CN108654593B - 一种嵌入结构ZnO#SiO2纳米粒子的制备方法及其产品和应用 - Google Patents

一种嵌入结构ZnO#SiO2纳米粒子的制备方法及其产品和应用 Download PDF

Info

Publication number
CN108654593B
CN108654593B CN201810397726.1A CN201810397726A CN108654593B CN 108654593 B CN108654593 B CN 108654593B CN 201810397726 A CN201810397726 A CN 201810397726A CN 108654593 B CN108654593 B CN 108654593B
Authority
CN
China
Prior art keywords
sio
zno
nano particles
embedded structure
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810397726.1A
Other languages
English (en)
Other versions
CN108654593A (zh
Inventor
郑小刚
李子黎
董阳
李达伟
黄志平
袁小智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Neishi Technology Co ltd
Neijiang Normal University
Original Assignee
Sichuan Neishi Technology Co ltd
Neijiang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Neishi Technology Co ltd, Neijiang Normal University filed Critical Sichuan Neishi Technology Co ltd
Priority to CN201810397726.1A priority Critical patent/CN108654593B/zh
Publication of CN108654593A publication Critical patent/CN108654593A/zh
Application granted granted Critical
Publication of CN108654593B publication Critical patent/CN108654593B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Silicon Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种嵌入结构ZnO#SiO2纳米粒子的制备方法及其产品和应用,具体方法为:取ZnS、表面活性剂和乙醇溶液进行超声分散后,加入氨水,搅拌后加入正硅酸乙酯,然后经再次搅拌后在温度为140~200℃条件下充分反应,依次用乙醇、水用水和乙醇洗涤后焙烧、干燥,得ZnO#SiO2纳米粒子;该方法简单制得的ZnO#SiO2纳米粒子生物相容性好,可以作为催化剂在各个领域使用。

Description

一种嵌入结构ZnO#SiO2纳米粒子的制备方法及其产品和应用
技术领域
本发明属于化学领域,涉及一种嵌入结构ZnO#SiO2纳米粒子的制备方法,还涉及由该方法制得的产品和应用。
背景技术
ZnO具有光学性能良好、化学性能稳定、紫外屏蔽能力强,抑菌防霉、无毒无异味等特点。而ZnO是一种重要的直接宽带隙半导体,其在室温下的禁带宽度为3.37ev,激子结合能60mev,可吸收波长<300nm的紫外光,但紫外光只占太阳光谱的5%,这样激发的光生载流子的几率很小。而ZnO半导体材料作为光催化材料在紫外光辐射下光生载流子会很快复合,严重限制了其在光催化领域的应用。为了提高它的光催化效率,人们做出了许多试验。如掺杂过渡金属或非金属材料等。
SiO2具有小尺寸,表面界面,量子尺寸效应等,在高温下具有高强度,高韧性,稳定性好等特性,使其被广泛应用于各个领域。将其与一些聚合物制成复合材料后,可在一定程度上提高聚合物的性能,已经得到证实的有:与聚氨酯复合可提高材料的力学性能、热稳定性等;与聚丙烯复合可提高材料的拉伸性能;与尼龙66复合可提高材料的力学性能和拉伸性能;与尼龙1010复合可提高材料的拉伸强度、断裂伸长率和弹性模量等。
聚乳酸(PLA)作为可生物降解聚合物,来源于自然界大量存在的可再生植物资源,能被土壤中微生物完全降解,是一种理想的环保材料,其可再生、可生物降解、低碳排放和低能耗的巨大优势使其成为应用研究。PLA是一种真正的生物塑料,其无毒、无刺激性,具有良好的生物相容性,可生物分解吸收,强度高,不污染环境,可塑性好,易于加工成型。由于聚乳酸优良的生物相容性,其降解产物能参与人体代谢,已被美国食品医药局(FDA)批准,可用作医用手术缝合线、注射用胶囊、微球及埋植剂等。
聚乳酸的合成方法主要有两种:乳酸经缩合聚合直接得到聚乳酸,简称缩聚法和乳酸经缩合聚合得到的乳酸低聚物分解成丙交酯,丙交酯经提纯后经开环聚合得到聚乳酸,简称开环聚合法。其中,开环聚合法具有高成本、高要求、合成路线长且复杂等缺点,不利于产业化生产应用。直接缩聚法合成的PLA分子量较低存在生成丙交酯副反应,中随着反应程度的增加,聚乳酸产率持续下降;由于存在变色、消旋化等副反应,使得聚乳酸的颜色变深,消旋化严重,影响产品外观质量和内在品质。但其工艺简单有利于产业化生产应用。目前,直接缩聚法常用的催化剂多为较昂贵且具有一定细胞毒性的锡盐类催化剂,这就在一定程度上限制了PLA在各领域的应用性。
制备一种生物相溶性好,无毒的新型催化剂对聚乳酸在各方面的广泛应用起着重要作用。提高聚乳酸的分子量及对聚乳酸改性成为几年来国内外的研究热点。但大部分实验重点都在于开发生产路线复杂的开环聚合的催化剂,而忽视对直接法制备高分子量聚乳酸的催化剂的研究。将纳米催化剂用于催化马铃薯渣合成聚乳酸更是少之又少。但在早期的研究文献表明ZnO等环境友好型金属对催化聚乳酸合成有一定的效果,但普通的ZnO表面活性位点少使得其催化效果不明显且没有特定的结构特点,从而降低了催化剂的催化效果。纳米材料具有高表面能、高活性表面活性位点多等优点。与普通催化剂相比其催化活性显著增强。
发明内容
有鉴于此,本发明的目的之一在于提供一种嵌入结构ZnO#SiO2纳米粒子的制备方法;本发明的目的之二在于提供由所述嵌入结构ZnO#SiO2纳米粒子的制备方法制得的ZnO#SiO2纳米粒子;本发明的目的之三在于提供所述ZnO#SiO2纳米粒子在作为催化剂合成聚乳酸或降解RhB中的应用。
为实现上述发明目的,本发明提供如下技术方案:
一种嵌入结构ZnO#SiO2纳米粒子的制备方法,包括如下步骤:取ZnS、表面活性剂和乙醇溶液进行超声分散后,加入氨水,搅拌后加入正硅酸乙酯,继续搅拌后在温度为140~200℃条件下充分反应,用水和乙醇洗涤、干燥后焙烧,得 ZnO#SiO2纳米粒子。
优选的,ZnS、表面活性剂和乙醇溶液的比例为0.2~0.8:0.18~2.0:60,单位为g:g:ml。
优选的,所述乙醇溶液中水与乙醇的体积比为1:1~1:5。
优选的,所述表面活性剂为分子量为4.0万~5.8万的聚乙烯吡咯烷酮或分子量为1000~16000的聚(丙二醇)-嵌-聚(乙二醇)-嵌-聚(丙二醇)(P123)。
优选的,所述搅拌为在300~3000r/min条件下搅拌0.75~2h。
优选的,所述干燥为在温度为50~90℃条件下干燥5~10h。
优选的,所述焙烧为用马弗炉以500℃焙烧4h。
优选的,所述氨水加入量按氨水与乙醇溶液的体积比为5:12加入;所述正硅酸乙酯加入量按正硅酸乙酯与乙醇溶液的体积比为0.025~0.5:60加入。更优选的,正硅酸乙酯加入量按正硅酸乙酯与乙醇溶液的体积比为0.075:60加入。
本发明中ZnS可以购买成品,可以由以下方法制得:以二水乙酸锌、表面活性剂,硫脲、乙腈为原料,经超声分散后搅拌45min后,180℃-200℃水热反应6-10h,洗涤干燥而得。
2.由所述嵌入结构ZnO#SiO2纳米粒子的制备方法制得的ZnO#SiO2纳米粒子。
3.所述ZnO#SiO2纳米粒子在作为催化剂合成聚乳酸或降解RhB中的应用。
本发明的有益效果在于:本发明提供了ZnO#SiO2纳米粒子的制备方法,其制备方法简单,制得的ZnO#SiO2纳米粒子生物相容性好,无毒,可以作为催化剂应用于各个领域,如合成聚乳酸或降解RhB,由于ZnO#SiO2纳米粒子具有高表面能、高活性表面活性位点,与普通催化剂相比具有较强的催化活性。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为ZnO#SiO2合成路线图。
图2为ZnO#SiO2样品(TEOS:75μL)的SEM照片(A:标尺为100nm下图片;B:标尺为1μm下图片)。
图3为ZnO#SiO2样品(TEOS:75μL)的TEM照片(A:标尺为20nm下图片;B:标尺为100nm下图片;C:标尺为0.2μm下图片;D:标尺为0.5μm下图片)。
图4为不同正硅酸乙酯添加量下ZnO#SiO2催化合成聚乳酸的分子量。
图5为不同正硅酸乙酯添加量下ZnO#SiO2催化RHB降解效果。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
实施例1、一种嵌入结构ZnO#SiO2纳米粒子的制备方法
称量0.3g的ZnS,超声溶解于水和乙醇各30ml,聚乙烯吡咯烷酮(pvp)2.0g 的烧杯中,再加入5ml氨水,搅拌1小时后,加入不同量的正硅酸乙酯(TEOS) (25μl、50μl、75μl、100μl、125μl、500μl);搅拌一小时,在反应釜内反应10h,反应温度为140℃;依次用乙醇,水,水,乙醇洗涤后用马弗炉以500℃焙烧4h 的到ZnO#SiO2产品。
本实施例中ZnS由以下方法制得:以二水乙酸锌、表面活性剂,硫脲、乙腈为原料,经超声分散后搅拌45min后,180℃-200℃水热反应6-10h,洗涤干燥而得。其中二水乙酸锌用量在0.5~0.9g之间,硫脲用量在0.15~0.5g之间,表面活性剂用量:0.18g~2.0g,乙腈60-120mL,其表面活性剂是分子量为4.0万~5.8 万的聚乙烯吡咯烷酮或分子量为1000~16000的聚(丙二醇)-嵌-聚(乙二醇)-嵌- 聚(丙二醇)(P123)。
其合成路线图如图1所示。
图2为ZnO#SiO2(TEOS为75μl)的扫描电镜图,结果显示,该样品为200nm 左右的球形,比较均一,存在少量的团聚现象,这与TEM结果相符。形成这个形状的原因有以下两点:(一)正硅酸乙酯在水热条件下水解过快;(二)加入得正硅酸乙酯的量过多。
图3为ZnO#SiO2(TEOS为75μl)在不同放大倍率下的的TEM照片。结果显示,温度500℃条件下核球形纳米ZnS经高温分解成多个ZnO颗粒,而外部SiO2保持稳定,结构未变化。在壳层SiO2的保护下形成稳定的ZnO#SiO2纳米结构。由图分析可知ZnO#SiO2核直径约为60nm,壳层厚度约为40nm。均一性良好,但存在少量团聚现象。
应用实例
(1)合成聚乳酸
取30mL乳酸于圆底烧瓶中,加入一定量的催化剂,在90℃条件下减压蒸馏2h。继续加热到140℃反应10h,得到PLA粗产品。将粗产品用乙酸乙酯溶解,蒸馏水沉淀、抽滤得到固体产物,在室温中自然风干后得到PLA最终产物。
聚乳酸分子量的测定:称0.1g聚乳酸溶解于50mL四氢呋喃中,配成聚乳酸溶液。在25℃水浴中,用乌氏粘度计四氢呋喃溶液流下的时间t0,聚乳酸溶液流下的时间t,平均测量三次,时间相差在0.2s之内,求平均值。由下列公式计算聚乳酸分子量:
Figure GDA0002993327880000051
Figure GDA0002993327880000052
Figure GDA0002993327880000053
其中K=1.04×10-4,α=0.75,其PLA的分子量示意图如图4所示。结果显示,当正硅酸乙酯为75μl时分子量最大。
(2)光催化
取TEOS为0μl、25μl、50μl、75μl、100μl和125μl的不同产品40mg,溶于40ml浓度为20mg/L的RhB(罗丹明B)中:,黑暗条件下吸附1h,再用350w 的氖光灯照射,结果如图5所示。结果显示,正硅酸乙酯为75μl的时候,降解效果最好,达到了96.2%。
本发明中,水和乙醇的体积比为1:1~1:5;二水乙酸锌用量在0.5~0.9g之间,硫脲用量在0.15~0.5g之间,硫化锌用量在0.2~0.8g之间;表面活性剂种类:pvp (分子量为4.0万~5.8万),P123(子量为1000~16000);表面活性剂用量: 0.18g~2.0g;反应温度:140~200℃;搅拌机械强度:300~3000r/min;搅拌时间: 0.75~2h;干燥温度:50~90℃;干燥时间:5~10h均可实现发明目的。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (8)

1.一种嵌入结构ZnO#SiO2纳米粒子的制备方法,其特征在于,包括如下步骤:取ZnS、表面活性剂和乙醇溶液进行超声分散后,加入氨水,搅拌后加入正硅酸乙酯,继续搅拌后在温度为140~200℃条件下充分反应,用水和乙醇洗涤、干燥后焙烧、得ZnO#SiO2纳米粒子;所述正硅酸乙酯加入量按正硅酸乙酯与乙醇溶液的体积比为0.025~0.5:60加入;所述表面活性剂为分子量为4.0万~5.8万的聚乙烯吡咯烷酮或分子量为1000~16000的聚(丙二醇)-嵌-聚(乙二醇)-嵌-聚(丙二醇);所述焙烧为用马弗炉以500℃焙烧4h。
2.根据权利要求1所述一种嵌入结构ZnO#SiO2纳米粒子的制备方法,其特征在于:ZnS、表面活性剂和乙醇溶液的比例为0.2~0.8:0.18~2.0:60~120,单位为g:g:mL。
3.根据权利要求1所述一种嵌入结构ZnO#SiO2纳米粒子的制备方法,其特征在于:所述乙醇溶液中水与乙醇的体积比为1:1~1:5。
4.根据权利要求1所述一种嵌入结构ZnO#SiO2纳米粒子的制备方法,其特征在于:所述搅拌为在300~3000r/min条件下搅拌0.75~2h。
5.根据权利要求1所述一种嵌入结构ZnO#SiO2纳米粒子的制备方法,其特征在于:所述干燥为在温度为50~90℃条件下干燥5~10h。
6.根据权利要求1所述一种嵌入结构ZnO#SiO2纳米粒子的制备方法,其特征在于:所述氨水加入量按氨水与乙醇溶液的体积比为5:12加入。
7.由权利要求1~6任一项所述嵌入结构ZnO#SiO2纳米粒子的制备方法制得的ZnO#SiO2纳米粒子。
8.权利要求7所述ZnO#SiO2纳米粒子在作为催化剂合成聚乳酸或降解RhB中的应用。
CN201810397726.1A 2018-04-28 2018-04-28 一种嵌入结构ZnO#SiO2纳米粒子的制备方法及其产品和应用 Expired - Fee Related CN108654593B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810397726.1A CN108654593B (zh) 2018-04-28 2018-04-28 一种嵌入结构ZnO#SiO2纳米粒子的制备方法及其产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810397726.1A CN108654593B (zh) 2018-04-28 2018-04-28 一种嵌入结构ZnO#SiO2纳米粒子的制备方法及其产品和应用

Publications (2)

Publication Number Publication Date
CN108654593A CN108654593A (zh) 2018-10-16
CN108654593B true CN108654593B (zh) 2021-06-08

Family

ID=63781248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810397726.1A Expired - Fee Related CN108654593B (zh) 2018-04-28 2018-04-28 一种嵌入结构ZnO#SiO2纳米粒子的制备方法及其产品和应用

Country Status (1)

Country Link
CN (1) CN108654593B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309267A (ja) * 1992-05-11 1993-11-22 Japan Storage Battery Co Ltd 光触媒体
CN101402723A (zh) * 2008-09-15 2009-04-08 青岛生物能源与过程研究所 一种直接缩聚制备高分子量聚乳酸的方法
CN102733005A (zh) * 2012-05-16 2012-10-17 青岛科技大学 中空SiO2/ZnO复合纳米纤维的制备方法
CN102732248A (zh) * 2012-06-18 2012-10-17 复旦大学 一种核壳型氧化锌-二氧化硅纳米粒子及其制备方法和应用
CN103050640A (zh) * 2013-01-29 2013-04-17 哈尔滨工业大学 一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法
CN107456980A (zh) * 2017-07-07 2017-12-12 国家纳米科学中心 一种ZnS/ZnO核壳结构及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309267A (ja) * 1992-05-11 1993-11-22 Japan Storage Battery Co Ltd 光触媒体
CN101402723A (zh) * 2008-09-15 2009-04-08 青岛生物能源与过程研究所 一种直接缩聚制备高分子量聚乳酸的方法
CN102733005A (zh) * 2012-05-16 2012-10-17 青岛科技大学 中空SiO2/ZnO复合纳米纤维的制备方法
CN102732248A (zh) * 2012-06-18 2012-10-17 复旦大学 一种核壳型氧化锌-二氧化硅纳米粒子及其制备方法和应用
CN103050640A (zh) * 2013-01-29 2013-04-17 哈尔滨工业大学 一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法
CN107456980A (zh) * 2017-07-07 2017-12-12 国家纳米科学中心 一种ZnS/ZnO核壳结构及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ZnO-SiO2的制备及其光催化降解罗丹明B;郝艳艳等;《人工晶体学报》;20170731;第46卷(第7期);第1379-1384页 *
基于绿色催化体系的聚乳酸合成及其热降解性能分析;张历等;《塑料科技》;20160731;第44卷(第7期);第71-77页 *
新型纳米ZnO@SiO2光催化剂降解苯酚溶液的研究;翟晶等;《北京化工大学学报》;20111231;第38卷(第5期);第6-9页 *
超声辅助均匀沉淀法由前驱体ZnS制备ZnO纳米颗粒及其表征;王志敏等;《精细化工》;20110531;第28卷(第5期);第428-432页 *

Also Published As

Publication number Publication date
CN108654593A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
Huang et al. Optical properties of biomass-derived nanomaterials for sensing, catalytic, biomedical and environmental applications
KR101777975B1 (ko) 나노섬유-나노선 복합체 및 그 제조방법
CN107299417B (zh) 一种WO3/ZnWO4复合微纳米纤维的制备方法及其产品
CN107474248B (zh) 一种荧光性大粒径树枝状大分子及其制备方法
CN108246331B (zh) 石墨烯碳化氮量子点修饰的ZnS微米复合材料及其制备方法和应用
Liu et al. Luminescence tunable fluorescent organic nanoparticles from polyethyleneimine and maltose: facile preparation and bioimaging applications
Qiao et al. Simple and facile preparation of lignosulfonate-based composite nanoparticles with tunable morphologies: From sphere to vesicle
Wang et al. Structure-controlled lignin complex for PLA composites with outstanding antibacterial, fluorescent and photothermal conversion properties
CN110052272B (zh) Co掺杂ZnO纳米花材料的制备方法及其应用
Mallakpour et al. Evaluation of Zno-vitamin B1 nanoparticles on bioactivity and physiochemical properties of the polycaprolactone-based nanocomposites
Bishai et al. Copolymerization of lactic acid for cost-effective PLA synthesis and studies on its improved characteristics
CN101367921A (zh) 一种丙交酯开环合成聚乳酸的方法
CN108654593B (zh) 一种嵌入结构ZnO#SiO2纳米粒子的制备方法及其产品和应用
CN112876972B (zh) 一种MoS2/ZIF-8改性的水性聚氨酯复合乳液及制备方法和应用
CN108014850B (zh) 一种四羧基苯基卟啉超分子光催化剂的制备方法及其应用
US9062159B2 (en) Poly(lactic-co-glycolic acid) synthesized via copolycondensation catalyzed by biomass creatinine
CN112777646A (zh) 一种海胆状碱式碳酸钴的制备方法
CN108129647A (zh) 一种星型聚酯化合物及其制备方法
CN102898635B (zh) 两亲性高分子材料及其制备方法
CN107245243A (zh) 一种蚕丝蛋白诱导合成zif‑8纳米微球的方法
Duan et al. Synthesis and characterization of MeO–PEG–PLGA–PEG–OMe copolymers as drug carriers and their degradation behavior in vitro
Xu et al. Interface template synthesis of zein-based amorphous TiO2 composite microcapsules with enhanced photo-catalysis
CN102702488A (zh) 一种聚乳酸的制备方法
CN113388099B (zh) 一种改性HNTs负载锡基催化剂的制备方法及其应用
Ahuja Gum kondagogu as a potential material for micro-and nanoparticulate drug delivery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210608