CN102971867B - 在硅晶片上制备n+pp+型或p+nn+型结构的方法 - Google Patents

在硅晶片上制备n+pp+型或p+nn+型结构的方法 Download PDF

Info

Publication number
CN102971867B
CN102971867B CN201180021231.5A CN201180021231A CN102971867B CN 102971867 B CN102971867 B CN 102971867B CN 201180021231 A CN201180021231 A CN 201180021231A CN 102971867 B CN102971867 B CN 102971867B
Authority
CN
China
Prior art keywords
layer
silicon wafer
boron
type
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180021231.5A
Other languages
English (en)
Other versions
CN102971867A (zh
Inventor
芭芭拉·巴泽-巴奇
穆斯塔法·莱米帝
南·里邝
伊冯·佩尔格兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYNERGIES POUR EQUIPEMENTS MICRO-ELECTRONIQUE COMMUNICATION OPTIQUE SA
Centre National de la Recherche Scientifique CNRS
Photowatt International SA
Institut National des Sciences Appliquees de Lyon
Original Assignee
SYNERGIES POUR EQUIPEMENTS MICRO-ELECTRONIQUE COMMUNICATION OPTIQUE SA
Centre National de la Recherche Scientifique CNRS
Photowatt International SA
Institut National des Sciences Appliquees de Lyon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYNERGIES POUR EQUIPEMENTS MICRO-ELECTRONIQUE COMMUNICATION OPTIQUE SA, Centre National de la Recherche Scientifique CNRS, Photowatt International SA, Institut National des Sciences Appliquees de Lyon filed Critical SYNERGIES POUR EQUIPEMENTS MICRO-ELECTRONIQUE COMMUNICATION OPTIQUE SA
Publication of CN102971867A publication Critical patent/CN102971867A/zh
Application granted granted Critical
Publication of CN102971867B publication Critical patent/CN102971867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明涉及在硅晶片上制备n+pp+型或p+nn+型结构的方法,包括如下步骤:a)在包括前表面(8)和背表面(9)的p型或n型硅晶片(1)的背表面(9)上,利用PECVD方法形成硼掺杂氧化硅层(BSG)(2),然后再形成SiOx扩散阻挡层(3);b)使磷源扩散,以便磷与硼进行共扩散并在步骤a)结束后获得的晶片的前表面(8)上形成磷掺杂氧化硅层(PSG)(4)和n+掺杂区(5);在步骤a)结束后获得的晶片的背表面(9)上形成富硼区(BRL)(6)以及p+掺杂区(7);c)去除BSG层(2)、PSG层(4)和SiOx扩散阻挡层(3),使BRL层(6)氧化,除去所述氧化产生的层。本发明还涉及通过上述方法制得的具有n+pp+型或p+nn+型结构的硅晶片,以及使用上述硅晶片制备的光伏电池。

Description

在硅晶片上制备n+pp+型或p+nn+型结构的方法
技术领域
本发明涉及光伏技术领域。更具体地,涉及用于在硅晶片上制备光伏电池的新方法。
背景技术
在光伏产业中,硅晶片的制造成本占太阳能电池(即光伏电池)生产成本的主要部分。为了减少制造成本,通常会使用质量较差的材料(这并不是令人满意的解决方案),或设法降低硅晶片的厚度。
然而,为了获得高性能的光伏电池,在这种使硅晶片厚度越来越薄的趋势中,也必须同时考虑到以下性质:
-背面触点的质量;
-低的背表面复合(recombination)速度(BSRV)。需要注意的是,硅与导电触点之间的界面是一个高复合区域;
-高背表面反射(BSR)。
用于形成高质量的背表面触点最常用的技术是通过网版印刷制备铝制背表面场(Al-BSF)。然而,这会产生高的BSRV(超过400厘米/秒)和低的BSR(60~70%)。另外,考虑到两种材料(Si和Al)不同的膨胀系数,这种技术可能会导致硅晶片的弯曲,这种硅晶片越延展,厚度也越薄(即小于180微米的厚度)。
出于以上考虑,可使用硼背面场(B-BSF)来替代Al-BSFs。这种替代方法是获得优质的背表面触点最有效的解决方案之一。同Al-BSF相比,硼背面场(B-BSF)具有以下优势:
-B-BSF可以在不诱发应力的情况下在硅衬底中形成,因此不会产生任何硅晶片的弯曲。
-由于硼在硅中有较大的溶解度限制,B-BSF会产生高浓度的p+区,因此这会引起较低的复合速率(更强的背表面排斥场)。
-B-BSF可以在介电钝化时制备,从而降低背表面复合速率(BSRV),
并增强背表面反射(BSR)。
然而,硼的扩散被认为是在太阳能电池的制造过程中最难的技术之一。硼的扩散系数比磷要低得多。因此,必须施加较高的扩散温度用于硼的扩散。这就是为什么在BBr3作为硼源时,其扩散必须在发射极扩散之前进行,以避免磷原子的再分布。
一些现有技术文献中描述了用于形成B-BSF的硼和磷的扩散工艺,从而得到具有n+pp+型或p+nn+型结构的硅晶片。
在这方面,由S.RIEGEL等人在2009年9月25日于德国汉堡举行的24届欧洲光伏能源会议上发表的《ComparisonofthepassivationqualityofboronandaluminiumBSFforwafersofvaryingthickness(用于不同厚度硅晶片的硼铝BSF钝化质量的比较)》一文中,描述了使用BBr3作为硼源的扩散工艺制备硅晶片的方法,该方法可在硅晶片上形成n+pp+型结构,它包括以下六个步骤:
-步骤1:将BBr3扩散到前表面和背表面都已进行去油污处理的(degreased)p型硅晶片上。
-步骤2:除去步骤1中在正表面和背表面上形成的硼掺杂氧化硅层,以下称作BSG层(硼硅酸盐玻璃)。
-步骤3:为了保护背表面,可淀积一层薄的其上覆盖(surmount)一层氮化硅(SiNx)的热氧化层(使用等离子体增强化学气相淀积技术(PECVD)进行淀积)。此步骤也允许背表面的钝化。
用热氢氧化钠清洗扩散在前表面上的硼。
-步骤5:从前表面上的液态POCl3源将磷原子扩散。
-步骤6:除去步骤5中形成的磷掺杂氧化硅层,在下文中称作PSG层(磷硅玻璃)。步骤6在此文中并没有明确描述,但它也是获得太阳能电池的必要步骤。
由J.LIBAL等人在2007年于意大利米兰举行的22届欧洲光伏能源会议上发表的题为《Recordefficienciesofsolarcellsbasedonn-typemulti-crystallinesilicon(基于n型多晶硅的太阳能电池的记录效率)》一文中,描述了另一种同样使用BBr3作为硼源制造硅晶片的工艺。在硅晶片上形成p+nn+型结构的制造方法包括以下四个步骤:
-步骤1:使用“背对背”技术,即两个硅晶片背对背地放置,将BBr3作为硼源进行扩散。形成富硼层(下称BRL层)。
-步骤2:为了便于除去BRL层,可进行原位氧化反应,将BRL层转化为硼掺杂氧化硅层(以下简称BSG层)。然后可将其浸在氢氟酸溶液中以便除去BSG层和BRL层。
-步骤3:将硅晶片翻转过来,使它们“面对面”。POCl3扩散,并且同时地形成磷掺杂氧化硅层(PSG层)作为B-BSF。
-步骤4:除去在步骤3中形成的磷掺杂氧化硅层(PSG层)。
在该第二个出版物中公开的方法也使用BBr3作为硼源。和第一个文献相比,“背对背”技术的应用使得制备p+nn+型结构硅晶片的步骤有所减少。然而,这种“背对背”技术会引起硅晶片受保护侧边缘上的硼扩散。
需要注意的是,考虑到该第二个公开文献所描述的方法的对称性的问题,也有可能得到第一个发表中的n+pp+型结构。
另一个由D.Kim等人在2007年于意大利米兰举行的22届欧洲光伏能源会议上发表的题为《Siliconsolarcellswithboronbacksurfacefieldformedbyusingboricacid(具有由硼酸形成的硼背场的硅太阳能电池)》的文献中,描述了另一种在晶片上制备多结的方法。其中关于获得n+pp+型结构的方法使用了另一种叫做旋转涂覆的硼淀积技术,其步骤包括:
-步骤1:通过旋涂硼酸进行硼的淀积。
-步骤2:硼的扩散。
-步骤3:除去在步骤1中形成的硼掺杂氧化硅层(BSG层)。
-步骤4:通过旋涂磷酸以淀积磷。
-步骤5:磷的扩散。
-步骤6:除去步骤5中形成的磷掺杂氧化硅层(PSG层)。
该文献中描述的方法的缺点在于它不能同时在多个硅晶片上进行。通过旋涂进行掺杂剂的淀积,只能每次在一个硅晶片上有效地进行。
因此,可以确定的是,根据上述方法制备光伏电池,尤其是通过形成B-BSF来获得n+pp+型结构,必然需要大量的步骤,从而导致硅基电池生产的高额成本。
另外,许多诸如第三个文献中所描述的方法,都不允许同时在多个硅晶片上进行硼的扩散。
前面对现有技术的引述指出了在制造硅基光伏电池中,由硼扩散形成硼背面场(B-BSF)来制备n+pp+的结构的过程过于复杂。
为了克服上述缺陷,本发明提供了一种独创的用于在硅晶片上制备n+pp+型或p+nn+型(根据衬底的不同)结构的方法。其中,p+区是由硼扩散得到的硼背面场(B-BSF)而获得。同现有技术中的方法相比,该方法的步骤有所减少。该方法只需进行三个基本步骤。
另外,本发明的方法具有借助光伏电池领域中使用的传统技术的优点,例如易于实施PECVD。
发明内容
本发明提供了在硅晶片上制备n+pp+型或p+nn+型结构的方法,其特征在于,包括:
a)在包括前表面和背表面的p型或n型硅晶片的背表面上,进行PECVD处理,形成硼掺杂氧化硅层(BSG),然后再形成SiOx扩散阻挡层;
b)使磷源扩散,以便磷与硼进行共扩散,并且
-在步骤a)结束后获得的晶片的前表面上形成
●磷掺杂氧化硅层(PSG),和
●n+掺杂区;
-以及在步骤a)结束后获得的晶片的背表面上形成:
●富硼层(BRL),以及
●p+掺杂区;
c)去除BSG层、PSG层和SiOx扩散阻挡层,使BRL层氧化,除去该氧化产生的层。
硅晶片可从由Czochralski直拉法(CZ硅晶片)、悬浮区直拉法(FZ硅晶片)得到的单晶硅块体上进行切割得到,也可从多晶硅块体(多晶硅晶片)或硅带切割获得。例如:从利用边沿限定的导膜生长技术(Edge-definedFilm-fedGrowthtechnique)制成的硅带上切割得到EDF硅晶片、或从利用衬底上的带状生长技术(RibbonGrowthonSubstratetechnique)制成的硅带上切割得到RGS硅晶片。
硅晶片的厚度优选为50μm到500μm之间。
本发明方法的步骤a)中,BSG层和SiOx层的淀积可依次在同一反应器中进行。
因此,在根据本发明的制备方法的步骤a)中,BSG层的PECVD淀积可在300℃至400℃的温度下进行。等离子体的功率为500W至1500W。可使用下列物质作为初坯:硅烷、作为硼源的三甲基硼酸盐(简称TMB,化学式:B(OCH33),以及一氧化二氮(N2O)。
以下方式是有利的:硅烷的流速为30-60sccm(标准立方厘米每分钟,即cm3/min,在以下温度和压力的标准条件下:T=0℃,P=101325kPa)。TMB的流速可以为100~1000sccm。N2O的流速可以为500~2000sccm。
淀积时间为10分钟至20分钟是有利的。
通过PECVD淀积SiOx的温度优选为300℃至400℃,功率为500W~1500W。作为初坯使用的硅烷的流速优选为20~50sccm,N2O的流速优选为400~1000sccm。
根据本发明方法的步骤a)完成时,所获得的硅晶片包括:
-p或n型的硅晶片,
-BSG层,
-防止SiOx扩散的阻挡层。
本发明的方法中步骤b)有利地是在一个低压热扩散熔炉中进行,例如石英扩散炉。优选地,可使用型扩散熔炉(即一种低压熔炉,国际专利申请WO02/093621对其技术特征进行了描述),它允许掺杂剂扩散在硅晶片中。
在本发明的另一实施例中,步骤b)可在大气压力下的熔炉中进行。
因此,在此方法的步骤b)中,形成硅晶片上的n+和p+区。
本发明的方法中步骤b可以有利地包括以下连续步骤:
b1)首先,硼从步骤a)后形成的BSG层扩散至硅晶片中,然后
b2)硼源进行扩散,以便硼原子和磷原子发生共扩散。
更详细地,在本实施例的步骤b)中,首先,硼原子从步骤a)之后形成的BSG层扩散至硅晶片中,形成了P+区。为此目的,炉中的温度可以为850℃至1050℃。氧气的流速有利地为500至2000sccm。硼原子的扩散可进行15分钟至90分钟,这取决于温度。压力可保持在200至400mbar是有利的。硼扩散要在磷扩散前开始,因为硼扩散需要花费较长的时间以形成足够的BSF层。
然后将POCl3加入到炉中,开始磷扩散,以形成n+区。硼原子继续扩散,从而连续地形成p+区。此时,硼原子和磷原子发生共扩散。为此目的,氧气的流速最好减少为300至1000sccm。POCl3的流速可以设置在300-800sccm。优选地,共扩散可持续10至60分钟。
因此,在根据本发明方法的步骤b)后,获得的硅晶片包括:
-PSG层;
-n+
-p或n型的硅晶片,
-P+
-BRL
-BSG层,
-防止SiOx扩散的阻挡层。
根据本发明的制备方法中步骤c)可包括以下连续步骤:
c1)进行第一次湿法化学蚀刻。例如,浸在浓度为1~10%(也就是在去离子水中稀释至1~10%)的氢氟酸中,以便除去BSG和PSG层。
c2)BRL氧化。例如,在700℃至1000℃下,通入流速为500~2000sccm的气态氧,从而,由BRL中的硼和炉中的氧形成薄的BSG层。
c3)进行第二次湿化学蚀刻,例如,可浸在2%的氢氟酸溶液中,以便除去步骤c2)中形成的BSG的氧化层。
需要说明的是,步骤c2)中应用的热氧化可以在步骤c)中替换为使用沸腾的硝酸溶液或硫酸和高锰酸钾的混合物进行的湿法氧化。然而,考虑到由于使用这些化学化合物可能带来的环境问题,该技术有不利之处。
本发明方法的步骤c)最好在氧化炉中实施,还可以在步骤b)中使用的热扩散熔炉(即型熔炉)中进行。
在本发明方法步骤c)完成后获得的硅晶片包括:
-n+
-p或n型的硅晶片,
-p+
优选地,本发明提供的在硅晶片上制备n+pp+型或p+nn+型结构的方法,其特征在于,包括上述连续步骤a)至步骤c)。
本发明的另一方面为具有通过上述制备方法能够得到的n+pp+型或p+nn+型结构的硅晶片。
本发明的一个方面为生产光伏电池的方法,在该方法中,通过上述制备方法制备具有n+pp+型或p+nn+型结构的硅晶片。
本发明的另一方面为制造光伏电池的方法,其特征在于,包括以下步骤:
a)根据上述方法制备具有n+pp+型或p+nn+型结构的硅晶片;
b)在步骤a)完成后得到的硅晶片的前表面淀积抗反射层;
c)可选地,在背表面淀积钝化层;
d)在步骤b)或可选地在步骤c)后得到的硅晶片的前表面和背表面上以网格的形式排列电触点
步骤b)优选为通过PEVCD技术淀积氢化氮化硅(SixNy:H)
可选地,步骤b)的实施可使用UV-CVD(紫外化学气相淀积)。
步骤d)中电触点的铺设可通过网格印刷(serigraphy)实现,之后再进行退火以使上述网版印刷时的金属浆料(paste)硬化,从而保证良好的接触。接触点为网格形式的网版印刷技术(尤其是在背表面上)可以避免硅晶片的弯曲。例如在铝背场(Al-BSF)光伏电池的情况中。
本发明的另一方面在于根据上述制造方法得到的光伏电池。
附图说明
下列附图及附图说明,可帮助更好地理解本发明的内容。以下附图说明为本发明在硅晶片上制备n+pp+型结构的一个实施例,但不作为限制性的例子。
图1示意性地显示了根据本发明的制备方法的步骤a)到步骤c)的实施过程。
图2为在850°C下60分钟后,掺杂剂(也就是磷与硼)对应硅晶片不同深度的扩散曲线。
图3为两种光伏电池的内部量子产率曲线,其中之一为根据本发明的方法制备的硼背场光伏电池,第二个为铝背场光伏电池。
具体实施方式
图1示意性地显示了根据本发明制备n+pp+型结构的方法中,步骤a)到步骤c)的实施过程,即在每个步骤之后得到的硅晶片的结构。
一个p型硅晶片1包括前表面8和背表面9。
在根据本发明制备方法的步骤a)中,可以采用PECVD技术在p型硅晶片1的背表面9上形成硼掺杂氧化硅层(BSG)2,然后再形成防止SiOx扩散的阻挡层3。如图1所示,步骤a中形成的硅晶片包括:
-p型硅晶片1
-BSG层2
-防止SiOx扩散的阻挡层3
在该方法的步骤b)中,首先进行硼的扩散,然后再进行磷源的扩散。这样是为了磷与硼的共扩散,并且在步骤a)后所得硅晶片的前表面8上形成磷掺杂氧化硅层(PSG)4和n+区5(即富磷区,也就是磷的高掺杂区),在背表面9上形成p+掺杂区7和富硼层(BRL)6。
由此,在如图1所示的步骤b)后形成的硅晶片包括:
-PSG层4,
-n+区5,
-p型硅晶片1,
-p+区7
-BRL6,
-BSG层2
-防止SiOx扩散的阻挡层3。
在本发明所述方法的步骤c)中,BSG层2、PSG层4和SiOx扩散阻挡层3被去除,BRL6发生氧化,所产生的氧化层也被除去。在图1中,步骤c)中形成的硅晶片包括:
-n+区5,
-p型硅晶片1,和
-形成上述硅晶片的B-BSF的p+区7。
图2为根据本发明方法制备的硅晶片,掺杂剂(也就是磷与硼)在850°C下60分钟后,对应硅晶片不同深度的扩散曲线。浓度(分别表示为每立方厘米磷与硼的原子数)表达为硅晶片中不同深度(μm)的函数。浓度的测量是使用SIMS(次级离子质谱)来实现。
图3和表1显示出本发明的方法与现有技术中铝背场Al-BSF的方法相比较的可行性比较结果。
图3为以p型单晶硅作为衬底制成的两种光伏电池的内部量子产率的曲线。其中之一具有铝背场(Al-BSF),另一个为根据本发明的方法制备的B-BSF电池。具有Al-BSF的电池是根据制备这种电池的常规方法制备的。
表1详细地说明了根据这两种电池测得的光电参数。
表1:两种光伏电池测得的光电参数
在表1中,缩写Jcc代表短路光电流密度,缩写Vco代表开路电压,缩写FF代表形状参数,产率(%)代表光电转化率。

Claims (11)

1.一种在硅晶片上制备n+pp+型或p+nn+型结构的方法,其特征在于,包括:
步骤a)在包括前表面(8)和背表面(9)的p型或n型硅晶片(1)的背表面(9)上,进行PECVD处理,形成硼掺杂氧化硅层(BSG)(2),然后再形成SiOx扩散阻挡层(3);
步骤b)使磷源扩散,以便磷与硼进行共扩散,并且
-在步骤a)结束后获得的晶片的前表面(8)上形成
磷掺杂氧化硅层(PSG)(4),和
n+掺杂区(5);
-以及在步骤a)结束后获得的晶片的背表面(9)上形成:
富硼层(BRL)(6),以及
p+掺杂区(7);
步骤c)去除BSG层(2)、PSG层(4)和SiOx扩散阻挡层(3),使BRL层(6)氧化,除去所述氧化产生的层。
2.根据权利要求1的制备方法,其特征在于,在形成BSG层(2)的过程中,作为硼源的初坯为三甲基硼酸盐。
3.根据权利要求1的制备方法,其特征在于,BSG层(2)的形成是在300~400℃、功率为500~1500W的条件下进行的。
4.根据权利要求1的制备方法,其特征在于,通过PECVD的方法对SiOx(3)进行淀积是在300~400℃、功率为500-1500W的条件下进行的。
5.根据权利要求1至4中任何一项的制备方法,其特征在于,所述步骤b)是在大气压下的热扩散熔炉中进行。
6.根据权利要求1至4中任何一项的制备方法,其特征在于,步骤b)包括下列的连续的步骤:
步骤b1)首先,将硼从步骤a)完成后形成的BSG层(2)扩散至硅晶片(1)中,然后
步骤b2)使磷源进行扩散,以便硼原子和磷原子发生共扩散。
7.根据权利要求1至4中任何一项的制备方法,其特征在于,所述步骤c)包括下列连续的步骤:
步骤c1)进行第一次化学蚀刻,以便除去BSG层(2)和PSG层(4);
步骤c2)使BRL层(6)氧化;
步骤c3)进行第二次化学蚀刻,以便除去步骤c2)完成时形成的氧化层。
8.根据权利要求1至4中任何一项所述的制备方法得到的具有n+pp+型或p+nn+型结构的硅晶片。
9.制备光伏电池的方法,其特征在于,包括以下步骤:
步骤1根据权利要求1至7的任何一项的方法制备具有n+pp+型或p+nn+型结构的硅晶片;
步骤2在步骤1完成时得到的硅晶片的前表面淀积抗反射层;
步骤3在步骤2后得到的硅晶片的前表面和背表面上以网格的形式排列电触点。
10.根据权利要求9所述的制备光伏电池的方法,其特征在于,所述步骤2还包括:
在硅晶片的背面淀积钝化层。
11.根据权利要求9或10的制备方法得到的光伏电池。
CN201180021231.5A 2010-04-26 2011-04-26 在硅晶片上制备n+pp+型或p+nn+型结构的方法 Active CN102971867B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR10/53154 2010-04-26
FR1053154A FR2959351B1 (fr) 2010-04-26 2010-04-26 Procede de preparation d’une structure de type n+pp+ ou de type p+nn+ sur plaques de silicium
PCT/FR2011/050948 WO2011135249A1 (fr) 2010-04-26 2011-04-26 Procédé de préparation d'une structure de type n+pp+ ou de type p+nn+ sur plaques de silicium

Publications (2)

Publication Number Publication Date
CN102971867A CN102971867A (zh) 2013-03-13
CN102971867B true CN102971867B (zh) 2015-11-25

Family

ID=43759723

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180021231.5A Active CN102971867B (zh) 2010-04-26 2011-04-26 在硅晶片上制备n+pp+型或p+nn+型结构的方法

Country Status (7)

Country Link
US (1) US9082924B2 (zh)
JP (1) JP5940519B2 (zh)
KR (1) KR101777277B1 (zh)
CN (1) CN102971867B (zh)
DE (1) DE112011101439T5 (zh)
FR (1) FR2959351B1 (zh)
WO (1) WO2011135249A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178152B (zh) * 2011-12-22 2015-09-16 茂迪股份有限公司 结晶硅太阳能电池的制造方法
JP2014045036A (ja) * 2012-08-24 2014-03-13 Amaya Corp 半導体装置の製造方法
NL2010116C2 (en) * 2013-01-11 2014-07-15 Stichting Energie Method of providing a boron doped region in a substrate and a solar cell using such a substrate.
KR101371801B1 (ko) 2013-01-11 2014-03-10 현대중공업 주식회사 양면수광형 태양전지의 제조방법
KR20150007394A (ko) * 2013-07-10 2015-01-21 현대중공업 주식회사 양면수광형 태양전지의 제조방법
JP6144778B2 (ja) * 2013-12-13 2017-06-07 信越化学工業株式会社 太陽電池の製造方法
US10526728B2 (en) * 2014-06-02 2020-01-07 Sumco Corporation Silicon wafer and method for manufacturing same
DE102014109179B4 (de) 2014-07-01 2023-09-14 Universität Konstanz Verfahren zum Erzeugen von unterschiedlich dotierten Bereichen in einem Siliziumsubstrat, insbesondere für eine Solarzelle, und Solarzelle mit diesen unterschiedlich dotierten Bereichen
CN104538485A (zh) * 2014-11-06 2015-04-22 浙江正泰太阳能科技有限公司 一种双面电池的制备方法
CN105261670B (zh) * 2015-08-31 2017-06-16 湖南红太阳光电科技有限公司 晶体硅电池的低压扩散工艺
WO2017109835A1 (ja) * 2015-12-21 2017-06-29 三菱電機株式会社 太陽電池の製造方法
CN105702809A (zh) * 2016-04-07 2016-06-22 南昌大学 一种低温气相沉积固态扩散源制备用于太阳电池的掺杂硅的方法
CN108110088B (zh) * 2017-12-21 2020-11-10 苏州阿特斯阳光电力科技有限公司 太阳能电池的低压扩散工艺及利用其制备得到的太阳能电池
CN109301031B (zh) * 2018-09-12 2021-08-31 江苏林洋光伏科技有限公司 N型双面电池的制作方法
CN111384210B (zh) * 2019-12-27 2021-10-22 横店集团东磁股份有限公司 一种perc叠加se的高开压扩散高方阻工艺
CN111755563B (zh) * 2020-05-26 2022-03-18 晶澳(扬州)太阳能科技有限公司 一种p型单晶硅硼背场双面电池及其制备方法
CN111916347B (zh) * 2020-08-13 2023-03-21 中国电子科技集团公司第四十四研究所 一种用于soi片的磷扩散掺杂方法
CN113363334A (zh) * 2021-06-01 2021-09-07 常州时创能源股份有限公司 一种硼掺杂选择性发射极的制备方法
CN113629172B (zh) * 2021-09-14 2023-03-14 常州时创能源股份有限公司 一种太阳能电池的硼扩散方法及其制造方法
CN115020539A (zh) * 2022-05-27 2022-09-06 天津爱旭太阳能科技有限公司 一种perc电池背面结构、制备工艺及perc电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152824A (en) * 1977-12-30 1979-05-08 Mobil Tyco Solar Energy Corporation Manufacture of solar cells
US4377901A (en) * 1980-06-16 1983-03-29 U.S. Philips Corporation Method of manufacturing solar cells
CN1275290C (zh) * 2001-05-14 2006-09-13 塞姆科工程股份有限公司 在减低压力的情况下掺杂、扩散及氧化硅片的方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363993A (en) * 1976-11-19 1978-06-07 Matsushita Electric Ind Co Ltd Production of semiconductor device
US5258077A (en) * 1991-09-13 1993-11-02 Solec International, Inc. High efficiency silicon solar cells and method of fabrication
JP3722326B2 (ja) * 1996-12-20 2005-11-30 三菱電機株式会社 太陽電池の製造方法
JP2000277503A (ja) * 1999-01-19 2000-10-06 Asahi Denka Kogyo Kk ホウ素ドープシリカ膜の形成方法及び電子部品の製造方法
JP2008124381A (ja) * 2006-11-15 2008-05-29 Sharp Corp 太陽電池
JP5277485B2 (ja) * 2007-12-13 2013-08-28 シャープ株式会社 太陽電池の製造方法
KR20100112656A (ko) * 2008-04-25 2010-10-19 가부시키가이샤 아루박 태양전지의 제조방법, 태양전지의 제조장치 및 태양전지
EP2324509A2 (en) * 2008-08-27 2011-05-25 Applied Materials, Inc. Back contact solar cells using printed dielectric barrier
DE102010029741B4 (de) * 2010-06-07 2013-02-28 Solarworld Innovations Gmbh Verfahren zum Herstellen von Silizium-Wafern, Silizium Wafer und Verwendung eines Silizium-Wafer als Silizium-Solarzelle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152824A (en) * 1977-12-30 1979-05-08 Mobil Tyco Solar Energy Corporation Manufacture of solar cells
US4377901A (en) * 1980-06-16 1983-03-29 U.S. Philips Corporation Method of manufacturing solar cells
CN1275290C (zh) * 2001-05-14 2006-09-13 塞姆科工程股份有限公司 在减低压力的情况下掺杂、扩散及氧化硅片的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Bifacial solar cells on multi-crystalline silicon with boron bsf and open rear contact;A.Kränzl;《Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th world Conference on》;20060531;第1卷;Page968-971 *

Also Published As

Publication number Publication date
JP5940519B2 (ja) 2016-06-29
KR101777277B1 (ko) 2017-09-11
US9082924B2 (en) 2015-07-14
US20130112260A1 (en) 2013-05-09
KR20130129818A (ko) 2013-11-29
CN102971867A (zh) 2013-03-13
FR2959351A1 (fr) 2011-10-28
FR2959351B1 (fr) 2013-11-08
JP2013526049A (ja) 2013-06-20
WO2011135249A1 (fr) 2011-11-03
DE112011101439T5 (de) 2013-04-11

Similar Documents

Publication Publication Date Title
CN102971867B (zh) 在硅晶片上制备n+pp+型或p+nn+型结构的方法
US20240097056A1 (en) Efficient Back Passivation Crystalline Silicon Solar Cell and Manufacturing Method Therefor
CN102598311B (zh) 太阳能电池及制造所述太阳能电池的方法
US8138070B2 (en) Methods of using a set of silicon nanoparticle fluids to control in situ a set of dopant diffusion profiles
CN111628052B (zh) 一种钝化接触电池的制备方法
CN102332495A (zh) 一种晶体硅太阳能电池的制作方法
US11049982B2 (en) Solar cell element
US20130247971A1 (en) Oxygen Containing Precursors for Photovoltaic Passivation
CN116454168A (zh) 一种TOPCon电池及其制备方法
US9559221B2 (en) Solar cell production method, and solar cell produced by same production method
Cho et al. 21%-Efficient n-type rear-junction PERT solar cell with industrial thin 156mm Cz single crystalline silicon wafer
JP6652795B2 (ja) 結晶太陽電池の製造方法
CN103000755A (zh) 用于光伏钝化的前体
CN110580969B (zh) 一种晶体硅电池及其导电浆料
CN114914328B (zh) 一种双面太阳能电池及其制备方法
CN111755563B (zh) 一种p型单晶硅硼背场双面电池及其制备方法
JP6224513B2 (ja) 太陽電池素子の製造方法
CN102122683A (zh) 采用腐蚀浆料法制备单晶硅太阳能电池选择发射极的工艺
TWI477643B (zh) 用於光伏打鈍化的含氧前驅物
TWI693723B (zh) 太陽電池元件
CN112509726B (zh) 背场掺杂用硼铝浆、太阳电池及其制备方法
CN101312222A (zh) 太阳能电池的制造方法
Faur et al. Room Temperature Wet Chemical Growth of an Oxygen Enhanced Diffusion Oxide Utilized in a Boron Diffusion Process
JP2011187858A (ja) 太陽電池の製造方法及び太陽電池
CN110137270A (zh) 一种选择性正面钝化perc太阳能电池的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant