CN103091697B - 密闭地密封的辐射检测器和制作方法 - Google Patents

密闭地密封的辐射检测器和制作方法 Download PDF

Info

Publication number
CN103091697B
CN103091697B CN201210317543.7A CN201210317543A CN103091697B CN 103091697 B CN103091697 B CN 103091697B CN 201210317543 A CN201210317543 A CN 201210317543A CN 103091697 B CN103091697 B CN 103091697B
Authority
CN
China
Prior art keywords
closed cover
ray
panel
solder
sealer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210317543.7A
Other languages
English (en)
Other versions
CN103091697A (zh
Inventor
J.J.肖
C.P.加里甘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN103091697A publication Critical patent/CN103091697A/zh
Application granted granted Critical
Publication of CN103091697B publication Critical patent/CN103091697B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/06Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a phosphor layer

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明的名称是:“密闭地密封的辐射检测器和制作方法”。本文公开包含X线面板(102)和放置于X线面板(102)的第一表面上的闪烁体层(104)的平板X线检测器(100)。平板X线检测器(100)还包含覆盖闪烁体层(104)的密闭盖(108)。密闭盖(104)包含顶面(108‑1)和从顶面(108‑1)伸出的至少一个侧壁(108‑2)。平板X线检测器(100)还包含放置于密闭盖(108)与X线面板(102)之间的焊料密封物(110)。侧壁(108‑2)的边缘大体上嵌入到焊料密封物(110)中,以致边缘不直接接触X线面板(102)。还公开了用于制作平板X线检测器(100)的方法。

Description

密闭地密封的辐射检测器和制作方法
关于联邦资助的研究和开发的声明
本发明是在美国国土安全部所授予的合同号HSHQDC-08-C-00138下用政府支持而做出的。政府对本发明享有一定权利。
技术领域
本文所呈现的实施例通常涉及辐射检测器,并且特别地,涉及密闭地密封的辐射检测器。
背景技术
例如,在电子成像系统中有很多例如那些用于检测可见光、红外辐射、紫外辐射、X线等的辐射检测器。这样的辐射检测器典型地操作于可能引起对辐射检测器的损坏的环境中。例如,外来颗粒(例如灰尘和花粉)可能损坏可见光检测器。当暴露于环境条件(例如水分)时一些辐射检测器还可能经受物理改变。
例如,X线检测器包含闪烁材料,其可将X线光子转换为可见光光子。可见光光子然后可由耦合到闪烁材料的光电二极管阵列检测,以产生电信号用于进一步处理。闪烁材料包含离子材料,例如碘化铯(CsI)。CsI是具有针状晶体的晶体材料。CsI晶体展现潮解性的性质。CsI晶体具有吸取和保持水分子的倾向。CsI晶体的潮解性质引起进入闪烁材料的水分侵入,其损坏晶体结构,由此降低X线检测器的图像质量。
防止水分侵入的一些已知努力包含在X线玻璃面板上用密闭盖或半密闭盖密封闪烁材料。已知的半密闭的密封物典型地由有机材料(例如环氧密封剂)组成,用于提供从环境进入闪烁层的减少的水分扩散和侵入。然而,有机密封剂不为闪烁材料提供完全密闭的密封,并且因此,仍然引起对X线检测器的图像质量的损坏。
已经提出用金属性的密封剂(例如,焊料)代替有机密封剂。然而,在此过程期间可能在焊料密封物中形成空隙。这样的空隙可为水分入侵提供路径,因此,表现为无效的或实质上降级的密封物。此外,焊料密封物材料应该与X线面板和盖兼容。因此,盖材料的选择可能是有限的。另外,盖通过焊料密封物对X线面板的足够的附着可能是困难的,特别对于在其中X线检测器受机械应力的应用。
一些其它已知的努力要求施加引物(primer)到密闭盖或X线玻璃面板或两者,以改善密封剂的附着并且因此改善密封物的抗渗性。然而,此方案可能无法提供遍及闪烁材料的操作寿命的保护。另外,引物的施加在制作过程中加入条件的额外的控制。
类似地,许多其它努力包含改善涉及各种防潮层的薄膜沉积的密封物的方法。这些方法尽管有助于减少水分侵入和损坏的效果,但由于它们典型地涉及真空沉积而可能加入显著的处理复杂性和成本。
因此,存在着用于克服这些问题的密闭地密封这样的辐射检测器的方案的需要。
发明内容
以上和其它缺点/缺陷可以通过用于制作如本文所公开的平板(flat panel)X线检测器的方法的实施例来克服或减轻。该方法包含在X线面板上形成检测器阵列。另外,密闭盖(hermetic cover)使用超声波焊接(ultrasonic soldering)接合到X线面板。密闭盖包含顶面和至少一个侧壁。另外,侧壁的边缘(rim)嵌入到焊料密封物中,以致密闭盖的边缘不直接与X线面板接触。
本发明的平板X线检测器的实施例包含X线面板以及放置于X线面板的第一表面上的闪烁体层。平板X线检测器还包含覆盖闪烁体层的密闭盖。密闭盖包含顶面和从顶面伸出的至少一个侧壁。平板X线检测器还包含放置于密闭盖与X线面板之间的焊料密封物。侧壁的边缘大体上嵌入到焊料密封物中,以致边缘不直接接触X线面板。
根据另一实施例,本发明的器件包含平板基板和放置于平板基板的第一表面上的辐射感测结构。该器件还包含覆盖辐射感测结构的密闭盖。密闭盖包含顶面和从顶面伸出的至少一个侧壁并且对于由传感器所感测的辐射大体上是透射的。该器件还包含放置于密闭盖与平板基板之间的焊料密封物。侧壁的边缘大体上嵌入到焊料密封物中,以致边缘不直接接触平板基板。
附图说明
当参考附图阅读下文的详细描述时,本系统和技术的这些和其它特征、方面以及优点将变得更好理解,其中在通篇附图中类似的字符表示类似的部件,其中:
图1图示根据一个实施例的示例平板X线检测器的示意剖面;
图2图示根据另一实施例的示例平板X线检测器的示意剖面;
图3图示根据一个实施例的用于制作平板X线检测器的示例器件;以及
图4是图示根据一个实施例的制作辐射检测器的示例方法的流程图。
具体实施方式
将在下文中参考附图更充分地描述各实施例。这样的实施例不应解释为限制。例如,可以在其它实施例以及甚至其它类型的装置中利用一个或多个方面。在附图中,相同标号指代相同元件。
在以下描述中,阐述具体细节(例如,具体的数量、尺寸等)以提供对实施例的彻底的理解。然而,没有这样的具体细节也可实践本文所呈现的实施例。在很多情况中,已经省略关于这样的考虑等的细节,因为这样的细节对获得各实施例的完全的理解是不必要的并且在相关领域普通技术人员的技术之内。
一般地参考附图,图示是为了描述特定实施例的目的并且不旨在限制。
参考图1,示出了根据一实施例的用于采集X线图像的示例平板X线检测器100。在一个实施例中,平板X线检测器100包含X线面板102、闪烁体层104、反射层106以及密闭盖108。密闭盖108还包含顶面108-1以及从顶面108-1伸出的至少一个侧壁108-2。在一个示例实现中,至少一个侧壁108-2可以与顶面108-1垂直。在备选实现中,至少一个侧壁108-2可以从顶面108-1以合适的角度倾斜。密闭盖108嵌入到放置于X线面板102上的焊料密封物110中,以致在此示例中密闭盖108不与X线面板102进行直接接触。密闭盖108与焊料密封物110一起形成盖组件,其放置于X线面板102上用于保护闪烁体层104防止水分侵入。根据一个实施例,密闭盖108使用超声波焊接技术耦合到X线面板102。尽管本文所呈现的实施例参考平板X线检测器,但是本公开可以扩展到任何辐射检测器,例如用于检测可见光、红外辐射、紫外辐射等的检测器。
X线管(图1中未示出)可通过目标送出X线光子束,该目标例如测试下的对象或患者。未被靶吸收的X线光子,撞击闪烁体层104。闪烁体层104可将未吸收的X线光子转换为可见光光子。在一个实施例中,闪烁体层104包含例如碘化铯(CsI)等离子材料,尽管任何其它合适的离子材料,例如,用铊掺杂的碘化铯晶体(CsI:TI)、铊掺杂的碘化钠(NaI:TI)、用钠掺杂的碘化铯晶体(CsI:Na)、溴化镧(LaBR3)、碘化铈(CeI)以及硫氧化钆,可以用于闪烁体层104中。
在一个实施例中,X线面板102包含多个光电传感器元件(图1中未示出)。多个光电传感器元件可以按很多定向来排列,例如,按列和行。光电传感器元件从闪烁体层104检测可见光并且将可见光转换为对应的电信号。电信号可用于生成X线图像。在本领域中已知的任何技术可用于从电信号生成X线图像。在一个示例实现中,光电二极管用作光电传感器元件。任何其它类型的换能器可用于将入射的可见光转换为适当的输出信号。
在一个实施例中,反射层106可放置于闪烁体层104上。反射层106将从闪烁体层104发射的可见光反射回光电传感器元件。
根据一个实施例,密闭盖108包含对所希望的能量范围内的辐射大体上透明的材料。在当前示例中,密闭盖108包含对X线大体上透明的材料。在一个示例中,密闭盖108可以由例如铝、不锈钢、铜以及镍等金属的片制成。在另一示例中,密闭盖108可以由玻璃、石墨或高温聚合物(例如,聚醚酰亚胺等)制成。在又一实施例中,密闭盖108可以由复合材料片(例如,在两侧用铝箔层压的碳纤维复合片)制成。这些示例仅仅是说明性的并且密闭盖可以由任何其它合适的材料制成。
在一示例中,焊料密封物110包含低温合金(例如,铟-锡合金),尽管还可以使用任何其它合适的焊料材料(例如,纯铟或铅-铋合金)。在一个实施例中,侧壁108-2的边缘大体上嵌入到焊料密封物110中,以致在此示例中边缘不与X线面板102直接接触。在一实施例中,密闭盖108使用超声波焊接技术焊接到X线面板102。
X线面板102与密闭盖108之间的间隙减少了焊料密封物110中的空隙、氧化物和其它外来颗粒形成用于水分侵入的通路的可能性,并且由此减少了密闭盖108的密闭质量降低的可能性。
图2图示根据另一实施例的示范性平板X线检测器200。平板X线检测器200包含密闭盖208。密闭盖208包含顶面208-1和至少一个侧壁208-2。密闭盖208还包含凸缘部分208-3,以下与边缘可互换地称作底脚(feet)。在一个实施例中,底脚208-3大体上完全嵌入到焊料密封物110中以致密闭盖208不与X线面板102直接接触。在当前示例中,底脚208-3在大体上水平方向如图2所示地从边缘向外突出。在另一实现中,底脚208-3可从边缘向内突出。在又一实现中,底脚208-3的一部分可从边缘向外突出并且底脚208-3的剩余部分可从边缘向内突出。底脚208-3改善密闭盖208对X线面板102的附着,由此增加连结的机械强度。
图3是用于制作平板X线检测器的示范性器件300的简化的示意图。器件300包含夹具302,其具有底部部分302-1和顶部部分302-2。夹具302还可在底部部分302-1和顶部部分302-2分别包含一个或多个加热元件308-1和308-2。在一个实现中,夹具302控制温度并且安置用于X线检测器的制作的X线面板102和密闭盖。X线面板,例如X线面板102,具有在其上形成的闪烁体层和反射层并且施加到X线面板102上的焊料密封物110放置于基底部分302-1上。一个或多个加热元件可用于将X线面板102加热到刚好高于焊料密封物110的熔点的温度。另外,X线面板102可以使用合适的已知方法来对准,例如,使用一个或多个限制销。在一个实施例中,基底部分302-1可包含一系列孔并且可连接到用于在适当的地方固定X线面板102的真空线。
顶部部分302-2悬置密闭盖,例如,密闭盖208悬置在X线面板102上。在一实现中,密闭盖208例如可以在超声清洗槽中预清洗以移除表面氧化物或其它污染物。焊料密封物的一部分还可以施加到密闭盖208的边缘和/或底脚。在一个实现中,自动焊接系统可配置为通过使用超声波焊接施加焊料以维持良好的附着。超声波焊接技术提供焊料密封物对密闭盖208的边缘208-3和/或底脚的足够的湿润和强大的金属间接合而不使用焊剂。在另一实现中,焊接过程可以在惰性气体环境中进行以减少密闭盖208的氧化。
在一个实现中,在边缘和/或底脚带焊料密封物的密闭盖208可以通过一个或多个真空口依附于夹具302的顶部部分302-2的下侧。在示例实现中,真空口可以存在于顶部部分302-2的下侧并且可以连结到顶部部分302-2的一侧的主真空源。真空口和主真空源可以配置为将密闭盖208依附于顶部部分302-2的下侧。当移除真空时,密闭盖208可以从顶部部分302-2的下侧释放。
顶部部分302-2还配置为降低密闭盖208以致密闭盖208与焊料预制110接触。在一个实施例中,密闭盖208在X线面板102上悬置大约0.5毫米的距离。夹具302的加热元件308-1和308-2可以配置为加热X线面板102和/或密闭盖208到刚好高于焊料密封物110的熔点的温度以熔化焊料密封物110。另外,进一步降低密闭盖208以致密闭盖208的边缘和/或底脚大体上完全悬置到熔化的焊料密封物110而不触碰X线面板102。在一个实施例中,一个或多个测微计304-1和304-2,在下文中统称为测微计304,配置为调整顶部部分302-2与基底部分302-1之间的距离。在一实施例中,测微计304可以放置在组件夹具的四个角落。
器件300还可包含搅动设备(图3中未示出)用于搅动焊料密封物110。搅动焊料密封物以确保施加到X线面板102和/或密闭盖208上的焊料密封物的湿润,以确保强的金属间接合完整性和/或以移开任何空隙、氧化物和/或陷入到焊料密封物的表面的焊料密封物的微粒。在一个实施例中,搅动设备可以是超声地搅动焊料密封物的任何已知的超声搅动器。在另一实施例中,可以使用机械振动来机械搅动焊料密封物。在一个实现中,器件300可包含超声设备,其用于通过焊料密封物110和/或密闭盖208传递超声振动。密闭盖108和X线面板102可以经由焊料密封物110接合。
在备选实施例中,器件300在氮气氛中包含于炉中。在此情况下,器件300可以不包含加热元件308-1和308-2。替代地,炉自身可被加热到刚好高于焊料密封物的熔点以熔化焊料密封物110。氮气氛帮助防止焊料密封物110的氧化,并且因此可在密封过程期间限制水分侵入到闪烁体层。
现在参考图4,示出图示根据一个实施例制作平板X线检测器的示范性方法400的流程图。在步骤402,在X线面板上形成光电传感器阵列。在一个实施例中,光电传感器阵列可以按任何定向来排列。在示例实现中,光电传感器可包含光电二极管。另外,闪烁体层形成于X线面板上。此外,反射层可以置于闪烁体层上。然后,具有闪烁体层和反射层的X线面板置于具有用于加热X线面板的加热元件的组件夹具的平底板上。
另外,在步骤404,在X线面板上施加焊料密封物。在一个实施例中,焊料密封物施加到X线面板的边界。焊料密封物的示例包含低温合金,例如,铟-锡合金。在另外的实现中,焊料密封物可包含纯铟焊料或铅-铋合金。在一个示例实施例中,焊料密封物的预制带放置于X线面板上。备选地,焊料密封物可以是线或任何其它合适的形状。
在步骤406,在密闭盖上施加焊料密封物。在一个实施例中,密闭盖可以在超声清洗槽中预清洗以移除表面氧化物和其它污染物。然后,焊料密封物可以施加到密闭盖的边缘和/或底脚。在另一实施例中,焊料密封物可以直接施加到X线面板和密闭盖上。
然后,在步骤408,使用超声波焊接技术将密闭盖接合到X线面板。对此,X线面板和/或密闭盖可以使用组件夹具来对准。在一个实施例中,对准密闭盖和X线面板以致密闭盖的边缘和/或底脚直接地放置于焊料密封物上,焊料密封物放置于X线面板上。然后,可加热密闭盖和X线面板到刚好高于焊料密封物的熔点的温度。在一个实施例,使用组件夹具中的一个或多个加热元件来加热密闭盖和X线面板。密闭盖然后进一步降低到X线面板上的熔化的焊料密封物中。在一个示例中,密闭盖的侧壁的边缘和/或底脚大体上嵌入到焊料密封物中以致密闭盖不直接与X线面板接触。在一个实施例中,侧壁的边缘可包含从侧壁水平地凸出的凸缘部分,并且凸缘部分可以大体上嵌入到焊料密封物中。在一个实施例中,远离高度(即密闭盖与X线面板之间的距离)可以使用放置于组件夹具的四个角落的一个或多个测微计来维持。
然后,焊料密封物可以使用超声振动来搅动以便密闭盖和X线面板接合在一起。在一个实施例中,密闭盖可以通过缓慢地以及轻柔地振动密闭盖以搅动焊料密封物来接合到X线面板,由此引起焊料密封物连结X线面板和密闭盖。在另一实施例中,焊料密封物可以通过使用超声振动来搅动,超声振动导致将密闭盖和X线面板焊接在一起。一旦密闭盖接合到X线面板,可以冷却X线面板和密闭盖以固化焊料密封物。一旦焊料密封物固化,可以移除耦合到夹具的真空源并且可以释放密闭地密封的X线检测器。
虽然本发明已经仅以可考虑的细节参考一些示范性实施例进行描述,但将意识到其并不旨在将本发明仅限制于这些实施例,这是因为可以在实质上不背离本发明的范围的情况下对所公开的实施例做出各种修改、省略、增加以及代替。此外,在不背离本发明实质范围的情况下,可以做出很多修改以适应特定情形或装备。因此,应理解以上发明已经通过说明并非限制的方式来描述。因此,其旨在覆盖所有修改、省略、增加、替换等,其可包含于如权利要求所定义的本发明的范围和精神。
元件列表
100 平板X线检测器
102 X线面板
104 闪烁体层
106 反射层
108 密闭盖
110 焊料密封物
200 平板X线检测器
208 密闭盖
300 器件
302 夹具
304 测微计
308 加热元件。

Claims (10)

1.一种检测器,包含:
X线面板(102);
闪烁体层(104),放置于所述X线面板(102)的第一表面;
密闭盖(108),覆盖所述闪烁体层(104),其中所述密闭盖(108)包含顶面(108-1)和从所述顶面(108-1)伸出的至少一个侧壁(108-2);以及
焊料密封物(110),放置于所述密闭盖(108)和所述X线面板(102)之间,其中所述侧壁(108-2)的边缘嵌入到所述焊料密封物(110)中,由此所述边缘不直接接触所述X线面板(102)。
2.如权利要求1所述的检测器,其中所述密闭盖(108)包含铝、不锈钢、铜、镍以及聚醚酰亚胺中的至少一个。
3.如权利要求1所述的检测器,其中所述边缘包含凸缘部分,其中所述凸缘部分完全嵌入到所述焊料密封物中。
4.如权利要求1所述的检测器,其中所述闪烁体层(104)包含碘化铯(CsI)、用铊掺杂的碘化铯晶体(CsI:Tl)、铊掺杂的碘化钠(NaI:Tl)、用钠掺杂的碘化铯晶体(CsI:Na)、溴化镧(LaBr3)以及碘化铈(CeI)中的至少一个。
5.一种检测器制作方法,包含:
在X线面板(102)上形成检测器元件阵列;以及
使用超声波焊接将密闭盖(108)接合到所述X线面板(102),其中所述密闭盖(108)包含顶面(108-1)和从所述顶面(108-1)伸出的至少一个侧壁(108-2),并且其中所述侧壁(108-2)的边缘嵌入到焊料密封物(110)中,由此所述边缘不直接接触所述X线面板(102)。
6.如权利要求5所述的方法,还包括在所述X线面板(102)上放置所述焊料密封物(110)的预制带。
7.如权利要求5所述的方法,还包含使用超声能量施加所述焊料密封物(110)到所述密闭盖(108)的所述侧壁(108-2)的所述边缘。
8.如权利要求5所述的方法,还包含使用超声能量搅动所述焊料密封物(110)。
9.一种检测器件,包含:
平板基板;
辐射感测结构,位于所述平板基板的第一表面上;
密闭盖(108),覆盖所述辐射感测结构,其中所述密闭盖(108)包含顶面(108-1)和从所述顶面(108-1)垂直地伸出的侧壁(108-2),并且其中所述密闭盖(108)对辐射大体上透明;以及
焊料密封物(110),放置于所述密闭盖(108)和所述平板基板之间,其中所述侧壁(108-2)的边缘嵌入到所述焊料密封物(110)中,由此所述边缘不直接接触所述平板基板。
10.如权利要求9所述的器件,其中所述焊料密封物(110)包含铟-锡合金、纯铟以及铅-铋合金中的至少一个。
CN201210317543.7A 2011-10-31 2012-08-31 密闭地密封的辐射检测器和制作方法 Active CN103091697B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/285,905 2011-10-31
US13/285905 2011-10-31
US13/285,905 US8415628B1 (en) 2011-10-31 2011-10-31 Hermetically sealed radiation detector and methods for making

Publications (2)

Publication Number Publication Date
CN103091697A CN103091697A (zh) 2013-05-08
CN103091697B true CN103091697B (zh) 2017-04-19

Family

ID=47999209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210317543.7A Active CN103091697B (zh) 2011-10-31 2012-08-31 密闭地密封的辐射检测器和制作方法

Country Status (4)

Country Link
US (1) US8415628B1 (zh)
JP (1) JP6125175B2 (zh)
CN (1) CN103091697B (zh)
FR (1) FR2982067B1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185123A (ja) * 2011-03-08 2012-09-27 Sony Corp 放射線撮像装置および放射線撮像装置の製造方法
JP6312400B2 (ja) * 2013-10-17 2018-04-18 キヤノン株式会社 放射線撮影装置
US9515276B2 (en) 2014-09-02 2016-12-06 General Electric Company Organic X-ray detector and X-ray systems
US9535173B2 (en) 2014-09-11 2017-01-03 General Electric Company Organic x-ray detector and x-ray systems
US9581701B2 (en) * 2014-12-16 2017-02-28 Carestream Health, Inc. Impact protection for wireless digital detector glass panel
US9939295B2 (en) 2014-12-16 2018-04-10 Carestream Health, Inc. Impact protection for wireless digital detector glass panel
US9513383B1 (en) 2015-06-03 2016-12-06 Perkinelmer Holdings, Inc. Scintillator sealing with foil
US10299744B2 (en) 2016-11-17 2019-05-28 General Electric Company Scintillator sealing for solid state x-ray detector
US10631801B2 (en) 2016-11-17 2020-04-28 General Electric Company Scintillator sealing for solid state X-ray detector
US9871073B1 (en) * 2016-11-22 2018-01-16 General Electric Company Scintillator sealing for solid state X-ray detector
US9812510B1 (en) 2016-12-14 2017-11-07 General Electric Company Packaging organic photodetectors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1653357A (zh) * 2002-03-22 2005-08-10 通用电气公司 仪器封装和集成的辐射检测器
CN101849198A (zh) * 2007-11-09 2010-09-29 皇家飞利浦电子股份有限公司 吸湿性闪烁体的保护
CN101861528A (zh) * 2007-11-20 2010-10-13 东芝电子管器件株式会社 放射线检测器及其制造方法
CN102193104A (zh) * 2010-02-18 2011-09-21 佳能株式会社 放射线检测器和放射线检测系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2884356B2 (ja) * 1989-10-25 1999-04-19 コニカ株式会社 放射線画像変換パネル
JP2821062B2 (ja) * 1992-07-09 1998-11-05 浜松ホトニクス株式会社 半導体エネルギー検出器の製造方法
US5641984A (en) 1994-08-19 1997-06-24 General Electric Company Hermetically sealed radiation imager
AU5878798A (en) 1997-02-14 1998-09-08 Hamamatsu Photonics K.K. Radiation detection device and method of producing the same
US6172371B1 (en) 1998-06-15 2001-01-09 General Electric Company Robust cover plate for radiation imager
US7034306B2 (en) 1998-06-18 2006-04-25 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
CN1241233C (zh) 1998-07-27 2006-02-08 东芝株式会社 X射线显象管及其制造方法
US6949750B2 (en) * 2000-03-30 2005-09-27 Matsushita Electric Industrial Co., Ltd. Radiation detecting element and method of manufacturing the same
US7053381B2 (en) 2001-12-06 2006-05-30 General Electric Company Dual para-xylylene layers for an X-ray detector
US6642524B2 (en) 2002-01-09 2003-11-04 Ge Medical Systems Global Technology Company, Llc Scintillator sealing for solid state X-ray detector
US6921909B2 (en) 2002-08-27 2005-07-26 Radiation Monitoring Devices, Inc. Pixellated micro-columnar films scintillator
JP4280507B2 (ja) * 2003-01-24 2009-06-17 キヤノン株式会社 放射線検出装置の製造方法
US7473903B2 (en) 2003-02-12 2009-01-06 General Electric Company Method and apparatus for deposited hermetic cover for digital X-ray panel
US7355184B2 (en) * 2003-04-07 2008-04-08 Canon Kabushiki Kaisha Radiation detecting apparatus and method for manufacturing the same
US7062012B1 (en) 2004-12-09 2006-06-13 Hewlett-Packard Development Company, L.P. Leak detection of sealed objects using x-ray imaging
JP5089195B2 (ja) 2006-03-02 2012-12-05 キヤノン株式会社 放射線検出装置、シンチレータパネル、放射線検出システム及び放射線検出装置の製造方法
US7608837B2 (en) 2006-11-24 2009-10-27 Tower Semiconductor Ltd. High resolution integrated X-ray CMOS image sensor
US7519158B2 (en) 2006-12-12 2009-04-14 General Electric Company Pumping schemes for X-ray tubes with ferrofluid seals
JP5305996B2 (ja) * 2009-03-12 2013-10-02 株式会社東芝 放射線検出器およびその製造方法
WO2011044199A1 (en) 2009-10-06 2011-04-14 Stellarray, Inc. Digitally addressed flat panel x-ray sources
US8530847B2 (en) * 2009-11-16 2013-09-10 Saint-Gobain Ceramics & Plastics, Inc. Scintillation article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1653357A (zh) * 2002-03-22 2005-08-10 通用电气公司 仪器封装和集成的辐射检测器
CN101849198A (zh) * 2007-11-09 2010-09-29 皇家飞利浦电子股份有限公司 吸湿性闪烁体的保护
CN101861528A (zh) * 2007-11-20 2010-10-13 东芝电子管器件株式会社 放射线检测器及其制造方法
CN102193104A (zh) * 2010-02-18 2011-09-21 佳能株式会社 放射线检测器和放射线检测系统

Also Published As

Publication number Publication date
CN103091697A (zh) 2013-05-08
US20130105696A1 (en) 2013-05-02
JP6125175B2 (ja) 2017-05-10
FR2982067B1 (fr) 2017-03-24
US8415628B1 (en) 2013-04-09
FR2982067A1 (fr) 2013-05-03
JP2013096985A (ja) 2013-05-20

Similar Documents

Publication Publication Date Title
CN103091697B (zh) 密闭地密封的辐射检测器和制作方法
JP4293299B2 (ja) 固体放射線撮像装置アセンブリ
CN103370637A (zh) 辐射检测设备和辐射检测系统
CN101952991B (zh) 用于电子元件封装的方法和设备
CN106461794B (zh) X射线探测器面板
US9054012B2 (en) Radiation detection apparatus and method of manufacturing the same
US11195874B2 (en) Detach and reattach of a flexible polyimide based X-ray detector
KR102154133B1 (ko) 타일형 x-선 이미저 패널 및 그 제조 방법
JP6576064B2 (ja) 放射線検出装置、放射線撮像システム及び放射線検出装置の製造方法
JP2010043887A (ja) 放射線検出パネルの製造方法、放射線画像検出器の製造方法、放射線検出パネル、および放射線画像検出器
JP2014071031A (ja) 検出装置の製造方法及び検出装置、並びに放射線検出システム
CN110178052B (zh) 用于固态x射线检测器的闪烁体密封
CN110612605B (zh) 数字射线照相图像传感器
KR101202787B1 (ko) 엑스선 검출장치 및 이의 제조방법
JP2002520577A (ja) ベント型シーム付き広域x線イメージャおよび前記広域x先イメージャの作成方法
JP2010276571A (ja) シンチレータパネルおよび放射線画像検出装置
JP2010237138A (ja) 放射線検出装置
JP2017223632A (ja) 放射線検出装置及びその製造方法
US20240210578A1 (en) Scintillator panel, and radiation detector
JP4501238B2 (ja) マルチスライス放射線検出器
JP6643098B2 (ja) 放射線検出装置、放射線検出システム、及び、放射線検出装置の製造方法
CN116724252A (zh) 放射线检测器和放射线检测器的制造方法
JP6478645B2 (ja) 撮影装置、及び撮影システム
KR20110063243A (ko) 엑스선 검출장치 및 이의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant