CN111252805A - 一种新型氧化锌材料的制备方法 - Google Patents
一种新型氧化锌材料的制备方法 Download PDFInfo
- Publication number
- CN111252805A CN111252805A CN202010171008.XA CN202010171008A CN111252805A CN 111252805 A CN111252805 A CN 111252805A CN 202010171008 A CN202010171008 A CN 202010171008A CN 111252805 A CN111252805 A CN 111252805A
- Authority
- CN
- China
- Prior art keywords
- reaction
- zno
- temperature
- concentration
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims abstract description 239
- 239000011787 zinc oxide Substances 0.000 title claims abstract description 118
- 239000000463 material Substances 0.000 title claims abstract description 16
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 238000006243 chemical reaction Methods 0.000 claims abstract description 54
- 230000035484 reaction time Effects 0.000 claims abstract description 37
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 239000013078 crystal Substances 0.000 claims abstract description 23
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000004246 zinc acetate Substances 0.000 claims abstract description 22
- 239000004312 hexamethylene tetramine Substances 0.000 claims abstract description 17
- 235000010299 hexamethylene tetramine Nutrition 0.000 claims abstract description 17
- 239000000243 solution Substances 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000001035 drying Methods 0.000 claims abstract description 13
- 239000012295 chemical reaction liquid Substances 0.000 claims abstract description 11
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 10
- 239000010980 sapphire Substances 0.000 claims abstract description 10
- 238000001816 cooling Methods 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 claims abstract description 5
- 239000001301 oxygen Substances 0.000 claims abstract description 5
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 5
- 239000013077 target material Substances 0.000 claims abstract description 5
- 239000011701 zinc Substances 0.000 claims abstract description 5
- 239000007864 aqueous solution Substances 0.000 claims abstract description 4
- 238000004140 cleaning Methods 0.000 claims abstract description 4
- 230000008021 deposition Effects 0.000 claims abstract description 4
- 238000005516 engineering process Methods 0.000 claims abstract description 4
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 4
- 238000007789 sealing Methods 0.000 claims abstract description 4
- 238000005303 weighing Methods 0.000 claims abstract description 4
- 239000008367 deionised water Substances 0.000 claims description 12
- 229910021641 deionized water Inorganic materials 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 9
- 239000002244 precipitate Substances 0.000 claims description 7
- 239000006228 supernatant Substances 0.000 claims description 5
- 230000007935 neutral effect Effects 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 238000002791 soaking Methods 0.000 claims description 3
- 239000002073 nanorod Substances 0.000 abstract description 52
- 239000002243 precursor Substances 0.000 abstract description 21
- 239000002086 nanomaterial Substances 0.000 abstract description 13
- 239000002135 nanosheet Substances 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- 239000002127 nanobelt Substances 0.000 description 5
- 239000002057 nanoflower Substances 0.000 description 5
- 230000001788 irregular Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 3
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002077 nanosphere Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 235000010413 sodium alginate Nutrition 0.000 description 2
- 229940005550 sodium alginate Drugs 0.000 description 2
- 239000000661 sodium alginate Substances 0.000 description 2
- 241000257465 Echinoidea Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/02—Oxides; Hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B7/00—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
- C30B7/14—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/16—Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/20—Particle morphology extending in two dimensions, e.g. plate-like
- C01P2004/24—Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/45—Aggregated particles or particles with an intergrown morphology
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/50—Agglomerated particles
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了一种新型氧化锌材料的制备方法,该方法包括如下步骤:取蓝宝石基片作为生长衬底,并对其进行清洗;选用ZnO作为靶材,采用了脉冲激光沉积技术,通入氧气流,并控制在特定温度下生长一段时长,待生长结束后,自然冷却至室温,便得到ZnO籽晶层;称取一定量的乙酸锌(Zn(CH3COO)2·2H2O)和六次甲基四胺(HMTA),浓度配比设定为1:1,将其充分溶解,从而配得反应液;将ZnO籽晶层基片放入聚四氟乙烯反应釜中,倒入配制好的反应液,密封后放入恒温干燥箱中,设置一定的反应时间和反应温度,使其在水溶液中生长;并通过控制不同前驱浓度、反应时间和温度,观察ZnO纳米材料的形状。本发明中前驱体浓度、反应时间和温度对氧化锌纳米棒的生长过程会造成显著影响。
Description
技术领域
本发明涉及氧化锌制备技术领域,尤其涉及一种新型氧化锌材料的制备方法。
背景技术
氧化锌(ZnO)是Ⅱ-Ⅵ族宽禁带半导体材料,室温下禁带宽度为3.37eV,对应的响应波长在380nm左右,激子束缚能高达60meV,使ZnO在室温下也发生激子吸收和复合,且其光增益系数高达300cm-1,由于ZnO体积小,制备简单、响应波段窄,灵敏度高等优点,使得ZnO迅速成国际研究的热点,而纳米级的ZnO具有更多的优异的性能,如压电效应、近紫外光电效应、生物兼容性、透明导电现象等,可以压电材料领域、紫外光激发探测领域、太阳能电池领域、气体传感器等领域得到应用,这些不同的应用使得ZnO材料具有广泛的研究价值。
ZnO纳米结构也被用于目前在消费市场上可用的许多商业产品,ZnO纳米结构的物理化学,结构和形貌特征主要取决于它们的合成过程,此前已经有个相关的制造技术,如纳米粒子、纳米棒、纳米线、纳米带、纳米管、纳米片和纳米球,还有由低维纳米材料构建的分层结构,例如纳米片组装的花状结构,Mn掺杂的氧化锌纳米球,纳米片组装的三维结构等,但是制备各种ZnO纳米结构均采用各自的方式,同为制备ZnO纳米结构方式却各不相同,使得其晶体的制备工艺过于繁杂,尤其当需要改变晶体结构的时候,制备工艺的更换成本较大。
发明内容
本发明的目的是为了解决现有技术中存在的缺点,如:现有的制备ZnO方式,需要经过多次过滤才能得到所需的纳米结构,而提出的一种新型氧化锌材料的制备方法。
为了实现上述目的,本发明采用了如下技术方案:
一种新型氧化锌材料的制备方法,该方法包括如下步骤:
S1:取蓝宝石基本作为生长衬底,对其进行清洗;
S2:选用ZnO作为靶材,采用脉冲激光沉积技术,通入氧气流,并控制在特定温度下生长一段时长,待生长结束后,自然冷却至室温,便得到ZnO籽晶层;
S3:称取一定量的乙酸锌(Zn(CH3COO)2·2H2O)和六次甲基四胺(HMTA),浓度配比设定为1:1,将其充分溶解,从而配得反应液;
S4:将ZnO籽晶层基片放入聚四氟乙烯反应釜中,倒入配制好的反应液,密封后放入恒温干燥箱中,设置一定的反应时间和反应温度,使其在水溶液中生长;
S5:反应完成后待自然冷却,将生长好的基片从反应釜中取出,去除表面多余的反应液,将其浸泡在去离子水中一段时间后烘干。
优选的,本方法还包括:将反应液的沉淀物从反应釜中取出。
优选的,所述将反应液的沉淀物从反应釜中取出的方法具体为:将全部反应液倒入烧杯中,在烧杯中加入去离子水,静置到溶液分层,将上层清液分离出;测定所述上层清液的pH值为中性后,依次加入去离子水和无水甲醛进行离心分离,将分离得到的样品移入到70℃的恒温干燥箱中烘干。
优选的,步骤S3和S4中,乙酸锌浓度为6.25-30mM,反应温度为95℃,反应时间为5h。
优选的,步骤S3和S4中,乙酸锌浓度为20mM,反应温度为95℃,反应时间为5-10h。
优选的,步骤S3和S4中,乙酸锌浓度为30mM,反应温度为95-160℃,反应时间为8h。
与现有技术相比,本发明的有益效果是:
1、随着前驱体浓度的增加,氧化锌纳米材料的形貌逐渐均一化生长,纳米棒的长度是不断增长的;当前驱体浓度相对较低时,氧化锌晶体的生长模式尚不统一,所以得到的氧化锌有纳米棒花簇、单根纳米棒、纳米带;当增加前驱体浓度时,生长的ZnO的形貌向纳米棒均匀生长,其长度和直径不断增加,长径比较大,而且其纳米棒花簇形貌也由镜面对称转向球心对称;进一步增加前驱体浓度为30mM时,纳米棒的长度反而降低,直径增大,导致长径比减小;说明了氧化锌纳米棒的形貌与前驱体浓度有关,前驱体浓度的高低对氧化锌纳米棒的生长过程会造成显著影响。
2、随反应时间的增长,ZnO纳米棒的长度不断增加,直径先增加后减小,总体的长径比值变大;分析其生长原理,在反应时间较短时,ZnO晶体生长不完全,表现为不规则的纳米棒团簇状态,且顶端未成型;而当反应时间增加时,ZnO纳米棒沿长度方向优势生长,长径比增加,且顶端长成典型的六棱柱状,但是当反应时间增加至10h后,纳米棒不再聚集生长,变为单根杂乱的纳米柱,长径比进一步增加,说明了反应时间对ZnO纳米棒的形貌会产生显著的影响。
3、随着反应温度的升高,ZnO纳米材料的形貌发生了明显的变化,反应温度较低时,沙漏状的ZnO纳米材料由纳米棒团簇聚集而成,随着反应温度上升为130°C,ZnO变为由纳米片自组装的花瓣形状,当反应温度升高到160°C时,水热生长的ZnO形成了由纳米片自组装而成纳米花和纳米花球。
附图说明
图1a为实施例2中乙酸锌浓度为6.25 mM时合成的ZnO的SEM图;
图1b为实施例2中乙酸锌浓度为15 mM时合成的ZnO的SEM图;
图1c为实施例2中乙酸锌浓度为25 mM时合成的ZnO的SEM图;
图1d为实施例2中乙酸锌浓度为30 mM时合成的ZnO的SEM图;
图2a为实施例3中反应时间为5h时合成的ZnO的SEM图;
图2b为实施例3中反应时间为6h时合成的ZnO的SEM图;
图2c为实施例3中反应时间为8h时合成的ZnO的SEM图;
图2d为实施例3中反应时间为10h时合成的ZnO的SEM图;
图3a为实施例4中反应温度为95°C时合成的ZnO的SEM图;
图3b为实施例4中反应温度为130°C时合成的ZnO的SEM图;
图3c为实施例4中反应温度为160°C,反应时间为8h时合成的ZnO的SEM图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例1:
本实施例提供一种新型氧化锌材料的制备方法,方法步骤如下:
S1:取蓝宝石基片作为生长衬底,对其进行清洗;本实施例中,为了有效地去除衬底表面的油污,先后对其通过丙酮、异丙醇、无水甲醛、去离子水分别超声清洗,待清洗干净之后用氮气吹干备用;
S2:选用ZnO作为靶材,采用脉冲激光沉积技术,通入氧气流,并控制在特定温度下生长一段时长,待生长结束后,自然冷却至室温,便得到ZnO籽晶层;在本实施例中,采用248nm的KrF准分子激光器为激光源,工作频率在2HZ,激光能量为300mJ,选用ZnO作为靶材,蓝宝石作为衬底,背底真空设置为10-4Pa,将氧气流量控制在0.5sccm,在600°C的生长温度下生长10min,待生长结束后,自然冷却至室温,便得到ZnO籽晶层;
S3:称取一定量的乙酸锌(Zn(CH3COO)2·2H2O)和六次甲基四胺(HMTA),浓度配比设定为1:1,将其充分溶解,从而配得反应液;为了使其能够充分溶解,可将其溶解在去离子水中,磁力搅拌器搅拌10min;
S4:将ZnO籽晶层基片放入聚四氟乙烯反应釜中,倒入配制好的反应液,密封后放入恒温干燥箱中,设置一定的反应时间和反应温度,使其在水溶液中生长;
S5:反应完成后待自然冷却,将生长好的基片从反应釜中取出,去除表面多余的反应液,将其浸泡在去离子水中一段时间后烘干。具体地,本步骤为待反应完成后将反应釜取出自然冷却至室温,将生长好的基片和反应液中的沉淀物从反应釜中取出,用去离子水和无水甲醛反复浸泡生长好的基片,去除表面多余反应液,烘干后放入干燥箱内。
进一步地,将反应液中的沉淀物从反应釜中取出的步骤具体为,可将全部反应液倒入一个1000ml的大烧杯中,加入500ml去离子水,然后静置到溶液分层,将上层清液分离出。当测试反应液pH值为中性后,依次加入去离子水和无水乙醇进行离心分离,离心机的转速为3000rpm。然后将收集到的样品移入到70℃的恒温干燥箱中烘干。反应液中的沉淀物由此分离出来。
本发明进一步探究了不同前驱体浓度、反应时间和温度对ZnO纳米形貌的影响。
实施例2
本实施例提供另一种新型氧化锌材料的制备方法,旨在探究不同前驱体浓度对ZnO形貌的影响。在上述实施例的基础上,选取200nm厚的蓝宝石衬底,在该衬底上生长ZnO籽晶层。为了探究不同前驱体浓度对ZnO形貌的影响,将S3和S4中反应温度设定为95℃,反应时间设定为5h并保证乙酸锌(Zn(CH3COO)2·2H2O)和HMTA配置浓度比为1:1的前提下,分别取乙酸锌浓度为6.25 mM、15mM、25mM和30mM时观察ZnO纳米材料形貌,如图1中(a)1-(d)1中所述,随着前驱体浓度由6.25 mM增加至30mM时,在籽晶层上生长的一层薄膜的厚度由1µm不断增加至4.8µm,然而继续增加前驱体浓度时,薄膜反而迅速降低为1.9µm。这说明随着前驱体浓度的增加,氧化锌薄膜的厚度是不断增长的。当前驱体浓度相对较低时,氧化锌晶体的生长过程尚不完全,得到的氧化锌薄膜生长不均匀且不致密,顶部不平滑,薄膜质量较差,如图1(a)1所示。随着驱体浓度不断增大时,氧化锌薄膜的生长方向是沿着轴向方向不断生长,ZnO薄膜高度会持续增加。但是这种增加幅度是有限的。当浓度增大至30 mM 时,如图1(d)1所示,氧化锌薄膜沿着轴向方向的生长会减缓,不再增大。如图1(a)2-3俯视图所示,当乙酸锌浓度为6.25 mM时,ZnO籽晶层生长为约8µm长的镜面对称的纳米棒花簇;或者长约10µm、直径长达3µm的单根纳米棒状,或者长度不均、约1µm宽的ZnO纳米带;如图1(b)2-3俯视图所示,当乙酸锌浓度为15 mM时,ZnO籽晶层形貌逐渐一致生长为纳米棒状;部分纳米棒呈现中端聚集在一起的两端对称的花簇形貌,如沙漏状,直径不一,长度约在11µm; 其余大部分为单根纳米棒状,长度在11µm-18µm之间,平均直径为4µm;如图1(c)2-3俯视图所示,当乙酸锌浓度为25 mM时,花簇状的ZnO纳米棒呈现中心放射的海胆状,长度约为12µm,直径较均匀为1.4µm;如图1(d)2-3俯视图所示,当乙酸锌浓度为30 mM时,纳米棒花簇的开始沿径向生长,横向长度减小,中心直径增加至2µm,长度约10µm。
由此得知,随着前驱体浓度的增加,氧化锌纳米材料的形貌逐渐均一化生长,纳米棒的长度是不断增长的。当前驱体浓度相对较低时,氧化锌晶体的生长模式尚不统一,所以得到的氧化锌有纳米棒花簇、单根纳米棒、纳米带。当增加前驱体浓度时,生长的ZnO的形貌向纳米棒均匀生长,其长度和直径不断增加,长径比较大,而且其纳米棒花簇形貌也由镜面对称转向球心对称。进一步增加前驱体浓度为30mM时,纳米棒的长度反而降低,直径增大,导致长径比减小,说明了氧化锌纳米棒的形貌与前驱体浓度有关,前驱体浓度的高低对氧化锌纳米棒的生长过程会造成显著影响。
实施例3:
本实施例提供另一种新型氧化锌材料的制备方法,旨在探究不同反应时间对ZnO形貌的影响。在上述实施例的基础上,为了探究不同反应时间对ZnO形貌的影响,将S3和S4中的乙酸锌浓度配置为20 mM,反应温度设置为95℃时,反应时间分别为5h、6h、8h、10h时,观察ZnO纳米棒的形状和长径比。如图2(a)所示,当反应时间为5h时,纳米棒为中端聚集的尺寸较短的沙漏状,长度约为9µm,纳米棒顶端形状不规则;如图2(b)所示,当反应时间为6h时,ZnO纳米棒为形状规则的纳米花柱,长度增加到11µm,直径统一为1µm,并且纳米棒顶端变现为ZnO典型的六棱柱形貌,纳米棒直径为2µm;如图2(c)所示,当反应时间为8h时,ZnO纳米棒以单根六角棱柱为中心,不规则纳米棒不断堆叠在外的沙漏状,长度也进一步增加为17µm,中心六角棱柱的直径达到4µm;如图2(d)所示,当反应时间为10h时,ZnO的形貌有团簇层叠的状态变为较分散的杂乱的类单根纳米棒状态,长度增至36µm,最短的也在10µm以上。因此可知,随反应时间的增长,ZnO纳米棒的长度不断增加,直径先增加后减小,总体的长径比值变大。分析其生长原理,在反应时间较短时,ZnO晶体生长不完全,表现为不规则的纳米棒团簇状态,且顶端未成型。而当反应时间增加时,ZnO纳米棒沿长度方向优势生长,长径比增加,且顶端长成典型的六棱柱状,但是当反应时间增加至10h后,纳米棒不再聚集生长,变为单根杂乱的纳米柱,长径比进一步增加,说明了反应时间对ZnO纳米棒的形貌会产生显著的影响。
实施例4:
本实施例提供另一种新型氧化锌材料的制备方法,旨在探究不同温度对ZnO形貌的影响。在上述实施例的基础上,为了探究不同温度对ZnO形貌的影响,将S3和S4中乙酸锌浓度配置为30mM,反应时间设置为8h时,反应温度分别为95℃、130℃和180℃,观察ZnO纳米材料的形貌的变化。如图3(a)所示,当反应温度为95℃时,沙漏状的ZnO纳米材料由纳米棒团簇聚集而成;随着反应温度上升为130℃,ZnO变为由纳米片自组装的花瓣形状,如图3(b)所示;当反应温度升高到160℃时,如图3(c1)和(c2)所示,水热生长的ZnO形成了由纳米片自组装而成纳米花和纳米花球。即随着反应温度的升高,ZnO纳米材料的形貌发生了明显的变化。
所述以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
Claims (6)
1.一种新型氧化锌材料的制备方法,其特征在于,该方法包括如下步骤:
S1:取蓝宝石基片作为生长衬底,并对其进行清洗;
S2:选用ZnO作为靶材,采用脉冲激光沉积技术,通入氧气流,并控制在特定温度下生长一段时长,待生长结束后,自然冷却至室温,便得到ZnO籽晶层;
S3:称取一定量的乙酸锌(Zn(CH3COO)2·2H2O)和六次甲基四胺(HMTA),浓度配比设定为1:1,将其充分溶解,从而配得反应液;
S4:将ZnO籽晶层基片放入聚四氟乙烯反应釜中,倒入配制好的反应液,密封后放入恒温干燥箱中,设置一定的反应时间和反应温度,使其在水溶液中生长;
S5:反应完成后待自然冷却,将生长好的基片从反应釜中取出,去除表面多余的反应液,将其浸泡在去离子水中一段时间后烘干。
2.根据权利要求1所述的一种新型氧化锌材料的制备方法,其特征在于,该方法还包括:将反应液的沉淀物从反应釜中取出。
3.根据权利要求2所述的一种新型氧化锌材料的制备方法,其特征在于,所述将反应液的沉淀物从反应釜中取出的方法具体为:将全部反应液倒入烧杯中,在烧杯中加入去离子水,静置到溶液分层,将上层清液分离出;测定所述上层清液的pH值为中性后,依次加入去离子水和无水甲醛进行离心分离,将分离得到的样品移入到70℃的恒温干燥箱中烘干。
4.根据权利要求1所述的一种新型氧化锌材料的制备方法,其特征在于,步骤S3和S4中,所述乙酸锌浓度为6.25-30mM,反应温度为95℃,反应时间为5h。
5.根据权利要求1所述的一种新型氧化锌材料的制备方法,其特征在于,步骤S3和S4中,所述乙酸锌浓度为20mM,反应温度为95℃,反应时间为5-10h。
6.根据权利要求1所述的一种新型氧化锌材料的制备方法,其特征在于,步骤S3和S4中,所述乙酸锌浓度为30mM,反应温度为95-160℃,反应时间为8h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010171008.XA CN111252805A (zh) | 2020-03-12 | 2020-03-12 | 一种新型氧化锌材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010171008.XA CN111252805A (zh) | 2020-03-12 | 2020-03-12 | 一种新型氧化锌材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111252805A true CN111252805A (zh) | 2020-06-09 |
Family
ID=70949825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010171008.XA Pending CN111252805A (zh) | 2020-03-12 | 2020-03-12 | 一种新型氧化锌材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111252805A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220081312A1 (en) * | 2020-09-16 | 2022-03-17 | Industry-Academic Cooperation Foundation, Yonsei University | Method for preparing sea urchin-shaped zinc oxide nanowire |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103050640A (zh) * | 2013-01-29 | 2013-04-17 | 哈尔滨工业大学 | 一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法 |
CN103397382A (zh) * | 2013-04-01 | 2013-11-20 | 济南大学 | 氧化锌纳米棒阵列薄膜的制备方法 |
CN103774224A (zh) * | 2014-01-02 | 2014-05-07 | 河南科技大学 | 一种内部原位形成介孔结构的氧化锌晶体的方法 |
CN104229862A (zh) * | 2014-02-23 | 2014-12-24 | 济南大学 | 一种制备交叉型氧化锌纳米线阵列的方法 |
CN104928753A (zh) * | 2015-07-10 | 2015-09-23 | 厦门大学 | 一种制备氧化锌纳米网状结构的方法 |
CN107316927A (zh) * | 2017-08-17 | 2017-11-03 | 滨州学院 | 一种核壳结构发白光器件及其制备方法 |
CN107991350A (zh) * | 2017-11-17 | 2018-05-04 | 济南大学 | 一种棒状ZnO/ZIF-8的制备及其低温H2敏感效应 |
-
2020
- 2020-03-12 CN CN202010171008.XA patent/CN111252805A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103050640A (zh) * | 2013-01-29 | 2013-04-17 | 哈尔滨工业大学 | 一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法 |
CN103397382A (zh) * | 2013-04-01 | 2013-11-20 | 济南大学 | 氧化锌纳米棒阵列薄膜的制备方法 |
CN103774224A (zh) * | 2014-01-02 | 2014-05-07 | 河南科技大学 | 一种内部原位形成介孔结构的氧化锌晶体的方法 |
CN104229862A (zh) * | 2014-02-23 | 2014-12-24 | 济南大学 | 一种制备交叉型氧化锌纳米线阵列的方法 |
CN104928753A (zh) * | 2015-07-10 | 2015-09-23 | 厦门大学 | 一种制备氧化锌纳米网状结构的方法 |
CN107316927A (zh) * | 2017-08-17 | 2017-11-03 | 滨州学院 | 一种核壳结构发白光器件及其制备方法 |
CN107991350A (zh) * | 2017-11-17 | 2018-05-04 | 济南大学 | 一种棒状ZnO/ZIF-8的制备及其低温H2敏感效应 |
Non-Patent Citations (6)
Title |
---|
FANG-HSING WANG ET AL.: "Hydrothermally Grown ZnO Nanoflowers on a Template-Assisted Ordered Seed Array", 《PROCEEDINGS OF ENGINEERING AND TECHNOLOGY INNOVATION》 * |
FULVIO CARUSO ET AL.: "Well-aligned hydrothermally synthesized zinc oxide nanorods on p-gan without a seed layer", 《IEEE INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY》 * |
JAYAH ET AL.: "High electron mobility and low carrier concentration of hydrothermally grown ZnO thin films on seeded a-plane sapphire at low temperature", 《NANOSCALE RESEARCH LETTERS》 * |
张万成: "FTO导电玻璃和Al_2O_3蓝宝石衬底上掺钴氧化锌的制备和研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
李阳: "低温CBD方法制备ZnO纳米材料", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 * |
臧臧: "纳米ZnO的制备与光催化性能研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220081312A1 (en) * | 2020-09-16 | 2022-03-17 | Industry-Academic Cooperation Foundation, Yonsei University | Method for preparing sea urchin-shaped zinc oxide nanowire |
US11685665B2 (en) * | 2020-09-16 | 2023-06-27 | Industry-Academic Cooperation Foundation, Yonsei University | Method for preparing sea urchin-shaped zinc oxide nanowire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Umar et al. | ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties | |
Tang et al. | Controlled growth of ZnO nanoflowers on nanowall and nanorod networks via a hydrothermal method | |
Lu et al. | Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate | |
JP4899229B2 (ja) | ZnOウィスカー膜及びそれらの作製方法 | |
Singh | Synthesis and growth of ZnO nanowires | |
Baruah et al. | Hydrothermal growth of ZnO nanostructures | |
Yang et al. | Synthesis of ZnO nanosheets via electrodeposition method and their optical properties, growth mechanism | |
Shaziman et al. | Influence of growth time and temperature on the morphology of ZnO nanorods via hydrothermal | |
Liu et al. | Preparation and photoluminescence of ZnO complex structures with controlled morphology | |
Byranvand et al. | One pot green synthesis of gold nanowires using pomegranate juice | |
CN111252805A (zh) | 一种新型氧化锌材料的制备方法 | |
Petrović et al. | Hydrothermal processing of electrospun fibers in the synthesis of 1D ZnO nanoparticles | |
Htay et al. | Growth of ZnO submicron single-crystalline platelets, wires, and rods by ultrasonic spray pyrolysis | |
KR101646440B1 (ko) | 분말 스퍼터링 방법으로 인듐을 도핑한 산화갈륨 나노와이어의 제조방법 | |
Cakici et al. | Synthesising of MgSe Complex Nanoparticle via Bacteria and Characterisation of Fabricated MgSe/p-Si Structure. | |
Kamaruddin et al. | ZnO microstructures and nanostructures prepared by sol–gel hydrothermal technique | |
CN104835718B (zh) | 生长在Si衬底上的GaAs薄膜及其制备方法 | |
CN103864460A (zh) | 一种有序氧化钨纳米线阵列结构的制备方法 | |
Shen et al. | Shape-controlled synthesis of three-dimensional branched CdS nanostructure arrays: structural characteristics and formation mechanism | |
Jeon et al. | Fabrication of porous ZnO nanorods with nano-sized pores and their properties | |
Lv et al. | Growth and optical properties of hierarchical flower-like ZnO nanostructures | |
US20160152486A1 (en) | Preparation and Use of Zinc Compounds | |
CN105585044B (zh) | 高纯度高密度CuS网络状纳米结构的制备方法 | |
Deenathayalan et al. | Effect of growth layer solution concentration on the structural and optical properties of hydrothermally grown zinc oxide nanorods | |
Pérez-Hernández et al. | Low-Temperature synthesis and growth mechanism of ZnO Nanorods on crystalline Si substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200609 |