CN1022479C - 自支承体及其制备方法 - Google Patents

自支承体及其制备方法 Download PDF

Info

Publication number
CN1022479C
CN1022479C CN88108147A CN88108147A CN1022479C CN 1022479 C CN1022479 C CN 1022479C CN 88108147 A CN88108147 A CN 88108147A CN 88108147 A CN88108147 A CN 88108147A CN 1022479 C CN1022479 C CN 1022479C
Authority
CN
China
Prior art keywords
supporting mass
metal
mother metal
carbide
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN88108147A
Other languages
English (en)
Other versions
CN1033616A (zh
Inventor
特里·丹尼斯·克拉
史蒂文·迈克尔·梅森
凯文·彼得·波乔皮恩
丹尼·雷·怀特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanxide Technology Co LP
Original Assignee
Lanxide Technology Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxide Technology Co LP filed Critical Lanxide Technology Co LP
Publication of CN1033616A publication Critical patent/CN1033616A/zh
Application granted granted Critical
Publication of CN1022479C publication Critical patent/CN1022479C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/74Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • C04B35/652Directional oxidation or solidification, e.g. Lanxide process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Glass Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Load-Engaging Elements For Cranes (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Catalysts (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Pinball Game Machines (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Medicinal Preparation (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Installation Of Indoor Wiring (AREA)

Abstract

通过母金属反应渗入碳化硼而生成一种含有金属和含硼化合物的组合物的方法制备自支承体。被渗透的料块可含有一种或多种与碳化硼相混合的惰性填料或至少一种碳给体材料,以通过反应渗透制备复合体,该复合体构成了由金属和含硼化物包埋了填料的基质。在本发明的一个方案中,母金属反应渗入由碳化硼和含碳材料构成的料块,形成的自支承体包括含硼化合物,含碳化合物和金属。反应物的相对量及工艺条件可以改变和控制以制备含有不同百分体积陶瓷,金属和/或空隙度的自支承体,被渗透的料块可装在带有通气措施的耐火容器中。

Description

在申请是Danny    R.White,Michael    K.Aghajianian和T.Dennis    Claar等人于87年7月15日提交的题为“自支承体及其制备方法”系列申请№.073,533的部分继续申请。与本申请相关的还有Marc.S.Newkirk等人的美国专利4,777,014,题目为“制备自支承体的方法及其制品。
本申请一般地涉及一种自支承体的制备新方法以及由此制备的新型产物。更具体地说,本发明涉及一种由一或多种含硼化合物,或硼化物,或硼碳化物,构成的自支承体的制备方法,该方法是熔融母金属反应渗入含碳化硼(碳的供体材料,即含碳材料),和任选的一种或多种惰性填料的床或团块以形成自支承体。
近年来,用金属陶瓷代替历史上以金属作为构件应用的兴趣一直在增长,这种兴趣的增长是由于陶瓷与金属相比在抗腐蚀,硬度,耐磨,弹性模量和耐火等方面具有优越性。
然而,金属陶瓷用于上述目的的主要限制是生产所需陶瓷构件的可行性和成本。例如、已知可用热压,反应烧结和反应热压方法制备硼化陶瓷体。在热压情况下,所需硼化物的细粉粒在高温高压下成形。例如,反应热压方法是将硼或金属硼化物与含某合适金属的粉末在高温下压结。属Clougherty所有的美国专利№.3,937,619中述及了通过热压金属粉和二硼化物粉的混合物制备硼化物陶瓷体。属Brun所有的美国专利№.4,512,946述及通过热压含硼和金属氢化物的陶瓷粉以生成硼化物组合物。
然而,热压方法需要特殊的操作和昂贵的专门设备,这就限制了所生产陶瓷部件的大小和形状,尤其是具有低的生产率和高的加工成本。
金属陶瓷用于构件的第二个限制是缺乏韧性(即。抗破坏性和抗断裂性)。这样即使在适应拉伸强度的应用中亦会导致陶瓷的突然严重损坏。这种缺乏韧性尤其在单块硼化物陶瓷体中普通存在。
克服上述困难的一种方法是用与金属相结合的陶瓷,如金属陶瓷或金属基质组合物。这一方法的目的在于使陶瓷的优越性(硬度和/或劲度)和金属优越性(延性)相结合。属FreSnel等人的美国专利4,585,618披露了一种制备金属陶瓷的方 法,该法把颗粒状反应物的体相反应混合物在与熔融金属接触下反应制备一种烧结自支承陶瓷体。熔融金属至少渗入部分所生成的陶瓷体。该种反应混合物的一个例子是一种含有Ti,Al和氧化硼的混合物(都是颗粒状),在与熔融铝池的接触下加热,该混合物反应生成二硼化钛和氧化铝的陶瓷相,而溶融铝渗入陶瓷相。这样,本发明主要用反应混合物中的铝作为还原剂。进一步说,熔融铝外池不是用作生成硼化物反应的前体金属的来源,而是用作填入所生成的陶瓷结构孔隙的手段。这种方法生成的金属陶瓷对于熔隔铝是可浸润的和稳定的。这类金属陶瓷在铝生产池中作为元件特别有用,该元件与所产生的熔融铝接触而不与熔融的冰晶石相接触。在该工艺中不使用碳化硼。
属Reeve等人的欧洲专利申请№.0,113,249中披露了一种制备金属陶瓷的方法,该方法首先在熔融金属相原地生成分散的陶瓷相颗粒。然后保持熔融条件足够的时间使交叉生长的陶瓷网络形成,陶瓷相的生成可用Ti盐在熔融金属,如铝,与硼盐反应加以说明,一种陶瓷硼化物原地生成并交叉生长成网络,然而此刻并没有渗入发生,进一步说,硼化物仅以沉淀形式在熔融金属中生成。该申请中的两个例子清楚地表明并未有AlB2TiAl3或AlB12的晶粒生成。TiB2。的生成说明这样一个事实,即铝不是硼化物的金属前体,在该工艺中亦未指出用碳化硼作为前体材料。属Gazza等人的美国专利№.3,864,154中披露了用渗入法制备陶瓷金属系统。-AlB12压块在真空下用熔融铝浸渍生成该组份体系,制备的其它材料包括SiB6-Al,B-AAl,B4c-Al/Si,和AlB12-B-Al,这里并未指出任何反应。未指出与渗入金属反应生成组合物,亦未指出包埋着惰性填料的任何反应产物或组合物的一部分。
属Halverson等人的美国专利申请№.4,605,440披露,为得到B4c-Al组合物,将B4-Al压块(通过冷压B4c和Al粉的均匀混合物得到)在真空或氩气氛下烧结。这样并没有熔融金属从熔融前体金属池或体渗入母坯中。进一步说,这里未述及包埋了惰性填料的反应产物,以利用填料的有利性质来获得组合物。
虽然,这些制备金属陶瓷材料的原理在某些情况下产生了大有希望的结果,但需要一种更有效和经济的方法制备含硼化物材料。
根据本发明,在碳化硼存在下,通过母体金属渗入和反应的方法制备自支承陶瓷体(即反应渗入法)。熔融的母体金属渗入碳化硼床或料块,该床可完全由碳化硼构成,以生成由一种或多种母体金属含硼化合物组成的自支承体,其中化合物包括母体金属硼化物,或母体金属硼碳化物或二者皆有之,而通常还含有母体金属碳化物。另一方面,被渗透的床可会有一种或多种与碳化硼混合一起的惰性填料。通过反应性渗入生成组合物。其中组合物包括一种或多种含硼化合物基质,还可包括母体金属碳化物。终产物包括作为母体金属组份中的一种母体金属。更进一步说,某些情况下希望把一种碳给体材料(如含碳化合物)加于碳化硼中,碳给体材料能与母体金属反应产生母体金属碳化物相,由此改进组合物的机械性质,反应剂浓度和工艺条件可以改变或控制以制备陶瓷化合物,金属和/或空隙度百分体积比不同的陶瓷体。
更广泛地说,本发明的方法,由碳化硼组成的床置于邻近或与熔融金属或合金体相接触。金属或合金在基本惰性环境某一温度下熔融,熔融金属渗入床并与碳化硼反应形成一种或多种反应产物。碳化硼是还原性的,至少部分在该工艺温度下被熔融金属还原形成母体金属含硼化合物,即母体金属硼化物,和/或硼化物。通常还生成一种母体金属碳化物。在某些情况下,还可生成母体金属硼碳化物,至少部分反应产物保持与金属接触,并且熔融金属通过虹吸或毛细管作用被吸入或输送入未反应的碳化硼中,被输入的金属形成附加的母体金属硼化物,碳化物,和/或硼碳化物,并且陶瓷体持续生成和发育直到母体金属或碳化硼消耗完,或直到反应温度变到非反应温度区。所生成的结构包括一种或多种母体金属硼化物,母体金属硼化合物,母体金属碳化物。金属(此处用的金属一词包括合金和金属间化物)或空穴,或它们的结合,这几种相可以是也可能不是在一维或多维空间相互连接。含硼化合物(即硼化物和硼的化合物),含碳化合物和金属相的最后体积分数,以及相互连接程度可通过改变一种或多种条件加以控制,例如,碳化硼体的初密度,碳化硼和母体金属(合金母体金属)的相对量,碳化硼被填料稀释程度,温度和时间等条件。
此外更进一步说,通过往碳化硼床中加入碳的给体材料(如石墨粉,或碳黑)可调节母体金属-硼化物/母体金属-碳化物的比例。例如,如果用Zr作母金属材料,ZrB2/ZrC比可减少(即由于碳给体加入碳化硼床后会有更多的ZrC生成)。
通常,碳化硼床至少总具有一点渗透性,是多孔性的,使得可以通过反应产物抽吸母体金属。这种抽吸的发生量然既是由于反应引起的任何体积变化不能完全封闭碳化硼床的孔隙,通过这些孔隙可以不断抽吸母体金属,也是由于反应产物保有通透性才使母体金属渗入,这是由于象表面能一类的因素至少使其颗粒的某些边界对母体金属具有通透性。
在另一实施方案中,熔融母体金属渗入碳化硼与一种或多种惰性填料构成的床以制备组合物。在该实施方案中,碳化硼加到合适的填料中,然后将其置于与熔融母体金属相邻或相接触,该组合体置于另一分离床之上或内,该分离床在工艺条件下不被熔融金属浸润亦不与熔融金属反应,熔融母金属渗入碳化硼-填料混合物并与碳化硼反应生成一种或多种含硼化合物。通过生成的自支承陶瓷金属组合物具有密微结构,该结构由含硼化合物构成的基质包埋的填料,还可能包括碳化物及金属组成。仅需要少量碳化硼以促进反应性渗透过程。这样,所生成的基质成份可通过初始金属组份而改变。因此,显示母体金属的某些金属特性,若在使用高浓度碳化硼的情况下,会生成显著的含硼化合物相,并与含碳化合物一起决定了基质的性质,降低原料成本,或改善含硼化合物,和/或含碳化合物生成的动力学性质,和协调热释放速度。
在更进一步的实施中,被渗透的材料做成终产物所要求的几何形状料坯。然后熔融金属反应渗入坯中以制成与原坯形状完全相同或接近的组合物,由此,减少最后机加工和操作的成本。进一步说,为减少最终机加工和操作的工作量,可用一阻挡材料包住坯。对于象Zr,Ti和Hf作为母金属,与碳化硼,氮化硼,硼和碳构成的坯结合使用时,石墨模作阻挡材料是很有用的。更进一步说,利用在上述石墨模中设置适量的具有一定尺寸和形状的透孔,按本发明制备的组合物体中的孔隙量将减少。一般地,大多数透孔设置在模的底部,或反应性渗入发生的模的部位。孔的作用是作为一种排气方式,例如:使在母金属反应渗入坯时除去坯中包陷的氩气。
本说明和权利要求中所使用的术语定义如下。
“母金属”是指金属,如Zr,它是多晶氧化反应产物,即金属硼化物或其它母金属硼的化合物的前体,它包括纯的或相对纯的金属,商业上可得到的含有杂质的金属和/或合金组份,以及以该金属前体为主要成份的合金;当某一金属称作母金属时,如Zr,应牢记本文所作的定义,除非另加说明。
“母金属硼化物”和“母金属硼化合物”是指碳化硼与母金属反应生成的含硼反应产物,它包括硼与母金属生成的二元化合物,三元化合物及更高级化合物。
“母金属碳化物”指碳化物与母金属反应生成的含碳反应产物。
附图的简单说明
图1是一张表明按本发明方法,母体金属锭包埋入耐火坩埚中碳化硼散粒内的正视截面示意图。
图2是表明按本发明,母金属锭在耐火坩埚内置于邻近碳化硼坯和埋入惰性床中的正视截面示意图。
图3是按本发明例1方法制备的陶瓷组合物截面放大1000倍的显微照片。
图4是按例Ⅵ中方法制备的陶瓷组合物截面放大1500倍的显微照片。
图5是按例Ⅷ方法制备的陶瓷组合物截面放大1500倍的显微照片。
图6是表明坯与母金属相接触的正视断面示意图,二者都置于耐火容器中。
图7是图6所示耐火容器底视图。
按本发明,一种自支承体通过熔融母金属与碳化硼反应渗透形成含有母金属与碳化硼的反应产物的多晶陶瓷体来制备,该陶瓷体还可能含有一种或多种母金属组份。在加工条件下通常为固态的碳化硼最好是细颗粒或粉状,在工艺的环境或气氛应是相对惰性或在工艺条件下无反应性。有例如,氩气和真空是合适的加工气氛。最终产物含有(a)一种或多种母金属硼化物,(b)硼化合物,(c)通常地母金属碳化物,以及(d)金属。产物的组成和组份主要取决于母金属的选择和组成与反应条 件。还有,所制备的自支承体可能具有多孔性或空穴。
在本发明优选的实施中,母金属和碳化硼压块或床要相互邻接放置以使反应性渗透朝床的方向发生并进到床内部。床,可以是预型的,可包括填充料,如某种加强填料,填料在工艺条件下基本上是惰性的。反应产物可生长入床而基本上不扰动或移动它。这样,就不需要外力,外力很可能破坏或扰乱床的排列,也不需要不适当的或消费高的高温,高压处理和装置去制备反应产物。母金属反应应渗入并与碳化硼反应,(碳化硼最好是细颗粒或粉状)生成含有母金属硼化物和母金属硼化合物的组合物。用铝作母金属,产物可能由铝硼碳化物(如Al3B48C2,AlB12C2,AlB24C4)组成还可能含有金属,即Al,以及其它可能未反应的或未氧化的母金属组份。如果Zr为母金属,生成组合物含有硼化锆和碳化锆。锆金属也可能存在于组合物中。
虽然这里对本发明所做的描述具体地涉及以Zr或Al作母金属的最佳实施,这只不过是出于阐述的需要。其他母金属亦可使用如,Si,Ti,Hf,La,Fe,Ca,V,Nb,Mg,Cr和Be,下列亦给出几个使用上述母金属的例子。
参见图1,作前体的母金属10Zr,制成锭,片,棒,板,或类似物。金属至少部分地埋入碳化硼粒12中,其粒度大小最好在0.1μm到100μm。该组合或组件用坩埚16或耐火容器中的惰性材料14包围,惰性材料通常为粒状在工艺条件下不被熔融金属浸润中,也不与其反应。母金属的顶面18,可以是暴露的,或母金属完全被碳化硼包埋或包围,或不要惰性床14。该组合件置于炉中,最好在惰性气氛如氩气,加热到高于母金属熔点但最好低于所需反应产物的熔点以形成熔融金属体或池。应理解,可操作温度范围或最佳温度不可能覆盖整个间隔。温度范围主要将取决于母金属组成和生成组合物中所要的相诸因素。熔融金属与碳化硼相接触,并生成作为反应产物的母金属硼化物(如ZrB2)和母金属碳化物(如ZrC)。随着不断暴露于碳化硼,剩余的熔融金属就不断朝碳化硼构成的床的方面渗透并穿过反应产物而进入床。这样就在熔融金属和碳化硼的界面不断形成反应产物。如此生成的反应产物包括母金属与碳化硼的反应产物甚或可包括含有一种或多种未反应未氧化的母金属组份的陶瓷金属组合物。碳化硼大部分反应生成产物,反应的数量至少约50%较好更为可取地为约90%的碳化硼反应生成产物。按本发明生成的陶瓷晶体反应产物可以是也可不是相互联结的。但最好是在三维空间联结的,并且产物中金属相和任何空穴,通常至少是部分相互联结的。由于母金属相部分或近乎完全消耗掉,任何孔隙势必导致有利于附加反应产物的生成(正如化学计量的反应物或过量碳化硼存在的情形),但空隙百分体积依赖于温度,时间,母金属类型,及碳化硼床孔隙度诸因素。
已观察到,以Zr,Ti和Hf作母金属按本发明得到的产物是具有类层状结构的母金属硼化物。这种层状结构通常是非平行排布的或无规取向的,正如图3,4和5所示。该层状结构和金属相至少在很大程度上表明了组合物具有不寻常高的断裂韧性的原因,约达12Mpam1/2,或更高,这是因裂缝的倾斜和/或平拉机理作用。
本发明的另一特征是提供了自支承体,包括组合物体,自支承体中含有反应产物基质和任选的金属组份,基本包埋了惰性填料。基质是由母金属反应渗入碳化硼与填料混合构成的床或料块而形成的。填料可以是任何尺寸和形状,也可以任何方式相对母金属取向,只要反应产物的发展方向朝向并至少淹没部分填料而基本上不扰动和使其移位。填料可以由任何合适材料组成,如陶瓷和/或金属纤维,须状物,颗粒,粉末,棒状,线状,织物,耐火布,板,层状,网状泡沫结构,实心或空心球,等。尤为有用的填料是氧化铝,但其它氯化物和陶瓷填料亦可用,这取决于原材料和终产物所要求的性质。填料体积可是松散的或密结的排布或排列的,该排列体具有空缝,开口,插入空间或类似物,以使熔融母金属渗入填充材料。进而,填料可是均相的也可非均相的。如需要,这些材料可用合适的胶合剂粘在一起,(如Avicil    PH105,来自FMC公司),合适的胶应不干扰本发明中的反应,亦不在终组合产物中留下任何不必要副产物残渣。在加工中易与碳化硼或熔融金属发生过份反应的填料可以涂层以使其对工艺环培具有惰性。例如,碳纤维作为填料与作为母金属的铝一起使用时,碳纤维就趋于与熔融Al反应,但如果首先给碳纤维涂上一层氧化铝则可避免上述反应。
一合适的装有母金属,填料床或填料的耐火容器置于炉中,(与碳化硼相混的填料床要合适取向以使金属易于向填料床反应渗透并适于组合物发育),并加热到上层温度高于母金属熔点。在此加热温度,熔融母金属通过虹吸渗入具有渗透性的填料与碳化硼反应,由此制备所要求的陶瓷或陶瓷金属组合物体。进一步说,为减少最后机加工和最后工序的工作量,可用一阻挡材料包埋预坯。以Zr,Ti,Hf作母金属时与碳化硼,氮化硼,硼和碳所构成的坯结合使用时以石墨模作阻挡材料尤为有用。更进一步说,通过在上述石墨模中设量适量的具有一定尺寸和形状的通孔,则在按本发明所制备的组合物体内的空隙量通常会减少。通常,把大多数孔置于模底部,或朝向反应渗透发生的部分。孔的作用是作为排气的措施,例如,以便除去当母金属反应渗入前端渗入坯时在坯中包陷的氩气。图6和7示出坯42与母金属锭43相接,二者皆置于石墨耐火容器41中,石墨容器41底部44带有许多个孔,其作用是排气。(当母金属反应渗入前沿渗入坯时)通孔45可使任何包陷在坯中的气体(如氩)逸出。(即,反应渗入前沿在图6中箭头“A”方向渗入坯)。这样可减少生成组合物体中的空隙度。
图2示出按本发明制备的一种组合物。将碳化硼和任何所需要的惰性填料一起制成与终组合物几何形状相应的坯。母金属前体10叠合在坯20上,这一组合件用坩埚16中的惰性原料14包住。母金属顶面可暴露亦可不暴露。坯20可用任何方便的陶瓷成型方法制备(如单轴挤压,静压,粉浆浇注,沉积浇注,带注(tape    casting)注模,纤维材料的线绕成型等),这取决于填料特性。在反应渗入前,填料粒,须,纤维等的初始粘结可通过轻度烧结或用各种无机或有机粘合剂实现,粘合剂应不干扰加工或不在产品中引入不希望有的副产物。坯20应具有足够的整体形状和未加工强度,以及对熔融金属具有通透性,其空隙度按体积计算最好5-90%,而25~75%则更好。铝作母金属,合适的填料有如碳化硅,二硼化钛,氧化铝,十二碳化铝(是其中一部分),其粒度一般在14~1000目,但任何填料和粒度的混合物都可用。坯20的一个或多个面与熔融金属相接触足够时间以使其基质完全渗入坯的界面。如此得到一个形状与所需终产物相近或完全相同的陶瓷金属组合物体,这样就可减少或取消昂贵的后机加工或研磨处理。
已发现,在填料中有碳化硼存在时可促进母金属对填料的渗透。证明很少量的碳化硼都是有效的,但最少量则取决于多种因素如,碳化硼的粒度和型号,母金属类型,填料类型及工艺条件。这样在填料中碳化硼浓度的变化范围是很大的,但碳化硼浓度越低,金属在基质中所占体积百分比越大。当碳化硼浓度很低时如1~3%(以碳化硼和填料总重为基础计算)其基质是相联结的金属,只有有限量的母金属硼化物和母金属碳化物分散于金属中。在无碳化硼情况下,可能不发生对填料的反应渗透,并且无专门工序,渗透是不可能发生的,如加外压迫使金属进入填料。
由于在本发明工艺中,碳化硼在填料中的浓度可有较大范围,通过改变碳化硼浓度和/或床的组成而控制和改善终产物性质是可能的。当相对于母金属只有很少量碳化硼存在时,这样料块具有低的碳化硼密度,组合物体或基质的性质就为母金属的性质所支配,更具延展性和韧性,因为基质基本是金属。这样的产物对于低温或中等温度下应用是有利的。当使用大量碳化硼时,正如当含碳化硼化合物围绕填料紧密堆积或占据填料组份间的大部分空间,这样最终产物或基质的性质势必由母金属硼化物和任何母金属碳化物所支配,产物或基质会更硬或延展性低或韧性小。如果严格控制化学计量以达到母金属完全转化,那么终产物将含有小量或根本不含有金属,该产物在高温下应用会具有优越性。母金属基本完全转化对在某些高温下应用据有特殊意义,因为硼化物反应产物比硼碳化物更稳定,这样碳化硼将趋于与产物中残留的或未氧化的金属,如铝,反应。如需要,元素碳可与硼碳化物床或含有硼碳化物的坯与填料混合。这过量的碳,(一般约占总床重量的5~10%)与母金属反应以确保金属完全反应。金属与碳的反应极大地依赖于所用碳的相对数量,类型,如碳黑、石墨和结晶性。根据要求在这些特性中作出选择以满足这些产物不同的潜在的应用需要。例如约5~75%,最好约5~50%重量的碳黑于B4C坯中并且用Zr金属反应渗入该坯中,可降低ZrB2/ZrC比。(即更多的ZrC生成)。
元素碳也可以与硼碳化物床混合(包括填料床),以促进反应渗透,尤其是在以Al为母金属的情况下。这样的混合物床相对于全用硼碳化物床降低了床的成本,生成的含有硼碳化物如铝硼碳化物的产物据有某些与硼化铝相匹敌的性质,并防止碳化铝的生成,碳化铝在湿气存在下不稳定并由此而降低产物的结构性能。在该混合物中,母金属优先与元素硼反应成金属硼化物,但硼化合物亦会生成。
组合物的另外的特征和性质的改变可通控制渗透条件达到。可控制的变化因素包括碳化硼材料的性质和颗粒大小,以及渗透的温度和时间。例如,在低温下,反应渗入大的硼碳化物颗粒,减少暴露时间将使碳化硼部分转化成母金属硼化合物和母金属碳化合物。结果未反应的碳化硼原料依然留在微结构中,它会给用于某种目的最终材料带来所希望有的性质。涉及硼碳化物颗粒的渗透,高温和延长暴露时间(甚至渗透完成后还保持温度)有利于母金属完全转化成母金属硼化物和碳化合物。理想地,至少有50%硼碳化物转化成金属硼化物,母金属硼化合物和母金属碳化物,至少约90%转化则更为可取。用烧结工艺,高温下(或后续高温处理)渗透也会使某些组合物组份致密化。此外,正如以前提到的,可利用的母金属的量减少到低于硼和碳化合物生成和充满生成孔隙所需要的量时会生成多孔性体,这也可能具有应用价值。在这种组合物中孔隙度约1~25%百分体积,有时会更高,这取决以下列举的几种因素或条件。
以下的例子说明了本发明的新型反应产物及其制备方法,然而这些例子仅是说明性的,而不是对本发明加以限制。在这些例子中所制样品某些性质的测量程序如下:
室温四点弯曲试验按U.S.ArmyMIL-STD-1942(MR)中给的步骤在Model1123    Instron试验检测机上完成。样品是尺寸为3×4×50mm的棒,样品拉伸面用500号金刚砂轮面磨,棱进行倒角处理以除毛刺或其它缺陷。钢制弯曲夹具内距20mm,外距400mm。抗弯强度由峰值断裂负载,样品和夹具尺寸用弹性杆方程计算出来。
断裂韧性通过尺寸为5×4×50mm的弯曲棒试验测定。用0.3mm宽的金刚石片在样品长度的中间部位开一个60°角的人字形切口。然后按上述测抗弯强度的方法进行四点人字形切口弯曲测试。
密度用测量距形块和称重法测定。
按ASTM    C625-71中的步骤,用声共振技术测定弹性模量。
所测量的约5×4×45mm的样品,全部经过一系列的金刚石切割和磨削加工。每一根棒分别激励了三种振动模式,也就是扭区模式,与5mm宽度垂直的弯曲模式和与4mm宽边垂直的弯曲模式。在每种情形下,测定基频谐振频率,弯曲共振供杨氏模量(E)的测定,扭曲共振供剪切模量(G)的测定。
按ASTME18-84中的程序用RocKwell硬度测试计上的A标度确定样品的硬度。测试的目的为得到组合物作为整体的代表性的硬度值而不是单一相区的硬度。
例1
按百分重量计95%的B4C(1000grit)和5%的有机粘合剂(Acrawax-c,Lonza,Inc.生产)。混合制成2英寸见方3/8英寸厚的坯,然后在一特定几何形状的钢模中5000psi下冷压。一个2英寸见方,3/8英寸厚的Zr片放在B4C颗粒坯和顶部并接触,然后整个组合件放在石墨模中。
由石墨模和内容物构成的组合件置于耐热真空炉中并通氩气,流速为2升/分。将组合件在2.5小时内自室温加热到450℃使有机粘合剂燃尽,然后用5小时时间加热到1950℃并于1950℃保持2小时。组合件在从炉子中取出之前要先冷却5小时。
组合件从炉中取出后,未反应的Zr用机械研磨方法从表面除去,回收底层陶瓷组合物的粉化样品并进行X-光衍射分析。分析结果证明了ZrB2,ZrC和Zr的存在。进一步的测试揭示出陶瓷组合物具有下列性质:平均密度约6.2g/cc,弹性模量(GPa)为380,弯曲强度(Mpa)为875,临界拉伸强度因子(断裂韧性)为15(Mpam)。
图3是组合物产物断面放大1000倍的照片,其中22为ZrB2,24是ZrC,26是Zr。在此组合物中ZrB2相呈片状,不是整齐排列或无硅取向的。
例2
直径1/2英寸高3/4英寸的Zr金属锭埋入盛于氧化铝坩埚内的碳化硼颗粒中(Aflantic    Equipment    Enineers,Bergenfield,Nj,BC99.7%,1~5μm)。该组合由氧化铝坩埚和内容物构成,放入一感应炉中,通氩气,流速300cc/min。用6分钟将组件加热到1800℃,(用光学高温温度计测量)在此温度保持4分钟,然后冷却。
组合件从炉中取出后,回收生成的陶瓷组合物粉状样品并进行X-光衍射分析。分析结果表明有ZrB2,ZrC和Zr存在。组合物中ZrB2以片状存在。
例3
按百分重量计,93%的碳化硼(B4C),粒度320目,与7%的有机粘合剂(Avicil pH105,FMC CO生产)相混合后组成21/4英寸见方,1/2英寸厚的坯,然后在特定几何形状的钢模,10000Psi压力下冷压混合物。2英寸见方1/2英寸厚的铝合金(表号1100)置于B4C坯顶部并接触B4C坯和整个组合件埋入耐火容器的氧化铝颗粒内(E38Alundum,Norton C0生产,90grit)如图2所示。,由耐火容和内容物构成的组合件用电阻加热真空炉在10小时间加热到1200℃,并通入氩气,流速1升/分。于1200℃下保持24小时后,冷却6小时然后取出。
组合件从炉中取出后,表面未反应的铝用机械方法除掉,少量的底层陶瓷组合物研成粉末。该粉末进行X-射线衍射分析,结果表明有Al,B4C,Al2O3和Al8B4C7存在。进一步测试表明生成的陶瓷组合物具有下列性质:密度为2.58g/cc,弹性模量189(Gpa),硬度为46(Rockwell A)抗曲强度为254±3(Mpa),断裂韧性为10.2±0.1(Mpa)。
例4
用按百分重量计含94%B4C/B(其中50%B4C,320目,50%38μm B)6%有机粘合剂(Avicil PH105,FMC CO生产)的均匀混合物制成21/4英寸见方1/2英寸厚的坯。坯的制备是通过在10000Psi下,冷压于特定几何形状钢模中的混合物。一块2英寸见方,1/2英寸厚的铝合金,标号1100,放在B4C/B坯之上,并相接触,然后整个组合件埋入盛在耐火容器内的氯化铝颗粒中,如图2所示。
由耐火容器及其内容物构成的组合件放入电阻加热管式炉中,通氩气,流量300cc/min,用10小时将其加热到1200℃,并保持温度36小时。在取出组合件之前冷却10小时。
组合件从炉中取出后,用机械方法除去表面未反应的铝,并且底层陶瓷组合物的粉状样品进行X-光衍射分析。分析结果表明陶瓷组合物中含Al,β-AlB12,Al3B48C2,和一未知相,该相间隔“d”(点阵间隔)分别为2.926,2.679,2.087,1.84和1.745A,相对强度为100,36,40,20和73。进一步测试,组合物具有下列性质:密度为2.58g/cc,弹性模量为215(G Pa),弯曲强度196±9(MPa)和断裂韧性8.1±0.3(Mpam)。
例5
按例1中所述技术制备2+1/4英寸见方,1/2英寸厚的坯,只是均匀混合物由94%百分重量的B4C/B(混合物中B4C50%,320目,50%百分重量B,38μm和更细的)和6%的同一种粘合剂。2英寸见方,1/2英寸厚的铝合金板Al-10si 3Mg(10%Si,3%Mg,其余为Al)放在B4C/B粒坯的顶部并相接触,整个组合件埋入盛在耐火容器的氧化铝粉粒中(38Alundum,from Norton,Co,24grit)如图2所示。
组合件,包括耐火容器及内容物,放入电阻加热真空炉中,通氩气,流速1升/min,并用10小时加热到1200℃,1200℃下保持12小时。在从炉中取出之前,使组合件冷却5小时。
炉中取出组合件后,用机械方法除去其表面未反应的铝,回收底层陶瓷组合物粉样并进行X-衍射分析。分析结果表面陶瓷组合物中含有Al,Si,B4C,β-AlB2,Al2O3和Al8B4C7。进一步测试表明组合物具有下列性质:密度为2.55g/cc,弹性模量为213GPa,硬度(Rockwell A)为57,弯曲强度231±31(MPs),断裂韧性9.1±0.1(MPam)。
例6
直径5/8英寸,高3/4英寸,纯度为99.64%的Ti锭(2级)埋入盛在氧化铝坩埚里的粒状碳化硼中(Atlantic,Eqaipmant    Engineers,Bergenfield,NJ,B    C99.7%,1~5μm),由氧化铝坩埚及其内容物构成的组合件放入一感应炉中, 通氩气,流速300cc/min。用4分钟时间加热到Ti的熔点温度(约1700~1750℃,用光学高温度计测量),然后冷却。
从炉中取出组合件后,回收生成的陶瓷组合物粉样,并作X-衍射分析。结果证明其中含TiB2,TiB,TiC和Ti。
图4是组合物产物截面放大1500倍的照片,其中28为TiB2,30是指TiB,32为TiC,34是TiB2相呈片状结构。
例7
直径5/8英寸,长3/4英寸,纯度为99.64%的Ti圆柱埋入氧化铝坩埚中的碳化硼内。由氧化铝坩埚及其内容物构成的组合件放入电阻加热真空炉中,通氩气,流速500ml/min。用3小时时间将其加热到1750℃,然后在此温度保持3小时20分钟。
组合件从炉中取出后,冷却,回收陶瓷组合物产物粉样并进行X-衍射分析。结果示出其中含有TiB2,TiC和Ti3B4
按ASTM    E384-73所述,对产物试样进行knoop显微硬度试验,使用负载200gf,结果显微硬度为1815-1950kg/mm。
例8
直径3/8英寸,高3/4英寸,纯度为98.20%的Hf金属锭埋入氧化铝坩埚中的碳化硼粉内(~325Mesh)。氧氯化铝坩埚及其内容物构成的组合件放入感应炉中,通入由1%氢和99%氩气组成的混合物,流速500ml/min(体积计)。用8min时间将组件加热到2300℃(光学高温度计测),然后冷却。
从炉中取出组件后,对回收样品的检验结果表明在厚Hg锭所处的位置形成了一个干净的圆柱形空穴。这表明该体系的形状复制能力是好的。回收本实验得到的陶瓷组合物产物的粉样并作X衍射分析,结果表明其中含有HfB2,HfC,Hf,及少量B4C。
图5是组合产物切面放大1500倍的照片图。其中36指HfB2,38是HfC,40是HfC,42是Hf。HfB2具有片状结构。
如上述,其它母金属,不同的原料浓度,其它可变因素如装填密度,碳化硼粉的性质,时间和温度可用于改变和控制终产物。这一类材料会是很有用的,如用于引擎式火箭的元件。
例9
用与例1相同的方法,制备2英寸见方1/2英寸厚的坯。然而,该坯含有95%百分重量的B4C(1000grit,from Esk)和5%碳黑,(991-UP,来自Cancarb Inc.)碳黑的作用是作碳给体机粘合剂。具体地,混合的原料在一钢模中用1000Psi压力冷压制成坯。2英寸见方3/8英寸厚的Zr母金属板(Grad 702Zr来自Teledyne Wah Chang Albany)放在冷压B4C坯的顶部并相接触。整个组合件放入一石墨模中如图6所示。具体地说,B4C坯42与Zr母金属锭相接,二者都放入石墨(Grade ATJ来自(Union Carbide)耐火容器41中(石墨容器41可带有也可没有孔45)。
组合件,包括石墨模及其内装物,放入电阻加热真空炉中,首先室温下抽真空到1×10-4Torr,然后反充氩气,然后再抽真空抽到1×10-2Torr,此后用约30分钟时间加热约250℃。然后以每小时100℃的速度从250℃加热到约450℃。炉中通氩气,保持流速约1升/min,维持约2Psi压力,用5小时将炉子加热到约1900℃,然后在约1900℃保持5小时。然后在约1900℃保持5小时。
取出组合件后,对组合物体作定量影象分析。具体地说,实验测定出ZrB2C/ZrC之比约为1.03。这一比值可与ZrB2/ZrC的标准比值相比较(即,坯中不加入任何碳的ZrB2/ZrC的比值)。因此,很显然在反应渗透以前往坯中加入碳给体材料即可调节ZrB2/ZrC之比。
例10
2英寸见方,3/8英寸厚的坯按与例1相同的方法制备。坯中含有按重量百分计约95%的B4C(1000grit,来自Esk)和约5%的粘合剂(Acrawax-c来自Lonza Inc.)5000Psi下在钢模中冷压该混合物制坯。一块2英寸见方,3/8英寸厚的Zr母金属板(Grade 702Zr来自Teledyne Wah Chang Albany)置于冷压B4C坯的顶部并相接触。整个组合件放入石墨模中(Grade ATJ.来自Union Carbide)如图6所示。进而,石墨模41的底部44带有多个透孔45。底部44的大概尺寸为2×2英寸。石墨模41底部44有9个透孔,每个透孔的直径约1/16英寸。
组合件,包括石墨及其内容物,放入电阻加热真空炉中。炉子首先在室温下抽真空到1×10-4Toor.然后充氩气;再真空到1×10-2Torr,然后用约30分钟加热到约250℃,然后以100℃/小时的速率加热到450℃。然后充氩气,流速约211min,并维持约2Psi压力。用5小时将炉子加热到1900℃并保持1900℃约2小时;最后冷却约5小时。
为进行比较,制备相同的组合件,只是石墨模底部不带透孔。
每一组合件从炉中取出后,比较每一组合物体中的孔隙量。发现用底部带孔的石墨模制备的组合物中的孔隙量比用不带孔的石墨模制备的组合物中的孔隙量要小。由此,这是很显然的,用带孔的石墨模可减少组合物体中的孔隙,该组合物是母金属反应渗入B4C坯形成的。

Claims (39)

1、一种制备自支承体的方法,包括:
自钛、锆、铪、钒、铬和铌中选择至少一种金属作为母金属;
在基本惰性气氛中加热所述的金属至高于其溶点温度并将渗透和反应进行足够以形成熔融母金属体;
使所述的熔融母金属体与至少一种选自碳化硼、碳化硼和碳给体材料,碳化硼和硼给体材料的可渗性料块接触;维持上述温度足够的时间以使熔融母金属渗入上述可渗透性料块并使熔融母金属与碳给体材料和碳化硼反应,生成至少一种母金属含碳化合物和至少一种母金属含硼化合物;和
继续上述渗透和反应足够的时间使碳化硼反应完全,生成含有至少一种母金属含碳化合物和至少一种母金属含硼化合物的自支承体。
2、权利要求1的方法,其中所述的碳给体材料包括选自石墨粉和碳黑的材料。
3、权利要求1的方法,其中所述可渗透块包括碳化硼和硼。
4、权利要求2的方法,其中所述的碳给体材料包括含量为约5-75%(重)的碳黑。
5、权利要求4的方法,其中所述的碳给体材料包括含量为约5-50%(重)的碳黑。
6、权利要求5的方法,其中所述的碳给体材料包括含量约5%(重)的碳黑。
7、权利要求1的方法,其中母金属包括锆,ZrB2/ZrG比为约1。
8、权利要求1的方法,其中所述可渗透性料块包括碳化硼,并且所述可渗透性料块和所述熔融母金属体装在包括通气手段的石墨模中。
9、权利要求8的方法,其中所述的通气手段包括在石墨模上有多个通孔,石墨模上的通孔处在与母金属反应渗入碳化硼料块的方向相对应的位置。
10、权利要求9的方法,其中所述的多个通孔位于石墨模上与母金属反应渗入碳化硼料块的方向相对应的位置。
11、权利要求1的方法,其中所述可渗透料块包括碳化硼。
12、权利要求1的方法,其中还包括将选自氧化物,碳化物和硼化物的至少一种惰性填充剂与惰性填料混合形成所述料块,使熔融母体金属渗入和反应进入所述碳化硼料块而埋入所述惰性填充料,制成的复合体为所述自支承体。
13、权利要求12的方法,其中所述的自支承体包括由所述碳化硼料块和母金属反应生成的至少一种母金属含硼化合物和至少一种母金属含碳化合物。
14、权利要求13的方法,其进一步包括将选自氧化物,碳化物和硼化碳的至少一种惰性填充剂与该碳化硼混合形成料块,使熔融金属渗入和反应进入该碳化硼料块,从而埋入该惰性填充剂生成复合体为所述自支承体。
15、权利要求1的方法,其中将碳给体材料掺入所述与母金属反应的料块。
16、权利要求13的方法,其中母金属包括至少一种选自钛、锆、和铪的金属。
17、权利要求15的方法,其中所述的碳给体材料占所述料块的约5-10%(重)。
18、权利要求1的方法,其中所述的料块是按预定形状预成型的,向预成型的料块内渗入和反应产生相应于预型的自支承体。
19、权利要求12的方法,其中所述的填料包括至少一个选自纤维、须状物、颗粒、粉末、棒状、耐火布、网状泡沫、板、层状物、实心或空心球的填料。
20、权利要求12的方法,其中填料还包括保护性预涂层。
21、权利要求12或20的方法,其中填料包括至少一种选自带有保护性预涂层的氧化铝和碳。
22、权利要求21的方法,其中还包括将选自氧化物,碳化物和硼化物的至少一种惰性填料与所述料块混合,使熔融母体金属渗入和反应进入所述碳化硼料块而埋入所述填料,制成的复合体为具有包埋所述填料的基质的自支承体,所述基质包括未反应的母金属成分的金属相和至少一种母金属含硼化物。
23、按权利要求1方法制备的自支承体,包括至少一种选自锆,钛和铪的金属相以及与其三维相接并延伸至复合体外边缘的陶瓷相,所述陶瓷相包括至少一种选自锆的碳化物、钛的碳化物和铪的碳化物的碳化物,所述复合体还包括相应于所述碳化物的金属硼化物,所述硼化物具有层状结构。
24、权利要求23的自支承体,其中所述的自支承体含有母金属硼化物和母金属碳化物,这些化合物是由上述碳化硼和母金属反应生成的。
25、权利要求23的自支承体,其中所述的母金属包括锆,所述自支承体包括具有至少一种选自锆的硼化物、以及锆的硼化物和碳化物的混合物的锆化合物。
26、权利要求23的自支承体,其中所述的自支承体包括一金属相。
27、权利要求23的自支承体,其中所述的母金属包括锆,所述的自支承体包括选自锆的硼化物或锆的硼化物和锆的碳化物的混合物的一种锆化合物。
28、权利要求23的自支承体,其中所述的自支承体还包括锆。
29、权利要求23的自支承体,其中所述的母金属包括钛,所述的自支承体包括选自钛的硼化物或钛的硼化物和钛的碳化物的混合物的钛化合物。
30、权利要求23的自支承体,其中所述的母金属包括铪,所述的自支承体包括选自铪的硼化物或铪的硼化物和铪的碳化物的混合物的铪化合物。
31、权利要求23的自支承体,其中所述的自支承体还包括钛。
32、权利要求23的自支承体,其中所述的自支承体还包括钛。
33、权利要求23的自支承体,其中至少一种所述母金属含硼化合物呈层状结构。
34、权利要求23的自支承体,其中至少一种所述母金属含硼化合物呈层状结构。
35、权利要求23的自支承体,其中至少一种所述母金属含硼化合物呈层状结构。
36、权利要求23的自支承体,其中至少一种所述母金属含硼化合物呈层状结构。
37、权利要求23的自支承体,其中所述的金属相包括锆,所述碳化物包括锆的碳化物,所述硼化物包括锆的硼化物。
38、权利要求23的自支承体,其中所述支承体的断裂韧性为12MPa/m12。
39、权利要求1的方法,其中所述的母金属包括至少一种选自钛、锆和铪的金属。
CN88108147A 1987-12-23 1988-11-29 自支承体及其制备方法 Expired - Fee Related CN1022479C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US137044 1987-12-23
US137,044 1987-12-23
US07/137,044 US4940679A (en) 1987-07-15 1987-12-23 Process for preparing self-supporting bodies and products made thereby

Publications (2)

Publication Number Publication Date
CN1033616A CN1033616A (zh) 1989-07-05
CN1022479C true CN1022479C (zh) 1993-10-20

Family

ID=22475579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN88108147A Expired - Fee Related CN1022479C (zh) 1987-12-23 1988-11-29 自支承体及其制备方法

Country Status (29)

Country Link
US (1) US4940679A (zh)
EP (1) EP0322336B1 (zh)
JP (1) JP2667482B2 (zh)
KR (1) KR970001261B1 (zh)
CN (1) CN1022479C (zh)
AT (1) ATE89251T1 (zh)
AU (1) AU622121B2 (zh)
BG (1) BG60052B2 (zh)
BR (1) BR8806734A (zh)
CA (1) CA1318775C (zh)
CS (1) CS277307B6 (zh)
DD (1) DD283368A5 (zh)
DE (1) DE3880998T2 (zh)
DK (1) DK707388A (zh)
FI (1) FI885926A (zh)
HU (1) HUT52013A (zh)
IE (1) IE63073B1 (zh)
IL (1) IL88606A (zh)
IN (1) IN171524B (zh)
MX (1) MX166359B (zh)
NO (1) NO177092C (zh)
NZ (1) NZ227439A (zh)
PH (1) PH26405A (zh)
PL (1) PL156725B1 (zh)
PT (1) PT89318B (zh)
RO (1) RO102629B1 (zh)
RU (1) RU1830056C (zh)
YU (1) YU233288A (zh)
ZA (1) ZA889565B (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL86947A (en) * 1987-07-15 1992-08-18 Lanxide Technology Co Ltd Process for preparing self-supporting bodies and products made thereby
US4885130A (en) * 1987-07-15 1989-12-05 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5296417A (en) * 1987-07-15 1994-03-22 Lanxide Technology Company, Lp Self-supporting bodies
US5180697A (en) * 1987-07-15 1993-01-19 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5143870A (en) * 1987-12-23 1992-09-01 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
AU620360B2 (en) * 1987-12-23 1992-02-20 Lanxide Corporation A method of producing and modifying the properties of ceramic composite bodies
US5403790A (en) * 1987-12-23 1995-04-04 Lanxide Technology Company, Lp Additives for property modification in ceramic composite bodies
US5238883A (en) * 1989-01-13 1993-08-24 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5149678A (en) * 1989-01-13 1992-09-22 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5372178A (en) * 1989-01-13 1994-12-13 Lanxide Technology Company, Lp Method of producing ceramic composite bodies
US4885131A (en) * 1989-01-13 1989-12-05 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5187128A (en) * 1989-01-13 1993-02-16 Lanxide Technology Company, Lp Process for preparing self-supporting bodies
US4904446A (en) * 1989-01-13 1990-02-27 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
IL92396A0 (en) * 1989-01-13 1990-07-26 Lanxide Technology Co Ltd Method of producing ceramic composite bodies
US5077246A (en) * 1990-06-04 1991-12-31 Apollo Concepts, Inc. Method for producing composites containing aluminum oxide, aluminum boride and aluminum, and composites resulting therefrom
US5242710A (en) * 1990-06-25 1993-09-07 Lanxide Technology Company, Lp Methods for making self-supporting composite bodies and articles produced thereby
WO1992000256A2 (en) * 1990-06-25 1992-01-09 Lanxide Technology Company, Lp Composite bodies and methods for making same
IL98530A (en) * 1990-06-25 1996-06-18 Lanxide Technology Co Ltd Methods for creating self-supporting compound bodies and objects produced by them using parent metals in the form of vapors and elemental oxidants
US6113982A (en) * 1990-06-25 2000-09-05 Lanxide Technology Company, Lp Composite bodies and methods for making same
US5112654A (en) * 1990-06-25 1992-05-12 Lanxide Technology Company, Lp Method for forming a surface coating
US5674562A (en) * 1990-06-25 1997-10-07 Lanxide Technology Company, Lp Method for making self supporting composite bodies
US5250324A (en) * 1990-06-25 1993-10-05 Lanxide Technology Company, L.P. Method for forming a surface coating using powdered solid oxidants and parent metals
JPH06502379A (ja) * 1990-07-12 1994-03-17 ランキサイド テクノロジー カンパニー,リミティド パートナーシップ セラミックス複合体の接合方法
US5203488A (en) * 1990-07-12 1993-04-20 Lanxide Technology Company, Lp Method for joining ceramic composite bodies and articles formed thereby
US5098870A (en) * 1990-07-12 1992-03-24 Lanxide Technology Company, Lp Process for preparing self-supporting bodies having controlled porosity and graded properties and products produced thereby
EP0538417B1 (en) * 1990-07-12 1995-01-25 Lanxide Technology Company, Lp Joining methods for ceramic composite bodies
US5232040A (en) * 1990-07-12 1993-08-03 Lanxide Technology Company, Lp Method for reducing metal content of self-supporting composite bodies and articles formed thereby
US5458480A (en) * 1990-12-05 1995-10-17 Newkirk; Marc S. Tooling materials for molds
US5166105A (en) * 1990-12-10 1992-11-24 Lanxide Technology Company, Lp Process for preparing self-supporting ceramic composite bodies and bodies produced thereby
US5439744A (en) * 1991-06-25 1995-08-08 Lanxide Technology Company, Lp Composite bodies and methods for making same
US5435966A (en) * 1991-07-12 1995-07-25 Lanxide Technology Company, Lp Reduced metal content ceramic composite bodies
US5500182A (en) * 1991-07-12 1996-03-19 Lanxide Technology Company, Lp Ceramic composite bodies with increased metal content
US5214011A (en) * 1991-08-30 1993-05-25 Bfd, Incorporated Process for preparing ceramic-metal composite bodies
US5620791A (en) * 1992-04-03 1997-04-15 Lanxide Technology Company, Lp Brake rotors and methods for making the same
US5366686A (en) * 1993-03-19 1994-11-22 Massachusetts Institute Of Technology, A Massachusetts Corporation Method for producing articles by reactive infiltration
US5526914A (en) * 1994-04-12 1996-06-18 Lanxide Technology Company, Lp Brake rotors, clutch plates and like parts and methods for making the same
US5780164A (en) * 1994-12-12 1998-07-14 The Dow Chemical Company Computer disk substrate, the process for making same, and the material made therefrom
US5672435A (en) * 1994-12-12 1997-09-30 The Dow Chemical Company Hard disk drive components and methods of making same
US5855955A (en) * 1995-06-07 1999-01-05 Lanxide Technology Company L.P. Method for making self-supporting composite bodies
US5728638A (en) * 1996-08-21 1998-03-17 Bfd, Inc. Metal/ceramic composites containing inert metals
US6977060B1 (en) * 2000-03-28 2005-12-20 Siemens Westinghouse Power Corporation Method for making a high temperature erosion resistant coating and material containing compacted hollow geometric shapes
KR100431927B1 (ko) * 2001-04-19 2004-05-24 서울대학교 공과대학 교육연구재단 용침법을 통한 고밀도 탄화붕소-알루미늄 복합재료 제조방법
JP2003073796A (ja) * 2001-09-03 2003-03-12 Fuji Oozx Inc チタン系材料の表面処理方法
US6764620B1 (en) 2001-11-28 2004-07-20 The United States Of America As Represented By The United States Department Of Energy Reaction-forming method for producing near net-shape refractory metal carbides
IL166447A0 (en) * 2002-07-24 2006-01-15 Excera Materials Group Inc Improved ceramic/metal material and method for making same
WO2006022858A2 (en) * 2004-03-22 2006-03-02 Lanxide Technology Company Methods for extracting titanium metal and useful alloys from titanium oxides
CN102167591B (zh) * 2011-01-25 2013-02-27 中国人民解放军国防科学技术大学 ZrB2基复合材料的制备方法
FR3039169B1 (fr) * 2015-07-20 2017-07-21 Commissariat Energie Atomique Procede de fabrication d'une piece en un materiau composite al/al3b48c2
WO2017027006A1 (en) * 2015-08-10 2017-02-16 Halliburton Energy Services, Inc. Displacement elements in the manufacture of a drilling tool

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1229505B (de) * 1964-01-23 1966-12-01 Kempten Elektroschmelz Gmbh Verfahren zur Herstellung von Erdalkalimetallboriden und -carbiden
US3758662A (en) * 1971-04-30 1973-09-11 Westinghouse Electric Corp In carbonaceous mold forming dense carbide articles from molten refractory metal contained
US3864154A (en) * 1972-11-09 1975-02-04 Us Army Ceramic-metal systems by infiltration
GB1492477A (en) * 1976-04-21 1977-11-23 British Steel Corp Production of articles containing a hard phase
US4595545A (en) * 1982-12-30 1986-06-17 Eltech Systems Corporation Refractory metal borides and composites containing them
US4471059A (en) * 1983-02-04 1984-09-11 Shinagawa Refractories Co., Ltd. Carbon-containing refractory
US4713360A (en) * 1984-03-16 1987-12-15 Lanxide Technology Company, Lp Novel ceramic materials and methods for making same
DE3588005T2 (de) * 1984-05-18 1995-08-24 Mitsue Koizumi Verfahren zum Sintern von keramischen Körpern mit einer verteilten Metallverstärkung.
US4692418A (en) * 1984-08-29 1987-09-08 Stemcor Corporation Sintered silicon carbide/carbon composite ceramic body having fine microstructure
US4851375A (en) * 1985-02-04 1989-07-25 Lanxide Technology Company, Lp Methods of making composite ceramic articles having embedded filler
US4702770A (en) * 1985-07-26 1987-10-27 Washington Research Foundation Multipurpose boron carbide-aluminum composite and its manufacture via the control of the microstructure
US4777014A (en) * 1986-03-07 1988-10-11 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US4718941A (en) * 1986-06-17 1988-01-12 The Regents Of The University Of California Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets
IL86947A (en) * 1987-07-15 1992-08-18 Lanxide Technology Co Ltd Process for preparing self-supporting bodies and products made thereby

Also Published As

Publication number Publication date
KR890009808A (ko) 1989-08-04
AU622121B2 (en) 1992-04-02
NZ227439A (en) 1991-02-26
MX166359B (es) 1993-01-04
NO885589L (no) 1989-06-26
DE3880998T2 (de) 1993-10-28
FI885926A (fi) 1989-06-24
EP0322336A3 (en) 1990-07-11
JPH01294558A (ja) 1989-11-28
DE3880998D1 (de) 1993-06-17
DD283368A5 (de) 1990-10-10
AU2651488A (en) 1989-06-29
CS859588A3 (en) 1992-08-12
CN1033616A (zh) 1989-07-05
RO102629B1 (en) 1992-06-25
RU1830056C (ru) 1993-07-23
ZA889565B (en) 1990-08-29
NO885589D0 (no) 1988-12-16
PL276559A1 (en) 1989-08-21
PT89318A (pt) 1989-12-29
PL156725B1 (pl) 1992-04-30
HUT52013A (en) 1990-06-28
EP0322336B1 (en) 1993-05-12
PT89318B (pt) 1994-03-31
NO177092C (no) 1995-07-19
PH26405A (en) 1992-07-02
CS277307B6 (en) 1993-01-13
EP0322336A2 (en) 1989-06-28
IL88606A0 (en) 1989-07-31
DK707388A (da) 1989-06-24
DK707388D0 (da) 1988-12-20
IL88606A (en) 1992-12-01
IE883698L (en) 1989-06-23
US4940679A (en) 1990-07-10
ATE89251T1 (de) 1993-05-15
CA1318775C (en) 1993-06-08
NO177092B (no) 1995-04-10
YU233288A (en) 1990-02-28
KR970001261B1 (ko) 1997-02-04
JP2667482B2 (ja) 1997-10-27
IE63073B1 (en) 1995-03-22
IN171524B (zh) 1992-11-07
BG60052B2 (bg) 1993-08-16
BR8806734A (pt) 1989-08-29

Similar Documents

Publication Publication Date Title
CN1022479C (zh) 自支承体及其制备方法
CN1022236C (zh) 自支承体的制备方法
CN1022102C (zh) 自支承陶瓷体的制备方法
CN1022033C (zh) 自支承陶瓷体的生产方法
US5019539A (en) Process for preparing self-supporting bodies having controlled porosity and graded properties and products produced thereby
CN87101720A (zh) 制备自撑式材料的方法以及用其制造的产品
US5017334A (en) Process for preparing self-supporting bodies and products produced thereby
US5010044A (en) Process for preparing self-supporting bodies and products produced thereby
KR960007373B1 (ko) 자립체의 제조 방법
CN87106327A (zh) 生产复合陶瓷结构的改进方法
US5238883A (en) Process for preparing self-supporting bodies and products produced thereby
CN1044803A (zh) 陶瓷复合体的制备方法
US5232040A (en) Method for reducing metal content of self-supporting composite bodies and articles formed thereby
WO1992000939A2 (en) Reduced metal content ceramic composite bodies
US5435966A (en) Reduced metal content ceramic composite bodies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee