CN102931107A - 用于减缓金属间化合物成长的方法 - Google Patents

用于减缓金属间化合物成长的方法 Download PDF

Info

Publication number
CN102931107A
CN102931107A CN201210061784XA CN201210061784A CN102931107A CN 102931107 A CN102931107 A CN 102931107A CN 201210061784X A CN201210061784X A CN 201210061784XA CN 201210061784 A CN201210061784 A CN 201210061784A CN 102931107 A CN102931107 A CN 102931107A
Authority
CN
China
Prior art keywords
scolder
metal
intermetallic compound
bed course
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210061784XA
Other languages
English (en)
Other versions
CN102931107B (zh
Inventor
陈智
杜经宁
萧翔耀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spring Foundation of NCTU
Original Assignee
Spring Foundation of NCTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spring Foundation of NCTU filed Critical Spring Foundation of NCTU
Publication of CN102931107A publication Critical patent/CN102931107A/zh
Application granted granted Critical
Publication of CN102931107B publication Critical patent/CN102931107B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/038Post-treatment of the bonding area
    • H01L2224/03848Thermal treatments, e.g. annealing, controlled cooling
    • H01L2224/03849Reflowing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/05611Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/085Material
    • H01L2224/08501Material at the bonding interface
    • H01L2224/08503Material at the bonding interface comprising an intermetallic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/11848Thermal treatments, e.g. annealing, controlled cooling
    • H01L2224/11849Reflowing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/36Material effects
    • H01L2924/365Metallurgical effects
    • H01L2924/3651Formation of intermetallics

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明是有关于一种用于减缓金属间化合物成长的方法。该方法的步骤包括:(i)制备一衬底元件,包括在一衬底上电镀至少一金属垫层,接着在该金属垫层上电镀至少一很薄的一薄焊料,进行适当的热处理工艺;(ii)在该衬底元件上再镀上适当厚度的焊料;其中,该薄焊料经过适当的热处理后,会与金属垫的金属反应形成一薄的金属间化合物,因此可以在之后的回焊工艺抑制金属间化合物的生成速率的效果,借以减缓微小接点焊料与金属垫上的金属反应变成金属间化合物。一旦金属间化合物成长速率能被减缓,锡晶须(Sn whisker)的成长也可以被抑制。

Description

用于减缓金属间化合物成长的方法
技术领域
本发明是有关于一种用于减缓金属间化合物成长的方法,特别是一种用于减缓焊锡与金属垫层形成金属间化合物的方法。此外,本发明还有关于一种覆晶接合的结构。
背景技术
半导体技术及封装的发展趋势是密度越来越高,且接点(interconnects)越来越小,目前覆晶焊锡接点的尺寸(直径)约为100微米(μm)。现有的覆晶焊锡接点,参照图1、图2A、图2B,是在一硅(Si)板(11)镀上一厚度5微米的铜(Cu)金属垫层(12);之后在该铜金属垫层(12)镀上一厚度3微米的镍(Ni)金属层(13);及在该镍金属层镀上厚度约70至100微米的焊锡(14),形成一含有微焊锡接点的半导体芯片元件(1);接着进行覆晶(Flip-Chip)程序,将该元件(1)与硅板(21)上镀有铜金属垫层(22)、镍金属层(23)的元件(2)接合。通常对于很小的接点而言,例如3D IC中的微焊锡接点(microbumps)(参照图2B),接点的总厚度(bump height)约为20微米,而焊锡厚度仅有约数微米至10微米,上下端的铜或镍金属垫层(under-bump-metallization,UBM)总厚度各约8微米。当接点工艺完成或是经过10次回焊测试后,或是在使用一段时间后,焊锡接点将会全部转换成诸如Cu-Sn、Ni-Sn或是Cu-Ni-Sn之类的金属间化合物接点,已发现这类金属间化合物性质较脆,因此会严重影响焊锡接点的机械性质,例如元件若用于可携式产品,当掉落或撞击到后,接点有可能会断裂。近年,改善上述问题的解决方式是在微焊锡接点(microbumps)再镀上一层镍作为扩散阻止层,但是这种方式的成本较高,且由于镍的应力较大,对接点的机械性质也有负面的影响。
焊锡是封装领域最常用的焊料,早期封装从业人员是以共晶锡铅焊锡与铜或镍金属在熔融状态下(例如温度约220℃)进行接合。然而,共晶锡铅焊锡会与铜发生反应,而生成如Cu3Sn及/或Cu6Sn5之类的金属间化合物。由于含铅材料有害环境,因此随着环保意识的重视,此类共晶铅焊锡材料已被禁止用作覆晶接点的焊料,进而以无铅焊锡取代。
目前较常使用的无铅焊锡,例如锡银、锡银铜等等,它们的熔点通常比现有的共晶锡铅焊锡的熔点高约50℃,也就是说,使用无铅焊锡需要在约250℃至260℃的更高温度下进行接合。但是,大部分的无铅焊锡与铜镍的反应更快,会形成更厚的例如Cu-Sn化合物。虽然焊锡本身的机械性质较好,能够吸收整个结构体的应力,但是反应所产生的Cu-Sn化合物的机械性质比较差(例如较脆),因此,若是形成较厚的Cu-Sn化合物,当整个结构体受到应力时,容易从Cu-Sn化合物脆断而破坏整个结构体。
铜及锡的反应很快,甚至在室温下就会反应,现有技术并没有办法减缓或控制如Cu6Sn5之类的金属间化合物的形成。一般,在尺寸较大的焊锡接点,如覆晶焊锡接点,生成金属间化合物会形成接点,并不会影响接点的机械性质,但是对于很小的接点而言,例如3D IC工艺中的微焊锡接点(microbumps),焊锡体积仅约为覆晶焊锡接点的一百分之一而已,当接点工艺完成或是经过多次(例如10次)回焊测试后,或是在使用一段时间后,焊锡接点将会全部转换成Cu-Sn金属间化合物接点,由于此金属间化合物性质较脆,因此会严重影响到接点的机械性质。
目前的解决方式,通常在微焊锡接点再镀上一层镍作为扩散阻止层,但是这种方式的成本较高,且由于镍的应力较大,对接点的机械性质有负面的影响。
另一种现有技术,是利用溅射(sputtering)的方法共溅射铜与镍,但这种方法并没有办法镀上厚的膜,成本更高,此外,因为无铅焊锡与铜及镍的反应速率比含铅焊锡快很多,这种方法也无法适用于无铅焊锡。
现有技术中,如美国专利US6,716,738B2(公告日期:2004年4月6日)公开【通过电镀制造覆晶相互接的多层UBM的方法(Method offabricating multilayered UBM for flip chip interconnections byelectroplating)】,此专利是通过调整电镀得到的金属层,变成Cu-Ni金属层来控制镀得的金属层的应力与金属层的成分,其利用镍作为反应阻止层,以减缓铜、镍与焊锡反应形成的化合物厚度。这种利用阻止层的缺点在于同时镀铜与镍金属层,工艺复杂且成分不易控制,及金属层的应力也不容易控制,因此稳定性不好,会影响产品合格率,此外,铜也会跟焊锡反应。
美国专利US6,602,777(公告日期:2003年8月5日)公开【控制焊锡接点的金属间化合物形成的方法(Method for controlling the formation ofintermetallic compound in solder joints)】,此专利是通过调整焊锡中的铜浓度来控制焊锡与镍金属层形成的金属间化合物(intermetallic compound)种类,例如(Cu1-xNix)6Sn5,或是(Ni1-yCuy)3Sn4。然而,这种方法并不能控制铜与焊锡生成的金属间化合物的厚度。
中国台湾地区专利I338344(公告日期:2011年3月1日)公开【具有焊料凸块以抑制金属间化合物成长的半导体芯片及其制造方法】,此专利是利用渗入焊料凸块的穿透层材料,改变焊料凸块成为多成份的焊料凸块,以抑制化合物的成长。这篇专利是改变焊锡成分以抑制金属间化合物(IMC)的成长,但是对抑制Cu-Sn化合物的反应却是很有限。
此外,现有技术中还有公开文献,【通过和带铜的Sn(Cu)焊锡反应减缓在Ni(P)衬底上的Ni3P晶层成长】(“Retarding growth of Ni3Pcrystalline layer in Ni(P)substrate by reacting with Cu-bearing Sn(Cu)solders),S.J.Wang,C.Y.Liu,Scripta Materialia 49(2003)813-818),此文献是通过调整Sn-Cu焊锡中的铜浓度来控制该焊锡与镍的反应,以抑制Ni3P相的生成,但是其并无法抑制Cu-Sn或Ni-Sn化合物的成长。
为避免上述现有技术的问题及缺点,本发明的发明人提出利用控制形成焊锡与铜的金属间化合物的厚度,也就是说,焊锡与铜在接合之前能够快速地先反应产生金属间化合物(如Sn-Cu化合物),而在进行接合后使该金属间化合物的厚度成长减缓。
发明内容
本发明的一目的在于提供一种用于减缓金属间化合物成长的方法,包括步骤:
(i)制备一衬底元件,包括:
(i-1)在一衬底上电镀至少一金属垫层,
(i-2)在该金属垫层上电镀至少一薄焊料,接着进行热处理工艺,以制得一衬底元件;此热处理可以是液态下的回焊工艺或是固态时效工艺在该衬底元件上再镀上一适当厚度的焊锡;以及
(ii)将此元件与其它元件作后续接合工艺。
本发明特别适合用于减缓封装中焊锡与铜金属垫层的金属间化合物的形成,如上述本发明的方法,在进行芯片接合前,在衬底上的金属垫层先镀上一层很薄的薄焊料,经过热处理工艺,该薄焊料会与金属垫层的金属先行反应,因而改变了所生成的金属间化合物的形态与种类。接着进行后续的覆晶对接工艺,由于在接合前该很薄的薄焊料已与金属垫层的金属生成一很薄的金属间化合物,在接合后会产生抑制该接点(或凸块)的金属间化合物的生成速率的效果。
根据本发明的方法,参照图3,在一衬底上电镀一金属垫层(步骤,S201),接着在该金属垫层上电镀一薄焊料(步骤,S301),然后进行高温热处理工艺,得到一衬底元件,其中,该薄焊料经过高温热处理后,与金属垫层的金属会反应形成一薄金属间化合物(步骤,S401)。之后再镀上适当厚度的焊锡(步骤,S501),将步骤S101、201、301、401、501所制得的一衬底元件可以作后续接合工艺(步骤,S600)。
本发明的方法中,该薄焊料与金属垫层的金属反应形成的金属间化合物均具有隔离的功能,可减少金属垫层的金属原子透过金属间化合物与焊料反应的通道,让金属垫层的金属与焊料凸块隔离,依此即能有效地抑制接点区域的金属间化合物的成长。当半导体元件(例如半导体芯片)进行覆晶接合工艺时,由于衬底上的金属垫层与焊料之间会先形成一金属间化合物,在接合后可减少金属垫层中的金属原子渗入焊料接点,因此,当接合后再进行回焊或多次回焊程序之后,会有减少焊料接点的金属间化合物形成的效果,另一方面,金属垫层的金属原子消耗也会减少。
本发明的另一目的在于提供一种覆晶接合或是焊锡接口的结构,包括:
(A)一衬底元件,含有:
(A-1)一衬底,
(A-2)至少一金属垫层,该金属垫层是电镀形成于该衬底上,
(A-3)至少一薄焊料,该薄焊料是电镀于该金属垫层上;
(A-4)在该衬底元件再镀上一适当厚度的焊锡层;
其中,(A)一衬底元件可以与其它衬底元件呈现覆晶接合,经过回焊程序,得到一覆晶接合的结构,其特征在于所述该薄焊料在接合之前与金属垫层的金属形成一连续层状或是接近连续层的薄金属间化合物。
本发明的结构中,所形成的一薄金属间化合物具有隔离金属垫层的金属与焊料接点(或凸块)的功能,因此能有效地抑制接点区域的金属间化合物的成长。
本发明中,电镀金属垫层或焊料的方法不特别限制,可为此技术领域中现有电镀技术,例如:电镀铜可使用硫酸铜溶液;电镀锡银焊锡可使用Sn2P2O7及AgI的溶液。
本发明中,使用的衬底不特别限制,根据本发明的一具体实施例,该衬底可为半导体芯片、硅芯片、高分子或玻璃。
本发明中,使用的金属垫层的金属材料不特别限制,根据本发明的一具体实施例,该金属材料可为铜、镍、金或其合金,优选为铜。本发明的金属垫层的厚度范围为约数微米至100微米。
本发明中,使用的焊料不特别限制,根据本发明的一具体实施例,该焊料可为无铅焊料,优选为无铅焊锡。
根据本发明的一具体实施例,所述薄焊料厚度不超过4微米,优选为2微米。本发明中,接合后,焊料接点的总厚度不超过100微米,优选为20微米。
本发明的用于减缓金属间化合物成长的方法,尤其适合应用于3D IC产业领域(例如3D IC封装技术)、中央处理器(CPU)、手机、影像处理芯片、动态随机存取内存(DRAM)等产品。
以下将对本发明更详细的描述,所提出的具体实施例及附图是用于进一步说明本发明,而不用于限制本发明的技术范围。
附图说明
图1是描述现有的覆晶焊锡接点的示意图。
图2A是描述现有的覆晶焊锡接点剖面的扫描电子显微镜图像(cross-sectional scanning electron microscope(SEM)image)。
图2B是描述现有的20微米覆晶微焊锡接点剖面的扫描电子显微镜图像。
图3是描述根据本发明的方法流程图。
图4A是描述根据本发明的方法,衬底元件镀有一薄焊料的具体实施例示意图。
图4B是描述根据本发明的方法,衬底元件镀有一焊料的具体实施例示意图。
图5A是根据本发明的方法,在5微米厚的铜焊垫镀上2微米焊料后的电子显微镜横截面图。
图5B是根据本发明的方法,在5微米厚的铜焊垫镀上2微米焊料后且经过260℃回焊10分钟后的电子显微镜横截面图。
图6A是描述根据本发明的方法,“2-μm-SnAg试片”在260℃回焊10分钟后,再镀上20微米焊料,再在260℃回焊1分钟后的电子显微镜横截面图。
图6B是描述根据本发明的方法,“2-μm-SnAg试片”在260℃回焊10分钟后,再镀上20微米焊料,再在260℃回焊5分钟后的电子显微镜横截面图。
图6C是描述根据本发明的方法,“2-μm-SnAg试片”在260℃回焊10分钟后,再镀上20微米焊料,再在260℃回焊10分钟后的电子显微镜横截面图。
图7A是“19-μm-SnAg试片”在260℃回焊1分钟后的电子显微镜横截面图。
图7B是“19-μm-SnAg试片”在260℃回焊5分钟后的电子显微镜横截面图。
图7C是“19-μm-SnAg试片”在260℃回焊10分钟后的电子显微镜横截面图。
图8是测量的接口Cu-Sn化合物的厚度,在260℃,随着回焊时间增加的变化图。
【主要元件符号说明】
31        第一衬底;
32        第一铜金属垫层;
33        无铅焊料;
41        第二衬底;
42        第二铜金属垫层;
43        无铅焊料;
IMC       金属间化合物。
具体实施方式
为使本发明的目的、技术方案和有益效果更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
首先,制备一电镀有薄焊料的试片“2-μm-SnAg/铜垫层的试片”。
制备电镀有薄的第一薄焊料的试片“2-μm-SnAg试片”,与电镀有第二焊料的试片“19-μm-SnAg试片”。
参照图4A,制备一电镀有薄的第一薄焊料的试片“2-μm-SnAg试片”。
首先,准备一硅芯片作为一第一衬底(31),其上电镀有一厚度5微米的第一铜金属垫层(Cu UBM)(321、322、32n,以下本文称为“32”);接着,在该第一铜金属垫层(32)上电镀一层厚度2微米的SnAg无铅焊料(331、332、33n,以下本文称为“33”),在260℃温度下进行回焊(reflowing),历时10分钟左右,该无铅焊料经过260℃回焊及冷却之后,会与铜金属反应而形成一很薄的第一薄Cu-Sn金属间化合物(Cu-Sn IMC)(未标示),依此得到“2-μm-SnAg试片”。
参照图4B,制备一电镀有第二焊料的试片“19-μm-SnAg试片”。
准备另一硅芯片作为一第二衬底(41),在该第二衬底(41)电镀上另一厚度20微米的第二铜金属垫层(Cu UBM)(421、422、423,以下本文称为“42”);接着,在该第二铜金属垫层(42)上电镀一厚度19微米的SnAg无铅焊料(431、432、43n,以下本文称“43”),在260℃温度下进行回焊(reflowing),历时1-10分钟左右,该无铅焊料经过260℃回焊及冷却之后,会形成较厚的Cu-Sn金属间化合物(Cu-Sn IMC)(未标示),依此得到“19-μm-SnAg试片”。
上述工艺中,镀上很薄的焊料的第一焊料(33)在进行后续接合程序之前,会先与铜金属垫层的铜金属反应形成薄Cu-Sn金属间化合物,该Cu-Sn金属间化合物可减少铜原子透过Cu-Sn金属间化合物与无铅焊料反应的通道,让第一铜金属垫层(32)与焊料接点(或凸块)隔离。
本实施例中,利用扫描电子显微镜(SEM)检测该结构的横截面图,让该结构在260℃温度下再进行回焊程序,历时5分钟及10分钟,以进行焊料接点的测试。
参照图5A、5B,试片为“2-μm-SnAg试片”,图5A是刚制备后及图5B是回焊10分钟后的扫描电子显微镜的横截面图。可清楚观察到,当回焊10分钟后,上方的无铅焊锡几乎全部反应成Cu-Sn金属间化合物。而且其结构呈现层状结构。此层状结构Cu-Sn金属间化合物即是用来接下来接合工艺中减缓铜扩散到焊料的阻止层。
参照图6A、6B、6C,试片是在“2-μm-SnAg试片”回焊10分钟后,再镀上厚约20微米的焊料,再回焊1、5、及10分钟后的扫描电子显微镜的横截面图。可以看出即使回焊10分钟后,Cu-Sn金属间化合物仍几乎维持层状结构。因此,Cu-Sn金属间化合物之间的通道变少,因此铜原子要扩散进入焊锡内反应变得较困难。
另一方面,测试结果显示,若没有使用此方法,Cu-Sn金属间化合物会成长较快。参照图7A、7B、7C,此试片是在“19-μm-SnAg试片”回焊1、5、及10分钟后的扫描电子显微镜的横截面图。可以看出Cu-Sn金属间化合物会明显随着回焊时间增加而增厚的情况产生。而且形貌呈现半圆形形状,因此铜原子容易从Cu-Sn金属间化合物中间的通道扩散进入焊锡内反应。所以Cu-Sn金属间化合物会明显随着时间增加而增厚。
参照图8,此图显示测量到的Cu-Sn金属间化合物厚度随着回焊时间增加的关系。可观察到经过预先经过回焊10分钟的“2-μm-SnAg试片”端的Cu-Sn金属间化合物较不会随着时间增加而有明显地增厚的情况产生,当回焊10分钟后,观察到厚度的增加只约0.2微米;但是“19-μm-SnAg试片”回焊10分钟后,Cu-Sn金属间化合物增加约1.6微米。因此可证实,根据本发明的方法,在接合前先在金属垫镀上一薄焊料,确可达到抑制Cu-Sn金属间化合物厚度成长的效果,同时铜金属垫层与焊料凸块隔离,也让铜金属层的消耗厚度明显地减少。
此外,针对本发明的用于减缓金属间化合物成长的方法,探讨其可达到抑制Cu-Sn金属间化合物增厚的效果的机制,主要归因于下列因素:
(1)当接合前,没有在金属垫层先镀上一很薄的焊料时,生成的Cu-Sn金属间化合物(例如Cu6Sn5化合物)是类似半球型的形状。如图7A所示的回焊1分钟后“19-μm-SnAg试片”端的Cu-Sn化合物的形状,该“19-μm-SnAg试片”是已利用蚀刻液,蚀刻掉剩余的焊料,可观察到生成的Cu-Sn金属间化合物形状,在半球型Cu6Sn5之间有许多的通道(channels),可以让底下的铜持续扩散到焊锡内部反应。
此外,当接合前,在金属垫层先镀上一很薄的焊料时,如上述本发明的方法,观察到“2-μm-SnAg试片”,经过10分钟的回焊过程后,生成的Cu6Sn5或是Cu3Sn化合物是类似层状结构,而且几乎没有通道,这是因为焊锡只有2微米厚,经过10分钟的回焊过程后,焊锡几乎全部消耗完,Cu6Sn5间的通道也就关闭起来。因此,当“2-μm-SnAg试片”再镀上焊料时,在“2-μm-SnAg试片”的Cu-Sn反应就很明显地被抑制。
(2)因为镀上的焊锡很薄,例如只有2微米厚,经过10分钟的回焊过程后,焊锡几乎全部消耗完,Cu6Sn5化合物也可能全部或部分转变成层状结构的Cu3Sn化合物,下方的铜要扩散到焊锡内反应较不容易,因此Cu-Sn反应就很明显地被抑制。依此,可抑制Cu-Sn化合物厚度增厚。
通过上述具体实施例可证实,根据本发明的方法确能有效地减缓金属间化合物厚度的成长。一旦金属间化合物成长速率能被减缓,锡晶须(Snwhisker)的成长也可以被抑制。因此本发明也可以应用于抑制锡晶须的成长。
本发明可在不偏离本发明的范畴的情况下,以多种形式实现,上述实施例仅是为了方便说明而举例而已,应理解的是(除非另有指明)本发明所主张的权利范围自应以权利要求所述为准,而非仅限于上述实施例。

Claims (10)

1.一种用于减缓金属间化合物成长的方法,其特征在于,包括步骤:
(i)制备一衬底元件,包括:
(i-1)在一衬底上电镀至少一金属垫层,
(i-2)在该金属垫层上电镀至少一薄焊料,接着进行热处理工艺,以制得一衬底元件;再镀上适当厚度的焊锡;以及
(ii)将此元件与另一元件作后续接合工艺,
其中,该薄焊料在经过高温热处理后,在覆晶对接之前,与金属垫层的金属反应形成一薄金属间化合物。
2.根据权利要求1所述的方法,其特征在于,该衬底为半导体芯片、硅芯片。
3.根据权利要求1所述的方法,其特征在于,该金属垫层的金属为铜。
4.根据权利要求1所述的方法,其特征在于,该焊料为无铅焊锡。
5.根据权利要求1所述的方法,其特征在于,该薄焊料的厚度不超过4微米。
6.一种覆晶接合的结构,其特征在于,包括一衬底元件,该衬底元件含有:
一衬底,
至少一金属垫层,该金属垫层是电镀形成于该衬底上,
至少一薄焊料,该薄焊料是电镀于该金属垫层上;及经过热处理后,再镀上适当厚度的焊料;
其中,一衬底元件,经过热处理程序,所述薄焊料在接合之前与金属垫层的金属形成一连续层薄金属间化合物。
7.根据权利要求6所述的结构,其特征在于,该衬底为半导体芯片或硅芯片。
8.根据权利要求6所述的结构,其特征在于,该金属垫层的金属为铜。
9.根据权利要求6所述的结构,其特征在于,该焊料为无铅焊锡。
10.根据权利要求6所述的结构,其特征在于,该薄焊料的厚度不超过4微米。
CN201210061784.XA 2011-08-09 2012-03-09 用于减缓金属间化合物成长的方法 Expired - Fee Related CN102931107B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100128377 2011-08-09
TW100128377A TWI430377B (zh) 2011-08-09 2011-08-09 用於減緩介金屬化合物成長之方法

Publications (2)

Publication Number Publication Date
CN102931107A true CN102931107A (zh) 2013-02-13
CN102931107B CN102931107B (zh) 2016-02-10

Family

ID=47645880

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210061784.XA Expired - Fee Related CN102931107B (zh) 2011-08-09 2012-03-09 用于减缓金属间化合物成长的方法

Country Status (5)

Country Link
US (1) US8835300B2 (zh)
JP (1) JP5922523B2 (zh)
KR (1) KR101424095B1 (zh)
CN (1) CN102931107B (zh)
TW (1) TWI430377B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579053A (zh) * 2016-07-05 2018-01-12 纳普拉有限公司 多层预成型片材
CN110026705A (zh) * 2019-03-08 2019-07-19 南昌大学 一种增强Sn基钎料/Kovar合金互连焊点可靠性的镀层及其制备工艺
WO2023039786A1 (zh) * 2021-09-16 2023-03-23 京东方科技集团股份有限公司 阵列基板及其检测方法、发光装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9227257B2 (en) 2012-04-24 2016-01-05 Seagate Technology Llc Laser subassembly metallization for heat assisted magnetic recording
TWI572436B (zh) * 2014-12-19 2017-03-01 中原大學 一種銲接結構及其製造方法
DE102016103585B4 (de) * 2016-02-29 2022-01-13 Infineon Technologies Ag Verfahren zum Herstellen eines Package mit lötbarem elektrischen Kontakt
US10388627B1 (en) * 2018-07-23 2019-08-20 Mikro Mesa Technology Co., Ltd. Micro-bonding structure and method of forming the same
US10347602B1 (en) * 2018-07-23 2019-07-09 Mikro Mesa Technology Co., Ltd. Micro-bonding structure
CN114226901B (zh) * 2021-12-31 2023-03-31 北京工业大学 一种多双孪晶组和细小晶粒构成的多晶结构焊点生成方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184061B1 (en) * 1998-04-24 2001-02-06 Mitsubishi Denki Kabushiki Kaisha Electrode of semiconductor device, method of manufacturing thereof, and the semicondutor device
US20020093096A1 (en) * 2001-01-15 2002-07-18 Nec Corporation Semiconductor device, manufacturing method and apparatus for the same
US20030222352A1 (en) * 2002-05-29 2003-12-04 Via Technologies, Inc. Under-bump metallugical structure
US20060249844A1 (en) * 2005-05-06 2006-11-09 Via Technologies, Inc. Contact structure on chip and package thereof
CN101159255A (zh) * 2006-10-06 2008-04-09 株式会社日立制作所 电子装置及其制造方法
US20090085216A1 (en) * 2007-08-27 2009-04-02 Oki Electric Industry Co., Ltd. Semiconductor device
JP2009283628A (ja) * 2008-05-21 2009-12-03 Tamura Seisakusho Co Ltd 半導体素子実装方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3910363B2 (ja) * 2000-12-28 2007-04-25 富士通株式会社 外部接続端子
US6602777B1 (en) 2001-12-28 2003-08-05 National Central University Method for controlling the formation of intermetallic compounds in solder joints
US6716737B2 (en) 2002-07-29 2004-04-06 Hewlett-Packard Development Company, L.P. Method of forming a through-substrate interconnect
DE102005051857A1 (de) 2005-05-25 2007-02-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. UBM-PAD, Lötkontakt und Verfahren zur Herstellung einer Lötverbindung
JP4742844B2 (ja) * 2005-12-15 2011-08-10 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
KR100859641B1 (ko) 2006-02-20 2008-09-23 주식회사 네패스 금속간 화합물 성장을 억제시킨 솔더 범프가 형성된 반도체칩 및 제조 방법
JP4724192B2 (ja) * 2008-02-28 2011-07-13 株式会社東芝 電子部品の製造方法
JP5067481B2 (ja) 2008-05-02 2012-11-07 富士通株式会社 配線基板およびその製造方法、電子装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184061B1 (en) * 1998-04-24 2001-02-06 Mitsubishi Denki Kabushiki Kaisha Electrode of semiconductor device, method of manufacturing thereof, and the semicondutor device
US20020093096A1 (en) * 2001-01-15 2002-07-18 Nec Corporation Semiconductor device, manufacturing method and apparatus for the same
US20030222352A1 (en) * 2002-05-29 2003-12-04 Via Technologies, Inc. Under-bump metallugical structure
US20060249844A1 (en) * 2005-05-06 2006-11-09 Via Technologies, Inc. Contact structure on chip and package thereof
CN101159255A (zh) * 2006-10-06 2008-04-09 株式会社日立制作所 电子装置及其制造方法
US20090085216A1 (en) * 2007-08-27 2009-04-02 Oki Electric Industry Co., Ltd. Semiconductor device
JP2009283628A (ja) * 2008-05-21 2009-12-03 Tamura Seisakusho Co Ltd 半導体素子実装方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579053A (zh) * 2016-07-05 2018-01-12 纳普拉有限公司 多层预成型片材
CN110026705A (zh) * 2019-03-08 2019-07-19 南昌大学 一种增强Sn基钎料/Kovar合金互连焊点可靠性的镀层及其制备工艺
WO2023039786A1 (zh) * 2021-09-16 2023-03-23 京东方科技集团股份有限公司 阵列基板及其检测方法、发光装置

Also Published As

Publication number Publication date
JP2013038418A (ja) 2013-02-21
JP5922523B2 (ja) 2016-05-24
KR20130018542A (ko) 2013-02-25
TWI430377B (zh) 2014-03-11
US8835300B2 (en) 2014-09-16
US20130037940A1 (en) 2013-02-14
KR101424095B1 (ko) 2014-07-28
TW201308451A (zh) 2013-02-16
CN102931107B (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
CN102931107B (zh) 用于减缓金属间化合物成长的方法
TWI390642B (zh) 穩定之金凸塊焊料連接
US8957323B2 (en) Electrical connecting element having nano-twinned copper, method of fabricating the same, and electrical connecting structure comprising the same
CN1137797C (zh) 用于减少焊料中金属间化合物形成的镍合金薄膜
TWI302722B (en) Ubm pad, solder contact and methods for creating a solder joint
KR101477596B1 (ko) 반도체칩 및 그 제조 방법
CN101213076B (zh) 具有减少的界面空洞的用于铜金属化的焊接点
JPWO2007138922A1 (ja) 電子部品、半導体パッケージ及び電子機器
JPH10511226A (ja) フリップチップ実装用はんだバンプおよびその製造方法
SG182771A1 (en) A method of forming a bonded structure
CN104051406A (zh) 半导体结构及其制造方法
CN104099653B (zh) 半导体结构及其制造方法
CN105932004A (zh) 半导体元件,半导体封装结构及其制造方法
Njuki et al. Understanding and preventing Cu–Sn micro joint defects through design and process control
US10213986B2 (en) Electric connection and method of manufacturing the same
Kim et al. Fluxless Sn–Ag bonding in vacuum using electroplated layers
CN101159253A (zh) 凸块下金属层结构、晶圆结构与该晶圆结构的形成方法
Jang et al. CrCu based UBM (under bump metallization) study with electroplated Pb/63Sn solder bumps-interfacial reaction and bump shear strength
Choi et al. Development of low temperature bonding using in-based solders
CN110744163B (zh) 一种抗热迁移微焊点结构及其制备方法
Kim et al. Intermetallic compound and Kirkendall void growth in Cu pillar bump during annealing and current stressing
Dai et al. Newly developed in-situ formation of SnAg and SnAgCu solder on copper pillar bump
Wu et al. Interfacial stability of eutectic SnPb solder and composite 60Pb40Sn solder on Cu/Ni (V)/Ti under-bump metallization
Wang et al. Current induced interfacial microstructure and strength weakening of SAC/FeNi-Cu connection
JP2013035046A (ja) 金属膜とリードのはんだ接合構体およびその熱処理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160210

CF01 Termination of patent right due to non-payment of annual fee