CN1029809C - 储氢合金电极 - Google Patents

储氢合金电极 Download PDF

Info

Publication number
CN1029809C
CN1029809C CN91111747A CN91111747A CN1029809C CN 1029809 C CN1029809 C CN 1029809C CN 91111747 A CN91111747 A CN 91111747A CN 91111747 A CN91111747 A CN 91111747A CN 1029809 C CN1029809 C CN 1029809C
Authority
CN
China
Prior art keywords
hydrogen
alloy powder
bearing alloy
battery
hydrogen storing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN91111747A
Other languages
English (en)
Other versions
CN1062057A (zh
Inventor
张允什
宋德瑛
陈有孝
陈军
汪根时
袁华堂
周作祥
王春明
曹学军
臧石
张大昕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN91111747A priority Critical patent/CN1029809C/zh
Publication of CN1062057A publication Critical patent/CN1062057A/zh
Priority to CA002085970A priority patent/CA2085970A1/en
Priority to EP92311685A priority patent/EP0557656B1/en
Priority to DE69209487T priority patent/DE69209487T2/de
Priority to US07/995,844 priority patent/US5354576A/en
Priority to JP4358654A priority patent/JPH0676816A/ja
Application granted granted Critical
Publication of CN1029809C publication Critical patent/CN1029809C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S420/00Alloys or metallic compositions
    • Y10S420/90Hydrogen storage

Abstract

本发明属由活性材料组成的电极。该电极包含具有较高电化学容量的组成为MmNi5-x-9-zAxByCz的储氢合金粉末与具有催化活性的组成为D2-uE1-yFuGv的储氢合金粉末,其中Mm为混合稀土,A=Co、Cr、V,B=Mn、Sn、Be,C=Al、Ca、Mg、Zr、Nb,D=Mg、Al,E=Cu、Zn,F=Ca、Be,G=Sn、Bi,0≤x≤0.5,0≤y≤1.5,0≤z≤0.5,0≤u≤1,0≤v≤0.5。用这种电极装配的碱蓄电池能有效地降低电池内压,提高封口电池的容量和循环使用寿命,电池的“活化”周期缩短为3-5次,从而克服了这类碱蓄电池进行大批量工业生产的关键性技术问题。

Description

本发明属于由活性材料组成的电极。
储氢金属间化合物可以用作电极的理由是它在水溶液中充放电时能发生下列可逆反应
目前已开发的储氢金属间化合物主要是MmNi5系和TiNi系合金(1),利用它们作为储氢合金电极的研究,就已检索到的文献报道,还仅仅限于如何选择这些储氢合金的成分以提高它的电化学容量或电化学稳定性,然而时至今日尚未有过用上述这些储氢合金电极装配成密封碱蓄电池投入工业性生产和实际应用的介绍,其原因是由于储氢碱蓄电池的“活化”是根据反应2H2O(l)+电流==2H2(g)+O2(g)进行设计的在给电池充电时阴极上产生氢气,阳极上产生氧气,储氢合金阴极会将析出的活性氢吸收,氧化镍阳极会与析出的活性氧结合变成Ni(Ⅲ)水合氧化物;在电池放电时,储氢合金阴极放出的氢和Ni(Ⅲ)阳极放出的氧会结合成水,同时产生电流。上述可逆过程可以表示如下:
从上式可以看出,在储氢电池的“活化”充放电过程中,由于H2和O2,这就不可避免地会增加电池的内压,尤其是在充电后期,内压明显增高使储氢碱蓄电池封口后的容量会低于开口时容量的10%,另外由于阳极产生的氧气增多也严重地影响到电池的循环使用寿命,再则在实际生产中只有较小的内压,电池才能密封(2),因此如何降低储氢碱蓄电池的内压已经成为密封储氢碱蓄电池能否投入工业生产和实际应用的关键技术问题。文献(3)介绍了采用在电池内部植入电流集流器的方法减小内压,虽然有一定的效果,但是对AA型一类电池内部空间尺寸受严格限制的蓄电池来说这种方法是不可行的。文献(4)介绍了一种在阴极与阳极之间隔板上钻若干小孔,以增加气体通道的方法,但其降低内压的效果不理想。文献(5)报道了阴极吸氢合金材料上涂一层碳粉,并在高达1050℃温度下进行真空热处理,再粉碎后进行电极成型制作的工艺,这种工艺过程实施困难不易于大规模生产,而且减压只在小电流1/3C0.1,充电时有效。文献(6)介绍了一种晶须植入减压方法,晶须的制作不仅费时而且价格昂贵,也不适用于工业实施。文献(7)、(8)提出在电池设计结构及充电制度上进行改进的方案,然而改变的电池设计结构很难适应工业化生产,改进的充电制度限制了电池的应用范围,都不是理想的方法。
本发明的目的是从储氢合金材料组成结构入手,从本质上改变储氢合金材料的性质,使它们能在电池的充放电过程中起到催化作用,加速在电池“活化”后期产生的积累的不活化的H2和O2化合生成H2O的过程,从根本上减小电池的内压,有效而方便地解决密封储氢合金碱蓄电池进行工业化生产并得实际应用的关键性技术问题。
本发明的目的是通过下述技术方案实现的:储氢合金电极是由一种具有较高电化学容量的储氢合金粉末M1和一种具有良好催化活性的储氢合金粉末M2按一定比例混合组成。由于储氢合金粉末M2具有良好的催化活性,加速了H2的O2化合成H2O的过程,从而降低了电池的内压。
本发明中储氢合金粉末M1的化学组成为MmNi5-x-y-zAxByCz,其中Mm为混合稀土,A=Co、Cr,V,B=Mn、Sn、Be,C=Al、Ca、Mg、Zr、Nb,0≤x≤0.5,0≤y≤1.5,0≤z ≤0.5;储氢合金粉末M2的化学组成为D2-uE1-vFuGv,其中D=Mg、Al,E=Cu,Zn,F=Ca、Be,G=Sn、Bi,0≤u≤1,0≤v≤0.5
将经过表面活化处理并包覆有微米级厚度的镍磷合金的M1和M2,按重量20∶1~10∶1的比例混合均匀,用重量为混合合金粉末重量5~10%的PTFE乳液调成糊状物,在60~100℃温度下多次滚压成0.2~0.4mm厚度的合金粉片,再将该片用50~200MPa的压力压在镍导电基底的一面上制成储氢合金电极。
本发明的储氢合金电极制作工艺简单易行,由它为负极,氧化镍为正极装配成的储氢碱蓄电池有低的内压,封口电池容量接近开口电池容量,只需3-5次“活化”即可达到充放电最大值,因此完全可以进行工业化生产和付诸实用。该蓄电池的低温放电性能良好,同时由于阳极上氧浓度的减少,可提高电池的循环使用寿命,经320次循环充放电后电池容量仅下降6.5%,平均每次循环周期容量下降率小于0.02%。
实施例1
将经过表面活化处理的包覆有微米级厚度镍磷合金膜的MmNi3.8Co0.5Mn0.4Al0.3储氢合金粉末和Mg1.8Cu1.0Al0.2储氢合金粉末按重量比20∶1混合,用占混合合金粉末重量8%的PTFE乳液调成糊状物,在60℃下经多次滚压成0.4mm厚度的合金粉片,将该片用100MPa的压力压在按电池外壳所需要的适当大小的镍基体的一面上,制成储氢合金电极,以该储氢合金电极为负极,氧化镍为正极,含15%LiOH和5N KOH溶液为电解液,尼龙无纺布为隔膜装配成碱蓄电池,经3次“活化”充放电后封口成圆筒式AA型碱蓄电池。表1列出开口型和封口型电池的电容量和能量密度对比数据。
实施例2
将实施例1中所用的两种储氢合金粉末按15∶1的重量比混合,按同样工艺制成储氢合金电极并装配成AA型碱蓄电池(表2中的B)。表2列出本碱蓄电池(B)与用单一储氢合金粉末MmNi3.8Co0.5Mn0.4Al0.3按同样工艺制成的电极装置的碱蓄电池(A)的内压、放电容量、充电效率的对比测试数据。
实施例3
将实施例1中所用的两种储氢合金粉末按10∶1的重量比混合,按同样工艺制成储氢合金电极并装配成AA型碱蓄电池(表3中的C)。表3列出本碱蓄电池(C)与表2中的碱蓄电池(A)的“活化”次数与放电容量关系的对照数据。
参考文献
(1)松本功,新型储氢合金蓄电池,国外稀土情报,1990,3。
(2)Molwi,Motoo;Tajima,Yoshimitsu;Fanaka,Hideaki;Yoneda,Tetsuya;Kasahara,Michiyo,Shapa,Giho,1986,34,97-102.
(3)JP60-130053
(4)JP61-216269
(5)JP62-295353
(6)JP63-55058
(7)JP63-314777
(8)Fan,D.;White,R.E.,J.Electrochem.Soc.,1991,138(1).
表1.AA型碱蓄电池开口型和封口型常温下的电容量和能量密度
放电容量(mAh)    能量密度(封口)
放电速率
开口    封口    Wh/Kg    Wh/L
0.2C    1150    1130    55.6    175.6
1C    1040    1020    50.2    158.5
3C    960    938    45.2    147.6
5C    910    900    43.0    141.1
表2.两种碱蓄电池的内压、放电容量及充电效率对比测试数据
充电量 电池内压(Kg/cm2) 放电容量(mAh) 充电效率
(mAh)    A    B    A    B    A    B
1500(0.1C)    3.35    1.78    1067    1127    71.1    75.1
1500(0.2C)    5.44    2.81    1063    1123    70.9    74.9
1500(0.3C)    8.57    4.02    1067    1123    71.1    74.9
1500(0.5C)    11.27    5.93    1060    1120    70.7    74.7
1500(1.0C)    14.47    8.48    1057    1097    70.5    73.1
表3.两种碱蓄电池的“活化”放电次数与放电容量关系对比数据
放电次数    1    2    3    4    5    6    7    8    9    10    11    12
放电容量  A  567  787  847  890  917  933  953  983  990  1020  1037  1037
(mAh)  C  927  974  1014  1077  1117  1120  1123  1127  1127  1127  1127  1127

Claims (1)

1、一种储氢合金电极,其特征在于:由两种不同性能的储氢合金组成,一种是具有较高电化学容量的组成为MmNi5-x-9-zAxByCz的储氢合金M1,其中Mm为混合稀土,A=Co、Cr,B=Mn、C=Al、Mg,0≤x≤0.5,0≤y≤0.5,0≤z≤0.5;另一种是具有良好催化活性的组成为D2-uE1-vFuGv的储氢合金M2,其中D=Mg、Al,E=Cu,F=Ca,G=Sn,0≤u≤1,0≤v≤0.5,M1∶M2=20∶1~10∶1(重量)。
CN91111747A 1991-12-28 1991-12-28 储氢合金电极 Expired - Fee Related CN1029809C (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN91111747A CN1029809C (zh) 1991-12-28 1991-12-28 储氢合金电极
CA002085970A CA2085970A1 (en) 1991-12-28 1992-12-21 Hydrogen storage alloy electrode
EP92311685A EP0557656B1 (en) 1991-12-28 1992-12-22 Hydrogen storage alloy electrode
DE69209487T DE69209487T2 (de) 1991-12-28 1992-12-22 Elektrode aus wasserstoffspeichernder Legierung
US07/995,844 US5354576A (en) 1991-12-28 1992-12-23 Hydrogen storage alloy electrode
JP4358654A JPH0676816A (ja) 1991-12-28 1992-12-28 水素貯蔵合金電極

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN91111747A CN1029809C (zh) 1991-12-28 1991-12-28 储氢合金电极

Publications (2)

Publication Number Publication Date
CN1062057A CN1062057A (zh) 1992-06-17
CN1029809C true CN1029809C (zh) 1995-09-20

Family

ID=4910819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN91111747A Expired - Fee Related CN1029809C (zh) 1991-12-28 1991-12-28 储氢合金电极

Country Status (6)

Country Link
US (1) US5354576A (zh)
EP (1) EP0557656B1 (zh)
JP (1) JPH0676816A (zh)
CN (1) CN1029809C (zh)
CA (1) CA2085970A1 (zh)
DE (1) DE69209487T2 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501917A (en) * 1994-01-28 1996-03-26 Hong; Kuochih Hydrogen storage material and nickel hydride batteries using same
DE4426958A1 (de) * 1994-07-29 1996-02-01 Varta Batterie Gasdicht verschlossener Metalloxid-Metallhydrid-Akkumulator
CN1045029C (zh) * 1994-10-14 1999-09-08 阎德意 具有非枝晶结构的拉乌斯相贮氢合金电极及其制备方法
CN1056249C (zh) * 1995-01-27 2000-09-06 陈有孝 电动车用镍--氢化物二次电池储氢合金材料
CN1047877C (zh) * 1995-07-03 1999-12-29 陈有孝 大型镍-氢化物二次电池用储氢合金材料
US5876869A (en) * 1995-12-07 1999-03-02 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrodes
JP3214341B2 (ja) * 1996-03-08 2001-10-02 松下電器産業株式会社 電池用水素吸蔵合金の製造法
US6074783A (en) * 1996-12-19 2000-06-13 Duracell Inc. Hydrogen storage alloys for use in rechargeable electrochemical cells, and methods of producing them
DE69839140T2 (de) * 1997-06-17 2008-06-19 Kabushiki Kaisha Toshiba, Kawasaki Wasserstoffabsorbierende Legierung
CN1078909C (zh) 1997-12-26 2002-02-06 丰田自动车株式会社 吸氢合金、吸氢合金的制造方法
CA2241476C (en) * 1998-06-22 2004-03-30 Li-Ho Yao A hydrogen absorbing alloy for battery application
JP2955662B1 (ja) * 1998-09-29 1999-10-04 工業技術院長 三元系水素吸蔵合金およびその製造方法
US6375869B1 (en) 1999-01-29 2002-04-23 Santoku Corporation AB5-type rare earth transition intermetallic compounds for the negative electrodes of rechargeable batteries
US6524745B1 (en) * 1999-05-19 2003-02-25 Energy Conversion Devices, Inc. Electrochemically stabilized CaNi5 alloys and electrodes
CN101852565B (zh) * 2010-05-11 2012-07-04 中国科学院广州能源研究所 储氢合金除氢长效热管
EP2653576B1 (en) * 2010-12-17 2018-08-01 Santoku Corporation Hydrogen-absorbing alloy powder, negative electrode, and nickel hydrogen secondary battery
JP6606041B2 (ja) * 2016-09-16 2019-11-13 トヨタ自動車株式会社 高圧型水素化物二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605603A (en) * 1983-12-26 1986-08-12 Kabushiki Kaisha Toshiba Hermetically sealed metallic oxide-hydrogen battery using hydrogen storage alloy
NL8601675A (nl) * 1986-06-26 1988-01-18 Philips Nv Elektrochemische cel.
DE3702138C2 (de) * 1987-01-24 1994-10-13 Varta Batterie Elektrode mit Speichervermögen für Wasserstoff zur Durchführung von elektrochemischen und chemischen Reaktionen
US5006328A (en) * 1987-11-17 1991-04-09 Kuochih Hong Method for preparing materials for hydrogen storage and for hydride electrode applications
JP2771592B2 (ja) * 1989-04-18 1998-07-02 三洋電機株式会社 アルカリ蓄電池用水素吸蔵合金電極
US5104753A (en) * 1989-09-11 1992-04-14 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Hydrogen storage electrode and process for producing the same
DE69014185T2 (de) * 1989-09-18 1995-03-30 Toshiba Kawasaki Kk Sekundäre Nickel-Metallhydrid-Zelle.

Also Published As

Publication number Publication date
DE69209487D1 (de) 1996-05-02
DE69209487T2 (de) 1996-11-07
CN1062057A (zh) 1992-06-17
CA2085970A1 (en) 1993-06-29
US5354576A (en) 1994-10-11
JPH0676816A (ja) 1994-03-18
EP0557656B1 (en) 1996-03-27
EP0557656A1 (en) 1993-09-01

Similar Documents

Publication Publication Date Title
CN1029809C (zh) 储氢合金电极
US4623597A (en) Rechargeable battery and electrode used therein
Adler et al. Low‐zinc‐solubility electrolytes for use in zinc/nickel oxide cells
CN1871728A (zh) 电极、其制造方法、金属-空气燃料电池和金属氢化物电池
KR940011937B1 (ko) 재충전 전지 및 전극
CN111755699B (zh) 一种高稳定长寿命金属锂负极材料及其制备方法与应用
US5043233A (en) Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
CN1027980C (zh) 储氢合金电极的活性材料
US5480741A (en) Cell provided with gaseous diffusion electrode, and method of charging and discharging the same
CN1274040C (zh) 碱性蓄电池
CN116936955A (zh) 一种基于盐包水电解质的氯离子电池及其制备方法
US3791896A (en) Bi-functional gas electrode
CN1532965A (zh) 活化型铁电极
Willems Investigation of a new type of rechargeable battery, the nickel-hydride cell
CN1035706C (zh) 可充电的锌锰电池
JP3113891B2 (ja) 金属水素化物蓄電池
CN1135099A (zh) 储氢合金阳极及其制造方法
Sharma et al. Safety and Environmental Impacts of Zn Batteries
CN1976098A (zh) 一种碱性二次电池正极材料及碱性二次电池
JP3429684B2 (ja) 水素吸蔵電極
USRE34471E (en) Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
US5944977A (en) Hydrogen-occluding alloy pretreatment method, pretreated hydrogen-occluding alloy, and nickel-hydrogen secondary battery employing the same as an anode
CN1050863C (zh) 镍金属氢化物电池负极用储氢合金
CN1790777A (zh) 一种镍-氢电池负极和采用该负极的电池及它们的制备方法
JPH10326612A (ja) リチウムイオン二次電池用負極およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee