CN103050640B - 一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法 - Google Patents

一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法 Download PDF

Info

Publication number
CN103050640B
CN103050640B CN201310033723.7A CN201310033723A CN103050640B CN 103050640 B CN103050640 B CN 103050640B CN 201310033723 A CN201310033723 A CN 201310033723A CN 103050640 B CN103050640 B CN 103050640B
Authority
CN
China
Prior art keywords
zno
nano
nanorod
particle
silicodioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310033723.7A
Other languages
English (en)
Other versions
CN103050640A (zh
Inventor
孙晔
尹永琦
于淼
刘潇
杨彬
曹文武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201310033723.7A priority Critical patent/CN103050640B/zh
Publication of CN103050640A publication Critical patent/CN103050640A/zh
Application granted granted Critical
Publication of CN103050640B publication Critical patent/CN103050640B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法,它涉及一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法。本发明是要解决现有ZnO/SiO2纳米颗粒复合结构极易流失和团聚,无法有效固定于基片表面,不利于器件加工以及现有ZnO/SiO2核壳结构纳米棒中ZnO纳米棒直径降低存在下限,制约进一步优化其发光效率和其它特性的问题,方法为:一、制备ZnO陶瓷靶材;二、清洗衬底;三、制备ZnO籽晶层;四、制备超细ZnO纳米棒阵列;五、制备氧化锌纳米颗粒/二氧化硅复合结构纳米棒。本发明应用于研制和开发发光、光探测、生物分子探测、气体传感、超疏水疏油、光催化等器件应用领域。

Description

一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法
技术领域
本发明涉及一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法。
背景技术
氧化锌(ZnO)是II-VI族直接带隙宽禁带(Eg=3.25~3.5eV)半导体材料。它具有近紫外光发射特性、分子传感特性和生物相容性等诸多优异性能。而基于小尺寸效应、量子局限效应等物理化学效应ZnO纳米材料已经被证明可以展现出相比体材料更优异的光发射、催化活性以及分子传感等特性。由于ZnO纳米材料特性优异,易于实现形貌控制,图案化生长和器件加工,特别是ZnO储量丰富、价格低廉,ZnO纳米材料已经被证实在发光器件、气体和生物分子传感器、紫外光探测器、太阳能电池等方面有着非常重要的应用前景。
在众多不同形貌的ZnO纳米材料中,ZnO纳米棒不仅可以通过多种制备工艺实现其直径和长度的控制生长,进而实现特性的有效调制,而且可以被制备在衬底表面形成高取向的纳米棒垂直阵列,有利于相关器件加工。ZnO纳米棒已经成为当前材料科学领域中的热点并被广泛应用于不同的电子器件研发和产业化应用。
为了推进ZnO纳米材料的器件应用,人们需要进一步优化ZnO纳米材料的形貌控制以及制备加工工艺,特别是实现具有更大比表面积ZnO纳米材料的制备和器件应用。针对这一实际问题目前主要的两个研究突破方向为:(1)进一步降低ZnO纳米棒的直径,制备出超细ZnO纳米棒及其阵列。这一努力方向的主要瓶颈为降低ZnO纳米棒直径的限制,截止目前已报到的ZnO纳米棒最细直径约为20nm。而在ZnO纳米棒直径很小时,其物理化学稳定性受到了质疑;(2)制备ZnO纳米颗粒,其粒径可以小到几个纳米。但ZnO纳米颗粒不仅同样面临稳定性的质疑,更因为易于团聚降低有效表面积导致特性退化,且易流失不利于器件加工而在很大程度上限制了其应用前景。
SiO2具有优良的透光率、化学惰性、热稳定性、无毒性,以及良好的生物相容性。利用SiO2分别包覆ZnO纳米棒制备的ZnO/SiO2核壳结构纳米棒和包覆ZnO纳米颗粒制备的ZnO/SiO2纳米颗粒复合结构可以改善ZnO纳米材料稳定性的问题,但是并不能解决降低ZnO纳米棒直径的瓶颈以及它们不利于器件加工的限制。一种新型的ZnO纳米颗粒/SiO2复合结构纳米棒(SiO2纳米棒中包含高密度单分散的ZnO纳米颗粒)将为全面推进ZnO纳米材料的性能优化和实现器件加工提供全新的途径。
发明内容
本发明是要解决现有ZnO/SiO2纳米颗粒复合结构极易流失和团聚,无法有效固定于基片表面,不利于器件加工以及现有ZnO/SiO2核壳结构纳米棒中ZnO纳米棒直径降低存在下限,制约进一步优化其发光效率和其它特性的问题,提供了一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法。
本发明一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法,是通过以下步骤进行:
一、ZnO陶瓷靶材的制备:利用固相烧结法制备ZnO陶瓷靶材;
二、将衬底采用99.5wt%丙酮、99.7wt%乙醇、18MΩ的去离子水和99.5wt%甲醇依次进行超声清洗5~60min,得到清洗后的衬底;
三、ZnO籽晶层的制备:利用脉冲激光沉积法、磁控溅射、旋涂法、化学气相沉积法或热传输法在清洗后的衬底上制备ZnO籽晶层,得到具有ZnO籽晶层的衬底;
四、超细ZnO纳米棒阵列的制备:利用水热法、脉冲激光衬底法、热蒸发气相沉积法、化学气相沉积法或热传输法在具有ZnO籽晶层的衬底上生长直径为5~100nm ZnO纳米棒阵列,得到超细ZnO纳米棒阵列;
五、氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备:以1~100mL无水乙醇作为溶剂,加入10μL~1000μL硅源材料,搅拌1~30min,然后将超细ZnO纳米棒阵列浸入溶剂中,继续搅拌1~30min,再加入1~30mL碱性催化剂,室温下反应1~48h后取出,依次用去离子水和无水乙醇或甲醇超声清洗1~60min后烘干,即得到氧化锌纳米颗粒/二氧化硅复合结构纳米棒。
本发明的制备方法简单,环境友好,材料存储丰富易得,成本低廉;本发明制备的氧化锌纳米颗粒/二氧化硅复合结构纳米棒直接生长在衬底上,不仅大幅提高了材料本身的发光效率,更有利于相关器件的集成和研发。本发明实现了具有c轴择优取向的超细ZnO纳米棒阵列的控制生长,进而实现了经过SiO2修饰后具有单分散均匀分布小尺径ZnO纳米颗粒的ZnO纳米颗粒/SiO2复合结构纳米棒阵列的可控生长。生长于衬底上的ZnO纳米颗粒/SiO2复合结构纳米棒阵列,其生长参数易于控制,重复性好,利于器件集成和工业化生产。
附图说明
图1是试验1中步骤四制备的ZnO纳米棒阵列SEM图的俯视图;
图2是试验1中步骤四制备的ZnO纳米棒阵列SEM图的截面图;
图3是试验1制备的氧化锌纳米颗粒/二氧化硅复合结构纳米棒SEM图的俯视图;
图4是试验1制备的氧化锌纳米颗粒/二氧化硅复合结构纳米棒SEM图的截面图;
图5是试验1制备的氧化锌纳米颗粒/二氧化硅复合结构纳米棒的低分辨透射电镜图;
图6是试验1制备的氧化锌纳米颗粒/二氧化硅复合结构纳米棒的高分辨透射电镜图;
图7是ZnO纳米棒和试验1制备的氧化锌纳米颗粒/二氧化硅复合结构纳米棒的光致发光谱线,其中a为本试验制备的氧化锌纳米颗粒/二氧化硅复合结构纳米棒的光致发光谱线,b为ZnO纳米棒的光致发光谱线。
具体实施方式:
具体实施方式一:本实施方式一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法,是通过以下步骤进行:
一、ZnO陶瓷靶材的制备:利用固相烧结法制备ZnO陶瓷靶材;
二、将衬底采用99.5wt%丙酮、99.7wt%乙醇、18MΩ的去离子水和99.5wt%甲醇依次进行超声清洗5~60min,得到清洗后的衬底;
三、ZnO籽晶层的制备:利用脉冲激光沉积法、磁控溅射、旋涂法、化学气相沉积法或热传输法在清洗后的衬底上制备ZnO籽晶层,得到具有ZnO籽晶层的衬底;
四、超细ZnO纳米棒阵列的制备:利用水热法、脉冲激光衬底法、热蒸发气相沉积法、化学气相沉积法或热传输法在具有ZnO籽晶层的衬底上生长直径为5~100nm ZnO纳米棒阵列,得到超细ZnO纳米棒阵列;
五、氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备:以1~100mL无水乙醇作为溶剂,加入10μL~1000μL硅源材料,搅拌1~30min,然后将超细ZnO纳米棒阵列衬底浸入溶剂中,继续搅拌1~30min,再加入1~30mL碱性催化剂,室温下反应1~48h后取出,依次用去离子水和无水乙醇或甲醇超声清洗1~60min后烘干,即得到氧化锌纳米颗粒/二氧化硅复合结构纳米棒。
本实施方式的制备方法简单,环境友好,材料存储丰富易得,成本低廉;本实施方式制备的氧化锌纳米颗粒/二氧化硅复合结构纳米棒直接生长在衬底上,不仅大幅提高了材料本身的发光效率,更有利于相关器件的集成和研发。本实施方式实现了具有c轴择优取向的超细ZnO纳米棒阵列的控制生长,进而实现了经过SiO2修饰后具有单分散均匀分布小尺径ZnO纳米颗粒的ZnO纳米颗粒/SiO2复合结构纳米棒的可控生长。生长于衬底上ZnO纳米颗粒/SiO2复合结构纳米棒阵列,其生长参数易于控制,重复性好,利于器件集成和工业化生产。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤二的衬底为硅片、二氧化硅片、蓝宝石片或玻璃片。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤五中的硅源材料为正硅酸乙酯(TEOS)、正硅酸甲酯(TMOS)、3-氨丙基三乙氧基硅烷(APTES)或硅酸钠。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤五中的碱性催化剂为5~28wt%的氨水、96wt%氢氧化钠、90wt%氢氧化钾或99wt%六次甲基四胺溶液。其它与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤五中的烘干为在50~300℃的条件下烘干1~120min。其它与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤五中加入加入的超细ZnO纳米棒阵列为具有ZnO晶体c轴择优取向的超细ZnO纳米棒阵列。其它与具体实施方式一至五之一相同。
通过以下试验验证本发明的有益效果:
试验1:本试验一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法,是通过以下步骤进行:
一、利用固相烧结法制备ZnO陶瓷靶材:采用分析纯AR量级ZnO粉末,进行球磨,然后预烧,预烧温度为700℃,预烧时间为2h,再进行球磨,然后过筛选取粒径在150目左右的粉粒,再进行烧结,烧结温度1250℃,烧结时间为3h;即得到直径约50mm,质量30.338g的ZnO磁控溅射陶瓷靶材。
二、采用单晶<001>取向Si为衬底,将衬底采用99.5wt%丙酮、99.7wt%乙醇、电导率18MΩcm的去离子水和99.5wt%甲醇依次进行超声清洗20min,得到清洗后的Si衬底;
三、利用磁控溅射法制备ZnO籽晶层:将ZnO磁控溅射陶瓷靶材和清洗后的Si衬底装入磁控溅射装置生长腔内,衬底加热至350℃,通入流量比例为1∶4的纯度为99.99%氧气和氩气,保持工作气压为1Pa,调节射频功率为150W,进行薄膜沉积,生长时间为20min,获得ZnO籽晶层,得到具有ZnO籽晶层的Si衬底;
四、超细ZnO纳米棒阵列的生长:采用水热法在具有ZnO籽晶层的衬底上生长ZnO纳米棒阵列;将具有ZnO籽晶层的Si衬底,放入0.002mol/L等摩尔比的六水硝酸锌和六次甲基四胺前驱体反应溶液,在90℃热平衡下反应3h,然后依次用去离子水和无水乙醇超声清洗2min,采用CO2临界点干燥仪干燥后获得具有<002>.取向的、直径为20nm的超细ZnO纳米棒阵列,得到超细ZnO纳米棒阵列;
五、氧化锌纳米颗粒/二氧化硅复合结构纳米棒的生长:以60mL无水乙醇作为溶剂,加入500μLTEOS,搅拌5min,然后加入超细ZnO纳米棒阵列,继续搅拌5min,再加入3mL25wt%的氨水,室温下反应3h后取出,依次用去离子水和无水乙醇超声清洗2min后烘干,即得到氧化锌纳米颗粒/二氧化硅复合结构纳米棒。
对本试验步骤四制备的超细ZnO纳米棒阵列进行扫描电子显微镜扫描,结果如图1和图2所示;由图1和图2可知纳米棒分布非常均匀,大部分垂直于衬底表面,具有<002>择优生长取向,纳米棒的直径分布为20nm,长度为1.2μm;
对本试验制备的氧化锌纳米颗粒/二氧化硅复合结构纳米棒进行扫描电子显微镜扫描,结果如图3和图4所示,由图3可知经过二氧化硅处理后的氧化锌纳米颗粒/二氧化硅复合结构纳米棒的直径增加到130nm,由图4可知纳米棒仍保持垂直于衬底;
对本试验制备的氧化锌纳米颗粒/二氧化硅复合结构纳米棒进行透射电子显微镜扫描,结果如图5和图6所示,由图5可知,ZnO纳米颗粒均匀分散在复合结构二氧化硅纳米棒中,且ZnO纳米颗粒的粒径为4nm-5nm。从图6中测量可以得出ZnO纳米颗粒的晶面面间距为0.28nm,对应ZnO(100)晶面;
图7是ZnO纳米棒和本试验制备的氧化锌纳米颗粒/二氧化硅复合结构纳米棒的光致发光谱线,其中a为本试验制备的氧化锌纳米颗粒/二氧化硅复合结构纳米棒的光致发光谱线,b为ZnO纳米棒的光致发光谱线,由图7可知同未经处理的ZnO纳米棒相比,复合结构纳米棒的380nm附近的UV发射强度显著增强。
试验2、本试验一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法,是通过以下步骤进行:
一、利用固相烧结法制备ZnO陶瓷靶材:采用分析纯AR量级ZnO粉末,进行球磨,然后预烧,预烧温度为700℃,预烧时间为2h,再进行球磨,然后过筛选取粒径在150目左右的粉粒,再进行烧结,烧结温度1250℃,烧结时间为3h;即得到直径约50mm,质量30.338g的ZnO磁控溅射陶瓷靶材。
二、采用石英为衬底,将衬底采用99.5wt%丙酮、99.7wt%乙醇、18MΩ的去离子水和99.5wt%甲醇依次进行超声清洗20min,得到清洗后的石英衬底;
三、利用磁控溅射法制备ZnO籽晶层:将ZnO磁控溅射陶瓷靶材和清洗后的石英衬底装入磁控溅射装置生长腔内,衬底加热至350℃,通入流量比例为1∶4的纯度为99.99%氧气和氩气,保持工作气压为1Pa,调节射频功率为150W,进行薄膜沉积,生长时间为10min,获得ZnO籽晶层,得到具有ZnO籽晶层的石英衬底;
四、超细ZnO纳米棒阵列的生长:采用水热法在具有ZnO籽晶层的石英衬底上生长ZnO纳米棒阵列;将具有ZnO籽晶层的石英衬底,放入0.01mol/L等摩尔比的六水硝酸锌和六次甲基四胺前驱体反应溶液,在90℃热平衡下反应3h,然后依次用去离子水和无水乙醇超声清洗2min,采用CO2临界点干燥仪干燥后获得具有<002>取向的、直径为30nm的超细ZnO纳米棒阵列,得到超细ZnO纳米棒阵列;
五、氧化锌纳米颗粒/二氧化硅复合结构纳米棒的生长:以60mL无水乙醇作为溶剂,加入1000μLTEOS,搅拌5min,然后加入超细ZnO纳米棒阵列基片,继续搅拌5min,再加入3mL28wt%的氨水,室温下反应3h后取出,依次用去离子水和无水乙醇超声清洗2min后烘干,即得到氧化锌纳米颗粒/二氧化硅复合结构纳米棒。
本试验制备的氧化锌纳米颗粒/二氧化硅复合结构纳米棒中的ZnO纳米颗粒均匀分散在复合结构二氧化硅纳米棒中,且复合结构纳米棒垂直于衬底表面形成阵列,具有较高的发光效率。

Claims (1)

1.一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法,其特征在于氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法是通过以下步骤进行:
一、利用固相烧结法制备ZnO陶瓷靶材:采用分析纯AR量级ZnO粉末,进行球磨,然后预烧,预烧温度为700℃,预烧时间为2h,再进行球磨,然后过筛选取粒径在150目的粉粒,再进行烧结,烧结温度1250℃,烧结时间为3h;即得到直径50mm,质量30.338g的ZnO磁控溅射陶瓷靶材;
二、采用单晶<001>取向Si为衬底,将衬底采用99.5wt%丙酮、99.7wt%乙醇、电导率18MΩ·cm的去离子水和99.5wt%甲醇依次进行超声清洗20min,得到清洗后的Si衬底;
三、利用磁控溅射法制备ZnO籽晶层:将ZnO磁控溅射陶瓷靶材和清洗后的Si衬底装入磁控溅射装置生长腔内,衬底加热至350℃,通入流量比例为1:4的纯度为99.99%氧气和氩气,保持工作气压为1Pa,调节射频功率为150W,进行薄膜沉积,生长时间为20min,获得ZnO籽晶层,得到具有ZnO籽晶层的Si衬底;
四、超细ZnO纳米棒阵列的生长:采用水热法在具有ZnO籽晶层的衬底上生长ZnO纳米棒阵列;将具有ZnO籽晶层的Si衬底,放入0.002mol/L等摩尔比的六水硝酸锌和六次甲基四胺前驱体反应溶液,在90℃热平衡下反应3h,然后依次用去离子水和无水乙醇超声清洗2min,采用CO2临界点干燥仪干燥后获得具有<002>取向的、直径为20nm的超细ZnO纳米棒阵列,得到超细ZnO纳米棒阵列;
五、氧化锌纳米颗粒/二氧化硅复合结构纳米棒的生长:以60mL无水乙醇作为溶剂,加入500μL的TEOS,搅拌5min,然后加入超细ZnO纳米棒阵列,继续搅拌5min,再加入3mL的25wt%的氨水,室温下反应3h后取出,依次用去离子水和无水乙醇超声清洗2min后烘干,即得到氧化锌纳米颗粒/二氧化硅复合结构纳米棒。
CN201310033723.7A 2013-01-29 2013-01-29 一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法 Expired - Fee Related CN103050640B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310033723.7A CN103050640B (zh) 2013-01-29 2013-01-29 一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310033723.7A CN103050640B (zh) 2013-01-29 2013-01-29 一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法

Publications (2)

Publication Number Publication Date
CN103050640A CN103050640A (zh) 2013-04-17
CN103050640B true CN103050640B (zh) 2015-08-19

Family

ID=48063211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310033723.7A Expired - Fee Related CN103050640B (zh) 2013-01-29 2013-01-29 一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法

Country Status (1)

Country Link
CN (1) CN103050640B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103526165A (zh) * 2013-10-21 2014-01-22 京东方科技集团股份有限公司 透明导电薄膜及其制备方法、显示基板和显示装置
CN105671522A (zh) * 2016-01-20 2016-06-15 东北大学 一种在固体颗粒表面包覆非晶态二氧化硅膜的方法
CN107020055B (zh) * 2017-06-10 2020-06-09 安徽工程大学 一种SiO2@ZnO核壳结构多足小球纳米复合材料的制备方法及其应用
CN109494307B (zh) * 2017-09-12 2021-06-08 乐金显示有限公司 量子点发光二极管以及包括该量子点发光二极管的量子点显示设备
CN108654593B (zh) * 2018-04-28 2021-06-08 内江师范学院 一种嵌入结构ZnO#SiO2纳米粒子的制备方法及其产品和应用
CN110713350B (zh) * 2019-10-22 2021-05-11 同济大学 一种一维纳米二氧化硅的制备方法
CN112349852A (zh) * 2019-12-02 2021-02-09 广东聚华印刷显示技术有限公司 电子传输材料及其制备方法和应用
CN111252805A (zh) * 2020-03-12 2020-06-09 广州特种承压设备检测研究院 一种新型氧化锌材料的制备方法
CN112251787B (zh) * 2020-08-26 2021-09-07 西安交通大学 一种硅酸锌钙纳米阵列生物活性涂层的制备方法
CN114196073B (zh) * 2020-09-02 2022-11-22 中国科学院化学研究所 一种跨尺度增强体颗粒及其制备方法和应用
CN112517355A (zh) * 2020-11-20 2021-03-19 榆林学院 一种换热管表面超双疏涂层及其制备工艺和在甲醇制烯烃装置中的应用
CN113877785B (zh) * 2021-09-10 2022-08-02 哈尔滨工业大学 一种高透疏水防尘薄膜及其制备方法
CN114577776B (zh) * 2022-03-01 2022-10-28 哈尔滨工业大学 一种检测液体中新型冠状病毒Spike蛋白的SERS芯片的制备方法和使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007134712A1 (de) * 2006-05-24 2007-11-29 Merck Patent Gmbh Nanopartikel
CN101143974A (zh) * 2007-07-12 2008-03-19 中国铝业股份有限公司 二氧化硅表面包覆氧化锌的复合纳米颗粒的制备方法
CN102583504A (zh) * 2012-01-18 2012-07-18 山东大学 制备及调控表面粗化的ZnO纳米锥或纳米棒阵列的方法
CN102800747A (zh) * 2012-07-11 2012-11-28 上海大学 一种ZnS包覆的ZnO纳米阵列核壳结构的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1290911C (zh) * 2002-06-05 2006-12-20 昭和电工株式会社 包含涂有二氧化硅的氧化锌的粉末,含有该粉末的有机聚合物组合物及其成型制品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007134712A1 (de) * 2006-05-24 2007-11-29 Merck Patent Gmbh Nanopartikel
CN101143974A (zh) * 2007-07-12 2008-03-19 中国铝业股份有限公司 二氧化硅表面包覆氧化锌的复合纳米颗粒的制备方法
CN102583504A (zh) * 2012-01-18 2012-07-18 山东大学 制备及调控表面粗化的ZnO纳米锥或纳米棒阵列的方法
CN102800747A (zh) * 2012-07-11 2012-11-28 上海大学 一种ZnS包覆的ZnO纳米阵列核壳结构的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
非稀水溶液中SiO2包覆ZnO量子点的制备及其发光特性研究;刘猛等;《无机化学学报》;20060430;第22卷(第4期);第3页第2栏第4-13行 *

Also Published As

Publication number Publication date
CN103050640A (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
CN103050640B (zh) 一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法
Zeng et al. Fabrication of pn heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties
Peng et al. Synthesis of three-dimensional flower-like hierarchical ZnO nanostructure and its enhanced acetone gas sensing properties
Hsu et al. Light-activated humidity and gas sensing by ZnO nanowires grown on LED at room temperature
CN102259858B (zh) 一种镁热还原制备多孔硅的方法
CN102886270B (zh) SiC纳米晶/石墨烯异质结及制备方法和应用
Zeng et al. Synthesis and ethanol sensing properties of self-assembled monocrystalline ZnO nanorod bundles by poly (ethylene glycol)-assisted hydrothermal process
CN105329876B (zh) 一种硼、氮共掺杂碳量子点的制备方法
CN108529692B (zh) 空心球形氧化镍的制备方法
Marin et al. On the origin of white photoluminescence from ZnO nanocones/porous silicon heterostructures at room temperature
Peng et al. Construction of ZnO nanosheet arrays within BiVO4 particles on a conductive magnetically driven cilia film with enhanced visible photocatalytic activity
CN106757372A (zh) 一种甲胺铅碘钙钛矿单晶微腔及其制作方法
Shan et al. Shape-controlled synthesis of monodispersed beta-gallium oxide crystals by a simple precipitation technique
CN104828781A (zh) 一种蛋壳状多孔Bi4O5Br2纳米材料的制备方法
CN103526157A (zh) 基于硅基多孔硅/氧化钨纳米线复合结构材料的制备方法
CN107983327A (zh) 一种提高ZnO纳米棒阵列光催化性能的方法
Li et al. Optical and gas sensing properties of mesoporous hollow ZnO microspheres fabricated via a solvothermal method
CN104810426A (zh) 自驱动光探测器及其制备方法
CN103030137B (zh) 分级结构超长五氧化二钒纳米线线束及其制备方法
CN109411730A (zh) 一种锂离子电池用硅基复合负极材料及其制备方法
CN102976393A (zh) 一种羟基氧化镓纳米晶体的制备方法
Wu et al. Self-catalyst β-Ga 2 O 3 semiconductor lateral nanowire networks synthesis on the insulating substrate for deep ultraviolet photodetectors
Ahlawat Influence of multi-step annealing on nanostructure and surface morphology of Y2O3: SiO2 powder
Wang et al. Significant improvement of ethanol sensitivity at low temperature for ZnSnO3 nano-particles: Co-decoration of nano-TiO2/CeO2 and increase of UV intensity
Rao et al. Synthesis of yttrium doped TiO2 nanotubes by a microwave refluxing method and their photoluminescence properties and photocatalytic properties

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150819

Termination date: 20200129

CF01 Termination of patent right due to non-payment of annual fee