这种金属与碳的反应很大程度上取决于所用碳的相对量,类型(如碳黑或石墨)和结晶度。特别需要在这些极端特性中进行选择以满足这些产物各种可能的应用的需要。
还有,尤其是当使用铝作为母材时,元素硼可与碳化硼床(包括具有填料的床层)进行掺混以促使反应性渗透。与全部是硼的相比,这种掺混物降低了床层成本;形成了一种含碳硼化物的产物,例如碳硼化铝(后者与硼化铝相比具有某些特性);并阻碍了在含湿情况下不稳定、由此降低产物结构特性的碳化铝的形成。在掺合物中,母材最好与元素硼反应,形成金属硼化物,但也形成了硼化合物。
通过控制渗透条件可使复合材料的性能特点进一步变化。可控制的变量包括碳化硼物质颗粒料的性质和尺寸,渗透温度和时间。举例来说,涉及大部分碳化硼颗粒和低温最少暴露时间的反应性渗透将导致碳化硼部分转化成母材硼化物和母材碳化合物。结果,未反应的碳化硼存留在显微结构中,从而为了某些目的,可赋予最终材料所需要的特性。涉及碳化硼颗粒、高温和延长暴露时间(甚至在渗透完成后也可完全保温)的渗透,对母材转化成母材硼化物和母材碳化物往往大体上有利。碳化硼转化成母材硼化物、母材硼化合物和母材碳化物的转化率最好至少约为50%,最佳至少约为90%。通过烧结工艺,高温渗透(或随后的高温处理)也可以使某些复合材料致密化。另外,如前指出,低于形成硼和碳的化合物并填充该物质孔隙所需量的现存母材量的还原作用可致使得到一种多孔体,这种多孔体也可能具有有用的用途。在这种复合材料中,孔隙率可从大约1%变化到25%(体积),有时会更高,这取决于以上列举的几种因素和条件。
下面的实施例举例说明了这种新的反应产物及其制备方法。但是,这些实施例仅是举例说明并不是为了限制本发明。采用以下试验工序测定这些实施例中制备的试样的某些特性。
室温四点弯曲试验是在Moder    1123Instron试验机中采用U.S.Army    MIL-STD-1942(MR)制定的工序进行的。试样经测定为3×4×50mm的棒,其拉伸表面用500粗砂金刚石轮进行磨光,并将其倒角以消除毛边和其它缺陷。钢弯曲夹具具有20mm内跨距和40mm外跨距。采用弹性梁(beaw)方程,从峰值断裂载符和试样及夹具尺寸计算抗弯强度。
通过检测5×4×50mm挠曲棒测定断裂韧性。用0.3mm宽金刚石叶片在试样长度方向的中央切削具有60℃斜角的人字形凹槽。然后,通过对抗弯强度所描述的同样方法进行四点人字形凹槽弯曲试验。
通过称重和测量矩形块测定密度。
通过声波共振技术测定弹性模量,采用ASTMC623-71所描述的工序。试样经测定约为5×4×45mm,并且通过一组金刚石切割和抛光工序进行加工。每一个棒经三种模式振动试验,即挠曲模式、垂直于5mm宽方向的弯曲模式和垂直于4mm宽方向的弯曲模式。每种情况下,测定基波共振频率。弯曲共振提供了扬氏模量(E)的测定,挠曲共振提供了剪切模置(G)的测定。
在洛氏硬度测试机上采用A标度测量硬度,其后工序按ASTME18-84。试验的目的是要获得代表作为复合材料整体的硬度值,而不是单相区域的值。
实施例1
通过将95%(重量)B4C(1000粗砂)和5%(重量)的有机粘合剂(Lonza公司生产,牌号Acrawax-C)进行掺和,然后在一个具有特定几何形状的钢模中以5000 Psi压力冷压该组合物制备一块2英寸见方,3/8英寸厚的预型坯。将一块2英寸见方、3/8英寸厚的锆板放在该B4C颗粒预型坯上并与其接触,然后把整套板(setup)放在石墨模中?
将石墨模和其内含物组成的组件放在一个以2升/分钟的流速供给氩气的耐热真空炉中,将组件从室温加热到450℃,历时2.5小时以烧掉有机粘合剂。然后,将其加热到1950℃凝固温度,历时5小时,并在此温度下保温2小时。在从炉中取出之前,使组件冷却5小时。
在组件从炉中取出之后,通过研磨整套板的表面,用机械法取未反应的锆,并回收埋在陶瓷复合材料下面的粉末样品,对其进行X-射线衍射分析。分析表明,存在ZrB2、ZrC和Zr。进一步的试验揭示出该陶瓷复合材料具有以下特性:平均密度约为6.2(g/cc);弹性模量为380(GPa);弯曲强度为875(MPa);临界应力强度因数(断裂韧性)为15(MPam1/2)。
图3是复合材料产品横截面放大1000倍的显微照片,它表明22为ZrB2,24为ZrC,26为Zr。在这种复合材料中的ZrB2相表现为片晶状,呈无规排列或无规取向。
实施例2
将一个直径为1/2英寸、高为3/4英寸的锆金属锭埋入装在氧化铝坩埚内的颗粒碳化硼(Atlantic Eqwipment Engineers,Bergeufield,N.J.,B4C 99.7%,1-5micron)。将氧化铝坩埚及其内含物组成的组件放在以300cc/分钟流速供给氩气的还原炉中。将组件加热到1800℃(用光测高温计测定)历时6分钟,然后在冷却前,在1800℃保温4分钟。
从炉中取出组件后回收所得的陶瓷复合材料的粉末样品,并对其进行X-射线衍射分析。分析表明存在ZrB2、Zrc和Zr。在这种复合材料中的ZrB2相表现为片晶状。
实施例3
通过将93%(重量)碳化硼(B4C)颗粒(粒径为320目)与7%(重量)的有机粘合剂(Avicil PH105frow FMC CO)进行掺混,然后在一个具有特定几何形状的钢模中以10,000 Psi。冷压该掺合物,制备一块2 1/4英寸方、1/2英寸厚的预型坯。将一块2英寸见方、1/2英寸厚的铝合金(指定为110)放在B4C预型坯上并与其接触,然后将整套板埋入耐热容器中所含的氧化铝颗粒中(E38Alundum from Norton Co,90 grift),如图2所示。将耐热器和其含物组成的组件在一个以1升/分钟的流速供给氩气的耐热真空炉中加热到1200℃凝固点,历时10小时。在1200℃保温24小时之后,在从炉中取出之前使组件冷却6小时。
在组件从炉中取出后,用机械的方法取下套板表面上的未反应的铝并将少量下面的陶瓷复合材料制成粉末,对这种粉末进行X射线衍射分析,分析表明存在Al,B4C,Al2O3和Al8B4C7。进一步的试验表明,所得的陶瓷复合材料具有以下特性:密度为2.58(g/cc);弹性模量为189(GPa);硬度为46(Rockwell A);弯曲强度为254±3(MPa);断裂韧性为10.2±0.1(MPaw1/2)。
实施例4
用一种由94%(重量)的B4C/B(在一种50wt%的320目的B4C和50wt%38微米和更细的硼构成的掺合物中)和6%(重量)的有机粘合剂(Avicil PH105from FMC CO.)组成的均匀混合物制备一块2 1/4 英寸见方、1/2英寸厚的预型坯。预型坯的制备是通过在一个具有特定几何形状的钢模中以10,000Psi冷压混合物进行的。将一块2英寸见方、1/2英寸厚的铝合金(指定为1100)放在B4C/B颗粒预型坯的上面并与其接触,然后将整套板埋入装在耐热容器中的氧化铝颗粒中(38Alundum from Norton,CO.24grit),如图2所示。
将耐热容器及其所含物组成的组件放在一个以300cc/分钟流速供给氩气的耐热管形炉中并历时10小时加热到1200℃凝固点,再在1200℃保温36小时,从炉中取出组件之前,使其冷却10小时。
在从炉中取出组件以后,套板表面上未反应的铝用机械方法取下并将下面的陶瓷复合材料的粉末样品进行X-射线衍射分析。分析表明,该陶瓷复合材料含有Al,β-AlB12,Al3B48C2和一种未鉴别出的相,“d”间距(点阵间距)分别为2.926,2.679,2.087,1.84和1.745°A,相对强度分别为100,36,40,20和73。进一步的试验测定出,该复合材料具有以下匦裕好芏任?.58(g/cc);弹性模量为215(GPa);弯曲强度为196±9(MPa);断裂韧性为8.1±0.3(MPam1/2)。
实施例5
通过实施例1中描述的方法制备一块2 1/4 英寸见方、1/2英寸厚的预型坯,不同的是这里的均匀混合物是由94%(重量)B4C/B(在50wt%320目B4C和50wt% 38微米和更细的硼的掺合物中)和6%(重量)的同样的粘合剂剂构成。将一块2英寸见方、1/2英寸厚的铝合金Al-10Si-3Mg板(10%(重量)Si,3wt%Mg,余量为Al)放在B4C/B颗粒预型坯上并与其接触,然后,如图2所示,将整套板埋入装在耐热容器中的氧化铝颗粒。
将耐热容器及其所含物组成的组件放在一个以1升/分钟流速供给氩气的耐热真空炉中,并加热到1200℃凝固点,历时10小时,然后在1200℃下保温12小时。将组件从炉中取出之前冷却5小时。
组件从炉中取出之后,用机械的方法取下套板表面上未反应的铝,并回收下面陶瓷复合材料的粉末样品,对其进行X-射线衍射分析。这种分析表明,该陶瓷复合材料含有Al,Si,B4C,β-AlB12,Al2C3和Al8B4C7。进一步的试验表明,复合材料具有以下特性:密度为2.55(g/cc);弹性模量为213(GPa);硬度为57(Rockwell    A)弯曲强度为231±31(MPa);断裂韧性为9.1±0.1(MPam1/2)。
实施例6
将一块5/8英寸直径、3/4英寸厚的99.64%纯的钛金属锭(2级)埋入装在氧化铝坩埚内的碳化硼颗粒中(Atlantic Equipment Engineers,Bergenfield,N.J.,B4C99.7%,1~5micro)将氧化铝坩埚及其所含物组成的组件放在以300c/分钟流速供给氩气的过原炉中。将组件加热到钛熔点(用光测高温计测定为1700~1750℃),历时4分钟,然后使其冷却。
从炉中取出组件之后,回收所得的陶瓷复合材料的粉末样品并进行X-射线衍射分析。这种分析表明含有TiB2,TiB,TiC,和Ti。
图4是复合材料产物的横截面放大1500倍的显微照片,它表明28为TiB2,30为TiB,32为Tic,34为Ti。TiB4相表现为片晶状结构。
实施例7
将一个直径为5/8英寸,长度为3/4英寸的99.64%纯度的钛(2级)圆柱试样埋入装在氧化铝坩埚内的碳化硼(1000    grit)中。将氧化铝坩埚及其内含物组成的组件放在以500cc/分钟流速供给氩气的耐热真空炉中,将组件加热到1750℃凝固点温度,历时3小时,然后在1750℃保温3小时20分钟。
在组件从炉中取出和冷却后,回收所得的陶瓷复合材料产生的粉末样品并进行X-射线衍射分析。这种分析表明含有TiB2,TiC和Ti3B4
按照ASTM E384-73所述的方法使用200gf载荷对产物样品进行Knoop显微硬度试验,试验结果表明显微硬度为1815~1950Kg/mm2
实施例8
将一块直径为3/8英寸、原为3/4英寸、纯度为98.20%的铪合金锭埋入装在氧化铝坩埚内的碳化硼颗粒(-325目)中。将氧化铝坩埚及其内含物组成的组件放在以500cc/分钟流速供给由1%(体积)氢气和99%(体积)氩气组成的气体的还原炉中。将组件加热到2300℃(用光测高温计测定),历时8分钟,然后使其冷却。
在组件从炉中取出后,回收的样品分析表明,原铪锭所在处存在非常清楚的圆柱形孔隙。这表明该系统的形状重现性良好。对该试验得到的陶瓷复合材料产物的粉末样品进行回收并进行X-射线衍射分析。分析结果表明,含有HfB2,HfC,Hf和微量B4C。
图5是复合材料产物横截面放大1500倍的显微照片,它示出了36为HfB2,38为HfC,40为B4C和42为Hf。HfB2具有片晶结构。
如上所述,可采用其它母材、不同浓度的原料和其它变更(例如封装密度,碳化硼颗粒的特性,时间和温度)来改变或控制最终产物。这类材料可能对诸如发动机或火箭零部件一类的应用是有用的。

Claims (30)

1、一种制造自撑体材的方法,该方法包括以下步骤:(a)选择一种母材,(b)在基本上惰性的气氛下将所述母材加热到其熔点以上形成熔融金属体,并使所述母材熔融体与一种含碳化硼的物质接触,(c)在所述温度下保温足够长的时间以使熔融母材渗透到所述物质中,并使熔融母材与所述碳化硼反应,形成一种或多种含硼化合物,(d)使所述渗透和反应持续足够长的时间以制造出包含有一种或多种母材含硼化合物的所述自撑体材。
2、根据权利要求1的方法,包括使所述碳化硼与一种惰性填料掺混而形成所述物质;向所述形成的物质中进行所述渗透和反应以嵌入所述填料;制造作为所述自撑体材的复合材料。
3、根据权利要求1或2的方法,其中所述体材包括一种金属相。
4、根据权利要求1或2的方法所述自撑体材包括由一种所述碳化硼和所述母材反应而形成的母材硼化物和母材碳化物。
5、根据权利要求1或权利要求2的方法,其中所述碳化硼含量以渗透到所述物质中的母材为基准至少为化学计算量,并且所述反应持续足够长的时间以基本上消耗掉全部所述母材。
6、根据权利要求1或权利要求2的方法,其中所述母材选自铝、钛、锆、硅、铪、 、铁、钙、钒、铌和铍。
7、根据权利要求4的方法,其中所述母材选自铝、钛、锆和铪。
8、根据权利要求1或2的方法,其中所述母材是铝,所述自撑体材含有一种选自硼化铝、碳硼化铝以及它们的混合物的铝化合物。
9、根据权利要求1或2的方法,其中所述母材是锆,所述自撑体材含有一种从锆的硼化物或锆的硼化合物和锆的碳化物的混合物中选出的锆的化合物。
10、根据权利要求9的方法,其中所述自撑体材也包括锆在内。
11、根据权利要求1或2的方法,其中所述物质是一种预定形状的预型坯并且向所述预型坯中进行所述渗透和所述反应从而制成了一种具有所述预型坯构型的自撑体材。
12、根据权利要求2的方法,其中所述填料选自纤维,针状单晶,颗粒,粉末、棒、金属丝、金属丝布、耐火布,网状泡沫、板,片晶,实心球粒和空心球粒。
13、根据权利要求11所述方法,其中所述填料具有保护性预涂层。
14、根据权利要求2或13所述方法,其中所述填料选自氧化铝或具有保护性预涂层的碳。
15、根据权利要求1或2所述方法,其中所述母材是钛,所述自撑体材含有一种从钛的硼化物或钛的硼化物和钛的碳化物的混合物中选出的钛化合物。
16、根据权利要求1或2的方法,其中所述母材金属是铪,所述自撑体材含有一种从铪的硼化物或铪的硼化物和铪的碳化物的混合物中选出的铪的化合物。
17、根据权利要求15的方法,其中所述自撑体材也包括钛在内。
18、根据权利要求16的方法,其中所述自撑体材也包括铪在内。
19、根据权利要求1或2的方法,其中所述母材的含硼化合物中的至少一种呈现为片晶状结构。
20、根据权利要求9的方法,其中至少一种所述锆的硼化物呈现为片晶状结构。
21、根据权利要求15的方法,其中所述钛的硼化物之一呈现为片晶状结构。
22、根据权利要求16的方法,其中所述铪的硼化物之一呈现为片晶状结构。
23、一种制造自撑体材的方法,该方法包括以下步骤:(a)选择一种母材,(b)在基本上惰性的气氛下将所述母材加热到其熔点温度以上以形成一种熔融金属体,并使所述熔融母材与一种含碳化硼和硼的物质相接触,(c)在所述温度下保温足够长的时间以使熔融金属向所述物质渗透并使熔融母材与所述碳化硼和硼反应以形成含硼化合物,(d)使所述渗透和反应持续足够长的时间以制造出含母材未反应成份的金属相和母材含硼化合物的所述自撑材料。
24、根据权利要求21的方法,包括使一种惰性填料与所述物质掺混;向所述形成的物质进行所述的渗透反应以嵌入所述填料;制造一种作为具有嵌入所述填料中的基体的所述自撑体的复合材料,所述基体包含母材未反应成份的金属相和母体含硼化合物。
25、根据权利要求23或24的方法,其中所述母材是铝且所述含硼化合物选自硼化铝,碳硼化铝以及它们的混合物。
26、根据权利要求1或2的方法,其中将碳掺入所述物质中用以与所述母材反应。
27、根据权利要求26的方法,其中所述碳包括约5-10%(重量)的所述物质。
28、一种复合材料,它包括一种选自锆、钛和铪的金属相,一种延伸到所述复合材料界面的三维互连陶瓷相,所述陶瓷相含有一种从锆的碳化物、钛的碳化物及铪的碳化物中选出的碳化物,此外,它还含有一种对应于所述碳化物的金属硼化物,而所述硼化物具有片晶状结构。
29、根据权利要求28的复合材料,其中所述金属相是锆,所述碳化物是一种锆的碳化物,所述的硼化物是一种锆的硼化物。
30、根据权利要求29的复合材料和具有至少约12兆帕斯卡 1 2 的断裂韧性。
CN88104357A 1987-07-15 1988-07-14 制备自撑体的方法及其制造的产品 Pending CN1031115A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7353387A 1987-07-15 1987-07-15
US073,533 1987-07-15

Publications (1)

Publication Number Publication Date
CN1031115A true CN1031115A (zh) 1989-02-15

Family

ID=22114257

Family Applications (1)

Application Number Title Priority Date Filing Date
CN88104357A Pending CN1031115A (zh) 1987-07-15 1988-07-14 制备自撑体的方法及其制造的产品

Country Status (27)

Country Link
EP (1) EP0299905B1 (zh)
JP (1) JP2642675B2 (zh)
KR (1) KR960007373B1 (zh)
CN (1) CN1031115A (zh)
AT (1) ATE91120T1 (zh)
AU (1) AU611697B2 (zh)
BG (1) BG60551B1 (zh)
BR (1) BR8803533A (zh)
CA (1) CA1318488C (zh)
CS (1) CS277570B6 (zh)
DD (1) DD286167A5 (zh)
DE (1) DE3882097T2 (zh)
DK (1) DK388788A (zh)
FI (1) FI92925C (zh)
HU (1) HUT63131A (zh)
IE (1) IE61994B1 (zh)
IL (1) IL86947A (zh)
IN (1) IN169659B (zh)
MX (1) MX171575B (zh)
NO (1) NO176397C (zh)
NZ (1) NZ225406A (zh)
PL (1) PL158143B1 (zh)
PT (1) PT87992B (zh)
RU (1) RU1836307C (zh)
TR (1) TR26325A (zh)
YU (1) YU46990B (zh)
ZA (1) ZA885088B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073636C (zh) * 1998-04-09 2001-10-24 中南工业大学 铝浴自蔓延反应制备颗粒增强铝基复合材料的方法
CN108188380A (zh) * 2017-12-28 2018-06-22 鞍钢矿山机械制造有限公司 一种钢铜复合球的生产方法
CN111575522A (zh) * 2012-11-19 2020-08-25 力拓加铝国际有限公司 用于改善铝-碳化硼复合材料的可铸性的添加剂

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4885130A (en) * 1987-07-15 1989-12-05 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US4940679A (en) * 1987-07-15 1990-07-10 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
AU620360B2 (en) * 1987-12-23 1992-02-20 Lanxide Corporation A method of producing and modifying the properties of ceramic composite bodies
US4915736A (en) * 1987-12-23 1990-04-10 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by carburization process and articles produced thereby
EP0364097A1 (en) * 1988-09-26 1990-04-18 Alcan International Limited Process for producing composite ceramic articles
US4885131A (en) * 1989-01-13 1989-12-05 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5004714A (en) * 1989-01-13 1991-04-02 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5098870A (en) * 1990-07-12 1992-03-24 Lanxide Technology Company, Lp Process for preparing self-supporting bodies having controlled porosity and graded properties and products produced thereby
JPH05509075A (ja) * 1990-07-12 1993-12-16 ランキサイド テクノロジー カンパニー リミティド パートナーシップ セラミック複合体の特性改良用添加剤
DE69218947T2 (de) * 1991-07-29 1997-07-17 Dow Chemical Co Gehärtete cermets und verfahren zur herstellung von gehärteten cermets
JPH05222468A (ja) * 1992-02-17 1993-08-31 Agency Of Ind Science & Technol 反応合成法による炭化チタンとほう化チタンウイスカ強化チタニウム基複合材料の製造法
US5509555A (en) * 1994-06-03 1996-04-23 Massachusetts Institute Of Technology Method for producing an article by pressureless reactive infiltration
US5780164A (en) * 1994-12-12 1998-07-14 The Dow Chemical Company Computer disk substrate, the process for making same, and the material made therefrom
US5672435A (en) * 1994-12-12 1997-09-30 The Dow Chemical Company Hard disk drive components and methods of making same
CZ2019201A3 (cs) * 2019-04-01 2020-06-17 Vysoké Učení Technické V Brně Způsob výroby keramicko-kovového kompozitu gravitačním litím a keramicko-kovový kompozit vyrobený podle této metody

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851375A (en) * 1985-02-04 1989-07-25 Lanxide Technology Company, Lp Methods of making composite ceramic articles having embedded filler
US4828785A (en) * 1986-01-27 1989-05-09 Lanxide Technology Company, Lp Inverse shape replication method of making ceramic composite articles
US4777014A (en) * 1986-03-07 1988-10-11 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US4940679A (en) * 1987-07-15 1990-07-10 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US4915736A (en) * 1987-12-23 1990-04-10 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by carburization process and articles produced thereby
AU620360B2 (en) * 1987-12-23 1992-02-20 Lanxide Corporation A method of producing and modifying the properties of ceramic composite bodies

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073636C (zh) * 1998-04-09 2001-10-24 中南工业大学 铝浴自蔓延反应制备颗粒增强铝基复合材料的方法
CN111575522A (zh) * 2012-11-19 2020-08-25 力拓加铝国际有限公司 用于改善铝-碳化硼复合材料的可铸性的添加剂
CN108188380A (zh) * 2017-12-28 2018-06-22 鞍钢矿山机械制造有限公司 一种钢铜复合球的生产方法

Also Published As

Publication number Publication date
EP0299905A1 (en) 1989-01-18
EP0299905B1 (en) 1993-06-30
DE3882097T2 (de) 1993-10-28
CS277570B6 (en) 1993-03-17
PL158143B1 (en) 1992-08-31
ATE91120T1 (de) 1993-07-15
CA1318488C (en) 1993-06-01
DK388788A (da) 1989-01-16
IN169659B (zh) 1991-11-30
MX171575B (es) 1993-11-08
KR890001910A (ko) 1989-04-06
DD286167A5 (de) 1991-01-17
IL86947A0 (en) 1988-12-30
NO176397C (no) 1995-03-29
PT87992B (pt) 1995-03-01
DK388788D0 (da) 1988-07-12
DE3882097D1 (de) 1993-08-05
CS492888A3 (en) 1992-08-12
FI92925C (fi) 1995-01-25
FI883329A (fi) 1989-01-16
JP2642675B2 (ja) 1997-08-20
NO883091L (no) 1989-02-16
AU611697B2 (en) 1991-06-20
TR26325A (tr) 1994-02-10
IE882160L (en) 1989-01-15
PL273758A1 (en) 1989-04-03
RU1836307C (ru) 1993-08-23
BR8803533A (pt) 1989-02-08
NZ225406A (en) 1990-05-28
NO883091D0 (no) 1988-07-11
JPH01103945A (ja) 1989-04-21
IE61994B1 (en) 1994-12-14
FI92925B (fi) 1994-10-14
YU136588A (en) 1990-04-30
IL86947A (en) 1992-08-18
AU1909788A (en) 1989-01-19
PT87992A (pt) 1989-06-30
HUT63131A (en) 1993-07-28
NO176397B (no) 1994-12-19
YU46990B (sh) 1994-11-15
KR960007373B1 (ko) 1996-05-31
FI883329A0 (fi) 1988-07-13
BG60551B1 (bg) 1995-08-28
ZA885088B (en) 1989-06-28

Similar Documents

Publication Publication Date Title
CN1022479C (zh) 自支承体及其制备方法
EP0378499B1 (en) A process for preparing selfsupporting bodies and products produced thereby
EP0239520B1 (en) Process for preparing self-supporting bodies and products made thereby
EP0378500B1 (en) Process for preparing self-supporting bodies and products produced thereby
CN1031115A (zh) 制备自撑体的方法及其制造的产品
US5017334A (en) Process for preparing self-supporting bodies and products produced thereby
IL92394A (en) A process for creating bodies that support themselves by reactive penetration in the presence of a nitride pit and products created by it
US5010044A (en) Process for preparing self-supporting bodies and products produced thereby
US5180697A (en) Process for preparing self-supporting bodies and products produced thereby
US5232040A (en) Method for reducing metal content of self-supporting composite bodies and articles formed thereby
US5435966A (en) Reduced metal content ceramic composite bodies
WO1992000939A2 (en) Reduced metal content ceramic composite bodies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication